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Abstract 
 
The ability to monitor a database server is crucial for 
effective database administration. Today’s commercial 
database systems support two basic mechanisms for 
monitoring: (a) obtaining a snapshot of counters to 
capture current state, and (b) logging events in the server 
to a table/file to capture history.  In this paper we show 
that for a large class of important database 
administration tasks the above mechanisms are 
inadequate in functionality or performance. We present 
an infrastructure called SQLCM that enables continuous 
monitoring inside the database server and that has the 
ability to automatically take actions based on monitoring. 
We describe the implementation of SQLCM in Microsoft 
SQL Server and show how several common and important 
monitoring tasks can be easily specified in SQLCM. Our 
experimental evaluation indicates that SQLCM imposes 
low overhead on normal server execution end enables 
monitoring tasks on a production server that would be too 
expensive using today’s monitoring mechanisms.  
 

1. Introduction 
 

The ability to monitor a database server is a crucial 
aspect of database administration. There are a variety of 
scenarios where monitoring is essential to accomplish 
common administrative tasks. For example, monitoring 
execution time of SQL queries can be useful for detecting 
under-performing queries. Monitoring locks held and 
delays due to locking are important for identifying locking 
hotspots in the data. Similarly, monitoring server resource 
consumption (CPU, memory, number of connections, etc.) 
are necessary for tasks such as auditing, capacity planning 
and detecting security problems.  

Database monitoring is the ability to observe the values 
of system counters that describe the system’s state, e.g., 
execution time of a query, locks held, CPU/memory usage 
in the above examples. Today’s database systems typically 
have the necessary instrumentation to expose such system 
counters. In this paper, we refer to automated monitoring 
of a DBMS as the ability to evaluate conditions over these 
counters and to take actions on them. Examples of actions 
are: persisting counters to a table/file, notifying the 
database administrator (DBA), aborting the execution of a 

query etc.). Such automated monitoring can reduce total 
cost of ownership and increase efficiency of a DBA.  

In today’s commercial database systems, system 
counters are exposed to clients using two basic 
mechanisms. The first mechanism allows obtaining a 
snapshot of these counters at any point in time by polling 
the server. The second mechanism is event recording, i.e., 
ability to write counters associated with a system event to 
a file/table. Events include SQL statement execution 
begin/end, lock acquire/release, user login/logout, etc. 
With each event several counters associated with it e.g., 
time, database id, application that causes the event, or 
duration of the event may be recorded. While these 
mechanisms are commonly available in today’s systems, 
they are inadequate for several important monitoring 
tasks.  

Consider the task of detecting “outlier” invocations of 
a stored procedure P, i.e., identifying invocations of P that 
are much slower to execute than other instances.  This can 
be useful since a DBA can later analyze these outliers to 
determine the reasons for underperforming. Similarly, 
consider the task of detecting the total delay caused by 
blocking on a lock resource (grouped by the SQL 
statements in conflict and ordered by the total amount of 
time blocked). This task can be helpful in detecting 
locking problems due to poor application design or 
unanticipated interactions across applications. For both 
these tasks, if we use event recording, then a very large 
volume of monitored data needs to be written out by the 
server (all stored procedure completion events in the first 
example, and all blocking/release events in the second 
example), even though the amount of information the 
DBA needs to see is considerably smaller. On the other 
hand, if we use mechanism of repeatedly polling the 
server, we could compromise the accuracy of answers 
obtained if we do not poll frequently enough (e.g., miss 
outliers, underestimate total blocking delay for short, but 
frequent queries). If instead, we poll very frequently, we 
can once again incur significant load on the server (e.g., 
due to repeated traversal of the lock resource dependency 
graph in the second example). 

Thus, the polling based approach has the drawback that 
if polling is performed infrequently, then the monitoring 
application can lose valuable information. On the other 
hand, if polling is very frequent, it can impose significant 
CPU overheads on the server. Similarly, event recording 



 

(although not lossy), can incur significant overheads on 
the server since potentially a large number of events needs 
to be copied out to a file/table or sent over the network. 
Thus the existing solutions to these monitoring problems 
are unsatisfactory. We note that in both these examples, if 
the monitoring could have been done inside the database 
server, i.e., at the source of the monitored data, then both 
the performance overhead of event recording as well as 
loss in accuracy of polling could have been avoided.  

In this paper we describe an alternative framework, 
called SQLCM (SQL Continuous Monitoring engine) that 
makes it easy to develop a large class of important 
monitoring based tasks such as the ones described above.  
An overview of the SQLCM architecture is shown in 
Figure 1 (the architecture is explained in more details in 
Section 2.3). SQLCM addresses the limitations of existing 
mechanisms discussed above as a consequence of the 
following design characteristics: (1) SQLCM is 
implemented entirely inside the database server, and (2) 
the monitored information can be automatically grouped 
and aggregated, with the grouping columns and 
aggregation functions being specified by the database 
administrator (DBA). As we show in this paper, this 
grouping and aggregation can be done very efficiently. 
Consequently, the volume of information that needs to be 
copied out of the server is small, thus dramatically 
reducing the overheads incurred on the server by the 
monitoring tasks. (3) Monitoring tasks can be specified to 
SQLCM in a declarative manner using Event-Condition-
Action (ECA) [6] style rules. A rule implicitly defines 
what conditions need to be monitored (e.g., an instance of 
a stored procedure executes 5 times slower than the 

average instance, a statement blocks others for more than 
10 seconds) and what actions need to be taken (e.g., report 
the instance of the stored procedure to a table, cancel 
execution of the statement). SQLCM only incurs 
monitoring overhead that is necessary to implement 
currently specified rules (i.e., DBA tasks). These rules are 
written against a predefined schema that specifies the 
valid events, conditions and actions supported by 
SQLCM.  

We have implemented a prototype of SQLCM inside 
Microsoft SQL Server. We demonstrate how several 
important DBA tasks can be easily specified in the 
SQLCM framework. We have conducted experiments to 
measure the overhead of monitoring and rule evaluation in 
SQLCM; and we compare this with overheads for 
solutions using today’s monitoring mechanisms. This 
work was done in the context of the AutoAdmin project 
[1] at Microsoft Research. The goal of the AutoAdmin 
project is to develop technology for making database 
systems more self-tuning and self-managing.  

