Symbolic Tree Automata

Margus Veanes, Nikolaj Bjgrner
Microsoft Research, Redmond, WA, USA

Abstract

We introduce symbolic tree automata as a generalizatiomié firee automata with a parametric alphabet over
any given background theory. We show that symbolic treeraata are closed under Boolean operations, and that the
operations areféectively uniformin the given alphabet theory. This geniees the corresponding classical properties
known for finite tree automata.

Keywords: tree automata, automata algorithms, logic, satisfiabiibdulo theories

1. Introduction trees, or unranked data tree automata [4]. We show that
this is not the case for symbolic tree automata. The key

Finite word automata and finite tree automata pro- distinction is that the extension here is with respect to
vide a foundation for a wide range of applications in charactergather than adding symbolgtatesor adding
software engineering, from regular expressions to com- constraints over wholsubtrees
piler technology and specification languages. Despite The symbolic extension is practically useful for ex-
their immense practical use, explicit representations are ploiting efficient symbolic constraint solvers when per-
not feasible in the presence of finite large alphabets. forming basic automata-theoretic transformations: it
They require each transition to encode only a single ele- enables a separation of concerns. The solver is used
ment from the alphabet. For example, string charactersas a black box with a clearly defined interface that ex-
in standard programming languages (such asctwe poses the label theory as afiestive Boolean algebra.
type in C#) use 16-bit bit-vectors, an explicit represen- The chosen label theory can be specific to a particular
tation would thus require an alphabet of siZé& More- problem instance. For example, even when the alpha-
over, most common forms of finite automata do not sup- bet is finite, e.g., 16-bit bit-vectors, it may be useful for
port infinite alphabets. efficiency reasons to use integer-linear arithmetic rather

A practical solution to the representation problem is than bit-vector arithmetic when the solver is mofg-e
symbolic tree automatarhey are an extension of clas- cient over integers and when only standard arithmetic
sical tree automata that addresses this problem by al-operations (and no bit-level operations) are being used.
lowing transitions to be labeled with arbitrary formulas Recent work [5, 6] on symbolic string recognizers and
in a specified label theory. While the idea of allowing transducers takes advantage of this observation.
formulas is straightforward, typical extensions of finite We here investigate the case of the more expressive
tree automata often lead to either undecidability of the class of symbolidree automata. Even though a sym-
emptiness problem, such as tree automata with equalitybolic tree automaton is a finite object, a key point s that
and disequality constraints [1], or many extensions lead the number of interpretations for symbolic labels does
to nonclosure under complement, such as the general-not need to be finite. For example, as a consequence of
ized tree set automata class [1], finite-memory tree au- our main result (Theorem 2) a label theory may itself be
tomata [2] that generalize finite-memory automata [3] to the theory of symbolic tree automata (over some basic
label theory).

In order to use classical tree automata algorithms, it

Email addressesnargus@nicrosoft.com (Margus Veanes), is possible to reduce a symbolic tree automakonto a
nbjornerenicrosoft. con (Nikolaj Bjorner) classical finite tree automaton whose alphabet is given

URL:http://research.microsoft.com/ margus (Margus e ; .
Veanes)http://research.microsoft.con/ nbjorner by all of the satisfiable Boolean combinations of guards
(Nikolaj Bjarner) that occur inA. However, such a transformation is in

Preprint submitted to Information Processing Letters October 30, 2014

general not practical because it introduces an exponen- We useA as a subscript to identify a component, un-
tial increase in the size of the automaton before the ac- lessA is clear from the context. We writBTA(X) for
tual algorithm is applied. Moreover, when more than an dfectively enumerable set of all STAs ovEr Let
one automaton are involved, this has to be done up front A = (£, Q, Q", Q*, A) € STA(X) be fixed. Given a tran-
for all predicates that occur in all the automata in order sitionp = (p, ¢, G1, 02) € A, letlhs(p), v(0), andrhs(p),

to define the common alphabet. A concrete example of denote, respectively, theft-hand-side pthe guard ¢,
such a blowup is given in [7, Example 2]. and theright-hand-side(qy, gp) of p. We useq as an

abbreviation for s, q2).

