
Session State: Beyond Soft State

Benjamin C. Ling, Emre Kıcıman and Armando Fox
{bling, emrek, fox}@cs.stanford.edu

ABSTRACT
The cost and complexity of administration of large systems

has come to dominate their total cost of ownership. State-

less and soft-state components, e.g. Web servers or network

routers, are easy to manage: capacity can be scaled incre-

mentally by adding more nodes, rebalancing of load after

failover is easy, and reactive or proactive (“rolling”) reboots

can be used to handle transient failures. We show that

it is possible to achieve the same ease of management for

the state-storage subsystem by subdividing persistent state

according to the specific guarantees needed by each type.

While other systems [19, 17] have addressed persistent-until-

deleted state, we describe SSM, a store for a previously un-

addressed class of state – user-session state – that exhibits

the same manageability properties as stateless nodes while

providing firm storage guarantees. Any node can be proac-

tively or reactively rebooted at any time to recover from

transient faults, without impacting online performance or

losing data. We exploit this simplified manageability by

pairing SSM with an application-generic, statistical-anomaly-

based framework that detects crashes, hangs, and perfor-

mance failures, and automatically attempts to recover from

them by rebooting faulty nodes. Although the detection

techniques generate some false positives, the cost of recovery

is so low that the false positives have low impact. We provide

microbenchmarks to demonstrate SSM’s built-in overload

protection, failure management and self-tuning. We bench-

mark SSM integrated into a production enterprise-scale in-

teractive service to demonstrate that these benefits need not

come at the cost of significantly decreased throughput or re-

sponse time.

1. INTRODUCTION
The cost and complexity of administration of systems is

now the dominant factor in total cost of ownership for both

hardware and software.In addition, since human operator

error is the source of a large fraction of outages [5], atten-

tion has recently been focused on simplifying and ultimately

automating administration and management to reduce the

impact of failures [13, 19], and where this is not fully pos-

sible, on building self-monitoring components [20]. How-

ever, fast, accurate detection of failures and recovery man-

agement remains difficult, and initiating recovery on “false

alarms” often incurs an unacceptable performance penalty;

even worse, initiating recovery on “false alarms” can cause

incorrect system behavior when system invariants are vio-

lated [20].

Operators of both network infrastructure and interac-

tive Internet services have come to appreciate the high-

availability and maintainability advantages of stateless and

soft-state [33] protocols and systems. The stateless Web

server tier of a typical three-tier service [3] can be man-

aged with a simple policy: misbehaving components can

be reactively or proactively rebooted, which is fast since

they typically perform no special-case recovery, or can be re-

moved from service without affecting correctness. Further,

since all instances of a particular type of stateless compo-

nent are functionally equivalent, overprovisioning for load

redirection [3] is easy to do, with the net result that both

stateless and soft-state components can be overprovisioned

by simple replication for high availability.

However, this simplicity does not extend to the stateful

tiers. Persistent-state subsystems in their full generality,

such as filesystem appliances and relational databases, do

not typically enjoy the simplicity of using redundancy to

provide failover capacity as well as to incrementally scale

the system. We argue that the ability to use these HA tech-

niques can in fact be realized if we subdivide “persistent

state” into distinct categories based on durability and con-

sistency requirements. This has in fact already been done

for several large Internet services [31, 39, 28], because it al-

lows individual subsystems to be optimized for performance,

fault-tolerance, recovery, and ease-of-management.

In this paper, we make three main contributions:

1. We focus on user session state, which must persist for

a bounded-length user session but can be discarded af-

terward. We show why this class of data is important,

how its requirements are different from those for persis-

tent state, and how to exploit its consistency and work-

load requirements to build a distributed, self-managing

and recovery-friendly session state storage subsystem,

SSM. SSM provides a probabilistic bounded-durability

storage guarantee for such state. Like stateless or soft-

state components, any node of SSM can be rebooted

without warning and without compromising correct-

ness or performance of the overall application. No

node performs special-case recovery code. Additional

redundancy allows multiple simultaneous failures. As

a result, SSM can be managed using simple, “state-



less tier” HA techniques for incremental scaling, fault

tolerance, and overprovisioning.

2. We demonstrate the resulting simplicity of recov-

ery management by combining SSM with a generic

statistical-monitoring failure detection tool. Pinpoint

looks for “anomalous” behaviors (based on histori-

cal performance or deviation from the performance of

peer nodes) and immediately coerces any misbehav-

ing node to crash and reboot. Although false posi-

tives do occur, the simplicity and low cost of recovery

(crash and reboot) makes them a minor consideration,

greatly simplifying SSM’s failure detection and man-

agement strategy. Combined with SSM’s additive in-

crease/multiplicative decrease admission control that

protects it from overload, the result is a largely self-

managing subsystem using entirely generic detection

and recovery techniques.

3. We summarize the design choices and lessons, along

with the system architecture requirements that allow

the approach to work, and highlight design principles

that can be applied to other systems.

In Section 2, we define a category of session state, its as-

sociated workload, and existing solutions. In Section 3, we

present the design and implementation of SSM, a recovery-

friendly and self-managing session state store. In Section 4,

we describe the integration of SSM with Pinpoint to enable

the system to be self-healing. In Section 5, we present bench-

marks demonstrating the features of SSM. In Section 6, we

insert SSM into an existing production internet application

and compare its performance, failure, and recovery charac-

teristics with the original implementation. In Section 7, we

discuss the design principles extracted from SSM. We then

discuss related and future work, and conclude.

2. WHY SESSION STATE?
In networking systems, signaling systems for flow state [8]

fall in between two extremes: hard-state and soft-state [32].

In hard-state systems, state is explicitly written once and

remains written unless explicitly removed; special mecha-

nisms exist to remove orphaned state. In contrast, in soft-

state systems, state automatically expires unless refreshed

by the writer, so no such special mechanisms are needed.

Session state lies somewhere in between: unlike hard state,

its maximum overall lifetime and inter-access interval are

bounded, so persistence guarantees need only respect those

bounds; unlike soft state, it cannot be reconstructed from

other sources if lost, unless the user is asked to repeat all

steps that led to the construction of the state.

Nearly all nontrivial Internet services maintain session

state, but they either store it as hard state because that

is what most storage systems provide, or store it ephemer-

ally (in RAM of otherwise stateless components) because

it is cheaper and faster. The former is overkill, the latter

Hard/Persistent Soft/Session

Write Method Write once Refresh

Deletion Method Explicit Expiration

Orphan Cleanup Manual Automatic

Table 1: Key differences among hard, persistent, soft, and

session state.

does not provide adequate guarantees of persistence, espe-

cially in the face of transient failures. Table 2 compares and

contrasts the different types of state.

For the remainder of this paper, we will use the term

“session state” to refer to the subcategory of user-session

state we now describe. Many associate session state with

“shopping cart,” but the class of session state we address

is significantly broader than just shopping carts. An ex-

ample of application session state that we address includes

user workflow state in enterprise applications. In particu-

lar, today’s enterprise applications, such as those in J2EE,

are often accessed via a web browser. All application state,

such as context and workflow, is stored on the server and is

an example of what we are calling session state. In essence,

user workflow state in enterprise applications is equivalent to

temporary application state on a desktop application. An-

other example of session state is travel itineraries from on-

line travel sites, which capture choices that users have made

during the shopping process. Shopping carts can also be an

example of session state.

To understand how session state is typically used, we use

the example of a user working on a web-based enterprise-

scale application to illustrate the typical flow sequence. A

large class of applications, including J2EE-based and web

applications in general, use the interaction model below:

• User submits a request, and the request is routed to

a stateless application server. This server is part of

what is often called the middle-tier.