The rest of this paper is structured as follows. We 
present an overview of SQLCM in Section 2 and justify 
our design decisions. Section 3 provides several examples 
of interesting DBA tasks that are enabled by SQLCM (or 
are much more efficient to perform in SQLCM). Sections 
4 and 5 respectively describe the two key components of 
SQLCM: the monitoring engine and the rule engine. 
Section 6 describes the implementation of SQLCM in 
Microsoft SQL Server and presents a careful experimental 
evaluation of its overheads. We discuss related work in 
Section 7 and conclude in Section 8.  
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2. Architecture of SQLCM 
 

In this section we present the rationale for our design 
choices in SQLCM, and provide an overview of the key 
components of SQLCM. There are two major criteria that 
a framework for database monitoring applications should 
satisfy. First, it should flexible enough to easily specify a 
variety of monitoring tasks including the ability to take 
actions based on monitored data. Second, as highlighted 
by the two examples in the introduction, the performance 
overhead imposed on the database server should be small. 
Moreover, the developer of the monitoring 
task/application (e.g., a DBA) should be able to control 
the overheads imposed. This is particularly relevant for 
tasks where accuracy of monitoring is crucial (e.g., 
auditing system usage or monitoring for security 
violations).  

 
2.1. Key Design Decisions in SQLCM 
 

We make two key design decisions that determine the 
basic architecture of SQLCM: (1) We adopt a server-
centric solution, i.e., SQLCM is implemented inside the 
database server. (2) The programming model for 
specifying monitoring tasks in SQLCM is Event-
Condition-Action (ECA) rules. In our current prototype, 
the monitoring as well as rule evaluation is interleaved 
with query processing (see Section 6 for details on 
implementation). Below, we justify these two design 
decisions in light of the criteria discussed above.  
 
Justification for Server-Centric Solution 

There are a number of reasons for a server-centric 
solution to monitoring. First, several monitoring tasks 
require ability to observe a large number of events in the 
server. However, the actions to be taken as a consequence 
of monitoring in these tasks are often based on a much 
smaller volume of information (typically filtered and/or 
aggregated). For example, finding the top k most 
expensive queries during the day requires the ability to 
observe the execution time of each query that executes on 
the server but report only k queries. Since SQLCM 
provides the ability to apply filtering and aggregation over 
the monitored data at its source (i.e., inside the server), 
the volume of information that needs to be copied from 
the server to the client is typically small, thereby reducing 
the performance overhead significantly. Furthermore, this 
architecture allows the monitoring to be synchronous with 
the events in the system, resulting in accurate 
measurements and no missed events (as there would be in 
a polling-based architecture). Finally, a significant 
advantage of a server-centric solution (although not the 
focus of this paper) is that it enables the possibility of 
taking actions based on monitoring that can allow the 

server to dynamically adjust its behavior without DBA 
intervention (e.g. resource governing or automatically 
correcting database statistics). In Section 3 we provide 
examples of such tasks. While a server-centric monitoring 
solution can be advantageous, it also imposes the 
requirement that the overheads be very low.  
 
Justification for ECA as the Programming Model 

We use Event-Condition-Action (ECA) rules [6] as the 
programming model in SQLCM. ECA rules are simple 
and have been widely used in many systems including 
database systems for triggers and for notification services 
[14]. Moreover, as we demonstrate in this paper through 
examples (see Section 3), the ECA framework appears to 
be expressive enough to allow specification of a large 
class of important monitoring tasks. In automated 
monitoring applications, conditions on system counters 
need to be evaluated potentially multiple times per query 
invocation and should not have noticeable impact on 
performance, particularly when the system is under heavy 
load. Thus, (unlike regular SQL) the expressive power of 
the programming model is of secondary importance, 
whereas low and controllable overhead is crucial. For this 
reason, SQLCM does not use the existing database 
mechanisms such as triggers or notification mechanisms, 
but rather implements a lightweight ECA rule engine. Due 
to their simplicity, ECA rules are amenable to 
implementation with low CPU and memory overheads 
(which we validate in Section 6.2). Furthermore, (as 
described in Section 4) the aggregated monitored data 
upon which rules are evaluated are held in in-memory data 
structures, whose memory consumption can be controlled 
during specification.. Thus evaluating a rule incurs no disk 
accesses. Finally, we note that the monitoring overhead is 
itself limited to gathering system counters that are 
referenced in currently active rules, i.e., no monitoring is 
performed unless it is required by a rule.  

 
2.2. SQLCM Monitored Objects 
 
In SQLCM, the internal state of the database server is 
modeled by a number of monitored classes (e.g. a Query), 
each of which expose one or more events (e.g. the 
Query.Start event is triggered when a query starts 
executing) and a number of attributes or system counters 
(e.g. Query.Duration representing the total time a query 
takes to execute).  These attributes are referred to in 
SQLCM as probes since their values are obtained by 
probing (or extracting from) the database server at 
runtime. We note that for a particular probe or event to be 
available for monitoring, appropriate instrumentation 
needs to be done in the server code (e.g., inserting a timer 
around query execution code to obtain the 
Query.Duration probe).  In general, the set of available 



 

monitored classes, probes and events (that constitute the 
SQL schema) could vary from one DBMS to another. A 
subset of the schema that we use in our current 
implementation is shown in Appendix A. The current 
SQLCM implementation exposes 5 monitored classes: 
Query, Transaction, Blocker, Blocked (referring to pairs 
of blocked queries in a lock conflict) and Timer (used for 
asynchronous rule invocation, see Section 5.1). In general, 
this schema can be augmented to cover other relevant 
server objects to monitor (e.g., Table). 
 

2.3. Overview of SQLCM components 
 

As shown in the architectural overview (Figure 1) 
SQLCM is implemented inside the database server. There 
are two key components of SQLCM: the monitoring 
engine and the Event-Condition-Action (ECA) rule 
engine. The user, typically a DBA, interacts with SQLCM 
by specifying ECA rules (expressed against the SQLCM 
schema) for implementing monitoring tasks.  