2. Definition of symbolic tree automata Definition 2. Thelanguage of A for g Q, denoted by
Z(A, q), is the smallest subset 6f(%) such that: ifg €
We introduce an extension of tree automata with an Q- thene € .Z(A, q); if (9, ¢, a1, 02) € A, a € [¢], and,
effective encoding of labels by predicates that denote fori € {1,2}, ti € -Z(A, qi), then{(a ty,to) € L(A, Q).
setsof labels, rather than individual labels. We assume Thelanguage of As .Z(A) oo Ugear Z(A, Q).
a countabléackground universg. A predicatep over

2 is a finite representation of a subsef|[? of #; we Two STAsA andB areequivalent denotedA = B,

write [¢] when 4 is clear from the context. We assume when.Z(A) = .Z(B).

given an &ectively enumerable set of predicaksuch Let Lsag) = (2,0,0,0,0). Thus.Z(Lstaw) = 0.

that, for each elemert € % there isd’ € X such that ~ The following example illustrates a representation of
[a] ={a}, T,L e Zsuchthatr] = £ and [L] = 0, valid Unicode character sequences as an STA that uses
andX is effectively closed under Boolean operations: UTF16 encoding of surrogate paifrs.

forall g,y e X, wehavep Ay € X, p VY €X, —p € X, The particular feature of the representation is that the
where o Ayl = [l N[yl [vyl =1el Vvl trees preserve the length of the original Unicode strings
and [-¢] = %\ [¢]. We write ¢ = y for [¢] = [¢]. as the length of the rightmost branch. The leftmost

We say that¥, [-]¥#) (orZ, when []# is clear fromthe branch from any node in the tree is either the node it-
context) is areffective Boolean algebraove®. We say self when the node is not a surrogate, or a surrogate pair
thatX is decidabléf the problem of deciding = L for otherwise, and encodes thus a single Unicode symbol.
¢ € X is decidable.

Example 2. Let BV16 stand for quantifier free 16-bit
Example 1. An example of a decidable ffective bit-vector arithmetic; BV16 is isomorphic to quantifier
Boolean algebra i A(X), [-]%) where []Z is the stan- free integer linear arithmetic moduld®2 We use a sin-
dard interpretation of integer arithmetic with , ané(x) gle fixed free variable in predicates over BV16, thus
is an dfectively enumerable set of all quantifier free [¢] is the set of all valuea such thatp[x/a] is true. Let
integer-linear arithmetic formulas, with one fixed free . .
variablex, e.g., [0< XxAx+1 < 3] = [0 < X] N[x+1 < HighSurr 0xD800 < X < OxDBFF,
3] ={1. X LowSurr £ 9xDCOO < X < OxDFFF,

In this paper we focus obinarytrees. This willkeep ~ LetA = (BV16, {Qok, Gis, Ge}, {dok, Ge}. {Gokl}, A), where
the notational overhead at a minimum, while the results
can be generalized to non-binary trees through standard A= {
encoding techniques7(#) is the smallest set such that h
the empty treee € J(#) and ifa € # andt,t; €
T(#) thent = (a, t1,t2) € T(A), wherea is thelabel
of t, denotedabelt), t; is theleft subtreeof t, denoted
left(t), andt; is theright subtreeof t, denotedight(t). x2660—

For examplel, (-2, ¢, (3, ¢, €)), {4, €, €)) € T(Z). €

(9ok, HighSurt, gis, Gok),

(Qok, “"LOWSuUrrA =HighSurr, g, qok),
(qis, LowSure g, dfe)

For example, the tree

0xD834
/ \
03DD35 03266E
E} KE e} \e
Definition 1. A symbolic tree automaton (STA)is\a
tuple €, Q, Q-, Q*%, A) whereX is an dfective Boolean - _ N
Complete Unicode alphabet has over one million characters,

algebra called theabel theoryOf A, Qis a finite set of UTF16 encoding is used to encode the alphabet with 16-bit bit

statesQ ¢ Qis a set Oi_eave.S'QR cQisa Set ofoots, vectors, where surrogate pairs are used for encoding d¢hesan the
andA € Qx X x Q x Qis a finite set ofransitions upper Unicode range.

is in Z(A) and encodes the Unicode stringey" Forq € Q x Q let ya(q) denote the disjunction of
of musical symbols, wher& is the symbol “cut guards of all transitions iA whose right-hand-side s
time” encoded by the surrogate paixp834,0xDD35).

