
Reconstruction of Depth-4 Multilinear Circuits with Top Fan-in 2

Full Version

Ankit Gupta∗ Neeraj Kayal∗ Satya Lokam∗

Abstract

We present a randomized algorithm for reconstructing multilinear ΣΠΣΠ(2) circuits, i.e. multilinear depth-
4 circuits with fan-in 2 at the top + gate. The algorithm is given blackbox access to a polynomial f ∈
F[x1, . . . , xn] computable by a multilinear ΣΠΣΠ(2) circuit of size s and outputs an equivalent multilinear
ΣΠΣΠ(2) circuit, runs in time poly(n, s), and works over any field F.

This is the first reconstruction result for any model of depth-4 arithmetic circuits. Prior to our work,
reconstruction results for bounded depth circuits were known only for depth-2 arithmetic circuits (Klivans
& Spielman, STOC 2001), ΣΠΣ(2) circuits (depth-3 arithmetic circuits with top fan-in 2) (Shpilka, STOC
2007), and ΣΠΣ(k) with k = O(1) (Karnin & Shpilka, CCC 2009). Moreover, the running times of these
algorithms have a polynomial dependence on |F| and hence do not work for infinite fields such as Q.

Our techniques are quite different from the previous ones for depth-3 reconstruction and rely on a poly-
nomial operator introduced by Karnin et al. (STOC 2010) and Saraf & Volkovich (STOC 2011) for devising
blackbox identity tests for multilinear ΣΠΣΠ(k) circuits. Some other ingredients of our algorithm include
the classical multivariate blackbox factoring algorithm by Kaltofen & Trager (FOCS 1988) and an algorithm
for reconstructing set-multilinear ΣΠΣ(2) circuits by Kayal.

∗Microsoft Research India, {t-ankitg, neeraka, satya}@microsoft.com.

1 Introduction

A reconstruction algorithm for a multivariate polynomial f ∈ F[x1, . . . , xn] is given blackbox access to f and
must output a (succinct) representation of f . The algorithm can make adaptive queries to the blackbox
to evaluate f on inputs of its choice. The running time, and hence number of queries, of the algorithm is
required to be polynomial in the size of the representation of f produced by the algorithm. The simplest
representation of a polynomial is as a sum of monomials, i.e., as a ΣΠ (depth-2) circuit1. The reconstruction
problem in this case is referred to as the interpolation problem and admits efficient algorithms (cf. [KS01]).
Many interesting polynomials, e.g., determinant, however, have exponentially long representations as sums
of monomials, whereas as arithmetic formulas or circuits, they can be represented with quasipolynomial, or
even polynomial, complexity. In its strongest formulation, the reconstruction problem may demand the output
to be (roughly) the smallest arithmetic circuit computing the polynomial f hidden by the blackbox. In such
generality, the reconstruction problem is extremely hard. In fact, a polynomial time deterministic reconstruction
algorithm for a circuit class C is easily seen to imply a poly-time deterministic blackbox Polynomial Identity
Testing (PIT) algorithm for C. Recall blackbox PIT problem for C: determine if a polynomial f computed
by a circuit from C is the identically zero polynomial by making blackbox queries to f . Efficient algorithms
for blackbox PIT for a class C are in turn known [HS80, Agr05] to imply superpolynomial lower bounds for
circuits in C computing an explicit polynomial. This last problem remains a formidable challenge in general
models of arithmetic complexity. We conclude that deterministic reconstruction is at least as hard as proving
superpolynomial lower bounds for the corresponding model of arithmetic complexity. Thus progress on the
reconstruction problem has been possible only in restricted models of computation such as constant depth
circuits.

There’s an obvious similarity between the reconstruction problem in arithmetic complexity and the learning
problem in Boolean complexity2. With this analogy in mind, it seems reasonable to allow randomized algorithms
for reconstruction. Even when we allow randomization, the reconstruction problem for general models is
still quite challenging. For instance, we know randomized algorithms for PIT for any efficiently computable
polynomial. But we still do not have reconstruction algorithms for many nontrivial models of computation even
with randomization. This difference also might indicate that the reconstruction problem may be inherently
harder than the PIT problem for a given model of computation.

