
A Primitive Operator for Similarity Joins in Data Cleaning

Surajit Chaudhuri Venkatesh Ganti Raghav Kaushik
Microsoft Research

{surajitc,vganti,skaushi}@microsoft.com

Abstract

Data cleaning based on similarities involves identifica-
tion of “close” tuples, where closeness is evaluated using a
variety of similarity functions chosen to suit the domain and
application. Current approaches for efficiently implement-
ing such similarity joins are tightly tied to the chosen sim-
ilarity function. In this paper, we propose a new primitive
operator which can be used as a foundation to implement
similarity joins according to a variety of popular string sim-
ilarity functions, and notions of similarity which go beyond
textual similarity. We then propose efficient implementations
for this operator. In an experimental evaluation using real
datasets, we show that the implementation of similarity joins
using our operator is comparable to, and often substantially
better than, previous customized implementations for partic-
ular similarity functions.

1. Introduction

Data cleaning is an essential step in populating and main-
taining data warehouses and centralized data repositories.
A very important data cleaning operation is that of “join-
ing” similar data. For example, consider a sales data ware-
house. Owing to various errors in the data due to typing
mistakes, differences in conventions, etc., product names
and customer names in sales records may not match exactly
with master product catalog and reference customer regis-
tration records respectively. In these situations, it would be
desirable to performsimilarity joins. For instance, we may
join two products (respectively, customers) if the similar-
ity between their part descriptions (respectively, customer
names and addresses) is high. This problem of joining sim-
ilar data has been studied in the context of record linkage
(e.g. [6, 7]), of identifying approximate duplicate entities in
databases (e.g., [5, 9, 11]). It is also relevant when identi-
fying for a given record the best few approximate matches
from among a reference set of records [4]. The similarity
join is the fundamental operation upon which many of these
techniques are built.

Current approaches exploit similarity between attribute

values to join data across relations, e.g., similarities in part
descriptions in the above example. A variety of string simi-
larity functions have been considered, such as edit distance,
jaccard similarity, cosine similarity and generalized edit dis-
tance ([4]), for measuring similarities. However, no single
string similarity function is known to be the overall best
similarity function, and the choice usually depends on the
application domain [10, 13] (see also Section 6). For exam-
ple, the characteristics of an effective similarity function for
matching products based on their part names where the er-
rors are usually spelling errors would be different from those
matching street addresses because even small differences in
the street numbers such as “148th Ave” and “147th Ave”
are crucial, and the soundex function for matching person
names.

The similarity join of two relationsR andS both con-
taining a columnA is the joinR ./θ S where the join pred-
icate θ is f(R.A, S.A) > α, for a given similarity func-
tion f and a thresholdα. Although similarity joins may
be expressed in SQL by defining join predicates through
user-defined functions (UDFs), the evaluation would be very
inefficient as database systems usually are forced to apply
UDF-based join predicates only after performing a cross
product. Consequently, specialized techniques have been
developed to efficiently compute similarity joins. However,
these methods are all customized to particular similarity
functions (e.g., [1, 8, 9]).

A general purpose data cleaning platform, which has to
efficiently support similarity joins with respect to a variety
of similarity functions is faced with the impractical option
of implementing and maintaining efficient techniques for a
number of similarity functions, or the challenging option of
supporting a foundational primitive which can be used as a
building block to implement a broad variety of notions of
similarity.

In this paper, we propose theSSJoin operatoras a foun-
dational primitive and show that it can be used for sup-
porting similarity joins based on several string similarity
functions—e.g., edit similarity, jaccard similarity, general-
ized edit similarity, hamming distance, soundex, etc.—as
well as similarity based on cooccurrences [1]. In defining
the SSJoin operator, we exploit the observation that set

1

overlap can be used effectively to support a variety of simi-
larity functions [13]. TheSSJoin operator compares values
based on “sets” associated with (or explicitly constructed
for) each one of them. As we will show later, the design
and implementation of this logical operator leverages the
existing set of relational operators, and helps define a rich
space of alternatives for optimizing queries involving simi-
larity joins.

TheSSJoin—denotingset similarityjoin—operator ap-
plies on two relationsR and S both containing columns
A and B. A group of R.B values in tuples sharing the
sameR.A value constitutes the set corresponding to the
R.A value. TheSSJoin operator returns pairs of dis-
tinct values〈R.A, S.A〉 if the overlap of the corresponding
groups ofR[B] andS[B] values is above a user specified
threshold. We allow both weighted and unweighted ver-
sions. As an example, consider two relationsR[state, city]
andS[state, city]. SettingA = state andB = city, the
SSJoin operator returns pairs of〈R.state, S.state〉 values
if the overlap between sets of cities which occur with each
state is more than a threshold. So, it may return the pairs
(‘washington’, ‘wa’) and (‘wisconsin’, ‘wi’) because the
sets of cities within these groups overlap significantly. We
will show in Section 3 that similarity joins based on a variety
of similarity functions can be cast into a setting leveraging
theSSJoin operator.

We then develop efficient implementations for the
SSJoin operator. We first show that theSSJoin operator
can be implemented in SQL using equi-joins. We further
optimize the implementation for scenarios where the over-
lap has to be high based on the intuition that a high overlap
between two sets implies that smaller subsets of the two sets
also overlap. For example, if the overlap between two sets
with 5 elements each has to be greater than4, then size-2
subsets have a non-zero overlap. Based on this observation,
we significantly reduce the number of candidate〈R.A, S.A〉
groups to be compared. We observe that this implementa-
tion can also be carried out using traditional relational oper-
ators plus the groupwise processing operator [3], making it
much easier to integrate with a relational engine. Not sur-
prisingly, our proposed techniques are significantly better
than using UDFs to compute similarities, which usually re-
sults in plans based on cross products.

The rest of the paper is organized as follows. In Sec-
tion 2, we define theSSJoin operator. In Section 3, we
instantiate similarity joins based on a variety of similarity
functions. In Section 4, we describe an efficient physical
implementation for theSSJoin operator. In Section 5, we
show using several real datasets that our physical implemen-
tations are efficient, and sometimes substantially better than
custom implementations. We discuss related work in Sec-
tion 6, and conclude in Section 7.

2. Similarity Based on Set Overlap

In this section, we formally define theSSJoin operator
by considering a simple notion of string similarity by map-
ping the strings to sets and measuring their similarity using
setoverlap. We then define theSSJoin operator that can be
used to evaluate this notion of set overlap similarity.