The sequence would be represented by a string YA@ = V{y(0) | p € An, ths(p) = G}
"\u266D\uD834\uDD35\u266E" (of length 4) in stan- ! . . .
dard programming and scripting languages. X Observe that, if there is no transition Aawhose right-

hand-side ig) thenya(q) is the empty disjunction ar
Example 3. We illustrate an STAA that accepts (by definition). We use the following subclass of STAs.
integer-labeled binary trees Definition 4. Aistotalif, forall ge Qx Q,ya(Q) = T.

A = (LA(X): {Troot 0-» 0o- 0+ A} {Ge} {Troot} A), The STA A in Example 3 is not total because, e.g.,
va(Qo, Qo) = L. However, any DSTAA can be made

whereA consists of the transitions total as follows. First, extend to A; by adding a new

(Groots X=0, 0, G+), (Go, X=0, 0+,), stategsink. Second, extenédy to A, by adding the new
(0, X<0, 0, Go), (G, x>0, Go, Gs), transition @sink —ya,(0), q) for eachq € Qa, X Qa,. It
(G-, X<0, e, Ge), (o, X=0, G, Ge), (G, x>0, Ge, Q) follows thatA; is a total DSTA and, for alf € Qa,

Z(A Q) = Z(A2,q), and thusZ(A) = Z(A).
The transitions can be understood as a recursive con- The following basic properties follow for STAs, by
straint system. Theoot has label 0, its left son is a structural induction over trees. Let
‘--node and its right son is a+"-node. Every ~-node ot
has a negative label and is either a leaf or its left son is Qa) ={geQalte Z(A)

a ‘--node and its right son is a*-node. Similarly for :
the other cases. For example, the tree Lemma 1. If A is a DSTA thenQa(t)] < 1forallt

T(AB).
0
/*l\/ \/6\ Lemma 2. If A is total then|Qa(t)] = 1for allt €
/7{5 3/0\— /O\e /5\5 9(@)
VAN
We write TDSTAfor total DSTA. The construction
isin Z(A). X

def

, o C(A) = (Za, Qa, Qa, Qa\ Q. An)

Classical tree automata theory distinguishes be-
tweentop-down(or root-to-frontier) andbottom-up(or defines what theomplemenbf a TDSTA A is. For,
frontier-to-roof recognizers. This classification relates X c .7(%), letC(X) o T(B)\ X.
to the intendedlirection of the transitions for accept- .
ing or recognizing a tree. The results of the paper are Lemma 3. If Ais a TDSTA thedZ(C(A)) = C(-Z'(A)).
independent of this classification.

A fundamental subclass of STAs is the following, that

generalizes the corresponding subclass of deterministicgTas withe-moves. An STA A can be extended with a
bottom-up (frontier-to-root) tree recognizers [8, Defini- ¢at ofe-movesr® C Qx Qas an additional (sixth) com-

tion 2.1(p. 60)]. ponent. Withe-moves, the definition afZ(A, q) (Defi-
Definition 3. A is deterministioqDSTA when|Q"| = 1 nition 2) is extended to include the conditiéfi(A,) €

and, for alloy. pz € A, if ths(py) = ths(oz) andy(py) A~ LA P forall (p.g) € A%
y(02) % L thenlhs(or) = Ihs(py). Similar to finite tree automata;moves can beféec-

tively eliminated and do notfeect the expressive power
For example, the STA in Example 3 is deterministic be- of STAs. The algorithm foe-moves elimination is in-
cause the only transitions with equal right-hand-sides dependent of the symbolic labels and the standard al-
are the last three transitions and their guards denote mu-gorithm for finite tree automata case (see [1, Theorem
tually disjoint sets of labels. The STA in Example 2 is 1.1.5]), also applies to STAs. Howevermoves may

Proor. By using Lemmas 1 and 2. X

not deterministic becaug€®"| > 1 (although it istop- have practical value because they can increase succinct-
down deterministic|Q*| = 1 and, for allpy, 02 € A, if ness among equivalent STA representations, which may
Ihs(p1) = Ihs(p2) andy(e1) A y(p2) # L thenrhs(p1) = improve performance in symbolic analysis, similar to

rhs(p,), but it can be converted to a DSTA. the observations made in [5] regarding the case of SFAs.