Efficient reconstruction algorithms are previously known for depth-2 ΣΠ circuits (sparse polynomials) [KS01],
read-once arithmetic formulas [SV09], set-multilinear depth-3 circuits [BBB+00, KS06] 3, non-commutative
arithmetic branching programs [AMS10], ΣΠΣ(2) circuits, i.e., depth-3 circuits with top + gate of fan-in 2,
[Shp09], and ΣΠΣ(k) circuits with k = O(1) [KS09]. For more information on circuit reconstruction, we refer
the reader to the excellent survey by Shpilka & Yehudayoff [SY10]. We remark that reconstruction of even
constant depth circuits is a highly nontrivial task. For example, a reconstruction algorithm producing optimal
size depth-3 multilinear4 circuits can be used to produce the smallest circuit for computing the product of two
3×3 matrices, which may help improve the current best running time of matrix multiplication using Strassen’s
approach. On the other hand, a result by H̊astad [H̊as90] can be used to show that reconstructing optimal size
depth-3 set-multilinear circuits is already NP-hard. Thus, to be tractable, the reconstruction problem even for
constant depth multilinear circuits must impose additional restrictions such as on top fan-in and/or allow the
output circuit to be polynomially larger than optimal.

In this work, we study the model of depth-4 multilinear ΣΠΣΠ circuits. The importance of this model
stems from a surprising result by Agrawal & Vinay [AV08] (see also [Raz10]) who showed that exponential

1Another simple representation of a polynomial is a as a product of linear forms, i.e. as a ΠΣ (depth-2) circuit. Most interesting
polynomials, e.g. determinant, cannot be computed by ΠΣ circuits but in case a polynomial f admits such a representation, it is
unique (by uniqueness of polynomial factorization) and can be efficiently found using Kaltofen’s factoring algorithm [Kal89, KT90].

2In particular, reconstruction with blackbox queries may be compared to learning with membership and equivalence queries
(when we allow randomized reconstruction). On the other hand, for multivariate polynomials exact reconstruction and approximate
reconstruction are equivalent (again, allowing randomized reconstruction).

3The output of [BBB+00, KS06] is not the hidden set multilinear ΣΠΣ(2) circuit but an algebraic branching program of roughly
the same size.

4A circuit is said to be multilinear if every gate computes a multilinear polynomial.

1

lower bounds for depth-4 circuits are already as hard as proving similar lower bounds for arbitrary depth
circuits, i.e., fundamental barriers to proving lower bounds start to appear even at depth-4. Using [AV08],
it can also be shown that derandomizing blackbox identity testing of multilinear depth-4 circuits implies an
exponential lower bound for general, i.e., with no depth restriction, multilinear circuits. Currently the best
known lower bound for multilinear circuits is Ω(n4/3/ log2 n), due to Raz et al. [RSY08], and 2n

Ω(1/d)
for depth-d

multilinear circuits due to Raz & Yehudayoff [RY09]5. Hence, understanding the model of multilinear depth-4
circuits will shed light on the bigger problem of proving lower bounds for multilinear circuits. Recently, Karnin
et al. [KMSV10] and Saraf & Volkovich [SV11] made progress in this direction by devising quasi-polynomial
and polynomial (respectively) time deterministic blackbox identity tests for multilinear ΣΠΣΠ(k) circuits for
k = O(1). We go one step further and consider the harder problem of reconstructing depth-4 multilinear
circuits. In this paper, we make progress on this problem by devising a reconstruction algorithm for the model
of multilinear ΣΠΣΠ(2) circuits which runs in time polynomial in the size of the hidden circuit, over any given
field.

Our techniques also yield simpler and stronger results for depth-3 multilinear circuits improving on earlier
results due to [Shp09] and [KS09]. In particular, their algorithms run in time polynomial in the size of the field
and hence can only be efficient when F is small. In contrast, our results work for over any field, including infinite
fields. Perhaps more importantly, the techniques in [Shp09, KS09] seem inherently tied to depth-3 circuits and,
as we will explain later, difficult to generalize to depth-4. Our techniques for depth-4 have a relatively simple
specialization to depth-3: whereas we handle sparse polynomials in the depth-4 case, we only need to handle
linear polynomials in the depth-3 case. In fact, our result for depth-3 case (Section 3) may be viewed as a
simpler realization of the program described in Section 1.2 that we use for both depth-3 and depth-4 results.
Realizing the same overall program for depth-4 requires much more intricate arguments. Our main result for
depth-4 case is presented in Section 4.

