

SQLCM: A Continuous Monitoring Framework for Relational Database Engines

Surajit Chaudhuri Arnd Christian König Vivek Narasayya
Microsoft Research Microsoft Research Microsoft Research
surajitc@microsoft.com chrisko@microsoft.com viveknar@microsoft.com

Abstract

The ability to monitor a database server is crucial for
effective database administration. Today’s commercial
database systems support two basic mechanisms for
monitoring: (a) obtaining a snapshot of counters to
capture current state, and (b) logging events in the server
to a table/file to capture history. In this paper we show
that for a large class of important database
administration tasks the above mechanisms are
inadequate in functionality or performance. We present
an infrastructure called SQLCM that enables continuous
monitoring inside the database server and that has the
ability to automatically take actions based on monitoring.
We describe the implementation of SQLCM in Microsoft
SQL Server and show how several common and important
monitoring tasks can be easily specified in SQLCM. Our
experimental evaluation indicates that SQLCM imposes
low overhead on normal server execution end enables
monitoring tasks on a production server that would be too
expensive using today’s monitoring mechanisms.

1. Introduction

The ability to monitor a database server is a crucial
aspect of database administration. There are a variety of
scenarios where monitoring is essential to accomplish
common administrative tasks. For example, monitoring
execution time of SQL queries can be useful for detecting
under-performing queries. Monitoring locks held and
delays due to locking are important for identifying locking
hotspots in the data. Similarly, monitoring server resource
consumption (CPU, memory, number of connections, etc.)
are necessary for tasks such as auditing, capacity planning
and detecting security problems.

Database monitoring is the ability to observe the values
of system counters that describe the system’s state, e.g.,
execution time of a query, locks held, CPU/memory usage
in the above examples. Today’s database systems typically
have the necessary instrumentation to expose such system
counters. In this paper, we refer to automated monitoring
of a DBMS as the ability to evaluate conditions over these
counters and to take actions on them. Examples of actions
are: persisting counters to a table/file, notifying the
database administrator (DBA), aborting the execution of a

query etc.). Such automated monitoring can reduce total
cost of ownership and increase efficiency of a DBA.

In today’s commercial database systems, system
counters are exposed to clients using two basic
mechanisms. The first mechanism allows obtaining a
snapshot of these counters at any point in time by polling
the server. The second mechanism is event recording, i.e.,
ability to write counters associated with a system event to
a file/table. Events include SQL statement execution
begin/end, lock acquire/release, user login/logout, etc.
With each event several counters associated with it e.g.,
time, database id, application that causes the event, or
duration of the event may be recorded. While these
mechanisms are commonly available in today’s systems,
they are inadequate for several important monitoring
tasks.

Consider the task of detecting “outlier” invocations of
a stored procedure P, i.e., identifying invocations of P that
are much slower to execute than other instances. This can
be useful since a DBA can later analyze these outliers to
determine the reasons for underperforming. Similarly,
consider the task of detecting the total delay caused by
blocking on a lock resource (grouped by the SQL
statements in conflict and ordered by the total amount of
time blocked). This task can be helpful in detecting
locking problems due to poor application design or
unanticipated interactions across applications. For both
these tasks, if we use event recording, then a very large
volume of monitored data needs to be written out by the
server (all stored procedure completion events in the first
example, and all blocking/release events in the second
example), even though the amount of information the
DBA needs to see is considerably smaller. On the other
hand, if we use mechanism of repeatedly polling the
server, we could compromise the accuracy of answers
obtained if we do not poll frequently enough (e.g., miss
outliers, underestimate total blocking delay for short, but
frequent queries). If instead, we poll very frequently, we
can once again incur significant load on the server (e.g.,
due to repeated traversal of the lock resource dependency
graph in the second example).

Thus, the polling based approach has the drawback that
if polling is performed infrequently, then the monitoring
application can lose valuable information. On the other
hand, if polling is very frequent, it can impose significant
CPU overheads on the server. Similarly, event recording

(although not lossy), can incur significant overheads on
the server since potentially a large number of events needs
to be copied out to a file/table or sent over the network.
Thus the existing solutions to these monitoring problems
are unsatisfactory. We note that in both these examples, if
the monitoring could have been done inside the database
server, i.e., at the source of the monitored data, then both
the performance overhead of event recording as well as
loss in accuracy of polling could have been avoided.

In this paper we describe an alternative framework,
called SQLCM (SQL Continuous Monitoring engine) that
makes it easy to develop a large class of important
monitoring based tasks such as the ones described above.
An overview of the SQLCM architecture is shown in
Figure 1 (the architecture is explained in more details in
Section 2.3). SQLCM addresses the limitations of existing
mechanisms discussed above as a consequence of the
following design characteristics: (1) SQLCM is
implemented entirely inside the database server, and (2)
the monitored information can be automatically grouped
and aggregated, with the grouping columns and
aggregation functions being specified by the database
administrator (DBA). As we show in this paper, this
grouping and aggregation can be done very efficiently.
Consequently, the volume of information that needs to be
copied out of the server is small, thus dramatically
reducing the overheads incurred on the server by the
monitoring tasks. (3) Monitoring tasks can be specified to
SQLCM in a declarative manner using Event-Condition-
Action (ECA) [6] style rules. A rule implicitly defines
what conditions need to be monitored (e.g., an instance of
a stored procedure executes 5 times slower than the

average instance, a statement blocks others for more than
10 seconds) and what actions need to be taken (e.g., report
the instance of the stored procedure to a table, cancel
execution of the statement). SQLCM only incurs
monitoring overhead that is necessary to implement
currently specified rules (i.e., DBA tasks). These rules are
written against a predefined schema that specifies the
valid events, conditions and actions supported by
SQLCM.

We have implemented a prototype of SQLCM inside
Microsoft SQL Server. We demonstrate how several
important DBA tasks can be easily specified in the
SQLCM framework. We have conducted experiments to
measure the overhead of monitoring and rule evaluation in
SQLCM; and we compare this with overheads for
solutions using today’s monitoring mechanisms. This
work was done in the context of the AutoAdmin project
[1] at Microsoft Research. The goal of the AutoAdmin
project is to develop technology for making database
systems more self-tuning and self-managing.