3. Determinization of symbolic tree automata

Similar to the case of deterministic frontier-to-root

u(S2,S,) = L, which follows fromS; # S; and the

definition of u(S, S’): there exists a transitign € A(q)
such that fi(S1,S)1 < [¥(e)] and [u(S2,S5)]1 <

tree recognizers, DSTAs have the same expressive[_, ()], where, wlog is such thap € S; \ S,.

power as general STAs. We lift the classical powerset

construction of nondeterministic Rabin-Scott recogniz-
ers to STAs. Lep(X) denote the powerset of a 9¢£

We write p 4 q for the rule f, ¢, Q).

Definition 5. Let A = (%, Q, Q", Q%, A). The powerset
STA of Ais:

oA £ (Z,0Q), (Q), (gep(Q) gnNQ: £ 0},

hs(s) 29 g

q € p(Qxp(Q). S c A(@)))

where A(d1,d2) £ {p | p € A, ths(p) € g1 X 02}
»y\ def
,u(S, S) = /\pES Y(p) A /\pES’ _"Y(p)

lhs(S) = {Ihs(p) | p € S}

Note that the role of the stafein the powerset STA is
similar to the role ofysink mentioned after Definition 4.

We obtain the following generalization of [8, Theo-
rem 2.6(p. 65)].

Theorem 1. For all STAs A:
() p(A) is a TDSTA,;
(b) for all t, {Qa(t)} = Qua(®);
©p(A) = A;
(d) |Quay| = 210;
() |Apm)| = O(2%Rui+Al),

Proor. Proof of (a) To show thatp(A) is total, fix a
g = (1,92) € 9(Q) x p(Q). We need to show that
Yo (@) = T. The empty conjunction is, by definition,
T, and thus, whemj; = 0 or g2 = 0 thenA(q) = 0,
1(©,0) = T, and @, T,q) € Ayn), and thusy,x)(Q) =
T. Assume that); # 0 andqz # 0. Let A(Q) = {piliel
and lety; = y(p;) fori € 1. We have that

Viu(S,A@)\ S) | S < A@))
Vaci(Aiea i A Nieng ~¢i) =

where the last equivalence follows from DeMorgan’s
laws and simplifications, sincell possible Boolean
combinations of truth assignmentsgfare included in
the disjunction.

To show thatp(A) is deterministic, lefg € p(Q) x
9(Q) and letS;, S, € A(qQ) be such thaB; # S,. Let
S/ = A(@) \ Si. It suffices to show thai(S;, S7) A

Yo (d)

T

Recall thatp(0) = {0).

Proof of (b) It follows from (a) and Lemmas 1 and
2 that, for allt, |Quu () = 1. We prove (b) by in-
duction over trees. The base cdse e follows im-
mediately from the definitions sind®a(e)} = {Q"} =
Qqun)(€). For the induction case suppose e and as
IH assume that{Qa(left(t))} = {01} = Qg (left(t))
and {Qa(right(t))} = {02} = Quu(right(t)). Letq =
(91, 92). The following statements are equivalent by us-
ing the definitions and the IH for the equivalence be-
tween 2 and 3. Lep € Q.
1. peQa(t)
2. There existsf, ¢,) € A for someq € q; X gz S.t.
labelt) € [¢].
3. There exist§ € A(Q) s.t.
labelt) € [u(S,A(Q) \ S)] and p € Ihs(S).
4. There existg € p(Q) s.t. p € g andQyux)(t) = {a}.

The equivalence of 1 and 4 for app implies that
{Qa(®)} = Quen)(D), that proves (b). Finally, (c) follows
from (b) by definition on;j,) and (d) and (e) follow
from definitions ofQ,x) andAy). X

Example 4. Recall thatLsTax) = (,0,0,0,0), so

P(LsTAE) (Z,{0},{0},0,{(0, T,0,0)})
Clp(LstaE))) (Z, {0}, {0}, {0}, {(0, T,0,0)})

Thus Z(C(p(Lsta))) = J(X).

