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Abstract values to join data across relations, e.g., similarities in part
descriptions in the above example. A variety of string simi-
Data cleaning based on similarities involves identifica- larity functions have been considered, such as edit distance,
tion of “close” tuples, where closeness is evaluated using ajaccard similarity, cosine similarity and generalized edit dis-
variety of similarity functions chosen to suit the domain and tance ([4]), for measuring similarities. However, no single
application. Current approaches for efficiently implement- string similarity function is known to be the overall best
ing such similarity joins are tightly tied to the chosen sim- similarity function, and the choice usually depends on the
ilarity function. In this paper, we propose a new primitive application domain [10, 13] (see also Section 6). For exam-
operator which can be used as a foundation to implementple, the characteristics of an effective similarity function for
similarity joins according to a variety of popular string sim- matching products based on their part names where the er-
ilarity functions, and notions of similarity which go beyond rors are usually spelling errors would be different from those
textual similarity. We then propose efficient implementationsmatching street addresses because even small differences in
for this operator. In an experimental evaluation using real the street numbers such as “148th Ave” and “147th Ave”
datasets, we show that the implementation of similarity joinsare crucial, and the soundex function for matching person
using our operator is comparable to, and often substantially names.
better than, previous customized implementations for partic-  The similarity join of two relationsR and S both con-
ular similarity functions. taining a columnA is the join R <y S where the join pred-
icated is f(R.A,S.A) > «, for a given similarity func-
tion f and a thresholdv. Although similarity joins may
1. Introduction be expressed in SQL by defining join predicates through
user-defined functions (UDFs), the evaluation would be very

Data cleaning is an essential step in populating and maininefficient as database systems usually are forced to apply
taining data warehouses and centralized data repositorie$/DF-based join predicates only after performing a cross
A very important data cleaning operation is that of “join- Product. Consequently, specialized techniques have been
ing” similar data. For example, consider a sales data waredeveloped to efficiently compute similarity joins. However,
house. Owing to various errors in the data due to typingthese_‘ methods are all customized to particular similarity
mistakes, differences in conventions, etc., product namedunctions (e.g., [1, 8, 9]).
and customer names in sales records may not match exactly A general purpose data cleaning platform, which has to
with master product catalog and reference customer regisefficiently support similarity joins with respect to a variety
tration records respectively. In these situations, it would beof similarity functions is faced with the impractical option
desirable to perfornsimilarity joins For instance, we may of implementing and maintaining efficient techniques for a
join two products (respectively, customers) if the similar- number of similarity functions, or the challenging option of
ity between their part descriptions (respectively, customersupporting a foundational primitive which can be used as a
names and addresses) is high. This problem of joining simbuilding block to implement a broad variety of notions of
ilar data has been studied in the context of record linkagesimilarity.

(e.q. [6, 7]), of identifying approximate duplicate entitiesin  In this paper, we propose tl&SJoin operatoras a foun-
databases (e.g., [5, 9, 11]). It is also relevant when identi-dational primitive and show that it can be used for sup-
fying for a given record the best few approximate matchesporting similarity joins based on several string similarity
from among a reference set of records [4]. The similarity functions—e.g., edit similarity, jaccard similarity, general-
join is the fundamental operation upon which many of theseized edit similarity, hamming distance, soundex, -etas
technigues are built. well as similarity based on cooccurrences [1]. In defining

Current approaches exploit similarity between attributethe SSJoin operator, we exploit the observation that set



overlap can be used effectively to support a variety of simi-2. Similarity Based on Set Overlap

larity functions [13]. TheSSJoin operator compares values

based on “sets” associated with (or explicitly constructed In this section, we formally define ti&SJoin operator

for) each one of them. As we will show later, the design by considering a simple notion of string similarity by map-

and implementation of this logical operator leverages theping the strings to sets and measuring their similarity using

existing set of relational operators, and helps define a riclsetoverlap We then define th8SJoin operator that can be

space of alternatives for optimizing queries involving simi- used to evaluate this notion of set overlap similarity.

larity joins. There are several well-known methods of mapping a

] . o string to a set, such as the set of words partitioned by delim-

_The SSJoin—denotingset similarityjoin—operator ap-  jiers; the set of all substrings of lengthi.e., its constituent

plies on two relationsk and .S both containing columns ¢-grams etc. For example, the string “Microsoft Corpo-

Aand B. A group of R.3 values in tuples sharing the ration” could be treated as a set of wor@icrosoft,
sameR.A value constitutes the set corresponding to the’Corp’} or as a set of-grams, {*'Mic’, ‘icr’, ‘cro’, ‘ros’

R.A value. TheSSJoin operator returns pairs of dis- ‘0s0’, ‘sof’, ‘oft’, ‘ft’, ‘t C’, * Co’, ‘Cor’, ‘orp’ }. Hence-
tinct values(R.A, S.A) if the overlap of the corresponding forth, we refer to the set corresponding to a strings
groups of R[B] and S[B] values is above a user specified g.;(,). This set could be obtained by any of the above
threshold.  We allow both weighted and unweighted ver-neihods. In this paper, we focus on multi-sets. Whenever
sions. As an example, consider two relatidfistate, cityl e refer to sets, we mean multi-sets. Hence, when we refer
and S(state, city]. SettingA = state and B = city, the {5 the union and intersection of sets, we mean the multi-set

SSJoin operator returns pairs df?.state, S.state) values | nion and multi-set intersection respectively.
if the overlap between sets of cities which occur with each In general, elements may be associated with weights

state is more than a threshold. So, it may return the pairsyjs s intended to capture the intuition that different por-

('WaSh;”Qt,Om vr\:a) ﬁmd (‘wisconsin’, I‘Wl’).be.(]:,.ausel the tions of a string have different importance. For example,
sets of cities within these groups overlap significantly. Wein the string “Microsoft Corp”, we may want to associate

will show in Section 3 that similarity joins based on a variety . .o importance to the portion “Microsoft”. There are well-

of similar_ity functions can be cast into a setting leveraging known methods of associating weights to the set elements,
the SSJoin operator. such as the notion of Inverse Document Frequency (IDF)
commonly used in Information Retrieval. We assume that