• Application server retrieves the full session state for

user (which includes the current application state).

• Application server runs application logic

• Application server writes out entire (possibly modi-

fied) session state

• Results are returned to the user’s browser

Session state is in the critical path of each interaction,

since user context or workflow is stored in session state. Loss

of session state is seen as an application failure to the end

user, which is usually considered unacceptable to the ser-

vice provider. Typical session state size is between 3K-200K

bytes [37].

Some important properties/qualities of the session state

we focus on are listed below. Session state:

1. Is accessed in a serial fashion by a single user (no con-

current access). Each user reads her own state, usu-

ally keyed by a deterministic function of the user’s ID,



so an advanced query mechanism to locate the user’s

state is unnecessary. Furthermore, the client is typi-

cally responsible for storing the necessary metadata to

retrieve the state.

2. Is semi-persistent. Session state must be present for a

fixed interval T , the application-specific session time-

out (usually on the order of minutes to hours), but

should expire after T .

3. Is written out in its entirety, and usually updated on

every interaction.

Given these properties, the functionality necessary for a

session state store can be greatly simplified, relative to fully-

general ACID guarantees provided by a relational datbase.

Each simplification corresponds to an entry in the previous

numbered list:

1. No synchronization is needed. Since the access pattern

corresponds to an access of a single user making serial

requests, no conflicting accesses exist, and hence race

conditions on state access are avoided, which implies

that locking is not needed. In addition, a single-key

lookup API is sufficient. Since state is keyed to a par-

ticular user and is usually only accessed by that user,

a general query mechanism is not needed.

2. State stored by the repository need only be semi-

persistent – a temporal, lease-like [16] guarantee is suf-

ficient, rather than the durable-until-deleted guarantee

that is made in ACID.

3. Atomic update is sufficient for correctness, since par-

tial writes do not occur. Once session state is modified,

any of its previous values may be discarded.

Relative to the specific requirements of session state, SSM

does, in a sense, provide ACID guarantees: atomicity and

bounded durability are provided, and consistency and isola-

tion are made trivial by the access pattern.

As a generalization, the class of state that we address need

not necessarily be single-user; as long as state ownership is

explictly passed between parties, which is common in to-

day’s enterprise applications [21], the techniques discussed

in this paper applies.

2.1 Existing Solutions
Frequently, enterprises use either a relational database

(DB) or a filesystem or filesystem appliance (FS) to store

session state, because they already use a DB or FS for per-

sistent state. There are several drawbacks to using either a

DB or FS, besides the costs of additional licenses, which are

detailed in previous work [26].

In addition, DB and file systems are well-known to be

difficult to administer and tune. Each must be configured

and tuned for a particular workload. Even for a skilled and

costly administrator, this remains a difficult and often error-

prone process that is repeated as the workload changes.

Figure 1: Architecture of SSM. Stubs are stateless and

are used by application servers to read and write state.

Bricks are diskless components that store session state.

In contrast, in-memory solutions avoid several of the

drawbacks of FS/DB, and are generally faster, but make do

not provide both performance and correctness guarantees.

Existing in-memory solutions require a user to be pinned to a

particular server, which prevents the application-processing

tier from remaining truly stateless, since each server must

both run application logic and store session state. Because

of pinning, load-balancing can only be done across users but

not across requests, and hotspots are harder to alleviate. A

detailed discussion of in-memory solutions can be found in

previous work [25, 26].

3. PROPOSED SOLUTION: SSM
We now describe the design and implementation of SSM,

a lightweight session-state store. We make the following as-

sumptions about the operating environment, which are typ-

ical of large-scale services [3]: a physically secure cluster in-

terconnected by a commercially-available high-throughput,

low-latency system area network (SAN); and an uninter-

ruptible power supply to reduce the probability of a system-

wide simultaneous hardware outages. The Java prototype

consists of 872 semicolons and runs on the UC Berkeley Mil-

lennium Cluster, consisting of 42 IBM xSeries 330 1U rack-

mounted PCs, each running Linux 2.4.18 on Dual 1.0 GHz

Intel Pentium III CPUs and 1.5GB ECC PC133 SDRAM,

connected via Gigabit Ethernet.

3.1 SSM Overview
SSM has two components: bricks and stubs. Bricks, each

consisting of a CPU, network interface and RAM (no disk),

provide storage; stubs dispatch read and write requests to

bricks. Figure 1 shows the basic architecture of SSM.

On a client request, the application server will ask the

stub to read the client’s session state, and after application

processing, to write out the new session state. The general

strategy employed by the stub for both reads and writes is

“send to many bricks, wait for few to reply,” to avoid having

a request depend on any specific brick. Upon completion of

the write request, a cookie containing the ids of the bricks

that processed the write is sent back to the client.

A brick stores session state objects using an in-memory

hash table. Each brick sends out periodic multicast bea-

cons to indicate that it is alive. Each stub keeps track of



which bricks are currently alive by listening to the beacons;

stubs receive the announcements and make connections to

the bricks via TCP/IP. We choose TCP/IP as the commu-

nication mechanism for read/write request traffic because

reliable and ordered messaging enables easy prototyping.

When a stub contacts a brick, a stream is created between

the two, which lasts until either component ceases execut-

ing. Each brick has a list of streams corresponding to the

stubs that has contacted it. The brick has one main pro-

cessing thread, which fetches requests from a shared inbox,

and handles the request by manipulating the internal data

structures. A single monitor thread handles the internal

data structures. In addition, the brick has an additional

thread for each stub communicating with the brick; each of

these communication threads puts requests from the corre-

sponding stub into the shared inbox.

The write function Write(HashKey H, Object v, Expiry E)

exported by the stub returns a cookie if the write succeeds

or throws an exception otherwise. The returned cookie is

passed back to the client (Web browser) for storage, as it

stores important metadata that will be necessary for the

subsequent read. Existing solutions for session state also

rely on storing this metadata on the client.

The read function Read(Cookie C, HashKey H) returns the

most recently written value for hash key H, or throws an

exception if the read fails. If a read/write returns to the

application, then it means the operation was successful. On

a read, SSM guarantees that the returned value is the most

recently written value by the user.

The stub dispatches write and read requests to the bricks.

Before we describe the algorithm describing the stub-to-

brick interface, let us define a few variables. Call W the

write group size. Call R the read group size. On a write

request, a stub attempts to write to W of the bricks; on a

read request, it attempts to read from R bricks.

Define WQ as the size of the write set, which is the min-

imum number of bricks that must return “success” to the

stub before the stub returns to the caller. WQ − 1 is the

number of simultaneous brick failures that the system can

tolerate before possibly losing data. R is the size of the

candidate read set; only 1 brick need to reply to service

a read request succesfully. Note that 1 ≤ WQ ≤ W and

1 ≤ R ≤ WQ. In practice, we use W = 3, WQ = 2, R = 2.

Lastly, call t the request timeout interval, the time that

the stub waits for a brick to reply to an individual request,

usually on the order of milliseconds. t is different from the

session expiration, which is the lifetime of a session state

object, usually on the order of minutes. We use t and timeout

interchangeably in this paper. In practice, t is a rough upper

bound on the time an application is willing to wait for the

writing and retrieval of a session state object, usually on the

order of tens to hundreds of milliseconds since session state

manipulation is in the critical path of client requests.