X

Similar to the case of classical tree automata, the
powerset construction enables us toeetively deter-
minize, and thus complement, STAs.

Determinization of STAs, i.e., Definition 5, can be
implemented with bottom-up depth first search. The
same basic technique that is used for SFAs [9], that
uses minterm generation, has been extended for STAs
in [10]. Observe that, in Definition (S, S’) (when
feasible), defines, at the propositional levemanterm
that corresponds intuitively to a nonempty region of a
Venn diagram ove#Z defined by the guards Band the
complements of the guards 8i. Infeasible guards are
eliminated eagerly during the bottom-up powerset con-
struction and prune away unreachable left-hand-sides of
rules in the constructed powerset STA.

4. Boolean closure of symbolic tree automata

For complete closure under Boolean operations we
use the following product construction that is a lifting
of the standard product of finite tree automata to STAs.

Definition 6. Let A = (Z,Q;, Qr, QF, A), fori = 1,2,

be STAs. Theoroductof A; andA; is the STA
ArxAr £ (Z,Qrx Q2 Q x Q5 Q5 x Q,

{p1 X p2 | p1 € A1,p2 € A3})

where, fori € {1,2} andpi = (pi, ¢i, Gi, i) € A,

P1X P2 ((P1, P2), 1 A @2, (A1, G2), (r1,T2))

Lemma 4 implies that we carffectively intersect lan-
guages of STAs. The proof of (a) follows by induction
over trees.

Lemmad4. Let A = (Z,Q;, Q, QL Ay), fori = 1,2, be
STAs. Then:
(a)forall gy € Q1,02 € Qo,
LA X A, (G, %)) = L (A, o) N L (A2, U2);
(b) Z (A1 x Az) = L (A1) N Z(A2);
(C) IQA A, = 1Q1l - 1Qal, [Aaxa, | = |A1] - |A2]

We use the following definition for constructing the
union of tree languages. Assume given two SHand
B such tha&a = g andQa N Qg = 0. Thesumof A
andB, denotedA + B, is the STA

(Za, Qa U Qg, Q4 U Qp, QA U QF, Aa U Ag).

Trivially, Z (A1 + Ag) = Z(A1) U ZL(Ay).

Assume thepredicatesover the base s&&TA(X) to
be defined as the least set that inclug&a\(X), and ife
andy are predicates ov8TA(Z) then so arewp, ¥ A ¢

andy Vv ¢, where forA, B € STA(Z), [A] £ .Z(A),
[-A] £ 2(C(p(A), [AArB] £ 2(AxB),and [AvV

B] £ .#(A+B). The denotation is lifted to all predicates
overSTA(Z). By slight abuse of notation, we IBTA(X)
also denote the extension with predicates.

A transitionp € Aa such thaty(p) = L is calledin-
feasible The size|g| for ¢ € STA(Y) is given by the
definitionslp A ¢'I = lo Vv ¢'| = gl + 1¢'l, =] = ¢l + 1,

[t| is the size of term, and|A] = 1+ Zea,ly (o)l

The following lemma is used by Theorem 2.

Lemma 5. The emptiness problem of an STA A, has
complexity @n - f(m)) where f{m) is the complexity of
deciding satisfiability ok, for instances of size m and
n=|Aal.

Proor. UsingO(n) calls to the decision procedure fbr
for formulas of size at moshwe can converA into an
automaton where all infeasiable transitions have been
removed. The bound on this stepd¢n - f(m)).

Next, assume that all transitionsAnare feasible and
let G be the set of all guards that occur Mmand let

I' = {c.} U {g, | ¥ € G} be an alphabet, where eagh

is a binary function symbol angj is a constant. Decide
emptiness ofA as a finite tree automaton (FTA) over
I" where each transitiorg(y, g1, g2) corresponds to the
FTA transitiong — g, (0, 02) and each leaf stagcor-
responds to the transitian— c.. If A FTA-recognizes
al-terms, thenZ(s) € Z(A), whereZ(c.) = {e} and
Z(g(s1.) = @t |ac[y]? . he L(s)tz e
Z(s)}, and.Z(s) # 0 because all guards are feasible.
The other direction is immediate: ife .Z(A) thenA
FTA-recognizes d-term s such thatt € Z(s). Thus,
[¢] # 0 iff A FTA-recognizes som&-term. Since
checking non-emptiness a tree automata is linear in their
size, the bound follows. X

Theorem 2. STAY) is an gfective Boolean algebra. If

¥ is decidable then so ISTA(Z). If the decision com-

plexity ofX is O(f(n)) then the decision complexity of
STA(Z) is O(2" - f(2M).