There are several well-known methods of mapping a
string to a set, such as the set of words partitioned by delim-
iters, the set of all substrings of lengthq, i.e., its constituent
q-grams, etc. For example, the string “Microsoft Corpo-
ration” could be treated as a set of words{’Microsoft’,
’Corp’}, or as a set of3-grams,{‘Mic’, ‘icr’, ‘cro’, ‘ros’,
‘oso’, ‘sof’, ‘oft’, ‘ft ’, ‘t C’, ‘ Co’, ‘Cor’, ‘orp’ }. Hence-
forth, we refer to the set corresponding to a stringσ as
Set(σ). This set could be obtained by any of the above
methods. In this paper, we focus on multi-sets. Whenever
we refer to sets, we mean multi-sets. Hence, when we refer
to the union and intersection of sets, we mean the multi-set
union and multi-set intersection respectively.

In general, elements may be associated with weights.
This is intended to capture the intuition that different por-
tions of a string have different importance. For example,
in the string “Microsoft Corp”, we may want to associate
more importance to the portion “Microsoft”. There are well-
known methods of associating weights to the set elements,
such as the notion of Inverse Document Frequency (IDF)
commonly used in Information Retrieval. We assume that
the weight associated with an element of a set, such as a
word or q-gram, is fixed and that it is positive. Formally,
all sets are assumed to be drawn from a universeU . Each
distinct value inU is associated with a uniqueweight. The
weight of a sets is defined to be the sum of the weights of
its members and is denoted aswt(s). Henceforth, in this
paper, we talk about weighted sets, noting that in the spe-
cial case when all weights are equal to 1, we reduce to the
unweighted case.

Given two setss1, s2, we define theiroverlap similar-
ity, denotedOverlap(s1, s2), to be the weight of their in-
tersection, i.e.,wt(s1 ∩ s2). The overlap similarity be-
tween two strings,σ1, σ2, Overlap(σ1, σ2) is defined as
Overlap(Set(σ1),Set(σ2)).

Given relationsR andS, each with string valued attribute
A, consider the similarity join betweenR andS that returns
all pairs of tuples where the overlap similarity betweenR.A
andS.A is above a certain threshold. We expect that when
two strings are almost equal, their overlap similarity is high,
and hence this is a natural similarity join predicate to ex-
press. We next introduce theSSJoin operator that can be
used to express this predicate.

In this paper, we assume the standard relational data
model for simplicity. But, our techniques are also applica-
ble to other models which allow inline representation of set-
valued attributes. We assume that all relations are in the First

Normal Form, and do not contain set-valued attributes. Sets
and hence the association between a string and its set are
also represented in a normalized manner. For example, the
set of rows in relationR of Figure 1 represents the associ-
ation between the string “Microsoft Corp” and its3-grams;
the thirdnormcolumn denotes the length of the string.

OrgName 3-gram Norm

Microsoft Corp mic 12

Microsoft Corp icr 12

Microsoft Corp cro 12

… … …

Microsoft Corp cor 12

Microsoft Corp orp 12

 R

OrgName 3-gram Norm

Mcrosoft Corp mcr 11

Mcrosoft Corp cro 11

Mcrosoft Corp ros 11

… … …

Mcrosoft Corp cor 11

Mcrosoft Corp orp 11

 S

Figure 1. Example sets from strings

We describe theSSJoin operator. Consider relations
R(A,B) and S(A,B) where A and B are subsets of
columns. Each distinct valuear ∈ R.A defines a group,
which is the subset of tuples inR where R.A = ar.
Call this set of tuplesSet(ar). Similarly, each distinct
value as ∈ S.A defines a setSet(as). The simplest
form of the SSJoin operator joins a pair of distinct val-
ues 〈ar, as〉, ar ∈ R.A and as ∈ S.A, if the pro-
jections on columnB of the setsSet(ar) and Set(as)
have a high overlap similarity. The formal predicate is
Overlap(πB(Set(ar), πB(Set(as))) ≥ α for some thresh-
old α. We denoteOverlap(πB(Set(ar), πB(Set(as)))
as OverlapB(ar, as). Hence, the formal predicate is
OverlapB(ar, as) ≥ α. We illustrate this through an ex-
ample.

Example 1: Let relation R(OrgName, 3-gram) and
S(OrgName, 3-gram) shown in Figure 1 associate the
strings “Microsoft Corp” and “Mcrosoft Corp” with
their 3-grams. DenotingOrgName by A and 3-
gram by B, the SSJoin operator with the predicate
OverlapB(ar, as) ≥ 10 returns the pair of strings
〈“Microsoft Corp”, “Mcrosoft Corp” 〉 since the overlap be-
tween the corresponding sets of 3-grams is 10.

In general, we may wish to express conditions such as:
the overlap similarity between the two sets must be 80% of
the set size. Thus, in the above example, we may wish to
assert that the overlap similarity must be higher than 80%
of the number of 3-grams in the string “Microsoft Corp”.
We may also wish to be able to assert that the overlap sim-
ilarity be higher than say 80% of the sizes ofbothsets. We
now formally define theSSJoin operator as follows, which
addresses these requirements.

Definition 1: Consider relationsR(A,B) and S(A,B).
Let pred be the predicate

∧
i{OverlapB(ar, as) ≥ ei},

where eachei is an expression involving only constants and
columns from eitherR.A or S.A. We writeR SSJoinpred

A S

to denote the following result: {〈ar, as〉 ∈ R.A ×
S.A|pred(ar, as) is true}.

We also writepred as{OverlapB(ar, as) ≥ ei}.
We illustrate this through the following examples based

on Figure 1. The third columnNormdenotes the length of
the string. In general, thenorm denotes either the length
of the string, or the cardinality of the set, or the sum of the
weights of all elements in the set. Several similarity func-
tions use the norm to normalize the similarity.

Example 2 : As shown in Figure 1, let
relations R(OrgName, 3-gram,N orm) and
S(OrgName, 3,N orm) associate the organization
names with (1) all 3-grams in each organization name, and
(2) the number of 3-grams for each name. The predicate
in the SSJoin operator may be instantiated in one of the
following ways to derive different notions of similarity.

• Absolute overlap:OverlapB(ar, as) ≥ 10 joins the
pair of strings〈“Microsoft Corp”, “Mcrosoft Corp” 〉
since the overlap between the corresponding sets of 3-
grams is 10.

• 1-sided normalized overlap:
OverlapB(〈a,norm〉r, 〈a,norm〉s) ≥ 0.8 · R.norm
joins the pair of strings〈“Microsoft Corp”, “Mcrosoft
Corp”〉 since the overlap between the corresponding
sets of 3-grams is 10, which is more than 80% of 12.

• 2-sided normalized overlap:
OverlapB(〈a,norm〉r, 〈a,norm〉s) ≥ {0.8 ·
R.norm, 0.8 ·S.norm} also returns the pair of strings
〈“Microsoft Corp”, “Mcrosoft Corp” 〉 since 10 is
more than 80% of 12 and 80% of 11.