The purpose of the monitoring engine is to collect 
attributes of objects (i.e., instances of monitored classes) 
that are necessary to implement currently active rules. 
Objects are grouped,  aggregates are computed for each 
group, and the resulting data is stored in in-memory data 
structures called lightweight aggregation tables (LATs). 
Grouping and aggregation is performed on attributes of 
the object type, i.e., on probes that are gathered 
synchronously during query execution. For example, we 
may group all queries by the application (or user) that 
issued them. For many tasks, only aggregate values of an 
attribute in a group may be necessary, e.g., the average 
and standard deviation of the Duration attribute of all 
queries in a group. SQLCM supports the ability for 
common aggregation functions such as COUNT, 
AVERAGE, etc. to be specified on any attribute.  

The ability to specify at which level of granularity (i.e., 
grouping) to store aggregated monitored information at 
the server is critical, as different tasks may call for 
monitoring at the level of connections, applications, users, 
transactions etc. Any fixed interface is likely to either 
provide an insufficiently fine level of aggregation or to be 
too detailed, thereby requiring too much memory inside 
the server for state. SQLCM addresses this issue through 
the use of LATs as a form of flexible, in-server grouping 
and aggregation. The details of the monitoring engine are 
discussed in Section 4.  

The goal of the rule engine is to monitor events and 
take the necessary actions when a rule fires (i.e., the 
condition in the rule becomes true). The expressiveness of 
ECA rules, and other design details of the rule engine are 
the topic of Section 5. As an illustration, the following 
simple rule appends to a specified table the probe values 
for any query that takes more than 100 seconds to execute 
(when the query commits). 

Event: Query.Commit. 
Condition: Query.Duration > 100 
Action: Query.Persist (TableName).  
 
In addition to Persist (write to a table), other actions 

such as SendMail (sends an email), RunExternal 
(launches a specified program) can be useful for a variety 
of tasks. In Section 5.3, we describe the actions supported 
by our current prototype. Finally, as mentioned earlier, a 
unique and powerful feature of SQLCM is that by virtue 
of being inside the server, it allows actions that can adjust 
server  behavior dynamically (without DBA intervention).    
 

3. Applications of SQLCM 
 

In this section we describe several examples of 
monitoring tasks. These examples highlight how SQLCM 
as a framework makes it easy to specify these tasks, 
thereby either reducing the complexity of implementing 
these tasks as compared to today’s database systems or 
reducing performance overheads, or in many cases both. 
We have implemented the first three tasks below using our 
prototype implementation of SQLCM on Microsoft SQL 
Server.  

 
Example 1: Detecting Outlier Instances of a Stored 
Procedure: The task of detecting invocations of a stored 
procedure P that are outliers, i.e., much slower to execute 
than other instances, is an important and common task for 
DBAs (in this example, we could define “much slower” as 
any instance that runs 5 times slower than the average 
instance, or any other appropriate statistical measure that 
can be expressed using SQLCM aggregate functions). 
This type of outlier detection is often valuable for DBAs 
to identify problematic combinations of parameters for the 
stored procedure. We will describe the implementation of 
this example application in detail in Sections 4 and 5.  
 
Example 2: Detecting Poor Blocking Behavior: Another 
common problem faced by DBAs is detecting which 
update statements are responsible for the largest blocking 
delays in the system. In other words for each statement, 
we need to track the total time for which it blocked other 
statements. Such a task can potentially help in identifying 
poor design in the SQL application, e.g. a hot spot in the 
data (or metadata). This task would be specified in the 
SQLCM framework as a simple ECA rule triggered by 
any statement S releasing a lock resource other statements 
are waiting on. For each of the blocked statements, the 
time it has been waiting on the lock resource is then added 
to the total waiting time for S (see Appendix A for 
Blocker and Blocked objects in the schema that would be 
used in this rule). Each statement, along with the total 



 

blocking delay caused by that statement is stored in a 
lightweight aggregation table (LAT).  
 
Example 3: Identifying Top k most expensive queries: 
One methodology used by DBAs for identifying 
performance bottlenecks is to find the few most expensive 
queries over a period of time. Even for this relatively 
simple task, the overheads of using today’s monitoring 
solutions can be high. In contrast, this task is not only easy 
to specify in SQLCM but the overheads are very low (see 
Section 6.2). This task would be specified in the SQLCM 
framework using a LAT storing the queries, and an ECA 
rule that inserts every query after it commits into the LAT. 
The LAT is specified in such a way that it only stores k 
entries ordered by Query.Duration, thus maintaining the 
top k queries by duration at all times (for a detailed 
description of LAT specification, see Section  4.3).  
 
Example 4: Auditing/Summarizing System Usage: 
DBAs often require the ability to audit or summarize 
usage of system resources.  This may be necessary for a 
variety of reasons, e.g., (a) enforcing service level 
agreements (b) detecting potentially unauthorized access 
attempts, e.g., number of login failures for each user, (c) 
summarizing query/update “templates” (see Section 4.2) 
for a particular application, their associated frequencies 
and average/max duration for each template etc. over a 24 
hour period. Note that this may require the ability to 
collect summaries synchronously with query execution (in 
order to compute aggregate values), and in addition have 
rules that persist these asynchronously (e.g. every 24 
hours). The latter type of invocations are handled using a 
special Timer class, described in Section 5.1.  
 
Example 5: Resource Governing: The ability to limit 
resource consumption of queries in a flexible way can be 
very useful in a variety of scenarios: (a) Stopping a 
runaway query (i.e., a query that has exceeded a certain 
budget on system resources). (b) Enforcing limit on 
concurrent query execution for a user (e.g., User X cannot 
have more than K queries executing at any point in time). 
(c) Adjusting the multi-programming level (MPL) 
dynamically based on the monitored resource 
consumption.   
 
Finally, we note that since SQLCM allows rules to be 
added and removed dynamically. Thus, monitoring 
applications can take advantage of this to allow more 
flexible and customized monitoring (e.g., turning off/on 
rules based on time of day, adjusting thresholds in rules  
to capture more/less information etc.).  