The rest of this paper is structured as follows. We
present an overview of SQLCM in Section 2 and justify
our design decisions. Section 3 provides several examples
of interesting DBA tasks that are enabled by SQLCM (or
are much more efficient to perform in SQLCM). Sections
4 and 5 respectively describe the two key components of
SQLCM: the monitoring engine and the rule engine.
Section 6 describes the implementation of SQLCM in
Microsoft SQL Server and presents a careful experimental
evaluation of its overheads. We discuss related work in
Section 7 and conclude in Section 8.

Monitoring
Engine

ECA
Rule
Engine

Query

DBA

Database

Notify

Figure 1. Architecture of SQLCM

Client Tuning
Tools

Implement
Changes

Execute

SQLCM

Specify
Rules

Probes

Results

Persist
Monitored
Data

Query
Processor

Storage
Engine

Trigger DBMS
Internal
Changes

Microsoft SQL Server

2. Architecture of SQLCM

In this section we present the rationale for our design
choices in SQLCM, and provide an overview of the key
components of SQLCM. There are two major criteria that
a framework for database monitoring applications should
satisfy. First, it should flexible enough to easily specify a
variety of monitoring tasks including the ability to take
actions based on monitored data. Second, as highlighted
by the two examples in the introduction, the performance
overhead imposed on the database server should be small.
Moreover, the developer of the monitoring
task/application (e.g., a DBA) should be able to control
the overheads imposed. This is particularly relevant for
tasks where accuracy of monitoring is crucial (e.g.,
auditing system usage or monitoring for security
violations).

2.1. Key Design Decisions in SQLCM

We make two key design decisions that determine the
basic architecture of SQLCM: (1) We adopt a server-
centric solution, i.e., SQLCM is implemented inside the
database server. (2) The programming model for
specifying monitoring tasks in SQLCM is Event-
Condition-Action (ECA) rules. In our current prototype,
the monitoring as well as rule evaluation is interleaved
with query processing (see Section 6 for details on
implementation). Below, we justify these two design
decisions in light of the criteria discussed above.

Justification for Server-Centric Solution

There are a number of reasons for a server-centric
solution to monitoring. First, several monitoring tasks
require ability to observe a large number of events in the
server. However, the actions to be taken as a consequence
of monitoring in these tasks are often based on a much
smaller volume of information (typically filtered and/or
aggregated). For example, finding the top k most
expensive queries during the day requires the ability to
observe the execution time of each query that executes on
the server but report only k queries. Since SQLCM
provides the ability to apply filtering and aggregation over
the monitored data at its source (i.e., inside the server),
the volume of information that needs to be copied from
the server to the client is typically small, thereby reducing
the performance overhead significantly. Furthermore, this
architecture allows the monitoring to be synchronous with
the events in the system, resulting in accurate
measurements and no missed events (as there would be in
a polling-based architecture). Finally, a significant
advantage of a server-centric solution (although not the
focus of this paper) is that it enables the possibility of
taking actions based on monitoring that can allow the

server to dynamically adjust its behavior without DBA
intervention (e.g. resource governing or automatically
correcting database statistics). In Section 3 we provide
examples of such tasks. While a server-centric monitoring
solution can be advantageous, it also imposes the
requirement that the overheads be very low.

Justification for ECA as the Programming Model

We use Event-Condition-Action (ECA) rules [6] as the
programming model in SQLCM. ECA rules are simple
and have been widely used in many systems including
database systems for triggers and for notification services
[14]. Moreover, as we demonstrate in this paper through
examples (see Section 3), the ECA framework appears to
be expressive enough to allow specification of a large
class of important monitoring tasks. In automated
monitoring applications, conditions on system counters
need to be evaluated potentially multiple times per query
invocation and should not have noticeable impact on
performance, particularly when the system is under heavy
load. Thus, (unlike regular SQL) the expressive power of
the programming model is of secondary importance,
whereas low and controllable overhead is crucial. For this
reason, SQLCM does not use the existing database
mechanisms such as triggers or notification mechanisms,
but rather implements a lightweight ECA rule engine. Due
to their simplicity, ECA rules are amenable to
implementation with low CPU and memory overheads
(which we validate in Section 6.2). Furthermore, (as
described in Section 4) the aggregated monitored data
upon which rules are evaluated are held in in-memory data
structures, whose memory consumption can be controlled
during specification.. Thus evaluating a rule incurs no disk
accesses. Finally, we note that the monitoring overhead is
itself limited to gathering system counters that are
referenced in currently active rules, i.e., no monitoring is
performed unless it is required by a rule.

2.2. SQLCM Monitored Objects

In SQLCM, the internal state of the database server is
modeled by a number of monitored classes (e.g. a Query),
each of which expose one or more events (e.g. the
Query.Start event is triggered when a query starts
executing) and a number of attributes or system counters
(e.g. Query.Duration representing the total time a query
takes to execute). These attributes are referred to in
SQLCM as probes since their values are obtained by
probing (or extracting from) the database server at
runtime. We note that for a particular probe or event to be
available for monitoring, appropriate instrumentation
needs to be done in the server code (e.g., inserting a timer
around query execution code to obtain the
Query.Duration probe). In general, the set of available

monitored classes, probes and events (that constitute the
SQL schema) could vary from one DBMS to another. A
subset of the schema that we use in our current
implementation is shown in Appendix A. The current
SQLCM implementation exposes 5 monitored classes:
Query, Transaction, Blocker, Blocked (referring to pairs
of blocked queries in a lock conflict) and Timer (used for
asynchronous rule invocation, see Section 5.1). In general,
this schema can be augmented to cover other relevant
server objects to monitor (e.g., Table).

2.3. Overview of SQLCM components

As shown in the architectural overview (Figure 1)
SQLCM is implemented inside the database server. There
are two key components of SQLCM: the monitoring
engine and the Event-Condition-Action (ECA) rule
engine. The user, typically a DBA, interacts with SQLCM
by specifying ECA rules (expressed against the SQLCM
schema) for implementing monitoring tasks.