In the next section, we show how the intuitive notion of
set overlap can be used to capture various string similarity
functions. We discuss the implementation of theSSJoin op-
erator in Section 4.

3. UsingSSJoin Operator for Similarity Joins

In this section, we show illustrate the usage of the
SSJoin operator to implement similarity joins based on a
variety of previously proposed string similarity functions.
Earlier techniques relied on distinct specialized implemen-
tations for each similarity function. In contrast, our ap-
proach relies on theSSJoin operator to perform bulk of the
effort. Only a few checks have to be performed on the result
of theSSJoin operator. Both the coding effort for program-
ming these checks and the additional number of such checks
is very small.

In this section, without loss of generality and for clar-
ity in description, we fix unary relations Rbase(A) and
Sbase(A) whereA is a string-valued attribute. The goal

Rbase (A: String) Sbase (A: String)

String to set String to set

R (A, B, norm(A)) S (A, B, norm(A))

SSjoin

UDF check for string
similarity

Figure 2. String Similarity Join using SSJoin

is to find pairs〈Rbase.A, Sbase.A〉 where the textual sim-
ilarity is above a thresholdα. Our approach (outlined
in Figure 2) is to first convert the strings Rbase(A) and
Sbase(A) to sets, construct normalized representations
R(A,B, norm(A)) andS(A,B, norm(A)), and then suit-
ably invoke theSSJoin operator on the normalized repre-
sentations. The invocation is chosen so that all string pairs
whose similarity is greater thanα are guaranteed to be in the
result of theSSJoin operator. Hence, theSSJoin operator
provides a way to efficiently produce a small superset of the
correct answer. We then compare the pairs of strings us-
ing the actual similarity function, declared as a UDF within
a database system, to ensure that we only return pairs of
strings whose similarity is aboveα.

Note that a direct implementation of the UDF within a
database system is most likely to lead to a cross-product
where the UDF is evaluated for all pairs of tuples. On the
other hand, an implementation usingSSJoin exploits the
support within database systems for equi-joins to result in a
significant reduction in the total number of string compar-
isons. This results in orders of magnitude improvement in
performance, as we will discuss in Sections 4 and 5.

3.1. Edit Distance

The edit distance between strings is the least number of
edit operations (insertion and deletion of characters, and
substitution of a character with another) required to trans-
form one string to the other. For example, the edit distance
between strings ‘microsoft’ and ‘mcrosoft’ is1, the number
of edits (deleting ‘i’) required to match the second string
with the first. The edit distance may be normalized to be
between0 and1 by the maximum of the two string lengths.
Hence, the notion of edit similarity can also be defined as
follows.

Definition 2: Given two stringsσ1 andσ2, theedit distance
ED(σ1, σ2) between them is the minimum number of edit
operations—insertion, deletion, and substitution—to trans-
formσ1 into σ2. We define theedit similarityES(σ1, σ2) to
be1.0− ED(σ1,σ2)

max(|σ1|,|σ2|) .

We consider the form of edit distance join addressed
in [9], which returns all pairs of records where the edit dis-

R[A,B,norm(A)]
Construct q-gram sets

S[A,B,norm(A)]
Construct q-gram sets

 R SSjoinAS
pred = (OverlapB(ar,as) � (|R.A| - 1 – (� -1)q)
)

ED (R.A, S.A) � �

Figure 3. Edit distance join

tance is less than an input thresholdα. This implementation
can be easily extended to edit similarity joins.

We illustrate the connection between edit distance and
overlap through the following example.

Definition 3: Consider the strings “Microsoft Corp” and
“Mcrosoft Corp”. The edit distance between the two is 1
(deleting ’i’). The overlap similarity between their 3-grams
is 10, more than 80% of the number of 3-grams in either
string.

The intuition is allq-grams that are “far away” from the
place where the edits take place must be identical. Hence, if
the edit distance is small, then the overlap onq-grams must
be high. The authors of [9] formalize this intuitive relation-
ship between edit distance and the set ofq-grams:

Property 4: [9] Consider stringsσ1 and σ2, of lengths
|σ1| and |σ2|, respectively. LetQGSetq(σ) denote
the set of all contiguous q-grams of the stringσ. If
σ1 and σ2 are within an edit distance ofε, then
Overlap(QGSetq(σ1),QGSetq(σ2)) ≥ max(|σ1|, |σ2|)−
q + 1− ε · q
Thus, in the above example, the edit distance is 1, and Prop-
erty 4 asserts that at least 9 3-grams have to be common.

From the above property, we can implement the edit sim-
ilarity join through the operator tree shown in Figure 3.
We first construct the relationsR(A,B,norm(A)) and
S(A,B,norm(A)) containing the norms and q-gram sets
for each string. We then invoke theSSJoin operator over
these relations in order to identify〈R.A, S.A〉 pairs which
are very similar. Note that we further require a filter based
on edit similarity (possibly as a user-defined function) in or-
der to filter out pairs whose overlap similarity is higher than
that given by Property 4 but edit similarity is still less than
the required threshold.

3.2. Jaccard Containment and Resemblance

We define the Jaccard containment and resemblance be-
tween strings through the Jaccard containment and resem-
blance of their corresponding sets. We then illustrate the
use of theSSJoin operator for Jaccard containment using
the following example.

Definition 5: Lets1 ands2 be weighted sets.

1. The Jaccard containment ofs1 in s2, JC(s1, s2) is de-
fined to bewt(s1∩s2)

wt(s1)
.

2. The Jaccard resemblance betweens1 and s2,
JR(s1, s2), is defined to bewt(s1∩s2)

wt(s1∪s2)
.

Example 3: Suppose we define the Jaccard containment
between two strings by using the underlying sets of 3-
grams. Consider stringsσ1 = “Microsoft Corp” and σ2 =
“Mcrosoft Corp”. We show how a Jaccard containment
predicate on these strings translates to aSSJoin predicate.
Suppose we want to join the two strings when the Jaccard
containment ofσ1 in σ2 is more than 0.8.

As shown in Figure 1, letR(OrgName, 3−gram,norm)
and S(OrgName, 3−gram,norm) associate the strings
“Microsoft Corp” and ”Mcrosoft Corp” with (1) the ac-
tual 3-grams in column3 − gram, and (2) the number of 3-
grams in columnnorm.

We can see that the Jaccard containment predi-
cate is equivalent to the followingSSJoin predicate:
OverlapB(〈a,norm〉r, 〈a,norm〉s) ≥ 0.8 · R.norm.

In general, we construct relationsR〈A,B,norm(A)〉
andS〈A,B,norm(A)〉 from Rbase and Sbase respectively,
that associates a string with (1) the weight of the underly-
ing set, and (2) the set of elements in its underlying set.
The Jaccard containment condition can then be expressed
using the operator tree shown in Figure 4. Note that because
Jaccard containment like theSSJoin operator measures the
degree of overlap, this translation does not require a post-
processing step.