 

4. Monitoring Engine  
 

We now describe the key components of the 
monitoring engine – the probes inside the database server  
(Section 4.2), including signatures, a special type of probe 
useful for identifying templates of  parameterized queries 
(Section 4.2), and light-weight aggregation tables 
(Section 4.3).  
 
4.1. Probes 
 

The monitoring engine of SQLCM uses probes inside 
the query processor and storage engine to collect the 
attributes of the monitored objects probes, which are 
assembled into monitored objects on demand (i.e., at the 
time of rule-evaluation). As most of the probes are 
collected at various points of the server code already, this 
typically adds negligible overhead to normal query 
execution (see Section 6.2). 

SQLCM offers a generic interface to integrate new 
monitored objects, events and probes into the schema. 
This means that probes can be implemented with no 
knowledge of SQLCM internals. SQLCM offers methods 
to register monitored objects and probes internally, when 
they are available to the system (e.g. the corresponding 
Blocker is only available during the period that a query is 
blocked on a lock resource, a query’s physical plan 
signature (see Section 4.2) is available only after query 
optimization is complete).  Internally, probe values are 
cast to SQL Server types, enabling the use of all 
aggregation functions provided by the database server for 
LAT aggregation as well. 

 
4.2. Signatures 
 

Consider a SQL application that executes 
“templatized” queries (not stored procedures) repeatedly, 
e.g.., different instances of the same query with different 
constants in the selection conditions. In this case, it is 
natural for the DBA to track the performance of the 
template, rather than each individual query. Consider 
another example of a SQL stored procedure that is 
structured as follows: IF Condition THEN A ELSE B, 
where A and B are SQL statements. Some instances of the 
stored procedure will execute A, while others will execute 
B. The performance characteristics of the stored 
procedure could be different in each case. Thus for some 
tasks, e.g. outlier detection (Example 1 in Section 3), it is 
meaningful for the DBA to monitor performance of these 
two different paths separately.  

The simplest method of matching the query-text may 
be sufficient to differentiate different parameter-less 
stored procedures, but any purely query-text based 
grouping is undesirable due to its sensitivity to formatting 
and its inability to group different instances of the same 
query with different parameters. To support monitoring 



 

applications such as the ones described above, SQLCM 
exposes the notion of query signatures. A signature is a 
probe value that is exposed as an attribute of the Query 
object. If two queries have the same signature, they share 
the same internal structure (depending on the exact 
signature type used, see below); otherwise their structure 
differs. Note that since aggregation tables support 
grouping on all possible combinations of probes, it is 
possible to group queries on signatures. 

Below, we describe the four kinds of signatures 
exposed in SQLCM (see schema in Appendix A), and 
examples where each signature can be useful. In Section 
6.2, we measure the overhead of signature computation.   

 
(1) Logical Query Signature – As described in the 
example above, it is sometimes necessary to monitor the 
execution of re-occurring query templates which have a 
number of implicit parameter values that vary from one 
instance to another. To facilitate such a grouping, 
SQLCM uses the internal logical query tree generated 
during query optimization to compute a linearized 
representation of the structure of a query and its predicates 
(the techniques used are similar to the query/view 
representation of [9]; we omit details here for brevity). In 
cases where we can differentiate between the different 
parameters P1,…,Pn, of a query template internally (e.g. 
such as when the query is executed as part of a stored 
procedure with n parameters) we replace each occurrence 
of a parameter Pi  with the symbol that matches only other 
occurrences of Pi. If we are unable to identify parameters 
(e.g. for ad-hoc queries) we substitute a wildcard symbol 
for any constant expression we encounter in the query’s 
predicates. Two queries are then assigned the same 
signature value if their internal representations match (i.e. 
are identical with the exception of matching wildcards and 
predicate ordering). The logical query signature is 
computed during query optimization and stored as part of 
the query plan; thus, if a query plan is cached, so is its 
signature, thereby avoiding the need to recompute it often. 
 (2) Physical Plan Signature – The logical query signature 
allows us to track counters across multiple instances of the 
same query template; however, while this is sufficient e.g., 
for tracking the number of times a template is executed, 
for applications that monitor the running time of templates 
(e.g. see Example 1 in Section 3), this is not sufficient, as 
logical query plans may result in vastly different execution 
plans, requiring an additional signature on the execution 
plan. The physical plan signature is computed similarly to 
the logical one, with the linearized representation being 
constructed over the query’s execution plan tree.  
(3) Logical Transaction Signature – The logical 
transaction addresses the problem of grouping different 
code paths inside a stored procedure. It is defined through 
the sequence of logical query signatures inside a 

transaction, with the transaction boundaries being defined 
through the outermost begin and commit brackets.   
(4) Physical Transaction Signature – The physical 
transaction signature is defined analogous to the logical 
one, except over the sequence of physical plan signatures. 
 
 
4.3. Light-Weight Aggregation Tables (LAT) 
 

Several monitoring tasks require the ability to filter on 
dynamically maintained aggregate values of probes. Thus, 
it is necessary to keep some state (i.e., history of the 
collected probes), which can be referenced inside the 
conditions of ECA rules. In Example 1, it is necessary to 
maintain the average duration for each stored procedure. 
This ability is crucial for any monitoring application that 
seeks to detect outliers, changes in workload 
characteristics or requires any other condition that 
correlates current performance with the past.   

 
LAT Functionality: In SQLCM, this functionality is 

provided through light-weight aggregation tables, which 
offer a mechanism for storing aggregate information over 
collections of probes of a single monitored class in 
memory. An aggregation table is defined through (a) a set 
of grouping columns and (b) a set of aggregation 
functions, both of which are defined over the attributes of 
the monitored class. Which monitored objects are inserted 
into the aggregation table is governed by rules (see 
Section 5). The semantics correspond to the SQL 
projection and aggregation operators applied to the 
inserted objects: the objects are grouped on the grouping 
attributes, and the aggregation functions evaluated over 
each group (as in a traditional GROUP BY SQL query). In 
addition to the standard aggregation functions COUNT, 
SUM, and AVG, SQLCM also supports a number of 
additional aggregation functions such as STDEV 
(computes the standard deviation) and FIRST and LAST, 
which retain the value assigned to the attribute by the first 
or last object inserted into the container, respectively. The 
latter type of aggregation can be important e.g., when 
using the LAT to store a representative Query.Text 
attribute (i.e., the query string) for each group in the LAT.  