Proor. Givent e .7(#4) we can &ectively construct an
STA{ such that f] = {t}. The first statement therefore
follows from Lemmas 3 and 4, and Theorem 1.

We now prove decidability and the complexity bound
together. Assume we are given are STA(X), where
@ is of the formy A Y/, ¥ V ¥/, =, t, or A, for sym-
bolic automatorA andy, y’ € STA(X). We can bringp
into negation normap, form by pushing negations over
conjunctions and disjunctions. The size increasg isf
at most. We can remove negations frap to formg,,
by replacing each occurrened by C(p(A)) in ¢. The
size increase iO(Z-ac,2"), where-A € ¢ means-A
occurs ing. We can remove conjunctions and disjunc-
tions frome, by replacingAv Bby A+ B andA A B by
A x B. Let the resulting STA b8.

The size ofB is at mostllae, 24 = 25=IA = O(2").
It follows from Definition 2 thatZ’(B) = £ (B1). Now
check emptiness d8;. The complexity bound follows
from Lemma 5. X

In our implementation [11] the algorithms for product
and complement use depth first search, where infeasible
guards and unreachable states are never included, e.g.,
in Definition 6 the product transitiop; x p2 is never
added ifp1 A ¢, is unsatisfiable. Moreover, all the al-
gorithms are extended to work with arbitrary alphabets,
not just binary trees. The product is currently imple-
mented by using top-down (starting from the roots) style
of traversal. These algorithms are instrumental in the
applications discussed in [10].

Example 5. Complementation and determinization of line of defense against cross site scripting (XSS) at-
STAs is needed in the following analysis scenario. Con- tacks in web browsers. Symbolic transducers were gen-
sider a symbolic tree transducethatisan HTML san- eralized to symbolidree transducers (STTs) in [12].
itizer [10, Figure 2]. Itis a program that traverses an Boolean closure operations of STAs were initially stud-
input HTML document and modifies its nodes by re- ied in [13] where preliminary results corresponding to
moving attributes and values that may cause malicious Theorem 1 and Theorem 2 are stated as [13, Theorem 1]
code to be executed. The description of what is a safe and [13, Theorem 3], respectively. Explicit complex-
HTML document can be given by an ST in general ity bounds are not investigated in [13]. Unfortunately,
Amay be nondeterministic. The sanitiZeis secure for some of the results in [13] are unclear and wrong, which
Afif for all valid input treeg, T(t) € .Z(A), where atree s also noted in [14]. In particular, closure under com-

t is valid if it is accepted by the domain STéom(T) plement is unclear because unbounded tree ranks are al-
of T. Theinverse imageof T with respect to an STA lowed in tree languages in [13]. Also, closure of STTs
B, InvimdT, B) is also an STA that can be computed under composition [13, Theorem 5] is wrong. Proper-

effectively fromT andB, and is such that ties of STTs are studied and analyzed further in [14].
Analysis of string sanitizers is lifted to trees by use of
Z(InvimdT, B)) = {t | t € £(dom(T)), T(t) € L(B)}. symbolic tree transducers witegular lookaheadthat
are introduced in the context of thesk project [10, 11].
We have that Many tree transducer analysis algorithms depend on
Z(Invimd(T, S0 (A)))) STA algo'rit.hms, some of yvhigh require that the STA is
= {t|te L(domT)), T() € LC(p(A))} qletermmlstlc. Some .appllcat.lons are: .HTML Sanltlga-
= {t|te.2(domT)), T(t) € L(L(A)) tion, augmented_ reality cqnfllct an.aIy.S|s, Qefor(a_stat|on,
= {t]te.2(dom(T)), T() ¢ .Z(A) and CSS analysis. An online tutorial is avilable in [11].