Observe that for any two setss1 and s2,
JC(s1, s2) ≥ JR(s1, s2). Hence, JR(s1, s2) ≥ α ⇒
Max(JC(s1, s2), JC(s2, s1)) ≥ α. Therefore, as shown on
the right hand side in Figure 4, we use the operator tree for
Jaccard containment and add the check for Jaccard resem-
blance as a post-processing filter. In fact, we check for the
Jaccard containment ofJC(R.A, S.A) and JC(S.A,R.A)
being greater thanα.

3.3. Generalized Edit Similarity

This similarity function, introduced in [4] is a weighted
variant of edit distance. The idea is to address some limita-
tions of plain edit distance, illustrated through the following
example. Consider strings “microsoft corp”, “microsft cor-
poration” and “mic corp”. The edit distance between “mi-
crosoft corp” and “mic corp” is less than that between “mi-
crosoft corp” and “microsft corporation”. So is the case for
Jaccard similarity because it only matches tokens which are
identical.

To deal with these limitations, the generalized edit sim-
ilarity (GES) function was proposed in [4]. Each string
is interpreted as a sequence of tokens, through some tok-
enizing function. The edit operations that transform one

sequence into another include insertion, deletion and re-
placement of one token with another. Each edit opera-
tion is associated with a cost dependent on the tokens (and
their weights) involved in the edit. To illustrate, consider
the above example strings. The strings “microsoft corp”
and “microsft corporation” are close because ‘microsoft’
and ‘microsft’ are close according to edit distance and the
weights of ‘corp’ and ‘corporation’ are relatively small ow-
ing to their high frequency. GES has been shown to be very
effective for matching erroneous tuples with their correct
counterparts [4]. Leted(σ1, σ2) denote the absolute edit
distance normalized by the maximum of the strings lengths,
i.e.,ed(σ1, σ2) = ED(σ1,σ2)

max(|σ1|,|σ2|) .

Definition 6: Let σ1 and σ2 be two strings. The cost of
transforming a tokent1 in the setSet(σ1) of tokens corre-
sponding toσ1 to a tokent2 in Set(σ2) is ed(t1, t2) ·wt(t1).
The cost of inserting or deleting a tokent equalswt(t). The
costtc(σ1, σ2) of transformingσ1 to σ2 is the minimum cost
transformation sequence for transformingσ1 into σ2. The
generalized edit similarityGES(σ1, σ2) is defined as fol-
lows.

GES(σ1, σ2) = 1.0−min(
tc(σ1, σ2)

wt(Set(σ1))
, 1.0)

We now illustrate the connection betweenGES and the
SSJoin predicate.

Example 4: Consider stringsσ1 = “Microsoft Corp”
andσ2 = “Mcrosoft Corp”. Consider the setsSet(σ1) =
{Microsoft, Corp} and Set(σ2) = {Mcrosoft, Corp} ob-
tained using the tokenizing function and ignoring the se-
quentiality among tokens. Suppose, we expandSet(σ1)
to ExpandedSet(σ1) = {Microsoft, Mcrosoft, Macrosoft,
Corp} by including tokens (say, from a dictionary) whose
edit similarity with any token inSet(σ1) is high. Then, the
overlap betweenExpandedSet(σ1) andSet(σ2) is high.

The above example illustrates the basic intuition. Infor-
mally, the expansion adds to a set corresponding toR.A
all tokens from a dictionary (say, all tokens in any attribute
value ofS.A) whose edit similarity with any token in the set
is greater than a thresholdβ (< α). If the generalized edit
similarity between the stringsσ1 andσ2 is higher thanα
then the overlap between their expanded sets must be higher
thanα − β. The intuition is that the cost of transforming
any tokent1 in Set(σ1) to a tokent2 in Set(σ2) is either
(i) less thanβ if there is an overlapping tokent′ between the
expanded sets that is close to botht1 andt2, or (ii) greater
thanβ, otherwise. Therefore, the similarity is bounded by
α − β if the overlap is greater thanα. In general, we can
expand both setsSet(σ1) andSet(σ2) by including similar
tokens. The details are intricate and require a generalization
of our element weight model to allow an element having dif-
ferent weights as opposed to a fixed weight. In the interest

R[A, B, norm(A)]
Construct sets for R.A

S[A, B, norm(A)]
Construct sets for S.A

R SSjoinA S
pred = OverlapB(<ar, norm(ar)>, <as, norm(as)>

� � �norm(ar)

R[A, B, norm(A)]
Construct sets for R.A

S[A, B, norm(A)]
Construct sets for S.A

 R SSjoinA S
pred = OverlapB(<ar, norm(ar)>, <as, norm(as)>
 � {� �norm(ar), � �norm(as))}

JR(Set(R.A), Set(S.A)) � �

Figure 4. Jaccard containment and resemblance joins

of space, we omit the details and note that all techniques
described in this paper can be generalized appropriately.

3.4. Beyond Textual Similarity

We now illustrate the applicability of theSSJoin oper-
ator to similarity joins based upon non-textual notions of
similarity. The first notion of similarity is based on that of
“co-occurrence” between columns and the second is based
on soft functional dependencies. We illustrate these obser-
vations using examples. Both the following examples are
based on an example publication database involving tables
storing papers and authors.

Using Co-occurrence

Example 5: Suppose we have two tables, say from different
sources that are being integrated, of author names joined
with the titles of the papers, say with the schema〈ptitle,
aname〉. Since we want a unified view of all authors, we
are interested in identifying author names that are likely to
represent the same author. Now, if the naming conventions
in the two sources are entirely different, it is quite likely that
the textual similarity between the author names is only a
partial indicator of their similarity. We are forced to rely on
alternative sources of information for identifying duplicate
author entities.

In this instance, we can use the set of paper titles as-
sociated with each author to identify authors. The idea is
that if two authors are the same, then the set of paper titles
co-occurring with them must have a large overlap. We can
express this using Jaccard containment, for instance, which
translates directly into theSSJoin operator, as shown in
the operator tree in Figure 5. This notion of similarity has
been shown to be very effective for identifying approximate
duplicates [1].

Our next example illustrates how functional dependen-
cies can be exploited for approximate equality.

Using Soft Functional Dependencies

Another source of identifying duplicate information is soft
functional dependencies (FDs), which may not hold on the
entire relation but over a large subset of the relation. The

 Author1
[Name, norm(name) PTitle]

 Author2
 [Name, norm(name), PTitle]

Author1 SSjoinName Author2
Pred: OverlapPTitle(namer, names) � �� norm(namer))

Figure 5. Co-occurrence join using SSJoin

FDs may not hold exactly for a variety of reasons: they may
not have been enforced due to efficiency reasons, or the rela-
tion may be the union of relations from several independent
sources. For example, a large percentage ofemails (if
they are valid) uniquely determine the author tuple. In gen-
eral, if we wish to use the functional dependencyX → A
to identify two similar values ofR.A, then we can simply
proceed by performing an equi-join onR.X.