LATs also support an aging version of each 
aggregation function. Aging is typically important for 
tasks related to performance monitoring, where the 
baseline performance may change over time (e.g., because 
of increased size of tables). Thus there is a need to ignore 
(or give less importance) to older probe values than more 
recent ones. The basic idea is that at each point in time the 
aggregate value does not reflect any value older than a 
threshold t (i.e., a moving window). However, aging out 
individual values as time progresses would require to store 
every single value as well; instead, SQLCM groups values 



 

into blocks that span an interval of size ∆, which are then 
used as the unit of aging. Note that the aging version of an 
aggregate requires up to 2t/∆ more storage than the non-
aging version (we omit details due to lack of space).  

Aggregation tables are in-memory objects at the server; 
but it is possible to persist them to tables (see description 
of the Persist() action in Section 5.3). For this, an 
aggregation table is associated with a disk-resident table 
with schema identical to the aggregation table, plus one 
additional column storing a timestamp of when the rule 
writing a row was triggered. The ability to persist LATs 
allows more complex SQL post-processing on the LAT 
data that may not supported by the rule engine. 
Furthermore, it is possible to maintain LAT data over 
multiple restarts of the database server, by uploading the 
contents of a table to a specific LAT at database startup 
time. 

 
LAT specification: To illustrate what is required to 

logically specify an aggregation, we define a LAT for 
Example 1 from Section 3 as follows below. In this paper, 
we do not focus on the specific syntax, but rather on what 
elements constitute the specification of a LAT. In practice, 
this functionality could be exposed e.g., by appropriate 
system stored procedures or by introducing appropriate 
SQL syntax.  
 
LAT Name: Duration_LAT 
Grouping Columns:  
   Query.Logical_Signature AS Sig 
Aggregation Columns:  
   AVG(Query.Duration) AS Avg_Duration 
Ordering Columns: 
  Avg_Duration DESC 
Maximum Size: 
 100 Rows  
 

Managing LAT memory overhead: Because LATs 
are memory-resident, they compete for memory with 
operator workspace memory and buffer pool space. 
Therefore, we allow the ability to specify limits on the 
maximum size (specified either in terms of the number of 
rows stored or the overall row size) for an aggregation 
table, together with a subset of LAT columns specifying 
the ordering of LAT rows (and if the ordering is ascending 
or descending). If a LAT insertion violates the size 
constraint, SQLCM automatically discards the row(s) in 
the LAT that is “least important”, i.e., having smallest 
value of the ordering columns of the LAT, until the size 
constraint is satisfied. Each evicted row is exposed as a 
monitored object, making it is possible to specify 
additional rules that e.g. persist the evicted row to a table 
(we omit details due to lack of space). 

 

5. Rule Engine  

 
The second key component of SQL is a rule engine 

that evaluates Event-Condition-Action (ECA) rules. Rules 
are specified as an event E, a condition C and an action A. 
The Action A is executed whenever the event E occurs 
and C is evaluated as true. 

In order to keep the overhead of SQLCM low, the 
expressiveness of the rule language is limited to a 
relatively small set of common operations required by 
typical monitoring applications.  We expect that any more 
complex logic required by a monitoring application can be 
achieved by post-processing the data persisted to tables 
from monitoring (see Section 4.3). Before describing each 
part of the rule engine in more detail, we briefly discuss to 
salient issues related to the rule engine. 

 
Rule evaluation order: All rules are executed in a 

fixed order and no new rule can be triggered before the 
current rule has been evaluated. Furthermore, for any 
given event, all applicable rules are triggered before any 
later event is processed. This means that any action, that 
as a side-effect may trigger further events, is not executed 
synchronously. For example, if a rule triggered by a 
Query.Start event cancels this query as an action, the 
action only sends the cancel signal to the thread(s) 
currently executing the query. All other rules (if any) 
triggered by the same event are processed and only then 
does the control flow return from SQLCM to its current 
execution path.   

 
Managing rule evaluation overhead: An important 

concern for any monitoring application is to be able to 
control the overhead of evaluating the ECA rules. We 
have observed that the overhead for rule evaluation is 
mainly a function of the number of rules (in case of rules 
that iterate over large numbers of objects, each different 
object-combination has to be thought of as a separate 
invocation of a single rule)., but does not vary 
significantly between rules of different complexity (see 
Section 6.2 for an experimental verification of this claim). 
Thus the user of SQLCM can control the overhead of rule 
evaluation through the number of rules in the system.  

 
5.1. Events 
 

SQLCM supports a number of different events to be 
used in the E-clause of an ECA-rule. Events are used to 
indicate when a condition is to be evaluated. The events 
supported in our current prototype indicate either 
transition points in the execution of a query (such as a 
query committing or aborting) or interruption of such the 
execution (such as an operator being blocked). For 
example, in our prototype, the Query type has a number of 
Events associated with it that indicate various transition 



 

points in query execution, among them Query.Commit 
(occurring when query execution completes), Query.Start, 
Query.Compile, Query.Cancel, Query.Rollback, 
Query.Blocked (occurring when a operator of the query is 
blocked on a lock resource), and Query.Block_Released 
(occurring when the query is granted a lock on a lock 
resource it had been waiting on). In cases where the 
condition evaluation cannot be tied to a system event (for 
example to detect queries that are blocked for more than a 
given amount of time),  the Timer object described in 
Appendix A can be used to instrument a background 
thread that periodically evaluates such rules. A Timer 
object generates a Timer.Alert event after a certain amount 
of time has passed. Finally, we note that, in principle, 
SQLCM can use a much wider variety of events, including 
events connected to connection management, database 
maintenance or the operating system events. 
 