The purpose of the monitoring engine is to collect
attributes of objects (i.e., instances of monitored classes)
that are necessary to implement currently active rules.
Objects are grouped, aggregates are computed for each
group, and the resulting data is stored in in-memory data
structures called lightweight aggregation tables (LATs).
Grouping and aggregation is performed on attributes of
the object type, i.e., on probes that are gathered
synchronously during query execution. For example, we
may group all queries by the application (or user) that
issued them. For many tasks, only aggregate values of an
attribute in a group may be necessary, e.g., the average
and standard deviation of the Duration attribute of all
queries in a group. SQLCM supports the ability for
common aggregation functions such as COUNT,
AVERAGE, etc. to be specified on any attribute.

The ability to specify at which level of granularity (i.e.,
grouping) to store aggregated monitored information at
the server is critical, as different tasks may call for
monitoring at the level of connections, applications, users,
transactions etc. Any fixed interface is likely to either
provide an insufficiently fine level of aggregation or to be
too detailed, thereby requiring too much memory inside
the server for state. SQLCM addresses this issue through
the use of LATs as a form of flexible, in-server grouping
and aggregation. The details of the monitoring engine are
discussed in Section 4.

The goal of the rule engine is to monitor events and
take the necessary actions when a rule fires (i.e., the
condition in the rule becomes true). The expressiveness of
ECA rules, and other design details of the rule engine are
the topic of Section 5. As an illustration, the following
simple rule appends to a specified table the probe values
for any query that takes more than 100 seconds to execute
(when the query commits).

Event: Query.Commit.
Condition: Query.Duration > 100
Action: Query.Persist (TableName).

In addition to Persist (write to a table), other actions

such as SendMail (sends an email), RunExternal
(launches a specified program) can be useful for a variety
of tasks. In Section 5.3, we describe the actions supported
by our current prototype. Finally, as mentioned earlier, a
unique and powerful feature of SQLCM is that by virtue
of being inside the server, it allows actions that can adjust
server behavior dynamically (without DBA intervention).

3. Applications of SQLCM

In this section we describe several examples of
monitoring tasks. These examples highlight how SQLCM
as a framework makes it easy to specify these tasks,
thereby either reducing the complexity of implementing
these tasks as compared to today’s database systems or
reducing performance overheads, or in many cases both.
We have implemented the first three tasks below using our
prototype implementation of SQLCM on Microsoft SQL
Server.

Example 1: Detecting Outlier Instances of a Stored
Procedure: The task of detecting invocations of a stored
procedure P that are outliers, i.e., much slower to execute
than other instances, is an important and common task for
DBAs (in this example, we could define “much slower” as
any instance that runs 5 times slower than the average
instance, or any other appropriate statistical measure that
can be expressed using SQLCM aggregate functions).
This type of outlier detection is often valuable for DBAs
to identify problematic combinations of parameters for the
stored procedure. We will describe the implementation of
this example application in detail in Sections 4 and 5.

Example 2: Detecting Poor Blocking Behavior: Another
common problem faced by DBAs is detecting which
update statements are responsible for the largest blocking
delays in the system. In other words for each statement,
we need to track the total time for which it blocked other
statements. Such a task can potentially help in identifying
poor design in the SQL application, e.g. a hot spot in the
data (or metadata). This task would be specified in the
SQLCM framework as a simple ECA rule triggered by
any statement S releasing a lock resource other statements
are waiting on. For each of the blocked statements, the
time it has been waiting on the lock resource is then added
to the total waiting time for S (see Appendix A for
Blocker and Blocked objects in the schema that would be
used in this rule). Each statement, along with the total

blocking delay caused by that statement is stored in a
lightweight aggregation table (LAT).

Example 3: Identifying Top k most expensive queries:
One methodology used by DBAs for identifying
performance bottlenecks is to find the few most expensive
queries over a period of time. Even for this relatively
simple task, the overheads of using today’s monitoring
solutions can be high. In contrast, this task is not only easy
to specify in SQLCM but the overheads are very low (see
Section 6.2). This task would be specified in the SQLCM
framework using a LAT storing the queries, and an ECA
rule that inserts every query after it commits into the LAT.
The LAT is specified in such a way that it only stores k
entries ordered by Query.Duration, thus maintaining the
top k queries by duration at all times (for a detailed
description of LAT specification, see Section 4.3).

Example 4: Auditing/Summarizing System Usage:
DBAs often require the ability to audit or summarize
usage of system resources. This may be necessary for a
variety of reasons, e.g., (a) enforcing service level
agreements (b) detecting potentially unauthorized access
attempts, e.g., number of login failures for each user, (c)
summarizing query/update “templates” (see Section 4.2)
for a particular application, their associated frequencies
and average/max duration for each template etc. over a 24
hour period. Note that this may require the ability to
collect summaries synchronously with query execution (in
order to compute aggregate values), and in addition have
rules that persist these asynchronously (e.g. every 24
hours). The latter type of invocations are handled using a
special Timer class, described in Section 5.1.

Example 5: Resource Governing: The ability to limit
resource consumption of queries in a flexible way can be
very useful in a variety of scenarios: (a) Stopping a
runaway query (i.e., a query that has exceeded a certain
budget on system resources). (b) Enforcing limit on
concurrent query execution for a user (e.g., User X cannot
have more than K queries executing at any point in time).
(c) Adjusting the multi-programming level (MPL)
dynamically based on the monitored resource
consumption.

Finally, we note that since SQLCM allows rules to be
added and removed dynamically. Thus, monitoring
applications can take advantage of this to allow more
flexible and customized monitoring (e.g., turning off/on
rules based on time of day, adjusting thresholds in rules
to capture more/less information etc.).

4. Monitoring Engine

We now describe the key components of the
monitoring engine – the probes inside the database server
(Section 4.2), including signatures, a special type of probe
useful for identifying templates of parameterized queries
(Section 4.2), and light-weight aggregation tables
(Section 4.3).

4.1. Probes

The monitoring engine of SQLCM uses probes inside
the query processor and storage engine to collect the
attributes of the monitored objects probes, which are
assembled into monitored objects on demand (i.e., at the
time of rule-evaluation). As most of the probes are
collected at various points of the server code already, this
typically adds negligible overhead to normal query
execution (see Section 6.2).