The question arises how we can exploit multiple FDs.
Informally, two tuples agreeing on the source attributes of
several FDs indicate that the target attribute values are the
same. One natural way to aggregate the information from
multiple functional dependencies is to use majority vote. We
formalize this as follows. Let{X1, . . . , Xh, A} be a set of
columns inR andS. EachXi is expected to functionally
determineA.

Definition 7: For two tuplest1 and t2 in R, we write
t1 ≈k/h

FD t2 if t1 and t2 agree on at leastk out of theh
Xi.

Example 6 : Consider two relationsAuthors1,
Authors2 , both with the schema{name, address,
city, state, zip, email, phone }. We may
want to join two author names if at least two of the follow-
ing agree: address, email, phone . That would be
expressed asAuthor1 ≈2/3

FD Author2 .

We illustrate how theSSJoin operator can be used to
compute the≈k/h

FD predicate using the above example. By
associating each author name with a set of ordered pairs
〈Column, Value 〉 and normalizing the resulting relation,
we get a relation with the schemaName, AEP (AEP for
address-email-phone). We can implement the above predi-
cate through theSSJoin operator as shown in Figure 6.

 Author1
<Name, AEP>

 Author2
 <Name, AEP>

Author1 SSjoinName Author2
Pred: OverlapAEP(Author1.Name, Author2.Name) > �

Figure 6. FD-based join using SSJoin

 R[A,B,…] S[A,B,…]

R.B=S.B

Group By (R.A,S.A)

Having � (gA
R, gA

S) >
�

Figure 7. Basic implementation of SSJoin

4. Implementation of SSJoin

In this section, we discuss the implementation of the
SSJoin operator. We consider various strategies, each of
which can be implemented using relational operators. The
idea is to exploit the property thatSSJoin has to only
return pairs of groups whose similarity is above a cer-
tain threshold, and that thresholds are usually high. In
this section, we talk mostly about executing the operation
R SSJoinpred

A S over relationsR(A,B) andS(A, B) where
the predicate isOverlapB(ar, as) ≥ α for some positive
constantα. The implementation extends to the case when
OverlapB(ar, as) is required to be greater than a set of ex-
pressions.

4.1. Basic SSJoin Implementation

Sinceα > 0, we can conclude that for a pair<ar, as>
to be returned, at least one of the values in the columnB
related toar and as must be the same. Indeed, by com-
puting an equi-join on theB column(s) betweenR andS
and adding the weights of all joining values ofB, we can
compute the overlap between groups onR.A andS.A. Fig-
ure 7 presents the operator tree for implementing the ba-
sic overlap-SSJoin. We first compute the equi-join be-
tweenR and S on the join conditionR.B = S.B. Any
< R.A, S.A > pair whose overlap is non-zero would be
present in the result. Grouping the result on< R.A, S.A >
and ensuring, through thehaving clause, that the overlap is
greater than the specified thresholdα would yield the result
of theSSJoin.

The size of the equi-join onB varies widely with the
joint-frequency distribution ofB. Consider the case when
theSSJoin operator is used to implement the Jaccard sim-
ilarity between strings. Here, the values in the attributeB

 R[A,B,…] S[A,B,…]

R.B=S.B

Group By (R.A,S.A)

prefix-filter(R,A,B,1-�) prefix-filter(S,A,B,1-�])

T.R.A = R.A

 R[A,B,…]

T.S.A = S.A

 S[A,B,…]

Having � (gA
R, gA

S) > �

T

Figure 8. Prefix-filter implementation of
SSJoin

represent tokens contained in strings. Certain tokens like
“the” and “inc” can be extremely frequent in bothR and
S relations. In such scenarios, which occur often, the size
of the equi-join onB is very large (refer Section 5). The
challenge, therefore, is to reduce the intermediate number
of <R.A, S.A> groups compared. Next, we describe our
approach to address this problem.

4.2. Filtered SSJoin Implementation

The intuition we exploit is that when two sets have alarge
overlap, even smaller subsets of the base sets overlap. To
make the intuition concrete, consider the case when all sets
are unweighted and have a fixed sizeh. We can observe the
following property.

Property 8: Let s1 ands2 be two sets of sizeh. Consider
any subsetr1 of s1 of sizeh− k + 1. If |s1 ∩ s2| ≥ k, then
r1 ∩ s2 6= φ.

For instance, consider the setss1={1,2,3,4,5} and
s2={1,2,3,4,6}which have an overlap of 4. Any subset ofs1

of size2 has a non-zero overlap with the sets2. Therefore,
instead of performing an equi-join onR andS, we may ig-
nore a large subset ofS and perform the equi-join onR and
a small filtered subset ofS. By filtering out a large subset of
S, we can reduce, often by very significant margins, the size
of the resultant equi-join. We note here that this approach is
similar to the OptMerge optimization in [13].

The natural question now is whether or not we can apply
such a prefix-filter to both relationsR andS in the equi-join.
Interestingly, we find that the answer is in the affirmative.
We illustrate this as follows. Fix an orderingO of the uni-
verseU from which all set elements are drawn. Define the
k-prefix of any sets to be the subset consisting of the firstk
elements as per the orderingO. Now, if |s1 ∩ s2| ≥ k, then
their (h− k + 1)-prefixes must intersect. For example, con-
siders1 = {1, 2, 3, 4, 5} ands2 = {1, 2, 3, 4, 6} as before.
Assume the usual ordering of natural numbers. Since the
overlap betweens1 ands2 is 4, their size(5 − 4 + 1) = 2-

 R[A, B, norm(A)] S[A, B, norm(A)]

R.B=S.B

prefix-filter(R,[A,norm(A)],B,1- �) prefix-filter(S,[A, norm(A)],B,1- �])

Overlap(R.Set(A), S.Set(A)) > �

Figure 9. Prefix-filter with inline set represen-
tation

prefixes must intersect, which is the case — the size-2 pre-
fixes of boths1 ands2 is {1, 2}. Therefore, an equi-join on
B on the filtered relations will return all pairs that satisfy
theSSJoin predicate. The result would be a superset of all
pairs of< R.A, S.A > groups with overlap greater than the
given threshold. And, the number of candidate groups of
pairs is significantly (sometimes, by orders of magnitude)
smaller than the number of pairs from the equi-join on the
full base relations (refer Section 5).