3.2 Basic Read/Write Algorithm
The basic write algorithm can be described as “write to

many, wait for a few to reply.” Conceptually, the stub writes
to more bricks than are necessary, namely W , and only waits
for WQ bricks to reply. Sending to more bricks than are nec-
essary allows us to harness redundancy to avoid performance
coupling; a degraded brick will not slow down a request. In
the case where WQ bricks do not reply within the timeout,
the stub throws an exception so that the caller can handle
the exception and act accordingly (e.g., signal to the end
user to come back later), rather than being forced to wait
indefinitely. This is part of the system applying backpres-
sure. The algorithm is described below:

Cookie Write(HashKey H, Object v, Expiry E)
throws SystemOverloadedException

0 Time wakeup = getCurrentTime() + timeout;
1 int cs = checksum(H, v, E);
2 Brick[] repliedBricks = {};
3 Brick[] targetBricks = chooseRandomBricks(W);
4 foreach brick in targetBricks
5 do WriteBrick(H, v, E, cs);
6 while (repliedBricks.size < WQ)
7 Time timeleft = wakeup - getCurrentTime();
8 Brick replied = receiveReply(timeleft);
9 if (replied == null) break;
10 repliedBricks.add(replied);
11 if (repliedBricks.size < WQ)
12 throw new SystemOverloadedException();
13 int check = checksum(H, repliedBricks, cs, E);
14 return new Cookie(check, H, repliedBricks, cs, E);

The stub handles a read by sending the read to R bricks,

waiting for only 1 brick to reply:

Object Read(Cookie c) throws CookieCorruptedExcept,
SystemOverloadedExcept, StateExpiredExcept,
StateCorruptedExcept

0 int check = c.checksum;
1 int c2 = checksum(c.H, c.repliedbricks, c.cs, c.E);
2 if (c2 != check)
3 throw new CookieCorruptedException();
4 if (isExpired(c.E))
5 throw new StateExpiredException();
6 Brick[] targetBricks = c.repliedBricks;
7 foreach brick in targetBricks
8 do RequestBrickRead(H, E, cs);
9
10 Brick replied = receiveReply(timeout);
11 if (replied == null)
12 throw new SystemOverloadedException();
13 retval = replied.objectValue;
14 if (c.cs != checksum(retval))
15 throw new StateCorruptedException();
16 return retval;

3.3 Garbage Collection
For garbage collection of bricks, we use a method seen in

generational garbage collectors [7]. For simplicity, earlier we

described each brick as having one hash table. In reality, it

has a set of hash tables; each hash table has an expiration. A

brick handles writes by putting state into the table with the

closest expiration time after the state’s expiration time. For

a read, because the stub sends the key’s expiration time,

the brick knows which table to look in. When a table’s

expiration has elapsed, it is discarded, and a new one is

added in its place with a new expiration.



3.4 Load capacity discovery and admission
control

In addition to the basic read/write algorithm, each stub

maintains a sending window (SW) for each brick, which the

stub uses to determine the maximum number of in-flight,

non-acked requests the stub can send to the recipient brick.

The stub implements a additive-increase, multiplicative-

decrease (AIMD) algorithm for maintaining the window; the

window size is additively increased on a successful ack and

multiplicatively decreased on a timeout. When a request

times out, the stub reduces its sending window to the brick

accordingly. In the case when the number of in-flight mes-

sages to a brick is equal to the SW, any subsequent requests

to that brick will be disallowed until the number of in-flight

messages for that brick is less than the SW. If a stub cannot

find a suitable number of bricks to send the request to, it

throws an exception to the caller indicating that the system

is overloaded.

Each stub stores temporary state for only the requests

that are awaiting responses from bricks. The stub performs

no queueing for incoming requests from clients. For any

request that cannot be serviced because of overload, the

stub rejects the request immediately, throwing an exception

indicating that the system is temporarily overloaded.

In addition, each brick performs admission control; when

a request arrives at the brick, it is put in a queue. If the

request timeout has elapsed by the time that the brick has

dequeued the request, the request is disregarded and the

brick continues to the service the next queued request.

Note that the windowing mechanism at the stub and the

request rejection at the brick protect the system in two dif-

ferent ways. At the stub, the windowing mechanism pre-

vents any given stub from saturating the bricks with re-

quests. However, even with the windowing mechanism, it is

still possible for multiple stubs to temporarily overwhelm a

brick (e.g. the brick begins garbage collection and can no

longer handle the previous load). At the brick, the request

rejection mechanism allows the brick to throw away requests

that have already timed out in order to “catch up” to the

requests that can still be serviced in a timely manner.

3.5 Failure and Recovery
In SSM, recovery of any component that has failed is sim-

ple; a restart is all that is necessary to recover from a non-

persistent failure. No special case recovery code is necessary.

On failure of a client, the user perceives the session as lost,

e.g., if the browser crashes, a user does not necessarily expect

to be able to resume his interaction with a web application.

If cookies for the client are persisted, as is often the case,

then the client may be able to resume his session when the

browser is restarted.

On failure of a stateless application server, a restart of

the server is sufficient for recovery. After restart, the stub

on the server detects existing bricks from the beacons and

can reconstruct the table of live bricks. The stub can im-

mediately begin handling both read and write requests; to

service a read request, the necessary metadata is provided

by the client in the cookie. To service a write request, all

that is required is a list of WQ live bricks.

On failure of a brick, a simple restart of the brick is suffi-

cient for recovery. The contents of its memory are lost, but

since each hash value is replicated on WQ− 1 other bricks,

no data is lost. The next update of the session state will re-

create WQ new copies; if WQ − 1 additional failures occur

before then, data may be lost.

A side effect of having simple recovery is that clients,

servers, and bricks can be added to a production system to

increase capacity. For example, adding an extra brick to an

already existing system is easy. Initially, the new brick will

not service any read requests since it will not be in the read

group for any requests. However, it will be included in new

write groups because when the stub detects that a brick is

alive, the brick becomes a candidate for a write. Over time,

the new brick will receive an equal load of read/write traf-

fic as the existing bricks, since load balancing is done per

request and not per hash key.

3.6 Recovery Philosophy
Previous work has argued that rebooting is an appealing

recovery strategy in cases where it can be made to work [6]:

it is simple to understand and use, reclaims leaked resources,

cleans up corrupted transient operating state, and returns

the system to a known state. Even assuming a component is

reboot-safe, in some cases multiple components may have to

be rebooted to allow the system as a whole to continue oper-

ating; because inter-component interactions are not always

fully known, deciding which components to reboot may be

difficult. If the decision of which components to reboot is

too conservative (too many components rebooted), recovery

may take longer than really needed. If it is too lenient, the

system as a whole may not recover, leading to the need for

another recovery attempt, again resulting in wasted time.

By making recovery “free” in SSM, we largely eliminate

the cost of being too conservative. If an SSM brick is sus-

pected of being faulty – perhaps it is displaying fail-stutter

behavior [2] or other characteristics associated with software

aging [14] – there is essentially no penalty to reboot it pro-

phylactically. This can be thought of as a special case of

fault-model enforcement: treat any performance fault in an

SSM brick as a crash fault, and recover accordingly. In re-

cent terminology, SSM is a crash-only subsystem [6].

3.7 Brick MTTF vs. Availability
Before presenting experimental results, we illustrate the

relationship between MTTF for an individual brick and the

availability of data for SSM as a whole. We assume indepen-

dent failures; when failures are correlated in Internet server

clusters, it is often the result of a larger catastrophic failure



Figure 2: Probability of data loss with WQ=2 and 3.
The x-axis is the ratio of MTTF to the session expiration

time. The y-axis is the probability that all WQ copies

are lost before the subsequent write.

that session state would not be expected to survive [20]. We

describe a natural extension to SSM to survive site failures

in section 8.