SSJoin operator. We first show that tH&SJoin operator the weight assoqated with an e'e.”?e”t Of. a set, such as a
word or g-gram, is fixed and that it is positive. Formally,

can be implemented in SQL using equi-joins. We further )
P Q g equi all sets are assumed to be drawn from a univéfsé&ach

optimize the implementation for scenarios where the over—d. tinct value i/ | ated with . iaht Th
lap has to be high based on the intuition that a high overlap IStinct value Irt/ 1S associated with a uniqueeight ne
eight of a set is defined to be the sum of the weights of

between two sets implies that smaller subsets of the two sety : S92

also overlap. For example, if the overlap between two setd's members and is denc_)ted as(s). Henceforth,_m this

with 5 elements each has to be greater tHathen size2 Paper, we talk about yvelghted sets, noting that in the spe-

subsets have a non-zero overlap. Based on this observatioﬁ',al case when all weights are equal to 1, we reduce to the

we significantly reduce the number of candid@ieA, S.A) “”W‘?'ghted case. ! . -

groups to be compared. We observe that this implementa. CIVen two setss;, s, we define theiroverlap similar-

tion can also be carried out using traditional relational oper-%: denotedOverlap(si, s2), to be the weight of their in-

ators plus the groupwise processing operator [3], making it€'Section, i.e.wt(s1 N s2). The overlap similarity be-

much easier to integrate with a relational engine. Not sur-Ween Wo stringspy, o5, Overlap(ay,02) is defined as
Owverlap(Set(oy), Set(oz)).

prisingly, our proposed techniques are significantly better i _ ] _ )
than using UDFs to compute similarities, which usually re- ~ Givenrelationsz andS, each with string valued attribute
sults in plans based on cross products. A, consider the similarity join betweefd andS that returns

all pairs of tuples where the overlap similarity betwdem

The rest of the paper is organized as follows. In Sec-andS.A is above a certain threshold. We expect that when
tion 2, we define thesSJoin operator. In Section 3, we two strings are almost equal, their overlap similarity is high,
instantiate similarity joins based on a variety of similarity and hence this is a natural similarity join predicate to ex-
functions. In Section 4, we describe an efficient physicalpress. We next introduce tt&SJoin operator that can be
implementation for th&sSJoin operator. In Section 5, we used to express this predicate.
show using several real datasets that our physical implemen- In this paper, we assume the standard relational data
tations are efficient, and sometimes substantially better thamodel for simplicity. But, our techniques are also applica-
custom implementations. We discuss related work in Secble to other models which allow inline representation of set-
tion 6, and conclude in Section 7. valued attributes. We assume that all relations are in the First

We then develop efficient implementations for the



Normal Form, and do not contain set-valued attributes. Setso denote the following result: {{a,, a)

€ RA x

and hence the association between a string and its set ar¢ A|pred(a., as) is true }.
also represented in a normalized manner. For example, the We also writepred as{ Overlapg(a,,as) > e;}.

set of rows in relatiom? of Figure 1 represents the associ-
ation between the string “Microsoft Corp” and Bsgrams;
the thirdnormcolumn denotes the length of the string.

OrgName Norm
i1
11

11

Norm
12
12
12

3-gram OrgName 3-gram

Microsoft Corp Mcrosoft Corp mcr

Microsoft Corp Mcrosoft Corp cro

Microsoft Corp Mcrosoft Corp ros

11
11

Microsoft Corp 12

12

Mcrosoft Corpg cor

Microsoft Corp
R

Mcrosoft Corp
S

orp

Figure 1. Example sets from strings

We describe thesSJoin operator. Consider relations
R(A,B) and S(A, B) where A and B are subsets of
columns. Each distinct valug. € R.A defines a group,
which is the subset of tuples i where R.A = a,.
Call this set of tuplesSet(a,). Similarly, each distinct
value a; € S.A defines a sefSet(as). The simplest
form of the SSJoin operator joins a pair of distinct val-
ues (ar,as), a, € R.A andas; € S.A, if the pro-
jections on columnB of the setsSet(a,) and Set(as)
have a high overlap similarity. The formal predicate is
Overlap(rp(Set(a,), mp(Set(as))) > « for some thresh-
old «. We denoteQverlap(mp(Set(a,), mp(Set(as)))
as Owverlapg(ar,as). Hence, the formal predicate is
Overlapg(ar,as) > «. We illustrate this through an ex-
ample.

Example 1: Let relation R(OrgName, 3-gram) and
S(OrgName, 3-gram) shown in Figure 1 associate the
strings “Microsoft Corp” and “Mcrosoft Corp” with
their 3-grams. DenotingOrgName by A and 3-
gram by B, the SSJoin operator with the predicate
Overlapg(ar,as) > 10 returns the pair of strings
(“Microsoft Corp”, “Mcrosoft Corp” ) since the overlap be-
tween the corresponding sets of 3-grams is 10.

We illustrate this through the following examples based
on Figure 1. The third columNormdenotes the length of
the string. In general, throrm denotes either the length
of the string, or the cardinality of the set, or the sum of the
weights of all elements in the set. Several similarity func-
tions use the norm to normalize the similarity.

Example 2 : As shown in Figure 1, Ilet
relations R(OrgName, 3-gram, Norm) and
S(OrgName,3, Norm) associate the organization

names with (1) all 3-grams in each organization name, and
(2) the number of 3-grams for each name. The predicate
in the SSJoin operator may be instantiated in one of the
following ways to derive different notions of similarity.

e Absolute overlap:Overlapg(a,,as) > 10 joins the
pair of strings (“Microsoft Corp”, “Mcrosoft Corp” )
since the overlap between the corresponding sets of 3-
grams is 10.

1-sided normalized overlap:
Overlapg({a, norm),, (a, norm)s) > 0.8 - R.norm
joins the pair of stringg“Microsoft Corp”, “Mcrosoft
Corp”) since the overlap between the corresponding
sets of 3-grams is 10, which is more than 80% of 12.

e 2-sided normalized overlap:
Overlapg({a, norm),, (a, norm)s) > {0.8
R.norm,0.8-S.norm} also returns the pair of strings
(“Microsoft Corp”, “Mcrosoft Corp”) since 10 is
more than 80% of 12 and 80% of 11.

In the next section, we show how the intuitive notion of
set overlap can be used to capture various string similarity
functions. We discuss the implementation of 8&Join op-
erator in Section 4.