This intuition can be extended to weighted sets. Consider
any fixed orderingO of the domain from whichR.B and
S.B are drawn. Given a weighted setr drawn from this
domain, defineprefixβ(r) to be the subset corresponding to
the shortest prefix (in sorted order), the weights of whose
elements add up to more thanβ. We have the following
result:

Lemma 1: Consider two weighted setss1 ands2, such that
wt(s1∩s2) ≥ α. Letβ1 = wt(s1)−α andβ2 = wt(s2)−α.
Thenprefixβ1

(s1) ∩ prefixβ2
(s2) 6= φ.

Suppose that for the set defined by valuear ∈ R.A,
Set(ar) (respectively foras ∈ S.A), we extract aβar =
(wt(Set(ar))− α) prefix underO (respectively, aβas pre-
fix). From the above lemma, performing the equi-joinB on
the resulting relations will result in a superset of the result
of the SSJoin. We can then check theSSJoin predicate
on the pairs returned. Since the filter is letting only a prefix
under a fixed order to pass through, we call this filter the
prefix-filter. We refer to the relation obtained by filteringR
asprefix-filter(R, α).

The filtered overlap implementation of theSSJoin oper-
ator is illustrated in Figure 8. We first join the prefix-filtered
relations to obtain candidate pairs〈R.A, S.A〉 groups to be
compared. We join the candidate set of pairs with the base
relationsR andS in order to obtain the groups so that we can
compute the overlap between the groups. The actual com-
putation of the overlap is done by grouping on〈R.A, S.A〉
and filtering out groups whose overlap is less thanα.

We need to extend this implementation to address the fol-
lowing issues.

• Normalized Overlap Predicates:Instead of a con-
stantα as in the discussion above, if we have an ex-

pression of the formα · R.Norm, then we extract a
βar,norm(ar) = (wt(Set(ar)) − α · norm(ar)) pre-
fix of the setSet(ar). This generalizes to the case
when we have an expression involving constants and
R.Norm.

• For a 2-sided normalized overlap predicate
OverlapB(ar, as) ≥ α · M ax(R.Norm, S.Norm),
we apply different prefix-filter to relationsR and S.
We apply the filterprefix-filter(R, α · R.Norm) to R
andprefix-filter(S, α · S .Norm) to S.

• For the evaluation of a1-sided normalized overlap
predicateOverlapB(ar, as) ≥ α · R.Norm, we can
apply the prefix-filter only on sets inR.

4.3. Implementation Issues

We now discuss the implementation issues around the
prefix-filter approach.

4.3.1 Mapping Multi-set Intersection to Joins

Observe that the form of predicate we consider here involves
multi-set intersection when anyR.A (or S.A) group con-
tains multiple values on theR.B attributes. In order to
be able to implement them using standard relational oper-
ators, we convert these multi-sets into sets; we convert each
value inR.B andS.B into an ordered pair containing an
ordinal number to distinguish it from its duplicates. Thus,
for example, the multi-set{1, 1, 2} would be converted to
{〈1, 1〉, 〈1, 2〉, 〈2, 1〉}. Since set intersections can be imple-
mented using joins, the conversion enables us to perform
multi-set intersections using joins.

4.3.2 Determining the Ordering

Note that the prefix-filter is applicable no matter what or-
deringO we pick. The question arises whether the ordering
picked can have performance implications. Clearly, the an-
swer is that it does. Our goal is to pick an ordering that
minimizes the number of comparisons that the ordering will
imply. One natural candidate here is to order the elements
by increasing order of their frequency in the database. This
way, we try to eliminate higher frequency elements from the
prefix filtering and thereby expect to minimize the number
of comparisons. Since many common notions of weights
(e.g., IDF) are inversely proportional to frequency, we can
implement this using the element weights. Several opti-
mization issues arise such as to what extent will prefix-
filtering help, whether it is worth the cost of producing the
filtered relations, whether we should proceed by partition-
ing the relations and using different approaches for different
partitions, etc.

In our implementation, we orderR.B values with respect
to their IDF weights. Since high frequency elements have

lower weights, we filter them out first. Therefore, the size of
the subset (and hence the subsequent join result) let through
would be the smallest under this ordering.

4.3.3 Implementing the prefix-filter

The prefix-filter can be implemented using a combination of
standard relational operators such as group by, order by, and
join, and the notion of groupwise processing [2, 3] where we
iteratively process groups of tuples (defined as ingroup-by,
i.e., where every distinct value in a grouping column consti-
tutes a group) and apply a subquery on each group. In our
case, we would group the tuples ofR on R.A and the sub-
query would compute the prefix of each group it processes.

In our implementation, we use a server-side cursor which
requires the scan of the base relationR ordered onA,B.
While scanning, we mark the prefix of each groupSet(ar).
Observe that orderingR.B with respect to the fixed orderO
of R.B may require an additional join ofR with the “order”
table.

4.3.4 Inlined Representation of Groups

A property of the prefix-filter approach is that when we ex-
tract the prefix-filtered relations, we lose the original groups.
Since the original groups are required for verifying the
SSJoin predicate, we have to perform a join with the base
relations again in order to retrieve the groups, as shown in
Figure 8. These joins can clearly add substantially to the
cost of theSSJoin operation.

Next, we discuss a new implementation which can avoid
these joins. The idea is to “carry” the groups along with
eachR.A andS.A value that pass through the prefix-filter.
This way, we can avoid the joins with the base relations.
The intuition is illustrated in Figure 9. In order to do so, we
either require the capability to define a set-valued attribute
or a method to encode sets as strings or clobs, say by con-
catenating all elements together separating them by a special
marker.

In our implementation, we choose the latter option. Now,
measuring the overlap between〈R.A, S.A〉 groups can be
done without a join with the base relations. However, we re-
quire a function, say a UDF, for measuring overlap between
inlined sets. This implementation goes beyond the capabil-
ities of standard SQL operators as it requires us to compute
set overlaps. However, the UDF we use is a simple unary
operator that does not perform very sophisticated operations
internally, especially when the sets are bounded. Our exper-
iments show that this alternative is usually more efficient
than the prefix-filtered implementation since it avoids the
redundant joins.

We note here that our current implementation is not
geared for the case of unbounded sets. Dealing with large
sets is left for future work.

 R[A,B,…] S[A,B,…]

R.B=S.B

Edit similarity specific
filters

EditSim(R.A, S.A) > � Customized Edit Implementation

0
500

1000
1500
2000
2500
3000
3500
4000

0.8 0.85 0.9 0.95

Threshold

Ti
m

e
un

its

EditSim-Filter
Candidate-enumeration
Prep

Figure 11. Customized edit similarity join

Threshold SSJoin Direct
0.80 546492 28252476
0.85 129925 21405651
0.90 16191 13913492
0.95 7772 5961246

Table 1. #Edit comparisons

5. Experiments

We now experimentally demonstrate the generality of
theSSJoin operator in allowing several common similarity
functions besides the efficiency of our physical implemen-
tations.
Datasets:All our experiments are performed using theCus-
tomerrelation from an operational data warehouse. We eval-
uate theSSJoin operator by implementing similarity joins
on a relationR of 25, 000 customer addresses with itself.