5.2. Conditions 
 

The rule engine evaluates conditions defined over the 
object attributes defined in the schema (see Appendix A), 
the logical operators {=, !=, <, >, <=, >=} and the 
mathematical operators {+,-,*,/}. The order of evaluation 
can be specified using brackets and multiple conditions 
can be combined using the logical AND, OR and NOT 
operators. We illustrate the semantics of condition 
evaluation using the example of outlier detection (Section 
3, Example 1):  
 
    Event: Query.Commit 
    Condition:Query.Duration              
            > 5* Duration_LAT.Avg_Duration 
    Action: Query.Persist(TableName, Query_Text)  
 

Consider the rule shown above, where the Event 
references an event related to the Query type. In cases 
where the monitored object in the Condition occurs in the 
Event clause, the scope of the rule is the object triggering 
the event (in the example, the query that just committed). 
When the Event clause doesn’t reference an object in the 
condition (e.g., timer based events), the scope of the rule 
is over all objects of the type referenced in the Condition 
clause. For example, if the Event clause is empty and the 
Condition clause is: Query.Time_Blocked > 10, then the 
engine iterates over all query objects currently in the 
system. Note that if the rule references more than one 
object type in the Condition clause, the rule engine 
(logically) iterates over all combinations of objects of the 
given types currently registered with SQLCM, with the 
rule being evaluated once for each combination. We refer 
to the (combination of) object(s) that is evaluated at a 
given point as in context.  

In addition to monitored object attributes, it is possible 
to refer to the columns of a LAT object (as 

Tablename.Columnname). In this case, the rule is 
evaluated for each row in the LAT for which the values of 
the grouping columns are identical to the corresponding 
probe values for the object (of the correct type) in context.  

 In the example rule shown above, to evaluate the 
condition, the row in the LAT Duration_LAT (see Section 
4.3 for its definition) that matches the current Query 
object in the aggregation table’s grouping column, i.e. the 
attribute Logical_Signature, is selected. All references to 
aggregation table rows are implicitly ∃ -quantified; if a 
matching row doesn’t exist, the condition is evaluated to 
false. 

Note that for the applications we have outlined in 
Section 3, rules typically do not iterate over more than one 
object or LAT row. However, this functionality can be 
critical for other applications (e.g., any asynchronous 
reporting, such as a rule triggered periodically through the 
timer object, that reports queries that have been inactive 
or blocked for longer than a threshold value). 
 
5.3. Actions 
 

Our prototype implementation of SQLCM supports 
two basic categories of actions: actions that are attached to 
monitored objects (which are specified as 
Object.Action(Parameters)), and actions that do not 
attached to an object (e.g., SendMail and Execute). The 
Action clause of the ECA rule may consist of a sequence 
of actions, which are executed in order. Below we give 
examples of Actions and indicate tasks for which these 
actions can be useful.  
Insert (LATName) – Inserts or updates a row in the 
specified LAT with information about the monitored 
object. The appropriate row to update in the LAT is found 
by matching on the values of the grouping columns of the 
LAT. All aggregation columns in the LAT are updated as 
a result of this action. This action is essential for any 
monitoring task that uses a LAT.  
Reset (LATName) – Clears the content of a LAT and 
frees up memory.  
Persist (Tablename, Attr1, Att2, …) – Writes attributes 
of a monitored object or LAT to a table.  When applied to 
a monitored object, this action inserts a single row into the 
table. When applied to a LAT, it inserts all rows in the 
LAT into the table. In either case, the schema of the table 
must match the schema of the inserted row. 
SendMail (Text, Address) – Sends an email message 
with the given text as message body to be sent to given 
address. Attribute values from monitored objects and 
LATs can be substituted into the text string. The 
SendMail functionality can be used e.g., to generate an 
alert for the database administrator in case of a 
performance problem.   



 

RunExternal (Command)  –  launches an external 
application. Similar to SendMail, attribute values of 
monitored objects and LATs can be substituted into the 
Command string. This action can be used in a number of 
ways, e.g. automatically invoking post-processing over a 
table into which a LAT has been persisted earlier using 
the Persist() action. 
Cancel () – can only be applied to a Query, Blocker or 
Blocked object and has the effect of canceling the query. 
Set (Time, number_alarms) – this action can only be 
used with a Timer object and governs the length of the 
interval after which a Timer.Alarm event is triggered. The 
second parameter governs the number of times this timer 
waits and generates the event; 0 disables the timer, a 
negative number sets up an infinite loop.  
 
6. Implementation and Experimental Evaluation 
 
6.1. Implementation of SQLCM 
 

We have implemented SQLCM inside the Microsoft 
SQL Server database system. In this section we describe 
some of the key implementation issues. 

 
Implementation of probes: The attributes of the exposed 
objects are gathered through probes inside the relevant 
execution paths. In most cases this adds negligible 
overhead to the execution time, as most of the attribute 
values (e.g., Duration of a Query object) are recorded 
inside the server already. An exception to this is the 
computation of pairs of a blocking and a blocked query. 
This requires the traversal on the lock-resource graph; if 
the rule that references these objects is triggered by a 
related event (such as Query.Blocked), the code triggering 
rule evaluation is simply piggybacked on the regular lock-
conflict detection. Otherwise (e.g., if the rule is triggered 
by a Timer.Alarm event), our code traverses the lock-
resource graph itself. If during this traversal we find a 
query waiting on a lock resource held by another query 
(and the requested and the held lock are incompatible), 
this pair is exposed as the Blocker and Blocked objects. In 
some cases it is ambiguous which query constitutes the 
blocker (e.g. when multiple queries share a resource 
another query is waiting on). In this case we designate one 
of the queries holding the resource as the Blocker.  
 
Rule evaluation and execution: Rule evaluation is 
triggered in the code path of the event in the rule’s Event 
clause, branching into the SQLCM code and then 
resuming execution afterwards (this is necessary for 
SQLCM to be of value in scenarios requiring immediate 
action, e.g., resource governing). Thus no context 
switching is required between SQLCM and query 
execution code.  