The notion of analternating symbolic tree automaton

SoT is secure folA iff Z(InvimgT,C(p(A)) = 0. X is also introduced in [10]. Alternating STAs arise nat-
urally as domain automata of nonlinear symbolic tree

Another basic decision problem of STAs is timem- transducers. Alternating STAs must hermalizedto
bershipproblem: givert € 7(#) and STAA, decide if STAs prior to determinization.
t € Z(A). An equivalent formulation isZ(f) N .Z(A) # Symbolic generalizations of classical (Rabin-Scott)

0,i.e,fx A% Lsax). A more direct and computa- word automata have been studied and used in vari-
tionally less expensive method (that avoids the product ous contexts. In the context dihite automata algo-
construct) is to decid@a(t) N Q, # 0. The definition rithm design, use of predicates is mentioned in [15].

of Qa(t) can be given by induction over trees: In [16] the motivation comes fromomputational lin-
guistics In [17] a variant of symbolic automata, called

Qale) d:EfQ'A I-automata, are studied fromraodel-theoretigper-
Qal{aty, b)) £ spective. In [18] the study of SFAs is primarily mo-
U,eanllns(p) | ths(p) € Qa(tz) x Qa(tz), a€ [¥(0)1} tivated bystring analysis A symbolic extension seems

straightforward at first glance, but raises many challeng-
When formulated as a depth first search procedure, theing questions about algorithm design [9, 7].
membership problem reduces to a linear number of There has been considerable interest in word au-
membership problems in the label theory. tomata over infinite alphabets [19], starting with the

.) work on finite memory automatg8]. Other automata

Theorem 3. The membership problem for STAs, given models over data words apebble automat§20] and
t € J(#) and STA A, has complexity(@ + |Aa) - gata automatd21]. Recent work in [22] introducesu-
f(m)) where {m) is the complexity of the membership 1, mata with group actionthat, using category theory,
problem ofZ, for instances of size m. provides a generalization of finite memory automata to

aricher set of alphabet theories.

5. Related work Generalizations of automata over data wordsrée
automataover data trees has received quite a bit of at-
Our interest in automata and transducers vgiim- tention in XML research, with generalizations such as

bolic alphabets originally surfaced in the context of se- finite-memory tree automata [2], and, more recently, un-
curity analysis of string sanitization routines [6]. Sani- ranked data tree automata [4]. The paper [4] includes an
tizers transform untrusted data to trusted data as a firstup-to-date overview of the state-of-the-art. Overall, the

6

extensions are largely orthogonal to STAs and address[10] L. D'Antoni, M. Veanes, B. Livshits, D. Molnar, Fast: a

different problems. Data tree automata in [4] primar-
ily target analysis of satisfiability ainrankeddata tree

11]

automata with respect to constraints that can, e.g., re-[17]

flect XML integrity, consistency and denial constraints,

while providing an NP upper bound [4, Theorem 4.1] by [13]

reduction to integer linear programming. STAs on the
other hand are defined overankedalphabet, and are

not tied to any particular label theory, e.g, could be

[14]

F x Z whereF is a finite labeling alphabet as in data tree [15]
automata. To the best of our knowledge, STAs are the ;¢

first extension of tree automata over infinite alphabets
that itself forms an fective Boolean algebra, in par-
ticular, unlike the extensions in [2, 4], STAs are closed
undercomplementMoreover, this holds uniformly for

all label theories that are Boolean algebras.

MONA [23, 24] provides decision procedures for

[17]

(18]

several varieties of monadic second-order logic and sup- [19]

ports encoding and reasoning over trees. MONA uses
multi-terminal BDDs for encoding of transitions. A
core diference compared t8TA(Y) is that the label
theory X is not modular but an integrated part of the
MTBDD encoding. VATA is a tool that enables tree
automata analysis [25]. Similar to MONA, transitions
are represented symbolically using BDDs and VATA is
limited to nondeterministic tree automata over finite (al-

though large) alphabets.

References

[1] H. Comon, M. Dauchet, R. Gilleron, C.
Available

release

automata techniques and applications,
http://www.grappa.univ-1lille3.fr/tata,
October, 12th 2007 (2007).