While performing Jaccard and generalized edit similarity
joins between two relationsR andS based on the attribute
values inA, we assign IDF weights to elements of sets (to-
kens) as follows:log(|R|+|S|ft

), whereft is the total number
of R[A] andS[A] values, which containt as a token.

We implemented theSSJoin operator and the similarity
join operations as client applications over Microsoft SQL
Server 2005. We ran all our experiments on a desktop PC
running Windows XP SP2 over a 2.2 GHz Pentium 4 CPU
with 1GB main memory.

5.1. Evaluating the SSJoin Encapsulation

We compare our implementations with the best known
customized similarity join algorithm for edit similarity [9].
No specialized similarity join algorithms have been pro-
posed for Jaccard resemblance and generalized edit simi-
larity. Therefore, we consider the basicSSJoin implemen-
tation as the strawman strategies for these similarity joins.
Previous implementations for the generalized edit similarity
were probabilistic [4]; hence, we do not compare our imple-
mentations with the earlier strategy.

The customized algorithm for edit similarity join is sum-
marized by the operator tree on the left hand side of Fig-
ure 11: an equi-join onR.B andS.B along with additional
filters (difference in lengths of strings has to be less, and the
positions of at least one q-gram which is common to both

Basic SSJoin

0
200
400
600
800

1000
1200
1400
1600
1800

0.8 0.85 0.9 0.95
Threshold

T
im

e
 u

n
it

s

Prep SSJoin Filter

Prefix-filtered SSJoin

0

500

1000

1500

2000

2500

0.8 0.85 0.9 0.95
Threshold

T
im

e
 u

n
it

s

Filter
SSJoin
Prefix-filter
Prep

In-line representation

0

200

400

600

800

1000

0.8 0.85 0.9 0.95Threhold

T
im

e
 u

n
it

s

Prep Prefix-filter SSJoin Filters

Figure 10. Edit similarity join: basic, prefix-filtered, inline-represented SSJoin

strings has to be close) followed by an invocation of the edit
similarity computation.

Figure 11 plots the times required for implementing the
edit similarity join using the customized algorithm. Com-
paring the times with those in Figure 10, we first note that
the edit similarity joins based on our implementations (in-
cluding the basic implementation) are faster than that using
the custom implementation. The reason is that the custom
implementation compares a very large number of strings.
Table 1 plots the number of edit similarity computations
through theSSJoin operator and that through the custom
implementation. The custom implementation performs a
much (by orders of magnitude) larger number of edit simi-
larity comparisons. TheSSJoin operator implementations
rely on the overlap predicate in order to significantly reduce
the number of edit similarity computations. Thus, using the
more generalSSJoin operator, we are able to implement
the edit similarity join more efficiently than the previously
known best customized solution.

Edit Similarity join : Figure 10 plots the times required for
implementing a similarity join based upon edit similarity at
various thresholds. The prefix-filtered implementations are
significantly faster than the basic implementation at higher
thresholds (greater than or equal to0.85). However, at lower
thresholds the basic implementation of theSSJoin operator
is better than the prefix-filtered implementation using stan-
dard SQL operators. At lower thresholds, the number of
< R.A, S.A > group pairs to be compared is inherently
high and any technique has to compare higher number of
groups. So, even prefix-filters have to let a larger number
of tuples to pass through. Therefore, the effectiveness of the
prefix filters decreases as we decrease the thresholds. There-
fore, prefix filtering is not as effective at lower thresholds.
The additional cost of prefix filtering would not offset the
savings resulting from reduced join costs.

That there is not always a clear winner between the basic
and prefix-filtered implementations motivates the require-
ment for a cost-based decision for choosing the appropriate
implementation. Because of our operator-centric approach,
our SSJoin operator can be enhanced with such rules and
integrated with a query optimizer. Observe that such cost-

based choices are not possible for the framework proposed
by Sarawagi et al. [13].

The prefix-filtered implementation with the inline set
representation is still more efficient than the basic strategy
even at lower thresholds. As expected, avoiding the over-
head of joins with base relations to regroup elements signif-
icantly improves efficiency.

We also note that the plans chosen by the query optimizer
only involved hash and merge joins. For no instance did
the optimizer choose an index-based join even if we created
clustered indexes on temporary tables. Therefore, we con-
clude that a fixed index-based strategy for similarity joins
as in [13] and [6] is unlikely to be optimal always. Instead,
we must proceed with a cost-based choice that is sensitive
to the data characteristics.
Jaccard Resemblance: Figure 12 plots the times for imple-
menting the Jaccard resemblance join at various thresholds
through each implementation of theSSJoin operator. The
prefix-filtered implementation is5-10 times faster than the
basic implementation. Therefore, prefix-filtering is very ef-
fective in reducing the cost of theSSJoin operator. Also,
observe that the prefix-filtered implementation with inline
representation is around30% faster than the standard prefix-
filtered implementation. As expected, avoiding joins with
the base relations just to gather together all elements of
groups to be compared is beneficial even if it means that
additional information has to be carried through the prefix-
filter for each tuple.

Observe that most of the time in the basic implementa-
tion is spent in the execution of the SSJoin. The preparation
(denotedPrepin the figures) and the filtering (denotedFilter
in the figures) take negligible fractions of the time. The time
taken for the prefix-filtered implementation increases as we
decrease the threshold. Such behavior is expected because
the number of< R.A, S.A > pairs pruned away decreases
with the threshold. For the prefix-filtered implementations,
a significant amount of time is spent in the prefix-filter due
to which the subsequent steps are very efficient. These ob-
servations are true for our implementations of edit similarity
and of generalized edit similarity joins.
Generalized Edit Similarity: Figure 13 plots the times
required for implementing a similarity join based upon

Basic SSJoin

0

100

200

300

400

500

0.8 0.85 0.9 0.95

Threshold

T
im

e
 u

n
it

s

Prep SSJoin Filter
Prefix-Filtered SSJoin

0

10

20

30

40

50

60

70

0.4 0.6 0.8 0.85 0.9 0.95

Threshold

T
im

e
 u

n
it

s

Prep Prefix-filter SSJoin Filter

In-line representation

0

5

10

15

20

25

0.8 0.85 0.9 0.95
Threshold

T
im

e
 u

n
it

s

Prep Prefix-filter SSJoin Filters

Figure 12. Jaccard similarity join: basic, prefix-filtered, and inline represented SSJoin

GES

0

20

40

60

80

100

120

0.8 0.85 0.9 0.95

Threshold

Ti
m

e
un

its

Basic
Prefix-filtered
In-line

Figure 13. GES join

the generalized edit similarity. The conclusions here are
similar to those for the Jaccard similarity. The prefix-
filtered implementations are better than those for the
basic implementation by almost2 times. Again, the inline
representation is better by about25% than the prefix-filtered
implementation using standard SQL operators.