Let brick failure be modeled by a Poisson process with rate

µ (i.e., the brick’s MTTF is 1/µ), and let writes for a partic-

ular user’s data be modeled by a Poisson process with rate

λ. (In other words, in practice 1/λ is the session expiration

time, usually on the order of minutes or tens of minutes.)

Then ρ = λ/µ is intuitively the ratio of the write rate to

the failure rate, or equivalently, the ratio of the MTTF of a

brick vs. the write interarrival time.

A session state object is lost if all WQ copies of it are

lost. Since every successful write re-creates WQ copies of

the data, the object is not lost if at most WQ − 1 failures

occur between successive writes of the object. Equations 1

and 2 show this probability for WQ = 3 and WQ = 2

respectively; figure 2 shows the probabilities graphically.

P WQ=3

noloss =
ρ(ρ2 + 6ρ + 11)

(ρ + 1)(ρ + 2)(ρ + 3)
(1)

P WQ=2

noloss =
ρ(ρ + 3)

(ρ + 1)(ρ + 2)
(2)

Table 2 summarizes the implication of the equations in

terms of “number of nines” of availability. For example,

to achieve “three nines” of availability, or probability 0.999

that data will not be lost, a system with WQ = 2 must be

able to keep an individual brick from crashing for an interval

that is 43.3 times as long as the average time between writes.

Adding redundancy (WQ = 3) reduces this, requiring an

MTTF that is only 16.2 times the average time between

writes. For example, if the average time between writes is 5

minutes and WQ = 3, three nines can be achieved as long

as brick MTTF is at least 81 minutes.

Another way to look at it is to fix the ratio of MTTF

to the write interval. Figure 3 sets this ratio to 10 (intu-

itively, this means roughly that writes occur ten times as

often as failures) and illustrates the effect of adding redun-

WQ = 2 WQ = 3

1 Nine 3 2

2 Nines 12.7 6.5

3 Nines 43.3 16.2

4 Nines 140 37.2

5 Nines 446.8 82.4

Table 2: For WQ=2 and 3, the necessary ratio of MTTF to
average interval between writes in order for probability of a sub-
sequent write to achieve a certain number of nines

Figure 3: We fix the ratio of MTTF to the average inter-
val between writes to 10. The x-axis represents the num-

ber of copies written. The y-axis represents the proba-

bility that all copies are lost.

dancy (modifying WQ) on data loss.

4. PINPOINT + SSM = SELF-HEALING
Pinpoint is a framework for detecting likely failures in

componentized systems. To detect failures, a Pinpoint

server dynamically generates a model of the “good behav-

ior” of the system. This good behavior is based on both

the past behavior and the majority behavior of the system,

under the assumption that most of the time, most of the

system is likely to be behaving correctly.

When part of the system deviates from this believed good

behavior, Pinpoint interprets the anomaly as a possible

failure. Once Pinpoint notices a component generating a

threshold number of these anomalies, Pinpoint triggers a

restart of the component.

To detect failures in bricks, Pinpoint monitors each brick’s

vital statistics. Each brick sends its own statistics to the

Pinpoint server at one-second intervals. Statistics are di-

vided into activity and state statistics.

Activity statistics, e.g., the number of processed writes,

represent the rate at which a brick is performing some ac-

tivity. When Pinpoint receives an activity statistic, it com-

pares it to the statistics of all the other bricks, looking for

highly deviant rates. Because we want to be able to run

SSM on a relatively small number of nodes, we calculate the

median absolute deviation of the activity statistics. This



metric is robust to outliers even in small populations, and

lets us identify deviant activity statistics with a low-false

positive rate.

State statistics represent the size of some state, such as

the size of the message inbox. In SSM, these state statistics

often vary in periodic patterns, e.g., in normal behavior, the

MemoryUsed statistic grows until the garbage collector is

triggered to free memory, and the pattern repeats. Unfor-

tunately, we do not know a priori the period of this pattern

– in fact, we cannot even assume a regular period.

To discover the patterns in the behavior of state statistics,

we use the Tarzan algorithm for analyzing time series [23].

For each state statistic of a brick, we keep an N-length his-

tory or time-series of the state. We discretize this time-

series into a binary string. To discover anomalies, Tarzan

counts the relative frequencies of all substrings shorter than

k within these binary strings. If a brick’s discretized time-

series has a surprisingly high or low frequency of some sub-

string as compared to the other brick’s time series, we mark

the brick as potentially faulty. This algorithm can be im-

plemented in linear time and linear space, though we have

found we get sufficient performance from our simpler non-

linear implementation.

Once a brick has been identified as potentially faulty

through three or more activity and state statistics, we con-

clude that the brick has indeed failed in some way; Pin-

point restarts the node. In the current implementation, a

script is executed to restart the appropriate brick, though a

more robust implementation might make use of hardware-

based leases that forcibly reboot the machine when they

expire [10].

Because restarting a brick will only cure transient failures,

if Pinpoint detects that a brick has been restarted more

than a threshold number of times in a given period, which

is usually indicative of a persistent fault, it can take the

brick off-line and notify an administrator.

5. EXPERIMENTAL RESULTS
In this section, we highlight the key features from the de-

sign of SSM. We present benchmarks illustrating each of the

recovery-friendly, self-tuning, and self-protecting features.

We also present numerous benchmarks demonstrating the

self-healing nature of SSM when integrated with Pinpoint.

Each benchmark is conducted on the UC Berkeley Mil-

lennium Cluster. Our load generator models hyperactive

users who continually make requests to read and write ses-

sion state; each hyperactive user is modeled using a thread

which does a sequence of alternating write and read requests,

which is representative of the workload for session state,

as described earlier in Section 2. As soon as a request re-

turns, the thread immediately makes a subsequent request.

In the following benchmarks, we vary the number of sending

threads as well as the number of bricks. All bricks are run

on separate, dedicated machines.

5.1 Recovery-Friendly
In a sufficiently-provisioned, non-overloaded system, the

failure and recovery of a single brick does not affect:

• Correctness. As described above, the failure of a single

brick does not result in data loss. In particular, SSM

can tolerate WQ−1 simultaneous brick failures before

losing data.

A restart of the brick does not impact correctness of

the system.

• Performance. So long as W is chosen to be greater

than WQ and R is chosen to be greater than 1, any

given request from a stub is not dependent on a par-

ticular brick. SSM harnesses redundancy to remove

coupling of individual requests to particular bricks.

A restart of the brick does not impact performance;

there is no special case recovery code that must be

run anywhere in the system.

• Throughput. A failure of any individual brick does

not degrade system throughput in a non-overloaded

system. Upon first inspection, it would appear that all

systems should have this property. However, systems

that employ a buddy system or a chained clustering

system [17, 24] fail to balance the resulting load evenly.

Consider a system of four nodes A, B, C, and D, where

A and B are buddies, and C and D are buddies. If

each node services load at 60 percent of its capacity

and subsequently, node D fails, then its buddy node C

must attempt to service 120 percent of the load, which

is not possible. Hence the overall system throughput

is reduced, even though the remaining three nodes are

capable of servicing an extra 20 percent each.

Because the resulting load is distributed evenly be-

tween the remaining bricks, SSM can continue to han-

dle the same level of throughput so long as the aggre-

gate throughput from the workload is lower than the

aggregate throughput of the remaining machines.