3. UsingSSJoin Operator for Similarity Joins

In general, we may wish to express conditions such as:
the overlap similarity between the two sets must be 80% of In this section, we show illustrate the usage of the
the set size. Thus, in the above example, we may wish t>SJoin operator to implement similarity joins based on a
assert that the overlap similarity must be higher than 80%variety of previously proposed string similarity functions.
of the number of 3-grams in the string “Microsoft Corp”. Earlier techniques relied on distinct specialized implemen-
We may also wish to be able to assert that the Over|ap Simtations for each Slmllarlty function. In contrast, our ap-
ilarity be higher than say 80% of the sizeshufthsets. We  Proach relies on th8SJoin operator to perform bulk of the

now formally define th&SJoin operator as follows, which ~ €effort. Only a few checks have to be performed on the result
addresses these requirements. of the SSJoin operator. Both the coding effort for program-

ming these checks and the additional number of such checks
Definition 1:  Consider relationsR(A, B) and S(A, B). is very small.
Let pred be the predicate\,{ Overlapg(a,,as) > e;}, In this section, without loss of generality and for clar-
where eacle; is an expression involving only constants and ity in description, we fix unary relations Rbds® and
columns from eitheR. A or S.A. We writeR SSJoinfj,’"ed S SbaséA) where A is a string-valued attribute. The goal



UDF check for string ED (RA, SA<a
similarity T
SSjoin .
R SSjoinS
pred = (Overlap(a,a)> (IR.A - 1 - ¢ -1)q)

R (A, B, norm(A)) S (A, B, norm(A))
| | N

String t|° set St e o st R[A,B,norm(A)] S[A,B,norm(A)]
Rbase (A: String) Sbase (A: String) Construct g-gram sets Construct g-gram sets
Figure 2. String Similarity Join using  SSJoin Figure 3. Edit distance join

is to find pairs(RbaseA, Sbased) where the textual sim- tance is less than an input threshaldThis implementation

ilarity is above a thresholdv. Our approach (outlined can be easily extended to edit similarity joins.

in Figure 2) is to first convert the strings Rbéde and We illustrate the connection between edit distance and

Shas¢A) to sets, construct normalized representationsoverlap through the following example.

R(A, B,norm(A)) andS (A, B,norm(A)), and then suit-

ably invoke theSSJoin operator on the normalized repre-

sentations. The invocation is chosen so that all string pair

whose similarity i:_s greater thanare guarantee_d to be inthe is 10, more than 80% of the number of 3-grams in either

result of theSSJoin operator. Hence, th8SJoin operator string.

provides a way to efficiently produce a small superset of the

correct answer. We then compare the pairs of strings usThe intuition is allg-grams that are “far away” from the

ing the actual similarity function, declared as a UDF within place where the edits take place must be identical. Hence, if

a database system, to ensure that we only return pairs dhe edit distance is small, then the overlapgegrams must

strings whose similarity is above be high. The authors of [9] formalize this intuitive relation-
Note that a direct implementation of the UDF within a ship between edit distance and the sej-grams:

database system is most likely to Iea}d to a cross—produc&roperty‘l: [9] Consider stringso; and oy, of lengths

where the UDF is evaluated for all pairs of tuples. On the )

. . . : ; |oi| and |oz|, respectively. LetQGSet, (o) denote
other hand, an implementation usig&gJoin exploits the the set of all contiquous a-arams. of thg stri it
support within database systems for equi-joins to result in a d 'gh' q gd' di : g h
significant reduction in the total number of string compar- 7! and o, are within an edit distance of, then
isons. This results in orders of magnitude improvement in Qverlap(QGSet (01), QG Set (02)) > max|oy], |o2])—

performance, as we will discuss in Sections 4 and 5. gtl—egq

Definition 3: Consider the strings “Microsoft Corp” and
“Mcrosoft Corp”. The edit distance between the two is 1
?deleting 'I"). The overlap similarity between their 3-grams

Thus, in the above example, the edit distance is 1, and Prop-
3.1. Edit Distance erty 4 asserts that at least 9 3-grams have to be common.
From the above property, we can implement the edit sim-

The edit distance between strings is the least number offrity join through the operator tree shown in Figure 3.
edit operations (insertion and deletion of characters, andVe first construct the relationg(A, B, norm(A)) and
substitution of a character with another) required to trans-5(4; B, norm(A)) containing the norms and g-gram sets
form one string to the other. For example, the edit distance© €ach string. We then invoke tt&SJoin operator over
between strings ‘microsoft’ and ‘mcrosoft is the number ~ these relations in order to identifyz. 4, 5.4) pairs which
of edits (deleting ‘) required to match the second string &€ vgry_sn_mlgr. Note _that we further require a f|I_ter b_ased
with the first. The edit distance may be normalized to be©n edit Similarity (possibly as a user-defined function) in or-
betweer) and1 by the maximum of the two string lengths. der to filter out pairs whose overlap similarity is higher than

Hence, the notion of edit similarity can also be defined asthat given by Property 4 but edit similarity is still less than
follows. the required threshold.

Definition 2 Given two strings; andos, theedit distance  3.2. Jaccard Containment and Resemblance
ED(o1,02) between them is the minimum number of edit
operations—insertion, deletion, and substitutiento trans-
formoy into o2. We define thedit similarity £S5 (o1, 02) to

We define the Jaccard containment and resemblance be-
tween strings through the Jaccard containment and resem-
ED(01,00) blance of their corresponding sets. We then illustrate the
bel.0 — maz(|o1],]oa]) " use of theSSJoin operator for Jaccard containment using

. . . the following example.
We consider the form of edit distance join addressed

in [9], which returns all pairs of records where the edit dis- Definition 5. Lets; and s, be weighted sets.