1.1 Depth-4 multilinear ΣΠΣΠ(2) circuits

A depth-4 ΣΠΣΠ circuit C is a layered circuit containing 4 alternating layers of addition(+) and product(×)
gates and computes a polynomial of the form

f(x1, . . . , xn) =
k
∑

i=1

Ti =
k
∑

i=1

di
∏

j=1

Pij , (1)

where k is the fan-in of the top Σ gate and di’s are the fan-ins of the Π gates at the second layer. We define the
min-degree of C to be degm(C) := min{di | i ∈ [k]}. As Pij ’s are the polynomials in F[x1, . . . , xn], computed
at the Σ layer at the third level of the circuit, the number of monomials in any such polynomial is bounded by
circuit size. The number of non-zero monomials in a polynomial is called its sparsity and a polynomial with
sparsity at most s is said to be s-sparse (else s-dense). Hence if the size of C is s then all the Pij ’s are s-sparse.
Define gcd(C) := gcd(T1, . . . , Tk) and C is said to be simple if gcd(C) = 1. Define the simplification of C
to be sim(C) := C/ gcd(C). Since every s-sparse multilinear polynomial is a product of irreducible s-sparse
multilinear polynomials on disjoint sets of variables, from the point of view of reconstruction, we can assume
Gi’s, Pi’s and Qi’s to be irreducible. If C is as in equation (1) then clearly, ∀i ∈ [k] ∃Ii ⊆ [di] such that

sim(C) =

k
∑

i=1

T ′i =

k
∑

i=1

Ti/ gcd(C) =

k
∑

i=1

∏

j∈Ii

Pij . (2)

A circuit C is said to be minimal if, for all ∅ (A ([k], the corresponding subcircuit CA :=
∑

i∈A Ti of C is
non-zero. Let the sparsity of a polynomial f be denoted by ||f ||. For a circuit C, where sim(C) is as in equation
(2), define the sparsity of C to be ||C|| := max{||T ′1||, . . . , ||T

′
k||}. We are interested in the class of multilinear

5For multilinear formulas superpolynomial lower bounds are known [Raz09] and these bounds can be improved to exponential
when the formula is of constant depth [RY09].

2

ΣΠΣΠ(2) circuits which contains multilinear ΣΠΣΠ circuits with top fan-in 2. Hence any multilinear ΣΠΣΠ(2)
circuit C of size s computes a multilinear polynomial of the form

f(x1, . . . , xn) = gcd(C) · sim(C) = G · (T1 + T2) = G1 · . . . Gr ·

(

d1
∏

i=1

Pi +

d2
∏

i=1

Qi

)

, (3)

where {Gi}i∈[r], {Pi}i∈[d1] and {Qi}i∈[d2] are sets of variable-disjoint s-sparse multilinear polynomials. Here,
gcd(T1, T2) = 1 and ||C|| = max{||T1||, ||T2||}.

We are now ready to state our main theorem. In the formal statement below, we will assume that the
function f given by the blackbox is computable by a ΣΠΣΠ(2) circuit C satisfying certain nondegeneracy
conditions, namely, ‖C‖ > 4s4 and degm(C) ≥ 3. In Section 4.4, we will see that if C does not satisfy these
conditions, then there is an easy interpolation-based solution to produce a ΣΠΣΠ(2) circuit for f that is only
polynomially larger than C. We choose to state the formal theorem with the these mild technical assumptions
on C since, in this case, our algorithm actually produces essentially “the unique” C computing f . In other
words, except under the degeneracy conditions, our reconstruction algorithm has the stronger guarantee of
producing the optimal ΣΠΣΠ(2) circuit computing f .

Theorem 1. Let f ∈ F[x1, . . . , xn] be the polynomial computed by a multilinear ΣΠΣΠ(2) circuit C of size s
with ‖C‖ > 4s4 and degm(C) ≥ 3. Then, there is a randomized algorithm which, given blackbox access to f
and the parameters n and s, outputs C in time poly(n, s, cmax), where cmax is the maximum bit length of any
coefficient appearing in f . When |F| < n5, the algorithm should be allowed to make queries to f from a suitable
polynomial-sized extension6field of F.

1.2 Basic idea and approach

In this section we give an overview of our algorithm. Towards this end we need to introduce some terminology.
A polynomial f ∈ F[Xn] is said to depend on a variable x if the derivative of f w.r.t x, denoted by ∂f

∂x := f |x=1−
f |x=0, is non-zero. The variable-set of f , denoted var(f) is defined to be the set {x | x ∈ Xn, f depends on x}.
Observe that the irreducible factors of a multilinear polynomial depend on disjoint sets of variables. We now
define a binary operator Dx : F[Xn] × F[Xn] 7→ F[Xn] and a unary operator ∆xy : F[Xn] 7→ F[Xn]. For
polynomials P,Q ∈ F[Xn] and variables x, y ∈ Xn define 7

Dx(P,Q) :=

∣

∣

∣

∣

∣

∣

∂P
∂x P |x=0

∂Q
∂x Q|x=0

∣

∣

∣

∣

∣

∣

=
∂P

∂x
·Q|x=0 −

∂Q

∂x
· P |x=0.

while

∆xy(P) := Dy(
∂P

∂x
, P |x=0) = (P |x=0,y=0 · P |x=1,y=1)− (P |x=1,y=0 · P |x=0,y=1) .