The introduction of a new brick or a revived brick

never decreases throughput; it can only increase

throughput, as new bricks add new capacity to the sys-

tem. A newly restarted brick, like every other brick,

has no dependencies on any other node.

• Availability. In SSM, all data is available for reading

and writing during both brick failure and brick recov-

ery. In other systems such as unreplicated file systems,

data is unavailable for reading or writing during fail-

ure. In DDS [17] and in Harp [27], data is available for

reading and writing after a node failure, but data is

not available for writing during recovery because data

is locked and is copied to its buddy en masse.

SSM is recovery-friendly. In this benchmark, W is set to

3, WQ is set to 2, timeout is set to 60 ms, R is set to 2, and

the size of state written is 8K.



We run four bricks in the experiment, each on a different

physical machine in the cluster. We use a single machine

as the load generator, with ten worker threads generating

requests at a rate of approximately 450 requests per second.

Figure 4: SSM running with 4 Bricks. One brick is killed

manually at time 30, and restarted at time 40. Through-

put and availability are unaffected. Although not dis-
played in the graph, all requests are all fulfilled correctly,

within the specified timeout.

We induce a fault at time 30 by killing a brick by hand.

As can be shown from the graph, throughput remains un-

affected. Furthermore, all requests complete successfully;

the load generator showed no failures. This microbench-

mark is intended to demonstrate the recovery-friendly as-

pect of SSM. In a non-overloaded system, the failure and

recovery of a brick has no negative effect on correctness,

system throughput, availability, or performance. All gener-

ated requests completed within the specified timeout, and

all requests returned successfully.

5.2 Self-Tuning
The use of AIMD allows the stubs to adaptively discover

the capacity of the system, without requiring an adminis-

trator to configure a system and a workload, and then run

experiments to determine whether the system services the

workload in an acceptable fashion. In the manual process,

if the workload increases drastically, the configuration may

need to be changed.

In SSM, the allowable amount of time for session state

retrieval and storage is specified in a configurable timeout

value. The system tunes itself using the AIMD mecha-

nism, maximizing the number of requests that can be ser-

viced within that time bound. SSM automatically adapts to

higher load gracefully. Under overload, requests are rejected

instead of allowing latency to increase beyond a reasonable

threshold. If SSM is is deployed in an environment with a

pool of free machines, Pinpoint can monitor the number of

requests that are rejected, and start up new bricks to acco-

modate the increase in workload.

SSM discovers the maximum throughput of the system

correctly. Recall that in SSM, read and write requests are

expected to complete within a timeout. We define goodput

as the number of requests that complete within the specified

timeout. Offered load is goodput plus all requests that fail.

Requests that complete after that timeout are not counted

toward goodput. In this benchmark, W is set to 3, WQ is

set to 2, timeout is set to 60 ms, R is set to 1, and the size

of state written is 8K. We use 3 bricks.

First, we discover the maximum goodput of the basic sys-

tem with no admission control or AIMD. We do so by vary-

ing the number of sending threads to see where goodput

plateaus. We run separate experiments; first we generate

a load with 120 threads corresponding to roughly 1900 re-

quests per second, and then with 150 threads, corresponding

to roughly 2100 requests per second. Figure 5 shows that

goodput plateaus around 1900-2000 requests per second.

Figure 5: SSM running with 3 Bricks, no AIMD or ad-

mission control. The graph on the left shows a load of
120 threads sending read and write requests of session

state. The graph on the right shows a load of 150 threads.

sending threads. System throughput peaks at around

1900-2000 requests per second.

We continue increasing the load until goodput drops to

zero. Goodput eventually drops to zero because the rate

of incoming requests is higher than the rate at which the

bricks can process, and eventually, the brick spends all of

its time fulfilling timed-out requests instead of doing useful

work. As can be seen in the lightened portion of Figure 6,

the bricks collapse under the load of 220 threads, or about

3400 requests a second; requests arrive at a rate faster than

can be serviced, and hence the system goodput falls to zero

at time 11.

Figure 6: SSM running with 3 Bricks, no AIMD or ad-

mission control. The bricks collapse at time 11 under

the load of 220 threads generating requests.

After manually verifying the maximum goodput of the

system, we turn on the self-protecting features, namely by

allowing the stub to use the AIMD sending window size and

by forcing bricks to service only requests that have not timed

out, and run the experiment again.



We generate an even higher load than what caused good-

put to fall to zero in the basic system, using 240 threads,

corresponding to roughly 4000 requests per second. As seen

in figure 7, SSM discovers the maximum goodput and the

system continues to operate at that level. Note that this

means that the system is rejecting the excess requests, since

the bricks are already at capacity, and the excess load is

simply being rejected; the percentage of rejected requests

is discussed in the next section. We sketch a simple and

reasonable shedding policy in future work.

Figure 7: SSM running with 3 Bricks, with AIMD and

admission control. SSM discovers maximum goodput of
around 2000.

5.3 Self-Protecting
SSM protects its components from collapsing under over-

load. The use of AIMD and admission control allow SSM to

protect itself. In particular, the maximum allowable pending

non-acked requests that a stub can generate for a particular

brick is regulated by the sending window size, which is addi-

tively increased on success and multiplicatively decreased on

failure. This prevents the stubs from generating load that

results in brick overload; each stub exerts backpressure [40]

on its caller when the system is overloaded. In addition,

bricks actively discard requests that have already timedout,

in order to service only requests that have the potential of

doing useful work.

SSM protects itself under overload. Part of the self-

protecting aspect of SSM is demonstrated in the previous

benchmark; SSM’s goodput does not drop to zero under

heavier load. In this benchmark, W is set to 3, WQ is set

to 2, timeout is set to 60 ms, R is set to 1, and the size of

state written is 8K.

SSM’s use of the self-protecting features allows SSM to

maintain a reasonable level of goodput under excess load.

Figure 8 shows the steady state graph of load vs. goodput

in the basic system without the self-protecting features. Fig-

ure 9 shows the steady state graph of load vs. goodput in

SSM with the self-protecting features enabled. The x-axis

on both graphs represents the number of load-generating

machines; each machine runs 12 threads. The y-axis repre-

sents the number of requests. We start with the load gener-

ator running on a single machine, and monitor the goodput

of SSM after it has reached steady state. Steady state is

usually reached in the first few seconds, but we run each

configuration for 2 minutes to verify that steady state be-

havior remains the same. We then repeat the experiment by

increasing the number of machines used for load generation.

Comparison of the two graphs shows:

• The self-protecting features protect the system from

overload and falling off the cliff and allows the system

to continue to do useful work.

• Extends useful life of the system under overload.

Without the self-protecting features, we see that max-

imum goodput is around 1900 requests per second,

while goodput drops to half of that at a load of 13 ma-

chines, and falls to zero at 14 machines. With the self-

protecting features, maximum goodput remains the

same, while goodput drops to half of the maximum

at 24 machines, and goodput trends to zero at 37 ma-

chines, because SSM begins spending the bulk of its

processing time trying to protect itself and turning

away requests and is unable to service any requests

successfully. With self-protecting features turned on,

the system continues to produce half of goodput at 24

machines vs. 13 machines, protecting the system from

almost double the load.