SQLCM offers a generic interface to integrate new
monitored objects, events and probes into the schema.
This means that probes can be implemented with no
knowledge of SQLCM internals. SQLCM offers methods
to register monitored objects and probes internally, when
they are available to the system (e.g. the corresponding
Blocker is only available during the period that a query is
blocked on a lock resource, a query’s physical plan
signature (see Section 4.2) is available only after query
optimization is complete). Internally, probe values are
cast to SQL Server types, enabling the use of all
aggregation functions provided by the database server for
LAT aggregation as well.

4.2. Signatures

Consider a SQL application that executes
“templatized” queries (not stored procedures) repeatedly,
e.g.., different instances of the same query with different
constants in the selection conditions. In this case, it is
natural for the DBA to track the performance of the
template, rather than each individual query. Consider
another example of a SQL stored procedure that is
structured as follows: IF Condition THEN A ELSE B,
where A and B are SQL statements. Some instances of the
stored procedure will execute A, while others will execute
B. The performance characteristics of the stored
procedure could be different in each case. Thus for some
tasks, e.g. outlier detection (Example 1 in Section 3), it is
meaningful for the DBA to monitor performance of these
two different paths separately.

The simplest method of matching the query-text may
be sufficient to differentiate different parameter-less
stored procedures, but any purely query-text based
grouping is undesirable due to its sensitivity to formatting
and its inability to group different instances of the same
query with different parameters. To support monitoring

applications such as the ones described above, SQLCM
exposes the notion of query signatures. A signature is a
probe value that is exposed as an attribute of the Query
object. If two queries have the same signature, they share
the same internal structure (depending on the exact
signature type used, see below); otherwise their structure
differs. Note that since aggregation tables support
grouping on all possible combinations of probes, it is
possible to group queries on signatures.

Below, we describe the four kinds of signatures
exposed in SQLCM (see schema in Appendix A), and
examples where each signature can be useful. In Section
6.2, we measure the overhead of signature computation.

(1) Logical Query Signature – As described in the
example above, it is sometimes necessary to monitor the
execution of re-occurring query templates which have a
number of implicit parameter values that vary from one
instance to another. To facilitate such a grouping,
SQLCM uses the internal logical query tree generated
during query optimization to compute a linearized
representation of the structure of a query and its predicates
(the techniques used are similar to the query/view
representation of [9]; we omit details here for brevity). In
cases where we can differentiate between the different
parameters P1,…,Pn, of a query template internally (e.g.
such as when the query is executed as part of a stored
procedure with n parameters) we replace each occurrence
of a parameter Pi with the symbol that matches only other
occurrences of Pi. If we are unable to identify parameters
(e.g. for ad-hoc queries) we substitute a wildcard symbol
for any constant expression we encounter in the query’s
predicates. Two queries are then assigned the same
signature value if their internal representations match (i.e.
are identical with the exception of matching wildcards and
predicate ordering). The logical query signature is
computed during query optimization and stored as part of
the query plan; thus, if a query plan is cached, so is its
signature, thereby avoiding the need to recompute it often.
 (2) Physical Plan Signature – The logical query signature
allows us to track counters across multiple instances of the
same query template; however, while this is sufficient e.g.,
for tracking the number of times a template is executed,
for applications that monitor the running time of templates
(e.g. see Example 1 in Section 3), this is not sufficient, as
logical query plans may result in vastly different execution
plans, requiring an additional signature on the execution
plan. The physical plan signature is computed similarly to
the logical one, with the linearized representation being
constructed over the query’s execution plan tree.
(3) Logical Transaction Signature – The logical
transaction addresses the problem of grouping different
code paths inside a stored procedure. It is defined through
the sequence of logical query signatures inside a

transaction, with the transaction boundaries being defined
through the outermost begin and commit brackets.
(4) Physical Transaction Signature – The physical
transaction signature is defined analogous to the logical
one, except over the sequence of physical plan signatures.

4.3. Light-Weight Aggregation Tables (LAT)

Several monitoring tasks require the ability to filter on
dynamically maintained aggregate values of probes. Thus,
it is necessary to keep some state (i.e., history of the
collected probes), which can be referenced inside the
conditions of ECA rules. In Example 1, it is necessary to
maintain the average duration for each stored procedure.
This ability is crucial for any monitoring application that
seeks to detect outliers, changes in workload
characteristics or requires any other condition that
correlates current performance with the past.

LAT Functionality: In SQLCM, this functionality is

provided through light-weight aggregation tables, which
offer a mechanism for storing aggregate information over
collections of probes of a single monitored class in
memory. An aggregation table is defined through (a) a set
of grouping columns and (b) a set of aggregation
functions, both of which are defined over the attributes of
the monitored class. Which monitored objects are inserted
into the aggregation table is governed by rules (see
Section 5). The semantics correspond to the SQL
projection and aggregation operators applied to the
inserted objects: the objects are grouped on the grouping
attributes, and the aggregation functions evaluated over
each group (as in a traditional GROUP BY SQL query). In
addition to the standard aggregation functions COUNT,
SUM, and AVG, SQLCM also supports a number of
additional aggregation functions such as STDEV
(computes the standard deviation) and FIRST and LAST,
which retain the value assigned to the attribute by the first
or last object inserted into the container, respectively. The
latter type of aggregation can be important e.g., when
using the LAT to store a representative Query.Text
attribute (i.e., the query string) for each group in the LAT.

LATs also support an aging version of each
aggregation function. Aging is typically important for
tasks related to performance monitoring, where the
baseline performance may change over time (e.g., because
of increased size of tables). Thus there is a need to ignore
(or give less importance) to older probe values than more
recent ones. The basic idea is that at each point in time the
aggregate value does not reflect any value older than a
threshold t (i.e., a moving window). However, aging out
individual values as time progresses would require to store
every single value as well; instead, SQLCM groups values

into blocks that span an interval of size ∆, which are then
used as the unit of aging. Note that the aging version of an
aggregate requires up to 2t/∆ more storage than the non-
aging version (we omit details due to lack of space).

Aggregation tables are in-memory objects at the server;
but it is possible to persist them to tables (see description
of the Persist() action in Section 5.3). For this, an
aggregation table is associated with a disk-resident table
with schema identical to the aggregation table, plus one
additional column storing a timestamp of when the rule
writing a row was triggered. The ability to persist LATs
allows more complex SQL post-processing on the LAT
data that may not supported by the rule engine.
Furthermore, it is possible to maintain LAT data over
multiple restarts of the database server, by uploading the
contents of a table to a specific LAT at database startup
time.