These two operators have many nice properties and these are given in Section 2. With this small piece of
terminology in hand we are now ready to give an overview of the algorithm.

Suppose we have blackbox access to the output polynomial f of a multilinear ΣΠΣΠ(2) circuit C as in
equation (3). By querying f at points of our choice, we want to recover C. How can we do this? We first
give the basic idea by describing how the algorithm works for a generic instance of our problem (this notion is
made precise below). There will however be a number of degenerate/boundary cases8 which will be addressed
later. We will say that a polynomial f admitting a representation of the form (3), is a generic instance of our
problem if the following additional conditions are satisfied.

1. G = 1 and d1 ≥ 3 and d2 ≥ 3.

6We can assume this w.l.o.g. since if F is small, then a large enough extension F′ of F can be found using the deterministic
poly(log |F′|)-time method of Adleman & Lenstra [AL86].

7The Dx operator was defined and used in [KMSV10, SV11] to analyze multilinear ΣΠΣΠ(2) circuits.
8Indeed a particularly important degenerate case, to be handled later, is when the unknown circuit is set-multilinear, i.e. when

the two multiplication gates induce the same partition on the variable set.

3

2. There exist variables x, y, u, v ∈ (var(T1) ∩ var(T2)) ⊆ var(f) and factors P1, P2, Q1, Q2 such that:

(a) x ∈ var(P1) ∩ var(Q1) while y ∈ var(P1) \ (var(Q1) ∪ var(Q2))

(b) u ∈ var(P2) ∩ var(Q2) while v ∈ var(Q2) \ (var(P1) ∪ var(P2))

3. var(P2) ∩ var(Q1) is non-empty.

First note that the assumption G = 1 means that the input polynomial f admits a representation of the form

f(x1, . . . , xn) = T1 + T2 =

(

d1
∏

i=1

Pi

)

+

(

d2
∏

i=1

Qi

)

.

Also note that given a candidate solution, i.e. given the Pi’s and the Qi’s, we can verify the correctness of
the solution in randomized polynomial time by applying the DeMillo-Lipton-Schwartz-Zippel identity testing
algorithm to the above equation. Indeed, it suffices to determine the Pi’s and Qi’s upto scalar multiples because
given polynomials f, T1 and T2 we can determine the set of all scalars α1, α2 ∈ F such that9

f = α1 · T1 + α2 · T2.

We nondeterministically guess the 4-tuple of variables (x, y, u, v) satisfying the above properties10. So given f ,
how do we determine the Pi’s and Qi’s (upto scalar multiples)? The idea is to look at the polynomial ∆xy(f).

The key observation is that the polynomial P2 is a factor of ∆xy(f)
11. We therefore compute ∆xy(f) and

factor it. We then nondeterministically guess the correct P2 from among the list of irreducible factors of ∆xy(f)
(there are at most 2n of them). In a similar manner, using u, v, we obtain Q1. We now a pick a variable, say
z ∈ var(P2) ∩ var(Q1) and compute the polynomials Dz(f, P2) and Dz(Q1, P2). It turns out that

Dz(f, P2) = Dz(Q1, P2) · (Q2 ·Q3 · . . . Qd2)

and moreover thatDz(Q1, P2) is nonzero. Thus by factoring (Dz(f, P2)) / (Dz(Q1, P2)), we obtainQ2, Q3, . . . , Qd2 .
In a similar manner we obtain P1, P3, . . . , Pd1 and therefore the complete circuit for f . This completes our brief
description of the algorithm for a generic input. The actual algorithm, which must handle all the degenerate
cases including the set-multilinear one, is somewhat lengthier and more involved. We give below a summary of
the steps involved in the actual algorithm.

Multilinear ΣΠΣΠ(2) Reconstruction Program:

1. Obtain blackbox access to sim(C): This step computes G = gcd(C) and reduce us to the case when C
is simple. Note that every factor Gi of G is an s-sparse irreducible factor of f . We obtain G by showing
that the converse holds under some mild technical conditions (Lemma 11).