1. The Jaccard containment ef in so, JC(sg,s2) is de- sequence into another include insertion, deletion and re-

finedto b wt(jéﬂ@). placement of one token with another. Each edit opera-
wile) tion is associated with a cost dependent on the tokens (and
2. The Jaccard resemblance between and s,  their weights) involved in the edit. To illustrate, consider
JR(s1,52), is defined to bé% the above example strings. The strings “microsoft corp”

i . and “microsft corporation” are close because ‘microsoft’
Example 3 Suppose we define the Jaccard containment, g microsft are close according to edit distance and the
between two strings by using the underlying sets of 34yeights of ‘corp’ and ‘corporation’ are relatively small ow-
grams. Con5|d?r strings; = *Microsoft Corp”and o2 = jnq 1o their high frequency. GES has been shown to be very
Mcrosoft Corp”. We show how a Jaccard containment gective for matching erroneous tuples with their correct
predicate on these strings translates t§&Join predicate. counterparts [4]. Letd(o1,0) denote the absolute edit

Suppose we want to join the two strings when the Jaccargjisiance normalized by the maximum of the strings lengths,
containment of in oy is more than 0.8. e cd(or,00) — ED(51,02)
.C.y 17 2 —

As shown in Figure 1, leR(OrgName, 3—gram, norm) maz(|o1],lo2])”
and S(OrgName, 3—gram, norm) associate the strings pefinition 6: Let oy and o be two strings. The cost of
“Microsoft Corp” and "Mcrosoft Corp” with (1) the ac-  transforming a tokert; in the setSet(a;) of tokens corre-
tual 3—grams in colum® — gram, and (2) the number of 3- sponding tar; to atokenty in Set(oy) is ed(t1, t2)- wi(ty).
grams in colummorm. _ ~ The cost of inserting or deleting a tokeequalswt(t). The

We can see that the Jaccard containment predi-costic(o,, o) of transformings; to o is the minimum cost
cate is equivalent to the followingSJoin predicate:  transformation sequence for transforming into o». The
Overlapp({a, norm), (a,norm)s) = 0.8 - R.norm. generalized edit similarity? £S5 (o1, 02) is defined as fol-

In general, we construct relation8(A, B, norm(A)) lows.

andS(A, B, norm(A)) from Rbase and Sbase respectively,
that associates a string with (1) the weight of the underly-
ing set, and (2) the set of elements in its underlying set. . i
The Jaccard containment condition can then be expressed Ve now illustrate the connection betwe6it5 and the
using the operator tree shown in Figure 4. Note that becausg>J0in predicate.

Jaccard containment like tf85Join operator measures the Example 4 Consider stringss; — “Microsoft Corp”

degree of overlap, this translation does not require a post; g s — “Mcrosoft Corp”. Consider the setSet(o,) =

processing step. {Microsoft, Corg and Set(o;) = {Mcrosoft, Corg ob-
Observe that for any two setss; and s;,  (qineq using the tokenizing function and ignoring the se-

JC(s1,52) 2 JR(s1,s2). Hence JR(s1,s3) = a = g entiality among tokens. Suppose, we exp&ado:)

Max(JC(s1, 52), JC(s2, 51)) > o Therefore, as shown on 4 g, andedSet(o,) = {Microsoft, Mcrosoft, Macrosoft,

the right hand .side in Figure 4, we use the operator tree forCorp} by including tokens (say, from a dictionary) whose
Jaccard containment and add the check for Jaccard resemy;t similarity with any token itSet(o1) is high. Then, the

blance as a post-processing filter. In fact, we check for the lap bet B dedSet dSet is high
Jaccard containment ofC(R.A, S.A) and JC(S.A, R.A) overlap betweetxpandedSet(c) andSet(c) is high.

te(oy,09)

GES(01,02) = 10— min( oo o

1.0)

being greater than. The above example illustrates the basic intuition. Infor-
mally, the expansion adds to a set correspondindtd
3.3. Generalized Edit Similarity all tokens from a dictionary (say, all tokens in any attribute

value of S. A) whose edit similarity with any token in the set

This similarity function, introduced in [4] is a weighted is greater than a thresholgl(< «). If the generalized edit
variant of edit distance. The idea is to address some limitasimilarity between the strings; and o, is higher thanx
tions of plain edit distance, illustrated through the following then the overlap between their expanded sets must be higher
example. Consider strings “microsoft corp”, “microsft cor- thana — 8. The intuition is that the cost of transforming
poration” and “mic corp”. The edit distance between “mi- any tokent; in Set(c;) to a tokents in Set(os) is either
crosoft corp” and “mic corp” is less than that between “mi- (i) less tharn3 if there is an overlapping tokehbetween the
crosoft corp” and “microsft corporation”. So is the case for expanded sets that is close to béthandt,, or (ii) greater
Jaccard similarity because it only matches tokens which arehan 3, otherwise. Therefore, the similarity is bounded by
identical. «a — g if the overlap is greater than. In general, we can

To deal with these limitations, the generalized edit sim- expand both setSet(c;) andSet(o2) by including similar
ilarity (GES) function was proposed in [4]. Each string tokens. The details are intricate and require a generalization
is interpreted as a sequence of tokens, through some tolef our element weight model to allow an element having dif-
enizing function. The edit operations that transform oneferent weights as opposed to a fixed weight. In the interest



‘ IR(Set(RA), Set(SA)) = a

R SSjoima S
pred = Overlaps(<a, norm(a)>, <as, norm(a)> o= Overl R(SSioi Na S( , o
> . -norm pred = Overlapg(<a, norm(a)>, <as, norm(as)>
= (3) >{a -norrr?(a,), a -norm(as))}
R[A, B, norm(A)] SA, B, norm(A)]
,B, R[A, B, norm(A)] S[A, B, norm(A)]
Construct setsfor RA  Construct setsfor SA Construct sets for RA  Construct sets for SA

Figure 4. Jaccard containment and resemblance joins

of space, we omit the details and note that all techniques \

described in this paper can be generalized appropriately. Author SSjoimee Author2
Predt: Overlgperise(namey, namey)> a- norm(name))
3.4. Beyond Textual Similarity /\
Author Author2
We now illustrate the applicability of th8SJoin oper- [Nme, norm{name) PTitle] - [Neme, norm(name), Tile]
ator to similarity joins based upon non-textual notions of _ o _ .
similarity. The first notion of similarity is based on that of Figure 5. Co-occurrence join using ~ SSJoin

“co-occurrence” between columns and the second is based

on soft functional dependencies. We illustrate these obserl-:D hold v f . f th
vations using examples. Both the following examples are s may not hold exactly for a variety of reasons: they may

based on an example publication database involving tabIeQOt have been enfqrced due tp efficiency reasons, orthe rela-
storing papers and authors tion may be the union of relations from several independent

sources. For example, a large percentagerodils (if
they are valid) uniquely determine the author tuple. In gen-
eral, if we wish to use the functional dependenty— A