Note that in Figure 8 where goodput has dropped to zero,

as we increase the number of machines generating load that

the offer load increases only slightly, staying around 1500

failed requests per second. This is because each request must

wait the full timeout value before returning to the user; the

requests that are generated will arrive at the bricks, but will

not be serviced in time. However, in Figure 9, the number

of failed requests increases dramatically as we increase the

number of machines. Recall that the load generator models

hyperactive users that continually send read and write re-

quests; each user is modeled by a thread. When one request

returns, either successfully or unsuccessfully, the thread im-

mediately generates another request. Because SSM is self-

protecting, the stubs say “no” to requests right away; under

overload, requests are rejected immediately. The nature of

the load generator then causes another request to be gener-

ated, which is likely to be rejected as well. Hence the load

generator continues to generate requests at a much higher

rate than in Figure 8 because unfulfillable requests are im-

mediately rejected.

5.4 Self-Healing
The ability of a system to heal itself without requiring ad-

ministrator assistance greatly simplifies management. How-

ever, accurate detection of faults is difficult. Usually, acting

on an incorrect diagnosis such as a false positive results in

degraded system performance, availability, correctness, or

throughput. In SSM, the ability to reboot any component



Figure 8: Steady state graph of load vs. goodput. SSM
running without self-protecting features. Goodput peaks

at around 1900 requests per second. Half of system good-

put is reached at 13 load generating machines, and sys-
tem goodput drops to 0 at 14 machines.

Figure 9: Steady state graph of load vs. goodput. SSM

running with self-protecting features. Goodput peaks at

around 1900 requests per second. Half of system good-
put is reached at 24 load generating machines, and sys-

tem goodput trends to 0 at 37 machines.

without affecting correctness and availablility, and to a de-

gree, performance and throughput, coupled with a generic

fault-detecting mechanism such as Pinpoint, gives rise to a

self-healing system.

As discussed earlier, in SSM, a single brick can be

restarted without affecting correctness, performance, avail-

ability, or throughput; the cost of acting on a false positive

on SSM is very low, so long as the system does not make

false positive errors with too high a frequency. For transient

faults, Pinpoint can detect anomalies in brick performance,

and restart bricks accordingly.

The following microbenchmarks demonstrate SSM’s abil-

ity to recover and heal from transient faults. We at-

tempt to inject realistic faults for each of SSM’s hard-

ware components—processor, memory, and network inter-

face. We assume that for CPU faults, the brick will hang or

reboot, as is typical for most such faults [18].

To model transient memory errors, we inject bitflip errors

into various places in the brick’s address space. To model a

faulty network interface, we use FAUMachine [9], a Linux-

based VM that allows for fault-injection at the network level,

to drop a specified percentage of packets. We also model

performance faults, where one brick runs more slowly than

the others. In all of the following experiments, we use six

bricks; Pinpoint actively monitors all of the bricks.

5.5 Memory Fault in Stack Pointer
SSM heals itself in the presence of a memory fault; per-

formance and throughput is unaffected, and SSM recovers

from the fault.

Using ptrace(), we monitor a child process and change

its memory contents. In this benchmark, W = 3, WQ =

2, R = 2, data size is 8KB, and we increase t to 100ms to

account for the slowdown of bricks using ptrace. Figure 10

shows the results of injecting a bitflip in the area of physical

memory where the stack pointer is held. The fault is injected

at time 14; the brick crashes immediately. The lightened

section of figure 10 (time 14-23) is the time during which

only five bricks are running. At time 23, Pinpoint detects

that the brick has stopped sending heartbeats and should

be restarted, and restarts the brick; the system tolerates

the fault and successfully recovers from it.

Figure 10: Fault Injection: Memory Bitflip in Stack

Pointer.

5.6 Memory Fault in Data Value/Checksum
SSM heals itself in the presence of a memory fault in its

internal data structures. Figure 11 shows the injection of a

bitflip in the object of a session state object that has just

been written and is about to be read. The fault is injected

at time 18. The brick is configured to exit upon the detec-

tion of a checksum error, and does so immediately at time

18. The lightened section of figure 11 (time 18-29) is the

time during which only five bricks are running. At time 29,

Pinpoint detects that the brick has stopped sending heart-

beats and should be restarted, and restarts the brick; the

system tolerates the fault and successfully recovers from it.

5.7 Network Performance Fault
SSM can tolerate and recover from transient network

faults. We use FAUMachine to inject a fault at the brick’s

network interface. In particular, we cause the brick’s net-

work interface to drop 70 percent of all outgoing packets.

Figure 12 shows this experiment running on FAUmachine.

Note that FAUmachine overhead causes the system to per-

form an order of magnitude slower; we run all six bricks on

FAUMachine. In this benchmark, W = 3, WQ = 2, R = 2,



Figure 11: Fault Injection: Memory Bitflip in hashtable

and we increase t to 700ms and decrease the size of the

state written to 3KB to adjust to the order of magnitude

slowdown.

Figure 12: Fault Injection: Dropping 70 percent of out-

going packets. Fault injected at time 35, brick killed at

time 45, brick restarted at time 70.

The fault is injected at time 35; however, the brick contin-

ues to run with the injected fault for 10 seconds, as shown

in the darkened portion of figure 12. At time 45, Pinpoint

detects and kills the faulty brick. The fault is cleared to

allow network traffic to resume as normal, and the brick

is restarted. Restart takes significantly longer using the

FAUMachine, and the brick completes its restart at time

70. During the entire experiment, all requests complete cor-

rectly in the specified timeout and data is available at all

times. Throughput is affected slightly, as expected, as only

five bricks are functioning during times 45-70; recall that

running bricks on FAUMachine causes an order of magni-

tude slowdown.

5.8 CPU/Memory Performance Fault
SSM is able to tolerate performance faults, and Pinpoint

is able to detect performance faults and reboot bricks ac-

cordingly. In the following benchmark with 6 bricks and 3

load-generating machines, we inject performance failures in

a single brick by causing the brick to sleep for 1ms before

handling each message. This per-message performance fail-

ure simulates software aging. In figure 13, we inject the fault

every 60 seconds. Each time the fault is injected, Pinpoint

detects the fault within 5-10 seconds, and reboots the brick.

All requests are serviced properly.

Figure 13: Performance Fault: Brick adds 1ms sleep be-
fore each request; faults injected every 60 seconds, Pin-

point detects failure within 5-10 seconds, and brick is

restarted.

6. END TO END APPLICATION BENCH-
MARKS

In this section, we integrate SSM with a production,

enterprise-scale application. We also modify the application

to use disk to store session state, as a baseline comparison.

We compare the integrated solution with the unmodified ap-

plication, as well as the application modified to use disk to

store session state.

The application we use is a simplified version of

Tellme’s [29] Email-By-Phone application; via the phone,

users are able to retrieve their email and listen to the head-

ers of various folders by interacting with voice-recognition

and voice-synthesis systems integrated with the email server.

The application logic itself is written in Java and run on

Resin [34], an XML application server on top of a dual pro-

cessor Pentium III 700 MHz machine with 1G RAM, running

Solaris. We use 3 bricks for the benchmark. All machines

are connected via switched ethernet, and held in a commer-

cial hosting center.

Session state in this application consists of the index of

the message the user is currently accessing, the name of the

folder that is currently being accessed, and other workflow

information about the user’s folders. In the original appli-

cation, the session state is stored in memory only; a crash

of the application server implies a loss of all user sessions,

and a visible application failure to all active users.

We use Silk Performer [36] to generate load to the appli-

cation. The load generator simulates users that start the ap-

plication, listen to an email for three seconds, and progress

to the next email, listening to a total of 20 emails. The

test is intended to establish a baseline for response time

and throughput for the unmodified application. We vary

the load from ten users to 160 users; at 170 users, the ap-

plication server begins throwing “Server too busy” errors.

Unmodified, the application server can handle 160 simulta-

neous users, average a response time of 0.793 seconds.