Beyond textual similarity: As discussed in Section 3,
similarity notions based on agreements with respect to
functional dependencies (say, at leastk out ofh FDs agree)
and that of co-occurrence between attribute values with
respect to a different attribute can both be reduced to Jac-
card resemblance. The basic strategy for implementing the
similarity based on agreements with respect to FDs using a
disjunction of selection predicates results in a cross product
plan being chosen by the optimizer. We have already seen
that our physical implementations of the Jaccard resem-
blance join using theSSJoin operator can be significantly
more efficient than the basic implementations and the cross
product plans. Therefore, we do not discuss experiments
based on these (non-textual) similarity functions.

Varying data sizes: Our implementations for the
SSJoin operator rely primarily on the relational operators
such as equi-join and group by. These operators have very
efficient and scalable implementations within database sys-
tems. Hence, our implementations for theSSJoin operator
are also scalable.

We perform a Jaccard similarity join of tables containing
addresses with themselves; we vary the number of rows in
each table by picking a random subsets from the original re-
lation. We fix the threshold at0.85. Table 2 presents the

Input Size SSJoin Input Output Time units
100K 288627 rows 2731 224
200K 778172 rows 2870 517
250K 1020197 rows 4807 649
330K 1305805 rows 3870 1072

Table 2. Varying input data sizes

time required by the prefix-filtered implementation for in-
creasing data sizes. We also report the sizes of the tables in-
put to theSSJoin operator and the size of the output. As the
input data size increases, the size of the prepared relations
which are input to theSSJoin operator increases linearly.
The output size is a characteristic of the data and it can vary
widely. The time required depends crucially on the output
size besides the input relation size. For instance, adding a
large number of very similar pairs would increase the output
size as well as the time significantly.
Summary: Based upon the above experiments implement-
ing jaccard similarity, edit similarity and generalized edit
similarity joins using theSSJoin operator, we conclude that
(i) the SSJoin operator is general enough to implement a
variety of similarity notions, both textual and non-textual,
(ii) our algorithms to implement of theSSJoin operator are
efficient — for the edit similarity join, our implementation
is more efficient than the best known customized implemen-
tation — and (iii) the choice of physical implementation of
theSSJoin operator must be cost-based.

6. Related Work

Sarawagi et al. [13] recognized that set overlap is an im-
portant measure for dealing with a variety of similarity func-
tions. The main difference in our approach is our operator-
centric focus. Sarawagi et al. [13] require plug-in functions
in order to implement each similarity function, whereas our
approach is to compose theSSJoin operator with other op-
erators. Our design choice leads to the possibility of making
cost-based decisions in choosing a physical implementation
of similarity joins. For example, depending on the size of
the relations being joined and the availability of indexes,
the optimizer may choose either index-based plans or merge

and hash joins in order to implement theSSJoin operator.
This is in contrast to a fixed implementation based on in-
verted indexes, as in [13]. Further, our implementation of
SSJoin operator is based upon relational operators present
in a database system, making it much easier to integrate it
into a database system.

Our notion of overlap similarity between groups is di-
rectly related to the notion of similarity which measures co-
occurrence with respect to other attributes [1]. We build
upon this notion of overlap and encapsulate it into a sim-
ilarity join operator. Second, we further observe that the
similarity join based on thresholded overlap similarity can
be made into a primitive operator and applied to a variety of
other textual similarity functions. We also propose efficient
algorithms for implementing this primitive.

Custom join algorithms for particular similarity func-
tions have been proposed for edit distance [9] and for co-
sine similarity [8, 6]. Top-K queries over string similarity
functions have also received significant attention in the con-
text of fuzzy matching where the goal is to match an in-
coming record against a reference table [6, 4]. However,
there is no work yet on the design of primitive operators for
top-K queries. However, we note that by composing the
SSJoin operator with the top-k operator, we can address
the form of top-K queries which ask for the best matches
whose similarity is above a certain threshold.

Set containment joins in object-relational systems may
also be used to express extreme forms of overlap queries
where the degree of overlap has to be1.0 (e.g., [12]). How-
ever, these techniques are not applicable for partial overlap
queries, which is the focus of theSSJoin operator. Our
techniques are also applicable for object-relational models
which allow set-valued attributes. The prefix-filtered imple-
mentation with inline representation for sets can be directly
implemented under these models.

7. Conclusions
In this paper, we introduce a primitive operator

SSJoin for performing similarity joins. We showed that
similarity joins based on a variety of textual and non-textual
similarity functions can be efficiently implemented using
the SSJoin operator. We then developed very efficient
physical implementations for this operator mostly using
standard SQL operators. In future, we intend to integrate the
SSJoin operator with the query optimizer in order to make
cost-conscious choices among the basic, prefix-filtered, and
inline prefix-filtered implementations.

References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminat-
ing fuzzy duplicates in data warehouses. InProceedings of
the 28th international conference on very large databases
(VLDB), pages 586–597, Hong Kong, August 20-23 2002.

[2] D. Chatziantoniou and K. Ross. Querying multiple features
in relational databases. InProceedings of the VLDB Confer-
ence, 1996.

[3] D. Chatziantoniou and K. A. Ross. Groupwise processing of
relational queries. InVLDB, pages 476–485, 1997.

[4] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In
Proceedings of the ACM SIGMOD, June 2003.

[5] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
In Proceedings of ACM SIGMOD, pages 201–212, Seattle,
WA, June 1998.

[6] W. W. Cohen. Data integration using similarity joins and
a word-based information representation language.ACM
Transactions on information systems, 18(3):288–321, July
2000.

[7] I. P. Felligi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Society, 64:1183–1210,
1969.

[8] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text
joins in an rdbms for web data integration. InIn Proc. Intl.
world Wide Web Conference, pages 90–101, 2003.

[9] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. InProceedings of
the 27th international conference on very large databases
(VLDB), pages 491–500, Roma, Italy, September 11-14
2001.

[10] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging
the results of approximate match operations. InProceedings
of the 30th international conference on very large databases
(VLDB), pages 636–647, 2004.

[11] M. Hernandez and S. Stolfo. The merge/purge problem for
large databases. InProceedings of the ACM SIGMOD, pages
127–138, San Jose, CA, May 1995.

[12] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik.
Set containment joins: The good, the bad and the ugly. In
VLDB, pages 351–362, 2000.

[13] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. InProceedings of the ACM SIGMOD, pages 743–
754, 2004.