Example 5 Suppose we have two tables, say from different© identify two similar values ofz.4, then we can simply
sources that are being integrated, of author names joinedProceed by performing an equi-join gh.X. .

with the titles of the papers, say with the schefpitle, The question arises howl we can exploit mulnple FDs.
aname). Since we want a unified view of all authors, we Informally, two t_uples agreeing on the source attributes of
are interested in identifying author names that are likely to several FDs indicate that the target attribute values are the
represent the same author. Now, if the naming convention§a@me. One natural way to aggregate the information from
in the two sources are entirely different, it is quite likely that Multiple functional dependencies is to use majority vote. We
the textual similarity between the author names is only aformalize this as follows. LefX;,..., X;, A} be a set of
partial indicator of their similarity. We are forced to rely on  columns ink andS. EachX; is expected to functionally
alternative sources of information for identifying duplicate determineA.

author entities.

In this instance, we can use the set of paper titles as-
sociated with each author to identify authors. The idea iglt &
that if two authors are the same, then the set of paper titles -
co-occurring with them must have a large overlap. We can ) . .
express this using Jaccard containment, for instance, whicHEX"jmple 6: C9n5|der two _relationsAuthorsl,
translates directly into the&sSJoin operator, as shown in A_uthorsz ' b.Oth W'th. the schemgname, address,
the operator tree in Figure 5. This notion of similarity has city, sta_te_, zip, email, phone_ }.  We may

want to join two author names if at least two of the follow-

gﬁzﬁcjt]g\slva]to be very effective for identifying approxmatemg agree: address, email, phone . That would be

expressed aduthorl zf:/[% Author2

Using Co-occurrence

Definition 7:  For two tuplest; and ¢; in R, we write
JICZ/IS to if t; andt, agree on at leask out of theh

Our next example illustrates how functional dependen- ) )
cies can be exploited for approximate equality. We illustrate how theSSJoin operator can be used to
compute thewf:/h predicate using the above example. By
associating each author name with a set of ordered pairs
(Column, Value )and normalizing the resulting relation,
Another source of identifying duplicate information is soft we get a relation with the schenidame, AEP (AEP for
functional dependencies (FDs), which may not hold on theaddress-email-phone). We can implement the above predi-

entire relation but over a large subset of the relation. Thecate through th&SJoin operator as shown in Figure 6.

Using Soft Functional Dependencies



Authorl SSjoiname Author2

Pred: Overlapagp(Authorl.Name, Author2.Name) > a

Authorl Author2
<Name, AEP> <Name, AEP>

Figure 6. FD-based join using SSJoin

Having MN(ga®, 6.5 >0

Group By (R.A,S.A)

R.B=S.B

R[A.B,..] SIAB,.]

Figure 7. Basic implementation of  SSJoin

4. Implementation of SSJoin

In this section, we discuss the implementation of the
SSJoin operator. We consider various strategies, each o

which can be implemented using relational operators. The

idea is to exploit the property the8SJoin has to only
return pairs of groups whose similarity is above a cer-
tain threshold, and that thresholds are usually high. In

Having M (ga®, g5 > a

Group By (R.A,S.A)

T.S.A=S.A

| \S[A,B,...]
T.RA=R.A

‘ T \ RIA,B, ...]

R.B=S.B

prefix-filter(R,A,B,1-a) prefix-filter(S,A,B,1a])

\

RI[AB,...] S[A,B,..]

Figure 8. Prefix-filter
SSJoin

implementation of

represent tokens contained in strings. Certain tokens like
“the” and “inc” can be extremely frequent in both and

S relations. In such scenarios, which occur often, the size
of the equi-join onB is very large (refer Section 5). The
challenge, therefore, is to reduce the intermediate number
of <R.A,S.A> groups compared. Next, we describe our
approach to address this problem.

f

4.2. Filtered SSJoin Implementation

The intuition we exploit is that when two sets havarge
overlap, even smaller subsets of the base sets overlap. To

this section, we talk mostly about executing the operation™ake the intuition concrete, consider the case when all sets

R SSJoin®™“? S over relationsk(A, B) andS(A, B) where
the predicate iverlapg(ar,as) > o for some positive
constanto. The implementation extends to the case when
Owverlapg(ar, as) is required to be greater than a set of ex-
pressions.

4.1. Basic SSJoin Implementation

Sincea > 0, we can conclude that for a paita,., a,>
to be returned, at least one of the values in the colutnn
related toa, and a, must be the same. Indeed, by com-
puting an equi-join on thé3 column(s) betweerRk and S
and adding the weights of all joining values Bf we can
compute the overlap between groupsionl andS. A. Fig-

are unweighted and have a fixed sizé/Ne can observe the
following property.

Property 8: Lets; and sy be two sets of size. Consider
any subset; of s; of sizeh — k + 1. If |s; N s2| > k, then
r1 N sy # ¢.

For instance, consider the sets={1,2,3,4,3 and
$2={1,2,3,4,6 which have an overlap of 4. Any subsetsef

of size2 has a non-zero overlap with the sgt Therefore,
instead of performing an equi-join dR and .S, we may ig-
nore a large subset ¢f and perform the equi-join oR and

a small filtered subset . By filtering out a large subset of

S, we can reduce, often by very significant margins, the size
of the resultant equi-join. We note here that this approach is

ure 7 presents the operator tree for implementing the basimilar to the OptMerge optimization in [13].

sic overlapSSJoin. We first compute the equi-join be-
tween R and S on the join conditionkR.B = S.B. Any

< R.A,S.A > pair whose overlap is non-zero would be
present in the result. Grouping the resultonk?.A, S.A >
and ensuring, through theaving clause, that the overlap is
greater than the specified thresheldvould yield the result
of the SSJoin.