LAT specification: To illustrate what is required to

logically specify an aggregation, we define a LAT for
Example 1 from Section 3 as follows below. In this paper,
we do not focus on the specific syntax, but rather on what
elements constitute the specification of a LAT. In practice,
this functionality could be exposed e.g., by appropriate
system stored procedures or by introducing appropriate
SQL syntax.

LAT Name: Duration_LAT
Grouping Columns:
 Query.Logical_Signature AS Sig
Aggregation Columns:
 AVG(Query.Duration) AS Avg_Duration
Ordering Columns:
 Avg_Duration DESC
Maximum Size:
 100 Rows

Managing LAT memory overhead: Because LATs
are memory-resident, they compete for memory with
operator workspace memory and buffer pool space.
Therefore, we allow the ability to specify limits on the
maximum size (specified either in terms of the number of
rows stored or the overall row size) for an aggregation
table, together with a subset of LAT columns specifying
the ordering of LAT rows (and if the ordering is ascending
or descending). If a LAT insertion violates the size
constraint, SQLCM automatically discards the row(s) in
the LAT that is “least important”, i.e., having smallest
value of the ordering columns of the LAT, until the size
constraint is satisfied. Each evicted row is exposed as a
monitored object, making it is possible to specify
additional rules that e.g. persist the evicted row to a table
(we omit details due to lack of space).

5. Rule Engine

The second key component of SQL is a rule engine

that evaluates Event-Condition-Action (ECA) rules. Rules
are specified as an event E, a condition C and an action A.
The Action A is executed whenever the event E occurs
and C is evaluated as true.

In order to keep the overhead of SQLCM low, the
expressiveness of the rule language is limited to a
relatively small set of common operations required by
typical monitoring applications. We expect that any more
complex logic required by a monitoring application can be
achieved by post-processing the data persisted to tables
from monitoring (see Section 4.3). Before describing each
part of the rule engine in more detail, we briefly discuss to
salient issues related to the rule engine.

Rule evaluation order: All rules are executed in a

fixed order and no new rule can be triggered before the
current rule has been evaluated. Furthermore, for any
given event, all applicable rules are triggered before any
later event is processed. This means that any action, that
as a side-effect may trigger further events, is not executed
synchronously. For example, if a rule triggered by a
Query.Start event cancels this query as an action, the
action only sends the cancel signal to the thread(s)
currently executing the query. All other rules (if any)
triggered by the same event are processed and only then
does the control flow return from SQLCM to its current
execution path.

Managing rule evaluation overhead: An important

concern for any monitoring application is to be able to
control the overhead of evaluating the ECA rules. We
have observed that the overhead for rule evaluation is
mainly a function of the number of rules (in case of rules
that iterate over large numbers of objects, each different
object-combination has to be thought of as a separate
invocation of a single rule)., but does not vary
significantly between rules of different complexity (see
Section 6.2 for an experimental verification of this claim).
Thus the user of SQLCM can control the overhead of rule
evaluation through the number of rules in the system.

5.1. Events

SQLCM supports a number of different events to be
used in the E-clause of an ECA-rule. Events are used to
indicate when a condition is to be evaluated. The events
supported in our current prototype indicate either
transition points in the execution of a query (such as a
query committing or aborting) or interruption of such the
execution (such as an operator being blocked). For
example, in our prototype, the Query type has a number of
Events associated with it that indicate various transition

points in query execution, among them Query.Commit
(occurring when query execution completes), Query.Start,
Query.Compile, Query.Cancel, Query.Rollback,
Query.Blocked (occurring when a operator of the query is
blocked on a lock resource), and Query.Block_Released
(occurring when the query is granted a lock on a lock
resource it had been waiting on). In cases where the
condition evaluation cannot be tied to a system event (for
example to detect queries that are blocked for more than a
given amount of time), the Timer object described in
Appendix A can be used to instrument a background
thread that periodically evaluates such rules. A Timer
object generates a Timer.Alert event after a certain amount
of time has passed. Finally, we note that, in principle,
SQLCM can use a much wider variety of events, including
events connected to connection management, database
maintenance or the operating system events.

5.2. Conditions

The rule engine evaluates conditions defined over the
object attributes defined in the schema (see Appendix A),
the logical operators {=, !=, <, >, <=, >=} and the
mathematical operators {+,-,*,/}. The order of evaluation
can be specified using brackets and multiple conditions
can be combined using the logical AND, OR and NOT
operators. We illustrate the semantics of condition
evaluation using the example of outlier detection (Section
3, Example 1):

 Event: Query.Commit
 Condition:Query.Duration
 > 5* Duration_LAT.Avg_Duration
 Action: Query.Persist(TableName, Query_Text)

Consider the rule shown above, where the Event
references an event related to the Query type. In cases
where the monitored object in the Condition occurs in the
Event clause, the scope of the rule is the object triggering
the event (in the example, the query that just committed).
When the Event clause doesn’t reference an object in the
condition (e.g., timer based events), the scope of the rule
is over all objects of the type referenced in the Condition
clause. For example, if the Event clause is empty and the
Condition clause is: Query.Time_Blocked > 10, then the
engine iterates over all query objects currently in the
system. Note that if the rule references more than one
object type in the Condition clause, the rule engine
(logically) iterates over all combinations of objects of the
given types currently registered with SQLCM, with the
rule being evaluated once for each combination. We refer
to the (combination of) object(s) that is evaluated at a
given point as in context.

In addition to monitored object attributes, it is possible
to refer to the columns of a LAT object (as

Tablename.Columnname). In this case, the rule is
evaluated for each row in the LAT for which the values of
the grouping columns are identical to the corresponding
probe values for the object (of the correct type) in context.

 In the example rule shown above, to evaluate the
condition, the row in the LAT Duration_LAT (see Section
4.3 for its definition) that matches the current Query
object in the aggregation table’s grouping column, i.e. the
attribute Logical_Signature, is selected. All references to
aggregation table rows are implicitly ∃ -quantified; if a
matching row doesn’t exist, the condition is evaluated to
false.