 
LAT data structure:  Aggregation table objects which 
maintain an ordering for eviction are stored using a heap 
structure on the ordering columns and a hash array on the 
grouping columns for fast row lookup. When the row 
width of a LAT is fixed, evicted leafs can be re-used for 
the newly inserted value, thereby keeping memory 
fragmentation low. As all rule evaluation and LAT 
updates occur in the same thread which triggers the event 
and thus potentially multiple threads can be accessing a 
LAT concurrently, each LAT row as well as the ordering 
heap as a whole and each entry in the hash table are 
protected through latches to avoid any conflicts. Initial 
experiments with large number of short queries executing 
concurrently on the database indicate that this latching 
does not introduce a new hotspot even under severe stress, 
as the latches are held for very short times. 
 
6.2. Experimental Evaluation 
 

While integrating additional monitoring functionality 
into the database system itself allows for many new 
applications, it also introduces additional overhead on the 
server. In this section, we demonstrate via experimental 
evaluation that: 
•  The overhead that SQLCM places on the SQL engine 

due to signature computation and rule evaluation is 
small, and scales well with the number of rules and 
complexity of the conditions. 

•  For a specific monitoring task (identifying top k most 
expensive queries), SQLCM outperforms the 
alternative approach of logging all events and 
performing post-processing. For the same task, 
SQLCM also provides much better accuracy 
compared to polling based approaches.  

 
6.2.1. Evaluating the overhead SQLCM. As discussed 
before, the instrumentation of probes inside the server 
execution path only contributes little overhead to the 
DBMS. The areas where SQLCM adds measurable 
overhead are the computation of signatures, the evaluation 
of large numbers of rules and the maintenance of a large 
number of aggregation tables. In the following, we 
experimentally evaluate the overhead of these 
components. 
 

Setup: The experiments for overhead of signature 
computation were run on an x86 1680 MHz processor 
with 256MB of memory running Windows 2000 Server. 
The rest of the experiments were run on an x86 900 MHz 
processor with 384MB of memory running Windows 
2000 Server. In the experiments in Section 6.2.2, we used 
a workload on the TPC-H schema [15] (with 6 million 
rows in the lineitem table) consisting of 20,000 short 



 

single-row selections from the lineitem and orders table 
interleaved with 100 selections of 1000-2000 rows from a 
join between lineitem, orders and parts. In all experiments 
we executed the exact same queries (i.e., identical 
constant parameters) in order. The machines were 
rebooted before each experimental run, disconnected from 
the network and had all background services disabled. 
Repetitions of individual experiments showed very little 
variance in the measured performance. 

 
Overhead of signature computation. The overhead for 
computing the linearized representation of the query 
depends on the complexity of the query itself. In the 
SQLCM prototype, the query signature is computed once 
during optimization and then cached with the query plan.  
Therefore, we measured the overhead of the signature 
computation relative to the total time used for 
optimization. We ran these experiments for a variety of 
synthetic and real workloads and discovered that the 
relative time decreases with the complexity of the queries. 
The extreme points in our measurements were 0.5% (for 
single-line selection queries without conditions) and 
0.011% (for complex TPC-H queries), demonstrating that 
the overhead of signature computation is indeed very low. 

Figure 2. Rule evalulation overhead
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 Overhead of rule evaluation and LAT maintenance. In 
this experiment we measure the overhead for rule 
evaluation through by means of stress test using queries of 
very short duration and a large number of rules. As a 
baseline, we measured the overhead for executing 10,000 
single-row select statements on a 6 million row lineitem 
table (using the TPC-H schema) that use a clustered index. 
Then we executed the same workload again and measured 
the additional overhead caused by a varying number of 
rules (varying between 100 and 1000, all of which were 
evaluated for every single query) of varying complexity 
(the number of atomic conditions varied between 1 and 
20). In addition, each rule stored a summary of the 
observed workload in a different in-memory aggregation 
table of fixed size, storing all attributes (incl. query text) 
of the last 10 queries seen, indexed by the signature id.  

Figure 2 depicts the additional overhead caused by rule 
evaluation and LAT maintenance. Most importantly, even 
under the tested extreme conditions the additional 
overhead caused by SQLCM is less than 4%, and 
negligible for more realistic scenarios. In addition, one 
can see that the complexity of rules has very little impact 
on the additional overhead; rather, the overhead due to 
LAT maintenance (i.e., the overhead of inserting and 
evicting rows from the LAT and the memory consumed by 
LATs) is the biggest factor. By controlling the number 
and size of LATs, effective management of the SQLCM 
overhead is possible (see Section 4.3). 

 
6.2.2. Comparison with Alternative Monitoring 
Solutions. In this section we contrast the efficiency of 
SQLCM with other possible design choices for database 
monitoring. In this experiment, we examine the cost of a 
simple monitoring task – determining the 10 most 
expensive queries during a given workload through 
monitoring – for different solutions. This type of query is 
often used in practice to alert administrators to instances 
problematic combinations of query parameters. We study 
the following solutions to this task: 
(a) Logging all queries: In this approach, we write out all 
information on each committed query to a reporting table 
(we used a single rule writing the statistics using the 
Report() action). As monitoring and reporting is not 
integrated in this scenario, we force synchronous writes. 
The final result (top 10) is then obtained by running a 
SQL query on the reporting table. This solution 
corresponds to a solution incorporating push without 
filtering inside the server (similar to event logging). We 
will refer to this approach as Query_logging. 
(b) Polling the current state: Here a client monitoring 
application repeatedly polls from the database a snapshot 
of the currently active queries and their execution time 
and computes the most expensive ones externally. This 
corresponds to a pull based solution, where the necessary 
filtering is performed on the client. Note that this 
approach may not identify the correct queries, with the 
error dependent on the frequency of polling. We will refer 
to this approach as PULL. 
(c) Polling the historic state: This approach is identical to 
case (b), except for the fact that the server keeps a history 
of all queries and their execution times, which is only 
erased when being ‘picked up’ by the outside monitoring 
application. While this is not a realistic solution in 
practice, we use it to model a solution without push or 
filtering, but keeping history. We will refer to this 
approach as PULL_history. 
(d) Using the SQLCM framework: Here, we use a LAT 
which stores the 10 most expensive queries seen (storing 
the query text and duration). At the end of the workload, 