The size of the equi-join o3 varies widely with the
joint-frequency distribution of3. Consider the case when
the SSJoin operator is used to implement the Jaccard sim-
ilarity between strings. Here, the values in the attribBte

The natural question now is whether or not we can apply
such a prefix-filter to both relatiorf¢ andS in the equi-join.
Interestingly, we find that the answer is in the affirmative.
We illustrate this as follows. Fix an orderirf@ of the uni-
versel from which all set elements are drawn. Define the
k-prefix of any sek to be the subset consisting of the fikst
elements as per the orderidy Now, if |s; N s2| > k, then
their (h — k + 1)-prefixes must intersect. For example, con-
siders; = {1,2,3,4,5} andse = {1,2,3,4,6} as before.
Assume the usual ordering of natural numbers. Since the
overlap between; ands; is 4, their sizeg5 — 4 4+ 1) = 2-



OvlipR a8 S5 >0 pression of the formy - R.Norm, then we extract a

ﬁar,norm(ar) = (wt(set(ar)) —a- nm“m(ar)) pre-
fix of the setSet(a,). This generalizes to the case
when we have an expression involving constants and

RB=SB

prdlxmte'(R“[A‘norm(A)],B.lu) pref‘wfllte((s,[kncrm(A)]‘B‘lu]) B Norm.
RIA, B, norm(A)] SA, B, nom(A)]
- e For a 2-sided normalized overlap predicate
Overlapg(ar,as) > a - Max(R.Norm,S.Norm),
Figure 9. Prefix-filter with inline set represen- we apply different prefix-filter to relation® and S.
tation We apply the filterprefix-filtef R, o - R.Norm) to R

andprefix-filter(S, « - S.Norm) to S.

e For the evaluation of d-sided normalized overlap
predicateOverlapg(a,,as) > « - R.Norm, we can
apply the prefix-filter only on sets iR.

prefixes must intersect, which is the case — the Sipee-
fixes of boths; ands, is {1,2}. Therefore, an equi-join on
B on the filtered relations will return all pairs that satisfy
the SSJoin predicate. The result would be a superset of all
pairs of< R.A, S.A > groups with overlap greater than the
given threshold. And, the number of candidate groups of \we now discuss the implementation issues around the
pairs is significantly (sometimes, by orders of magnitude) prefix-filter approach.
smaller than the number of pairs from the equi-join on the
full base relations (refer Section 5). 4

This intuition can be extended to weighted sets. Consider
any fixed orderingD of the domain from which?.B and  Observe that the form of predicate we consider here involves
S.B are drawn. Given a weighted setdrawn from this  multi-set intersection when ani.A (or S.A) group con-
domain, defingrefiz 5(r) to be the subset corresponding to tains multiple values on thé.B attributes. In order to
the shortest prefix (in sorted order), the weights of whosebe able to implement them using standard relational oper-
elements add up to more thagh We have the following ators, we convert these multi-sets into sets; we convert each
result; value in R.B and S.B into an ordered pair containing an

. . ordinal number to distinguish it from its duplicates. Thus,

Lemma® Consider two weighted setg ands;, suchthat  ¢o example, the multi-sef1, 1,2} would be converted to
wt(s1Nsz) 2 a. Letfy = wi(s1)—aandfy = wi(sz)—a. £9 1) (1 9),(2,1)}. Since set intersections can be imple-
Thenprefizg, (s1) N prefizg, (s2) # ¢ mented using joins, the conversion enables us to perform

Suppose that for the set defined by vatye ¢ R.4, ~ Multi-setintersections using joins.
Set(a,) (respectively fora; € S.A), we extract &3,, =
(wt(Set(a,)) — «) prefix underO (respectively, &,. pre-  4.3.2 Determining the Ordering
fix). From the above lemma, performing the equi-jéiron
the resulting relations will result in a superset of the result
of the SSJoin. We can then check th8SJoin predicate
on the pairs returned. Since the filter is letting only a prefix
under a fixed order to pass through, we call this filter the
prefix-filter. We refer to the relation obtained by filteririgy
asprefix-filte( R, o).

The filtered overlap implementation of tSJoin oper-
ator is illustrated in Figure 8. We first join the prefix-filtered
relations to obtain candidate paifB.A, S.A) groups to be

4.3. Implementation Issues

3.1 Mapping Multi-set Intersection to Joins

Note that the prefix-filter is applicable no matter what or-
dering© we pick. The question arises whether the ordering
picked can have performance implications. Clearly, the an-
swer is that it does. Our goal is to pick an ordering that
minimizes the number of comparisons that the ordering will
imply. One natural candidate here is to order the elements
by increasing order of their frequency in the database. This
way, we try to eliminate higher frequency elements from the
prefix filtering and thereby expect to minimize the number

- . ; ) of comparisons. Since many common notions of weights
compared. We join the candidate set of pairs with the bas?e.g_, IDF) are inversely proportional to frequency, we can

relationsk andsS in order to obtain the groups so that we can implement this using the element weiahts. Several opti-
compute the overlap between the groups. The actual com- P 9 ghts. b

utation of the overlap is done by grouping . A, S.A) mization issues arise such as to what extent will prefix-
putation ¢ P y grouping ol 4, 5. filtering help, whether it is worth the cost of producing the
and filtering out groups whose overlap is less than

We need to extend this implementation to address thefollclltered relatllons, whether we should proceed by pqrtltlon-
o ing the relations and using different approaches for different
lowing issues. .
partitions, etc.
e Normalized Overlap Predicatesinstead of a con- In our implementation, we ordét. B values with respect

stanta as in the discussion above, if we have an ex-to their IDF weights. Since high frequency elements have



lower weights, we filter them out first. Therefore, the size of  EdisSmRA s.4) > Customized Edit Implementation

the subset (and hence the subsequent join result) let through ‘ 3800 DEdiSimFier
i X Edit similarity specific 3000 B Candidate-enumeration

would be the smallest under this ordering. fiters £ 2500 @Prep
\ 2 1500
R.B=S.B " 1000
4.3.3 Implementing the prefix-filter s

P 9 P / \ 0.8 0.85 0.9 0.95
R[AB,..] S[AB,.. Threshold

The prefix-filter can be implemented using a combination c.
standard relational operators such as group by, order by, and
join, and the notion of groupwise processing [2, 3] where we i _
iteratively process groups of tuples (defined agrioup-by, Threshold| SSJoin| Direct
i.e., where every distinct value in a grouping column consti- 0.80 546492 | 28252476
tutes a group) and apply a subquery on each group. In our 8'33 112691%215 i;gggig;
case, we would group the tuples Bfon R.A and the sub- 0:95 2772 | 5961246
query would compute the prefix of each group it processes.