Note that for the applications we have outlined in
Section 3, rules typically do not iterate over more than one
object or LAT row. However, this functionality can be
critical for other applications (e.g., any asynchronous
reporting, such as a rule triggered periodically through the
timer object, that reports queries that have been inactive
or blocked for longer than a threshold value).

5.3. Actions

Our prototype implementation of SQLCM supports
two basic categories of actions: actions that are attached to
monitored objects (which are specified as
Object.Action(Parameters)), and actions that do not
attached to an object (e.g., SendMail and Execute). The
Action clause of the ECA rule may consist of a sequence
of actions, which are executed in order. Below we give
examples of Actions and indicate tasks for which these
actions can be useful.
Insert (LATName) – Inserts or updates a row in the
specified LAT with information about the monitored
object. The appropriate row to update in the LAT is found
by matching on the values of the grouping columns of the
LAT. All aggregation columns in the LAT are updated as
a result of this action. This action is essential for any
monitoring task that uses a LAT.
Reset (LATName) – Clears the content of a LAT and
frees up memory.
Persist (Tablename, Attr1, Att2, …) – Writes attributes
of a monitored object or LAT to a table. When applied to
a monitored object, this action inserts a single row into the
table. When applied to a LAT, it inserts all rows in the
LAT into the table. In either case, the schema of the table
must match the schema of the inserted row.
SendMail (Text, Address) – Sends an email message
with the given text as message body to be sent to given
address. Attribute values from monitored objects and
LATs can be substituted into the text string. The
SendMail functionality can be used e.g., to generate an
alert for the database administrator in case of a
performance problem.

RunExternal (Command) – launches an external
application. Similar to SendMail, attribute values of
monitored objects and LATs can be substituted into the
Command string. This action can be used in a number of
ways, e.g. automatically invoking post-processing over a
table into which a LAT has been persisted earlier using
the Persist() action.
Cancel () – can only be applied to a Query, Blocker or
Blocked object and has the effect of canceling the query.
Set (Time, number_alarms) – this action can only be
used with a Timer object and governs the length of the
interval after which a Timer.Alarm event is triggered. The
second parameter governs the number of times this timer
waits and generates the event; 0 disables the timer, a
negative number sets up an infinite loop.

6. Implementation and Experimental Evaluation

6.1. Implementation of SQLCM

We have implemented SQLCM inside the Microsoft
SQL Server database system. In this section we describe
some of the key implementation issues.

Implementation of probes: The attributes of the exposed
objects are gathered through probes inside the relevant
execution paths. In most cases this adds negligible
overhead to the execution time, as most of the attribute
values (e.g., Duration of a Query object) are recorded
inside the server already. An exception to this is the
computation of pairs of a blocking and a blocked query.
This requires the traversal on the lock-resource graph; if
the rule that references these objects is triggered by a
related event (such as Query.Blocked), the code triggering
rule evaluation is simply piggybacked on the regular lock-
conflict detection. Otherwise (e.g., if the rule is triggered
by a Timer.Alarm event), our code traverses the lock-
resource graph itself. If during this traversal we find a
query waiting on a lock resource held by another query
(and the requested and the held lock are incompatible),
this pair is exposed as the Blocker and Blocked objects. In
some cases it is ambiguous which query constitutes the
blocker (e.g. when multiple queries share a resource
another query is waiting on). In this case we designate one
of the queries holding the resource as the Blocker.

Rule evaluation and execution: Rule evaluation is
triggered in the code path of the event in the rule’s Event
clause, branching into the SQLCM code and then
resuming execution afterwards (this is necessary for
SQLCM to be of value in scenarios requiring immediate
action, e.g., resource governing). Thus no context
switching is required between SQLCM and query
execution code.

LAT data structure: Aggregation table objects which
maintain an ordering for eviction are stored using a heap
structure on the ordering columns and a hash array on the
grouping columns for fast row lookup. When the row
width of a LAT is fixed, evicted leafs can be re-used for
the newly inserted value, thereby keeping memory
fragmentation low. As all rule evaluation and LAT
updates occur in the same thread which triggers the event
and thus potentially multiple threads can be accessing a
LAT concurrently, each LAT row as well as the ordering
heap as a whole and each entry in the hash table are
protected through latches to avoid any conflicts. Initial
experiments with large number of short queries executing
concurrently on the database indicate that this latching
does not introduce a new hotspot even under severe stress,
as the latches are held for very short times.

6.2. Experimental Evaluation

While integrating additional monitoring functionality
into the database system itself allows for many new
applications, it also introduces additional overhead on the
server. In this section, we demonstrate via experimental
evaluation that:
• The overhead that SQLCM places on the SQL engine

due to signature computation and rule evaluation is
small, and scales well with the number of rules and
complexity of the conditions.

• For a specific monitoring task (identifying top k most
expensive queries), SQLCM outperforms the
alternative approach of logging all events and
performing post-processing. For the same task,
SQLCM also provides much better accuracy
compared to polling based approaches.

6.2.1. Evaluating the overhead SQLCM. As discussed
before, the instrumentation of probes inside the server
execution path only contributes little overhead to the
DBMS. The areas where SQLCM adds measurable
overhead are the computation of signatures, the evaluation
of large numbers of rules and the maintenance of a large
number of aggregation tables. In the following, we
experimentally evaluate the overhead of these
components.

Setup: The experiments for overhead of signature
computation were run on an x86 1680 MHz processor
with 256MB of memory running Windows 2000 Server.
The rest of the experiments were run on an x86 900 MHz
processor with 384MB of memory running Windows
2000 Server. In the experiments in Section 6.2.2, we used
a workload on the TPC-H schema [15] (with 6 million
rows in the lineitem table) consisting of 20,000 short

single-row selections from the lineitem and orders table
interleaved with 100 selections of 1000-2000 rows from a
join between lineitem, orders and parts. In all experiments
we executed the exact same queries (i.e., identical
constant parameters) in order. The machines were
rebooted before each experimental run, disconnected from
the network and had all background services disabled.
Repetitions of individual experiments showed very little
variance in the measured performance.