 

the LATs contents are written to a table using the Persist() 
action. We refer to this approach as SQLCM. 
To compare these different approaches, we measured the 
execution times of the original workload without any 
monitoring enabled as well as the times for the different 
monitoring approaches. In case of the two polling based 
approaches PULL and PULL_history, we also varied the 
polling rate between 1/sec to 1/5minutes. The results are 
shown in Figure 3. As far as the impact of the monitoring 
is concerned, SQLCM (requiring less than 0.1% 
additional overhead and thus almost imperceptible in the 
figure) causes the least degradation in performance, 
followed by PULL. However, for none of the different 
polling frequencies did PULL result in the correct answer; 
rather, when polling every second, 5 of the 10 most 
expensive queries were not part of the PULL  result set 
(when of polling every 5 seconds, 7 queries were missed, 
and when polling every 10 sec or more infrequent, 9 
queries were missed). Not surprisingly, the additional 
overhead of this approach increased with an increased 
polling frequency. 

Figure 3. Efficiency of different approaches
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The PULL_exact approach did yield the correct results, 
but caused significantly more overhead than SQLCM. In 
addition, as shown in Figure 3, finding the right polling 
rate is a tuning problem – if polling is too frequent, the 
polling itself causes significant overhead, if it is too 
infrequent, storing the historical state requires significant 
memory, in turn degrading the server’s ability to cache 
pages.  Not surprisingly, the Query_logging approach 
resulted in the biggest degradation in performance 
(>20%).  

We also executed the same set of experiments on a real 
(customer) workload used within Microsoft, resulting in 
similar trends, which are not reported for lack of space. 
Finally, we note that differences between SQLCM and the 

other techniques will add up when multiple monitoring 
tasks are executed in parallel. 
    

7. Related Work 
 
Today’s commercial database systems have support for 

event logging as well as for obtaining a snapshot of 
system counters by polling the server. However, as 
explained in the introduction and demonstrated 
experimentally, these mechanisms may be inadequate (or 
significantly less efficient) for tasks that require 
monitoring a large number of events due to either: (a) 
overhead incurred on server by event logging or frequent 
polling, or (b) loss in accuracy when not polling 
frequently enough.  

IBM DB2 Health Center [7] is a tool that continuously 
monitors “health” of the database system and alerts DBA 
by email/pager or by logging the problem. An alert is 
raised when the value of the counter being monitored 
crosses a threshold. Similar to Health Center, there are 
several third party monitoring tools [2,16,13] for today’s 
commercial database systems with similar functionality.  
In contrast to these tools, which are client applications, 
SQLCM can be viewed as new server-side infrastructure 
for enabling a broader class of monitoring applications 
that are either more efficient or enable functionality that is 
not possible with today’s client side monitoring tools.   

There have been several recent papers on query 
processing over streaming data e.g., [3,11,5]. In principle, 
a lightweight aggregation table (LAT) in SQLCM (see 
Section 4.3) could be viewed as a standing aggregation 
query over streaming data (generated by the DBMS). In 
comparison to the state of the art on streaming data we 
expose much simpler techniques to deal with memory 
constrictions at the server that do not allow keeping the 
entire state. Some of these techniques would typically not 
be applicable to streaming data scenarios, but scale for our 
specific monitoring applications. Conversely, a number of 
techniques discussed in the context of streams could 
potentially be valuable for SQLCM. 

 Rule-Production systems in DBMS have been 
extensively studied in the context of discriminatory 
networks such as TREAT [12] or RETE [4]. However, the 
scope of this work is the problem of efficiently matching a 
large collection of patterns to a large collection of objects, 
which is more general and expensive than required in the 
monitoring context.  Similarly, the inbuilt support for 
triggers in database systems and the general purpose 
notification services e.g., [14], could be considered 
alternatives to the ECA rule engine used in SQLCM. 
However, both these mechanisms are more general and 
heavyweight than necessary for SQLCM, where one of the 
major requirements is to keep the runtime overhead of 
rule evaluation (see Section 6.2) as low as possible.  



 

There is a large body of work on automatically tuning 
database systems [10, 17] by observing and dynamically 
adapting to system usage. Although not the focus of this 
paper, as discussed in Section 3, one of the important uses 
of the SQLCM framework can be to facilitate self-tuning 
and corrective actions. Some of these tuning tasks such as 
resource governing or admission control are enabled by 
virtue of the fact that SQLCM is implemented inside the 
database server.  

 

8. Conclusion 
 
In this paper we present SQLCM, a server side 
infrastructure that enables many common database 
monitoring tasks to be accomplished efficiently. The 
power of SQLCM is a result of the ability to support 
flexible, in-memory filtering and aggregation inside the 
database server combined with the ability to take actions 
based on the monitored data. In the future, we will 
continue to explore the use of SQLCM for a variety of 
other monitoring tasks including its application for 
internal database system tuning. 
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Appendix A. SQLCM Schema 
 
The current SQLCM implementation exposes 5 monitored 
object classes: Query, Transaction, Blocker, Blocked and Timer. 
 
  The Query Class contains the following attributes: 

Attribute Name Type Comment 
ID Integer  
Query_Text String Query Text String  
Logical_Signature BLOB  
Physical_Signature BLOB  
Start_Time Datetime  
Duration Float  
Estimated_Cost Float  
Time_Blocked Float  
Times_Blocked Integer  
Queries_Blocked Integer #of queries blocked 
Number_of_instances Integer  
Query Type atomic Type∈ {UPDATE, 

SELECT,INSERT,  
DELETE} 

 
The Transaction class has identical attributes to the query 
object, except for the plan signatures, which are exposed as a list 
of integers. 
The Blocker and Blocked classes represent combinations of 
queries where the Blocker query owns a lock on a resource 
incompatible with the lock the Blocked query is waiting on (on 
the same resource). They have the same schema as the Query 
object. 
The Timer class is provided to facilitate periodic invocation of 
rules that cannot be tied to a specific event. The system exposes 
a set number of Timer objects. These timers can be set (using the 
Set() action) to a specific wait period, after which the create a 
Timer.Alarm event. A Timer object also exposes the current 
time as an attribute.  

 