In our implementation, we use a server-side cursor which Table 1. #Edit comparisons
requires the scan of the base relatiBrordered onA, B.
While scanning, we mark the prefix of each grdign(a,.). .
Observe that ordering. B with respect to the fixed o(rdé)? S. Experiments

Figure 11. Customized edit similarity join

of R.B may require an additional join @t with the “order” We now experimentally demonstrate the generality of
table. the SSJoin operator in allowing several common similarity

functions besides the efficiency of our physical implemen-
4.3.4 Inlined Representation of Groups tations.

Datasets:All our experiments are performed using fias-
A property of the prefix-filter approach is that when we ex- tomerrelation from an operational data warehouse. We eval-
tract the prefix-filtered relations, we lose the original groups.uate theSSJoin operator by implementing similarity joins
Since the original groups are required for verifying the on a relation? of 25, 000 customer addresses with itself.
SSJoin predicate, we have to perform a join with the base  \while performing Jaccard and generalized edit similarity
relations again in order to retrieve the groups, as shown ineins between two relation® andS based on the attribute
Figure 8. These joins can clearly add substantially to theyajyes inA, we assign IDF weights to elements of sets (to-

cost of theSSJoin operation. . . _ kens) as foIIowsiog(W), wheref, is the total number
Next, we discuss a new implementation which can av0|dOf R[A] andS[A] values, which containas a token.

these joins. The idea is to “carry” the groups along with We implemented th&SJoin operator and the similarit
eachR.A and S.A value that pass through the prefix-filter. . . P i i pe . y
This way, we can avoid the joins with the base relations join operations as client app |cat|0_ns over Microsoft SQL
AT L ‘Server 2005. We ran all our experiments on a desktop PC
The intuition is illustrated in Figure 9. In order to do so, we runnina Windows XP SP2 over a 2.2 GHz Pentium 4 CPU
either require the capability to define a set-valued attributeWith 1(958 main memor '
or a method to encode sets as strings or clobs, say by con- Y-

catenating all elements together separating them by a special

marker. 5.1. Evaluating the SSJoin Encapsulation
In our implementation, we choose the latter option. Now,
measuring the overlap betweéR.A, S.A) groups can be We compare our implementations with the best known

done without a join with the base relations. However, we re-customized similarity join algorithm for edit similarity [9].
quire a function, say a UDF, for measuring overlap betweenNo specialized similarity join algorithms have been pro-
inlined sets. This implementation goes beyond the capabilposed for Jaccard resemblance and generalized edit simi-
ities of standard SQL operators as it requires us to computdarity. Therefore, we consider the bag8&Join implemen-
set overlaps. However, the UDF we use is a simple unanytation as the strawman strategies for these similarity joins.
operator that does not perform very sophisticated operation®revious implementations for the generalized edit similarity
internally, especially when the sets are bounded. Our expermwere probabilistic [4]; hence, we do not compare our imple-
iments show that this alternative is usually more efficientmentations with the earlier strategy.
than the prefix-filtered implementation since it avoids the  The customized algorithm for edit similarity join is sum-
redundant joins. marized by the operator tree on the left hand side of Fig-
We note here that our current implementation is noture 11: an equi-join oR. B andS. B along with additional
geared for the case of unbounded sets. Dealing with largdilters (difference in lengths of strings has to be less, and the
sets is left for future work. positions of at least one g-gram which is common to both
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Figure 10. Edit similarity join: basic, prefix-filtered, inline-represented SSJoin

strings has to be close) followed by an invocation of the editbased choices are not possible for the framework proposed
similarity computation. by Sarawagi et al. [13].

Figure 11 plots the times required for implementing the  The prefix-filtered implementation with the inline set
edit similarity join using the customized algorithm. Com- representation is still more efficient than the basic strategy
paring the times with those in Figure 10, we first note thateven at lower thresholds. As expected, avoiding the over-
the edit similarity joins based on our implementations (in- head of joins with base relations to regroup elements signif-
cluding the basic implementation) are faster than that usingcantly improves efficiency.
the custom implementation. The reason is that the custom We also note that the plans chosen by the query optimizer
implementation compares a very large number of stringsonly involved hash and merge joins. For no instance did
Table 1 plots the number of edit similarity computations the optimizer choose an index-based join even if we created
through theSSJoin operator and that through the custom clustered indexes on temporary tables. Therefore, we con-
implementation. The custom implementation performs aclude that a fixed index-based strategy for similarity joins
much (by orders of magnitude) larger number of edit simi- as in [13] and [6] is unlikely to be optimal always. Instead,
larity comparisons. Th&SJoin operator implementations we must proceed with a cost-based choice that is sensitive
rely on the overlap predicate in order to significantly reduceto the data characteristics.
the number of edit similarity computations. Thus, using the Jaccard ResemblanceFigure 12 plots the times for imple-
more generaBSJoin operator, we are able to implement menting the Jaccard resemblance join at various thresholds
the edit similarity join more efficiently than the previously through each implementation of ti&SJoin operator. The
known best customized solution. prefix-filtered implementation i5-10 times faster than the

basic implementation. Therefore, prefix-filtering is very ef-
Edit Similarity join : Figure 10 plots the times required for fective in reducing the cost of th8SJoin operator. Also,
implementing a similarity join based upon edit similarity at observe that the prefix-filtered implementation with inline
various thresholds. The prefix-filtered implementations arerepresentation is aroursd% faster than the standard prefix-
significantly faster than the basic implementation at higherfiltered implementation. As expected, avoiding joins with
thresholds (greater than or equabt85). However, atlower the base relations just to gather together all elements of
thresholds the basic implementation of 8®Join operator  groups to be compared is beneficial even if it means that
is better than the prefix-filtered implementation using stan-additional information has to be carried through the prefix-
dard SQL operators. At lower thresholds, the number offilter for each tuple.
< R.A,S.A > group pairs to be compared is inherently  Observe that most of the time in the basic implementa-
high and any technique has to compare higher number ofion is spent in the execution of the SSJoin. The preparation
groups. So, even prefix-filters have to let a larger number(denotedPrepin the figures) and the filtering (denotEiter
of tuples to pass through. Therefore, the effectiveness of thén the figures) take negligible fractions of the time. The time
prefix filters decreases as we decrease the thresholds. Thengken for the prefix-filtered implementation increases as we
fore, prefix filtering is not as effective at lower thresholds. decrease the threshold. Such behavior is expected because
The additional cost of prefix filtering would not offset the the number ok R.A,S.A > pairs pruned away decreases
savings resulting from reduced join costs. with the threshold. For the prefix-filtered implementations,