Overhead of signature computation. The overhead for
computing the linearized representation of the query
depends on the complexity of the query itself. In the
SQLCM prototype, the query signature is computed once
during optimization and then cached with the query plan.
Therefore, we measured the overhead of the signature
computation relative to the total time used for
optimization. We ran these experiments for a variety of
synthetic and real workloads and discovered that the
relative time decreases with the complexity of the queries.
The extreme points in our measurements were 0.5% (for
single-line selection queries without conditions) and
0.011% (for complex TPC-H queries), demonstrating that
the overhead of signature computation is indeed very low.

Figure 2. Rule evalulation overhead

100%

101%

102%

103%

104%

1 10 20

Number of Conditions

N
o

rm
al

iz
ed

 D
u

ra
ti

o
n

100 Rules

500 Rules

1000 Rules

 Overhead of rule evaluation and LAT maintenance. In
this experiment we measure the overhead for rule
evaluation through by means of stress test using queries of
very short duration and a large number of rules. As a
baseline, we measured the overhead for executing 10,000
single-row select statements on a 6 million row lineitem
table (using the TPC-H schema) that use a clustered index.
Then we executed the same workload again and measured
the additional overhead caused by a varying number of
rules (varying between 100 and 1000, all of which were
evaluated for every single query) of varying complexity
(the number of atomic conditions varied between 1 and
20). In addition, each rule stored a summary of the
observed workload in a different in-memory aggregation
table of fixed size, storing all attributes (incl. query text)
of the last 10 queries seen, indexed by the signature id.

Figure 2 depicts the additional overhead caused by rule
evaluation and LAT maintenance. Most importantly, even
under the tested extreme conditions the additional
overhead caused by SQLCM is less than 4%, and
negligible for more realistic scenarios. In addition, one
can see that the complexity of rules has very little impact
on the additional overhead; rather, the overhead due to
LAT maintenance (i.e., the overhead of inserting and
evicting rows from the LAT and the memory consumed by
LATs) is the biggest factor. By controlling the number
and size of LATs, effective management of the SQLCM
overhead is possible (see Section 4.3).

6.2.2. Comparison with Alternative Monitoring
Solutions. In this section we contrast the efficiency of
SQLCM with other possible design choices for database
monitoring. In this experiment, we examine the cost of a
simple monitoring task – determining the 10 most
expensive queries during a given workload through
monitoring – for different solutions. This type of query is
often used in practice to alert administrators to instances
problematic combinations of query parameters. We study
the following solutions to this task:
(a) Logging all queries: In this approach, we write out all
information on each committed query to a reporting table
(we used a single rule writing the statistics using the
Report() action). As monitoring and reporting is not
integrated in this scenario, we force synchronous writes.
The final result (top 10) is then obtained by running a
SQL query on the reporting table. This solution
corresponds to a solution incorporating push without
filtering inside the server (similar to event logging). We
will refer to this approach as Query_logging.
(b) Polling the current state: Here a client monitoring
application repeatedly polls from the database a snapshot
of the currently active queries and their execution time
and computes the most expensive ones externally. This
corresponds to a pull based solution, where the necessary
filtering is performed on the client. Note that this
approach may not identify the correct queries, with the
error dependent on the frequency of polling. We will refer
to this approach as PULL.
(c) Polling the historic state: This approach is identical to
case (b), except for the fact that the server keeps a history
of all queries and their execution times, which is only
erased when being ‘picked up’ by the outside monitoring
application. While this is not a realistic solution in
practice, we use it to model a solution without push or
filtering, but keeping history. We will refer to this
approach as PULL_history.
(d) Using the SQLCM framework: Here, we use a LAT
which stores the 10 most expensive queries seen (storing
the query text and duration). At the end of the workload,

the LATs contents are written to a table using the Persist()
action. We refer to this approach as SQLCM.
To compare these different approaches, we measured the
execution times of the original workload without any
monitoring enabled as well as the times for the different
monitoring approaches. In case of the two polling based
approaches PULL and PULL_history, we also varied the
polling rate between 1/sec to 1/5minutes. The results are
shown in Figure 3. As far as the impact of the monitoring
is concerned, SQLCM (requiring less than 0.1%
additional overhead and thus almost imperceptible in the
figure) causes the least degradation in performance,
followed by PULL. However, for none of the different
polling frequencies did PULL result in the correct answer;
rather, when polling every second, 5 of the 10 most
expensive queries were not part of the PULL result set
(when of polling every 5 seconds, 7 queries were missed,
and when polling every 10 sec or more infrequent, 9
queries were missed). Not surprisingly, the additional
overhead of this approach increased with an increased
polling frequency.

Figure 3. Efficiency of different approaches

100%

105%

110%

115%

120%

125%

no p
olli

ng
1 s

ec
5 s

ec

10
 se

c

60
 se

c

30
0 s

ec

Polling frequency

N
o

rm
al

iz
ed

 d
u

ra
ti

o
n SQLCM

PULL
PULL_history

Query_logging

The PULL_exact approach did yield the correct results,
but caused significantly more overhead than SQLCM. In
addition, as shown in Figure 3, finding the right polling
rate is a tuning problem – if polling is too frequent, the
polling itself causes significant overhead, if it is too
infrequent, storing the historical state requires significant
memory, in turn degrading the server’s ability to cache
pages. Not surprisingly, the Query_logging approach
resulted in the biggest degradation in performance
(>20%).

We also executed the same set of experiments on a real
(customer) workload used within Microsoft, resulting in
similar trends, which are not reported for lack of space.
Finally, we note that differences between SQLCM and the

other techniques will add up when multiple monitoring
tasks are executed in parallel.

7. Related Work

Today’s commercial database systems have support for

event logging as well as for obtaining a snapshot of
system counters by polling the server. However, as
explained in the introduction and demonstrated
experimentally, these mechanisms may be inadequate (or
significantly less efficient) for tasks that require
monitoring a large number of events due to either: (a)
overhead incurred on server by event logging or frequent
polling, or (b) loss in accuracy when not polling
frequently enough.