[2] M. Kaminski, T. Tan, Tree automata over infinite alphaben:
Pillars of Computer Science, Springer, 2008, pp. 386-423.

[3] M. Kaminski, N. Francez, Finite-memory automata, in:sB81
Annual Symposium on Foundations of Computer Science

(FOCS 1990), Vol. 2, IEEE, 1990, pp. 683-688.

[4] C. David, L. Libkin, T. Tan, Hicient reasoning about data trees
via integer linear programming, in: ICDT’'11, ACM, 2011, pp.

18-29.

[5] M. Veanes, N. Bjgrner, L. de Moura, Symbolic automata-con

straint solving, in: C. Fermuller, A. Voronkov (Eds.), LRAL7,
Vol. 6397 of LNCS, Springer, 2010, pp. 640-654.

[6] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, N. Bjaer,
Symbolic finite state transducers: Algorithms and appbees,

in: Proceedings of the Symposium on Principles of Program-

ming Languages (POPL'12), 2012.

[7] L. D’Antoni, M. Veanes, Minimization of symbolic autorte
in: POPL'14, ACM, 2014, pp. 541-553.

[8] F. Gécseg, M. Steinby, Tree Automata, Akadémiai KiaBu-
dapest, 1984.

[9] P.Hooimeijer, M. Veanes, An evaluation of automata &thmns
for string analysis, in: VMCAI'11, LNCS, Springer, 2011.

Loding,
F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree

[20]

[21]

[22]

[23]

[24]

[25]

transducer-based language for tree manipulation, in: AlDI
ACM, 2014.

Fast tutorial, http://www.rise4fun.com/Fast/tutorial.

M. Veanes, N. Bjgrner, Symbolic tree transducers, ierspec-
tives of System Informatics (PSI'11), 2011.

M. Veanes, N. Bjgrner, Foundations of finite symboleettrans-
ducers, in: Y. Gurevich (Ed.), Bulletin of the EATCS, The libg
in Computer Science Column, no. 105, 2011, pp. 141-173.

Z. Fulop, H. Vogler, Forward and backward applicatiaf sym-
bolic tree transducers, Acta Informatica 51 (5) (2014) 225~

B. W. Watson, Cambridge U. Press, 1999, Ch. Implemgntin
and using finite automata toolkits, pp. 19-36.

G. V. Noord, D. Gerdemann, Finite state transducerh pied-
icates and identities, Grammars 4 (2001) 263-286.

A. Bés, An application of the Feferman-Vaught theorenau-
tomata and logics for words over an infinite alphabet, Ldgica
Methods in Computer Science 4 (2008) 1-23.

M. Veanes, P. de Halleux, N. Tillmann, Rex: Symbolic Reg
lar Expression Explorer, in: Third International Confezeron
Software Testing, Verification and Validation (ICST'10ERE,
2010.

L. Segoufin, Automata and logics for words and trees arer
infinite alphabet, in: ZEsik (Ed.), CSL, Vol. 4207 of LNCS,
2006, pp. 41-57.

F. Neven, T. Schwentick, V. Vianu, Finite state mackirier
strings over infinite alphabets, ACM Trans. CL 5 (2004) 403—-
435.

M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin,
C. David, Two-variable logic on words with data, in: LICS,
IEEE, 06, pp. 7-16.

M. Bojahczyk, B. Klin, S. Lasota, Automata with grougtians,

in: 26th Annual IEEE Symposium on Logic in Computer Sci-
ence, IEEE, 2011, pp. 355-364.

J. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, a&yeR
T. Rauhe, A. Sandholm, Mona: Monadic second-order logic
in practice, in: Tools and Algorithms for the Constructiamda
Analysis of Systems, First International Workshop, TACAS;’
LNCS 1019, 1995.

N. Klarlund, A. Mgller, M. |. Schwartzbach, MONA impleem-
tation secrets, International Journal of Foundations ohQater
Science 13 (4) (2002) 571-586.

O. Lengal, J.Simacek, T. Vojnar, Vata: A library for ef-
ficient manipulation of non-deterministic tree automata; i
TACAS'12, Vol. 7214 of LNCS, Springer, 2012, pp. 79-94.