That there is not always a clear winner between the basi@ significant amount of time is spent in the prefix-filter due
and prefix-filtered implementations motivates the require-to which the subsequent steps are very efficient. These ob-
ment for a cost-based decision for choosing the appropriatéervations are true for our implementations of edit similarity
implementation. Because of our operator-centric approachand of generalized edit similarity joins.
our SSJoin operator can be enhanced with such rules andGeneralized Edit Similarity: Figure 13 plots the times
integrated with a query optimizer. Observe that such costrequired for implementing a similarity join based upon
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Figure 12. Jaccard similarity join: basic, prefix-filtered, and inline represented SSJoin
. ces Input Size | SSJoin Input | Output | Time units
100] S——o—o—o 100K 288627 rows | 2731 224
g S 200K 778172 rows | 2870 517
£ —=— prefociitered 250K | 1020197 rows| 4807 649
1 330K 1305805 rows| 3870 1072
Threshetd Table 2. Varying input data sizes

Figure 13. GES join
time required by the prefix-filtered implementation for in-

. . . creasing data sizes. We also report the sizes of the tables in-
the generalized edit similarity. The conclusions here arey 1 thesSJoin operator and the size of the output. As the
similar to those for the Jaccard similarity. The prefix- j, ¢ data size increases, the size of the prepared relations
filtered implementations are better than those for theyyhich are input to théSSJoin operator increases linearly.
basic implementation by almosttimes. Again, the inline e output size is a characteristic of the data and it can vary
representation is better by ab@its than the prefix-filtered \\igely. The time required depends crucially on the output
implementation using standard SQL operators. size besides the input relation size. For instance, adding a

large number of very similar pairs would increase the output
Beyond textual similarity: As discussed in Section 3, sjze as well as the time significantly.
similarity notions based on agreements with respect toSummary: Based upon the above experiments implement-
functional dependencies (say, at leastut of » FDs agree)  ing jaccard similarity, edit similarity and generalized edit
and that of co-occurrence between attribute values Wimsimilarityjoins using th&sSJoin operator, we conclude that
respect to a different attribute can both be reduced to Jacgi) the SSJoin operator is general enough to implement a
card resemblance. The basic strategy for implementing thgariety of similarity notions, both textual and non-textual,
similarity based on agreements with respect to FDs using gii) our algorithms to implement of th8SJoin operator are
disjunction of selection predicates results in a cross producgfficient — for the edit similarity join, our implementation
plan being chosen by the optimizer. We have already seefs more efficient than the best known customized implemen-
that our physical implementations of the Jaccard resemtation — and (i) the choice of physical implementation of

blance join using th&SJoin operator can be significantly  the SSJoin operator must be cost-based.
more efficient than the basic implementations and the cross

product plans. Therefore, we do not discuss experiment% Related Work

based on these (non-textual) similarity functions.
Sarawagi et al. [13] recognized that set overlap is an im-

Varying data sizes: Our implementations for the portant measure for dealing with a variety of similarity func-
SSJoin operator rely primarily on the relational operators tions. The main difference in our approach is our operator-
such as equi-join and group by. These operators have vergentric focus. Sarawagi et al. [13] require plug-in functions
efficient and scalable implementations within database sysin order to implement each similarity function, whereas our
tems. Hence, our implementations for t88Join operator  approach is to compose t8SJoin operator with other op-
are also scalable. erators. Our design choice leads to the possibility of making

We perform a Jaccard similarity join of tables containing cost-based decisions in choosing a physical implementation
addresses with themselves; we vary the number of rows irof similarity joins. For example, depending on the size of
each table by picking a random subsets from the original rethe relations being joined and the availability of indexes,
lation. We fix the threshold d1.85. Table 2 presents the the optimizer may choose either index-based plans or merge



and hash joins in order to implement t8&Join operator.
This is in contrast to a fixed implementation based on in-
verted indexes, as in [13]. Further, our implementation of
SSJoin operator is based upon relational operators present
in a database system, making it much easier to integrate it
into a database system.

Our notion of overlap similarity between groups is di-
rectly related to the notion of similarity which measures co-
occurrence with respect to other attributes [1]. We build
upon this notion of overlap and encapsulate it into a sim-
ilarity join operator. Second, we further observe that the
similarity join based on thresholded overlap similarity can
be made into a primitive operator and applied to a variety of
other textual similarity functions. We also propose efficient
algorithms for implementing this primitive.

Custom join algorithms for particular similarity func-
tions have been proposed for edit distance [9] and for co-
sine similarity [8, 6]. TopK queries over string similarity
functions have also received significant attention in the con-
text of fuzzy matching where the goal is to match an in-
coming record against a reference table [6, 4]. However,
there is no work yet on the design of primitive operators for
top-K queries. However, we note that by composing the
SSJoin operator with the toge operator, we can address

the form of top# queries which ask for the best matches [10]

whose similarity is above a certain threshold.

Set containment joins in object-relational systems may
also be used to express extreme forms of overlap queries
where the degree of overlap has tolbe (e.g., [12]). How-
ever, these techniques are not applicable for partial overlap
queries, which is the focus of th®SJoin operator. Our
techniques are also applicable for object-relational models
which allow set-valued attributes. The prefix-filtered imple-

mentation with inline representation for sets can be directly[13]

implemented under these models.

7. Conclusions

In this paper, we introduce a primitive operator
SSJoin for performing similarity joins. We showed that
similarity joins based on a variety of textual and non-textual
similarity functions can be efficiently implemented using
the SSJoin operator. We then developed very efficient
physical implementations for this operator mostly using
standard SQL operators. In future, we intend to integrate the
SSJoin operator with the query optimizer in order to make
cost-conscious choices among the basic, prefix-filtered, and
inline prefix-filtered implementations.
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