IBM DB2 Health Center [7] is a tool that continuously
monitors “health” of the database system and alerts DBA
by email/pager or by logging the problem. An alert is
raised when the value of the counter being monitored
crosses a threshold. Similar to Health Center, there are
several third party monitoring tools [2,16,13] for today’s
commercial database systems with similar functionality.
In contrast to these tools, which are client applications,
SQLCM can be viewed as new server-side infrastructure
for enabling a broader class of monitoring applications
that are either more efficient or enable functionality that is
not possible with today’s client side monitoring tools.

There have been several recent papers on query
processing over streaming data e.g., [3,11,5]. In principle,
a lightweight aggregation table (LAT) in SQLCM (see
Section 4.3) could be viewed as a standing aggregation
query over streaming data (generated by the DBMS). In
comparison to the state of the art on streaming data we
expose much simpler techniques to deal with memory
constrictions at the server that do not allow keeping the
entire state. Some of these techniques would typically not
be applicable to streaming data scenarios, but scale for our
specific monitoring applications. Conversely, a number of
techniques discussed in the context of streams could
potentially be valuable for SQLCM.

 Rule-Production systems in DBMS have been
extensively studied in the context of discriminatory
networks such as TREAT [12] or RETE [4]. However, the
scope of this work is the problem of efficiently matching a
large collection of patterns to a large collection of objects,
which is more general and expensive than required in the
monitoring context. Similarly, the inbuilt support for
triggers in database systems and the general purpose
notification services e.g., [14], could be considered
alternatives to the ECA rule engine used in SQLCM.
However, both these mechanisms are more general and
heavyweight than necessary for SQLCM, where one of the
major requirements is to keep the runtime overhead of
rule evaluation (see Section 6.2) as low as possible.

There is a large body of work on automatically tuning
database systems [10, 17] by observing and dynamically
adapting to system usage. Although not the focus of this
paper, as discussed in Section 3, one of the important uses
of the SQLCM framework can be to facilitate self-tuning
and corrective actions. Some of these tuning tasks such as
resource governing or admission control are enabled by
virtue of the fact that SQLCM is implemented inside the
database server.

8. Conclusion

In this paper we present SQLCM, a server side
infrastructure that enables many common database
monitoring tasks to be accomplished efficiently. The
power of SQLCM is a result of the ability to support
flexible, in-memory filtering and aggregation inside the
database server combined with the ability to take actions
based on the monitored data. In the future, we will
continue to explore the use of SQLCM for a variety of
other monitoring tasks including its application for
internal database system tuning.

9. References

[1] The AutoAdmin Project at Microsoft Research.
http://research.microsoft.com/dmx/AutoAdmin/
[2] BMC PATROL® Database Knowledge Modules,
http://www.bmc.com/
[3] Carney D., Çetintemel U., Cherniack M., Convey C., Lee S.,
Seidman G., Stonebraker M., Tatbul N., Zdonik S. Monitoring
Streams – A new class of Data Management Application., Proc.
of the VLDB 2002.
[4] C. Forgy. RETE: A fast algorithm for the many
patterns/many objects problem. Artificial Intelligence. 19(1):
17-37, 1982.
[5] Dobra A., Garofalakis M., Gehrke J., Rastogi R. Processing
Complex Aggregate Queries over Data Streams. Proc. of ACM
SIGMOD 2002.
[6] Chakravarthy S., Blaustein B., Buchman A.P., Carey M.,
Dayal U., Goldhirsch D., Hsu M., Jauhari R., Ladin R., Livney
M., McCarthy D., McKee R., Rosenthal A. HIPAC – A
Research Project in active, time-constrained Database
Management. Tech. Report XAIT-89-02, Xerox Advanced
Information Technology, 1989.
[7] IBM DB2 Universal Database: http://www-
3.ibm.com/software/data/db2/udb/v8/.
[8] IBM DB2 Universal Database: System Monitor Guide and
Reference.
ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/db
2f0e80.pdf.
[9] Goldstein J., Larson P. Optimizing Queries Using
Materialized Views: A Practical, Scalable Solution. Proc. of
ACM SIGMOD 2001.
[10] Lohman G., Lightstone S. SMART: Making DB2 (More)
Autonomic. Proc. of VLDB 2002.

[11] Madden S., Shah M., Hellerstein J., Raman V. Continously
Adaptive Continuous Queries over Streams. Proc. of ACM
SIGMOD 2002.
[12] D.P. Miranker. TREAT: A Better Match Algorithm for AI
Production Systems. Proceedings of the National Conference on
AI, 42-47, August 1987.
[13] NetIQ Diagnostic Manager for SQL Server,
http://www.netiq.com/products/sdm/default.asp.
[14] Praveen Seshadri: Building Notification Services with
Microsoft SQLServer. Proc. of ACM SIGMOD 2003.
[15] Transaction Processing Performance Council. The TPCH
Benchmark. http://www.tpc.org/tpch/default.asp.
[16] Veritas Indepth for SQL Server,
http://www.precisesoft.com/
[17] Weikum G., Moenkeberg A., Hasse C., Zabback P. Self-
tuning Database Technology and Information Services: from
Wishful Thinking to Viable Engineering. Proc. of VLDB 2002.

Appendix A. SQLCM Schema

The current SQLCM implementation exposes 5 monitored
object classes: Query, Transaction, Blocker, Blocked and Timer.

 The Query Class contains the following attributes:

Attribute Name Type Comment
ID Integer
Query_Text String Query Text String
Logical_Signature BLOB
Physical_Signature BLOB
Start_Time Datetime
Duration Float
Estimated_Cost Float
Time_Blocked Float
Times_Blocked Integer
Queries_Blocked Integer #of queries blocked
Number_of_instances Integer
Query Type atomic Type∈ {UPDATE,

SELECT,INSERT,
DELETE}

The Transaction class has identical attributes to the query
object, except for the plan signatures, which are exposed as a list
of integers.
The Blocker and Blocked classes represent combinations of
queries where the Blocker query owns a lock on a resource
incompatible with the lock the Blocked query is waiting on (on
the same resource). They have the same schema as the Query
object.
The Timer class is provided to facilitate periodic invocation of
rules that cannot be tied to a specific event. The system exposes
a set number of Timer objects. These timers can be set (using the
Set() action) to a specific wait period, after which the create a
Timer.Alarm event. A Timer object also exposes the current
time as an attribute.