We modify the application to write session state to disk, to

establish comparison values for an external persistent state



Figure 14: Latency vs. load for 10 to 160 users. The origi-

nal application can handle a capacity of 160 simultaneous

users. The modified application using disk or using SSM

can each handle 120 users.

store. The modified application reaches capacity at 120 con-

current users, with an average response time of 1.72 seconds.

Lastly, we integrate SSM with the application. Three

other machines are configured as bricks. A switch sits be-

tween the three bricks and the application server. The in-

tegrated application reaches capacity at 120 simultaneous

users, with an average response time of 0.863 seconds.

Figure 14 summarizes the results. Compared to storing

session state in-memory-only, using our prototype of SSM

imposes a 25 percent throughput penalty on the overall ap-

plication: the maximum number of simultaneous users is

reduced from 160 to 120, although the per-user response

times are roughly equal in the two cases, so users perceive

no latency penalty.

Compared to using a filesystem, SSM supports just as

many concurrent users, but delivers better response time:

with 120 active users, the application using disk runs more

than twice as slowly as the application using SSM.

In summary, integrating SSM with the application im-

poses a 25 percent throughput overhead compared to in-

memory-only, but preserves throughput and delivers better

response time than the disk solution. Neither the in-memory

nor the filesystem solution provide SSM’s high availability,

self-recovery and self-healing.

7. DISCUSSION
SSM bricks can be built from simple commodity hard-

ware. From a few months experience working with SSM,

bricks perform very predictably, which in turn allows detec-

tion of anomalies to be extremely simple and accurate. In

this section we try to distill what properties of SSM’s design

and algorithms give rise to these properties.

7.1 Eliminate Coupling
In SSM, we have attempted to eliminate all coupling be-

tween nodes. Bricks are independent of other bricks, which

are independent of stubs. Stubs are independent of all other

stubs; each stub is regulated by an AIMD sending window

which prevents it from saturating the system.

In traditional storage systems, a requestor is coupled to

a requestee, and the requestor’s performance, correctness,

and availability are all dependent on the requestee. SSM

instead uses single-phase, non-locking operations, allowing

writes to proceed at the speed of the fastest WQ bricks

instead of being coupled to lagging or failing bricks. Among

other things, this makes lengthy garbage collection times

unimportant, since a brick performing GC can temporarily

fall behind without dragging down the others.

Elimination of coupling comes at a cost: redundancy is

harnessed for performance. Redundant components with re-

duced coupling gives rise to predictable performance. Cou-

pling elimination has been used in [19, 12, 4].

Related to coupling is the use of both randomness to avoid

deterministic worst cases and overprovisioning to allow for

failover. Both techniques are used in large-system load bal-

ancing [3], but SSM does this at a finer grain, in the selection

of the write set for each request.

7.2 Make Parts Interchangeable
For a write in SSM, any given brick is as good as any other

in terms of correctness. For a read, a candidate set of size R

is provided, and any brick in the candidate set can function

in the place of any other brick. The introduction of a new

brick does not adversely disrupt the existing order; it only

serves to increase availability, performance, and throughput.

In many systems, certain nodes are required to fulfill cer-

tain fixed functions. This inflexibility often causes perfor-

mance, throughput or availability issues, as evidenced in

DDS [17], which uses the buddy system.

In SSM, bricks are all equivalent. Because complete copies

of data are written to multiple bricks, bricks can operate in-

dependently, and do not require any sort of coordination.

Furthermore, as long as one brick from the write quota of

size WQ remains, the data is available, unlike in erasure cod-

ing systems such as Palimpsest [35], where a certain number

of chunks is required to reconstruct data.

7.3 It’s OK to Say No
SSM uses both adaptive admission control and early rejec-

tion as forms of backpressure. AIMD is used to regulate the

maximum number of requests a stub can send to a particu-

lar brick; each brick can reject or ignore timed-out requests;

the application of TCP, a well-studied and stable networking

protocol, allows SSM components to reach capacity without

collapse [40]. The goal of these mechanisms is to avoid hav-

ing SSM attempt to give a functionality guarantee (“I will

do it”) at the expense of predictable performance; the result

is that each request requires a predictable amount of work.

7.4 It’s OK to Make Mistakes
The result of the application of redundancy and the inter-

changeability of components is that recovery is fast, simple,

and unintrusive: a brick is recovered by rebooting it without

worrying about preserving its pre-crash state, and recovery



does not require coordination with other bricks.

As a result, the monitoring system that detects failures

is allowed to make mistakes. In contrast, in other systems,

false positives usually reduce performance, lower through-

put, or cause incorrect behavior. Since false positives are

not a problem in SSM, generic methods such as statistical

anomaly based failure detection can be made quite aggres-

sive, to avoid missing real faults.

8. RELATED WORK
Palimpsest [35] describes a scheme for temporal storage

for planetary-scale services. Palimpsest requires a user to

erasure-code the relevant data, and write it to N replica

sites, which may all be under separate administrative con-

trol. Like SSM, all metadata for the write is stored on the

client. However, Palimpsest is intended for the wide area;

storage sites may be under different administrative domains.

Palimpsest gives no guarantees to its users in terms of stor-

age lifetime; SSM gives probabilistic guarantees.

Several projects have focused on the design and manage-

ment of persistent state stores [17, 28, 1, 13, 19]. FAB [13]

shares many of the same motivations as SSM, including ease

of management and recovery; however, FAB is intended at

a very different level in the storage hierarchy. FAB is a

logical disk system for persistent storage that is intended

to replace enterprise-class disk arrays, while in SSM we fo-

cus on temporal storage of session state. In addition, in

SSM, all metadata is stored at the client, while FAB em-

ploys a majority-voting algorithm. Similarly, DStore [19]

shares many of the motivations as SSM, but it focuses on

unbounded-persistence storage for non-transactional, single-

key-index state.

Petal [24] attempts to make data highly available by plac-

ing data on a node, and placing a backup copy on either

the predecessor or the successor. Upon failure, the load is

divided by the predecessor and successor, whereas in SSM

the load redistribution is even across all nodes. In Petal,

the loss of any two adjacent nodes implies data loss, while

in SSM, the number of replicas is configurable.

SSM’s algorithm is different from that of quorums [15].

In quorum systems, writes must be propagated to W of the

nodes in a replica group, and reads must be successful on

R of the nodes, where R + W > N , the total number of

nodes in a replica group. A faulty node will often cause

reads to be slow, writes to be slow, or possibly both. Our

solution obviates the need for such a system, since the cookie

contains the references to up-to-date copies of the data.

DDS [17] is similar to SSM in that it focuses on state ac-

cessible by single-key lookups. A detailed discussion of the

differences between SSM and DDS can be found in previ-

ous work [25, 26]. We share many of the same motivations

as Berkeley DB [30], which stressed the importance of fast-

restart and treating failure as a normal operating condition,

and recognized that the full generality of databases is some-

times unneeded.

The windowing mechanism used by the stubs is motivated

by the TCP algorithm for congestion control [22]. The need

to include explicit support for admission control and over-

load management at service design time was demonstrated

in SEDA [40]; we appeal to this argument in our use of win-

dowing to discover the system’s steady-state capacity and

our use of “backpressure” to do admission control to pre-

vent driving the system over the saturation cliff.

Zwaenepoel et al [11] are also looking at using generic,

low-level statistical metrics to infer high-level application

behaviors. In their case, they are looking at CPU counters

such as number of instructions retired and number of cache

misses to make inferences about the macro-level behavior of

the running application.

9. FUTURE WORK
SSM currently does not tolerate catastrophic site failures,

but can be extended to do so. When selecting bricks for

writes, SSM can be extended to select Wlocal bricks from the

local network, and Wremote bricks from a remote site. SSM

can return from writes when WQlocal bricks have replied,

and 1 remote brick has replied.

Intelligently shedding load is an area of active research.

One policy is to allow only users that are already actively

using the system to continue using the system, and to turn

new sessions away; this can be done by only allowing writes

by users that have valid cookies when the system is over-

loaded. Alternatively, users can be binned into different

classes in some external fashion, and under overload, SSM

can be configured to service only selected classes.

We are exploring the use of rolling reboots as a method

of proactively avoiding failures.

Currently, Pinpoint monitors statisics that empirically

correlate with injected failures; however, we have no proof

that they are the most relevant ones. We intend to apply

statistical learning theory to automatically determine which

measurable features best correlate with failures.

10. CONCLUSIONS
A “new wave” of systems research is focusing on the

dual synergistic areas of reduced total-cost-of-ownership

and managed/hosted online services. Many groups have

proposed visions for self-managing, self-adapting, or self-

healing systems; we have presented an architecture and im-

plemented prototype that realizes some of those behaviors in

a state-storage subsystem for online services. We have also

attempted to illuminate one approach to self-management

in the context of this work: make recovery so fast and

cheap that false positives during failure detection become

less important, thereby allowing the use of powerful, self-

adapting, application-generic failure detection techniques

such as statistical-anomaly analysis. We hope that SSM

will both prove useful as a building block for future online



services and encourage others working on self-managing sys-

tems to explore similar recovery-friendly designs.

11. REFERENCES
[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,

and A. Veitch. Hippodrome: Running circles around
storage administration. In Proc. Conference on File and
Storage Technologies (FAST-02), pages 175–188, Monterey,
CA, 2002.

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Fail-stutter fault tolerance. In Proc. 8th Workshop on Hot
Topics in Operating Systems, pages 33–38,
Elmau/Oberbayern, Germany, May 2001.

[3] E. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4):46–55, July 2001.

[4] E. Brewer. Running Inktomi. Personal Communication,
2001.

[5] A. B. Brown and D. A. Patterson. To err is human. In
Proceedings of the 1st Workshop on Evaluating and
Architecting System Dependability (EASY), Göteborg,
Sweden, July 2001. IEEE Computer Society.

[6] G. Candea and A. Fox. Crash-only software. In Proc. 9th
Workshop on Hot Topics in Operating Systems, Lihue, HI,
June 2003.

[7] W. Clinger and L. Hansen. Generational garbage collection
and the radioactive decay model. Proc. SIGPLAN 97
Conference on Programming Language Design and
Implementation, May 1997.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In Proceedings of
the ACM SIGCOMM Conference, pages 3–12, 1989.

[9] FAUMachine. http://www.FAUmachine.org/.
[10] C. Fetzer. Perfect failure detection in timed asynchronous

systems. IEEE Transactions on Computers, 52(2):99–112,
Feb. 2003.

[11] R. Folwer, S. E. Alan Cox, and W. Zwaenepoel. Using
performance reflection in systems software. In Proc. 9th
Workshop on Hot Topics in Operating Systems, Lihue, HI,
June 2003.

[12] A. Fox and E. A. Brewer. ACID confronts its discontents:
Harvest, yield, and scalable tolerant systems. In Seventh
Workshop on Hot Topics In Operating Systems
(HotOS-VII), Rio Rico, AZ, March 1999.

[13] S. Frolund, A. Merchant, Y. Saito, S. Spence, and
A. Veitch. FAB: Enterprise storage systems on a shoestring.
In Proc. 9th Workshop on Hot Topics in Operating
Systems, Lihue, HI, June 2003.

[14] S. Garg, A. V. Moorsel, K. Vaidyanathan, and K. S.
Trivedi. A methodology for detection and estimation of
software aging. In Proceedings of the 9th International
Symposium on Software Reliability Engineering, pages
282–292, Paderborn, Germany, Nov 1998.

[15] D. K. Gifford. Weighted voting for replicated data. In Proc.
7th ACM Symposium on Operating Systems Principles,
Pacific Grove, CA, 1979.

[16] C. G. Gray and D. R. Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache
consistency. In Proc. 12th ACM Symposium on Operating
Systems Principles, pages 202–210, Litchfield Park, AZ,
1989.

[17] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for internet
service construction. In Proc. 4th USENIX Symposium on
Operating Systems Design and Implementation, San Diego,
CA, Oct. 2000.

[18] W. Gu, Z. Kalbarczyk, R. Iyer, and Z. Yang.
Characterization of linux kernel behavior under errors. In
Proc. International Conference on Dependable Systems and
Networks, San Francisco, CA, June 2003.

[19] A. C. Huang and A. Fox. Decoupling state stores for ease of
management. Submitted to FAST, 2004.

[20] D. Jacobs. Personal Communication, 2003.
[21] D. Jacobs. Distributed computing with BEA WebLogic

server. In Proceedings of the Conference on Innovative
Data Systems Research, Asilomar, CA, Jan. 2003.

[22] V. Jacobson. Congestion avoidance and control. In
Proceedings of the ACM SIGCOMM Conference, Stanford,
CA, Aug. 1988.

[23] E. Keogh, S. Lonardi, and W. Chiu. Finding surprising
patterns in a time series database in linear time and space.
In In proc. of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 550–556, Edmonton, Alberta, Canada, Jul 2002.

[24] E. K. Lee and C. Thekkath. Petal: Distributed virtual
disks. In Proc. 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 84–92, Cambridge, MA, 1996.

[25] B. Ling and A. Fox. The case for a session state storage
layer. In Proc. 9th Workshop on Hot Topics in Operating
Systems, Lihue, HI, June 2003.

[26] B. C. Ling and A. Fox. A self-tuning, self-protecting,
self-healing session state management layer. In 5th Annual
Workshop On Active Middleware Services, Seattle, WA,
2003.

[27] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp file system. In
Proc. 13th ACM Symposium on Operating Systems
Principles, pages 226–238, Pacific Grove, CA, Oct 1991.

[28] Network Appliance. http://www.netapp.com/.
[29] T. Networks.
[30] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In

Proceedings of the 1999 Summer USENIX Technical
Conference, Monterey, CA, June 1999.

[31] A. Pal. Yahoo! User Preferences Database. Personal
Communication, 2003.

[32] J. Ping, Z. Ge, J. Kurose, and D. Towsley. A comparison of
hard-state and soft-state protocols. In Proceedings of the
ACM SIGCOMM Conference, pages 251–262, Karlsruhe,
Germany, Aug 2003.

[33] S. Raman and S. McCanne. A model, analysis, and
protocol framework for soft state-based communication. In
Proceedings of the ACM SIGCOMM Conference,
Cambridge, MA, Sept. 1999.

[34] Resin. http://www.caucho.com/.
[35] T. Roscoe and S. Hand. Palimpsest: Soft-capacity storage

for planetary-scale services. In Proc. 9th Workshop on Hot
Topics in Operating Systems, Lihue, HI, June 2003.

[36] Silk Performer. http://www.segue.com/.
[37] U. Singh. E.piphany. Personal Communication, 2003.
[38] A. Vermeulen. Personal communication, June 2003.
[39] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture

for well-conditioned, scalable Internet services. In Proc.
18th ACM Symposium on Operating Systems Principles,
pages 230–243, Lake Louise - Banff, Canada, 2001.