2. Determine a factor R of either T1 or T2 : We show that, under some mild technical conditions,
it is enough to determine such an R, i.e., given just such an s-sparse R, we can reconstruct C entirely.
Note that, by simplicity, any such R is a factor of exactly one of T1 or T2. We consider the blackbox
for Dx(T1 + T2, R), where x is any variable with a non-zero coefficient in R, and consider its s-sparse
multilinear irreducible factors. This would equal Dx(T2, R) = Q2 · . . . Qd2 · Dx(Q1, R) where, say, Q1

depends on x. As Qi’s are s-sparse multilinear, we would have obtained a list of s-sparse polynomials
containing these Qi’s. But unfortunately this list also has numerous “spurious” factors contributed by

9This is done by solving for α1 and α2 in the pair of linear equations obtained by making independent random substitutions of
the variables - cf. [Kay11].

10Our algorithm implements the nondeterministic guessing of an appropriate element of a list by iterating through the list. We
will make only a constant number of nondeterministic guesses and in all such cases, the list will be short enough (of polynomial
size) and a correct guess can be verified fast enough (in polynomial time) so that we can implement all the nondeterministic guesses
efficiently with only a polynomial overhead in the running time.

11This can be verified directly by expanding and simplifying ∆xy(f).

4

Dx(Q1, R). Momentarily assume that there exists a Qi (i ∈ [2..d2]) such that var(R) ∩ var(Qi) is non-
empty. In this situation we guess an appropriate Qi from among the polynomials in this list, and find a
variable z ∈ var(R) ∩ var(Qi). By looking at the polynomials

Dz(T1 + T2, Qi), Dz(T1 + T2, R) and Dz(R,Qi),

and proceeding as in the solution to the generic case described above, we can obtain all the Pj ’s and all
the Qj ’s. In general however there need not exist not exist any Qi in the list for which var(R) ∩ var(Qi)
is non-empty. With some more work involving some careful analysis of such a situation, we show that all
a complete solution can always be obtained given just the one factor R of T1.

3. Reduce to the case when T1 and T2 have the same variable sets : If the variable sets of T1 and
T2 are different, then there exists a variable x (which we nondeterministically guess) such that exactly
one of T1 or T2 depends on x - say T1 depends on x. Also x would occur in exactly one of the Pi’s, say
P1, and hence the coefficient of x in f would have P2, . . . , Pd1 as its factors (along with some spurious
factors contributed by the coefficient of x in P1). We nondeterministically guess a correct Pi as before.

4. Reduce to the case when T1, T2 have the same partition : We show that if there exists a pair
of variables x, y (which we nondeterministically guess) such that x, y occur in the same factor T1 but in
different factors of T2 (or vice versa), then we can determine a Pi (or a Qi) by looking at the irreducible
factors of ∆xy(T1 + T2).

5. Determine the partition of T1, T2 : We show that if the partition given by the factorization of (T1+T2)
is different from the one given by T1 (or T2), then ∆xy(T1 + T2) yields either a Pi or a Qj for some pair
(x, y) of variables. Thus factoring (T1 + T2) and looking at the induced partition on the set of variables
gives us the the partition of T1, T2.

6. Reduce to the case of reconstructing set-multilinear ΣΠΣ(2) circuits : We are now reduced to
the case when T1 + T2 = P1(x̄1) · . . . Pd(x̄d) +Q1(x̄1) · . . . Qd(x̄d) and we know x̄i’s. We consider each set
of this partition at a time, say x̄i, and substitute the rest of the variables to random values over the field
F, twice, to obtain 2s-sparse polynomials Ri(x̄i) and Si(x̄i) such that, for some scalars ai, bi, ci, di ∈ F
such that aidi 6= bici, we have Pi = aiRi(x̄i) + biSi(x̄i) and Qi = ciRi(x̄i) + diSi(x̄i). We now have

T1 + T2 =
∏

i∈[d]

(aiRi(x̄i) + biSi(x̄i)) +
∏

i∈[d]

(ciRi(x̄i) + diSi(x̄i)),

where we know Ri’s and Si’s explicitly and we just have to determine the above scalars. At this point,
the problem can be reduced to a special case of the problem of reconstruction of depth three circuits with
bounded top fanin. has been examined by Shpilka and Karnin [Shp09, KS09] and Kayal [Kay11]. Using
ideas similar to these works we show that the above scalars can indeed be determined efficiently.

2 Preliminaries

Notation: [n] denotes the set {1, 2, . . . , n} and Xn denotes the set of variables {x1, . . . , xn}. For a polynomial
f , the homogenous degree-d part of f is denoted by f [d]. Tuples are indicated by placing a bar over a letter,
e.g. x̄. For a polynomial f ∈ F[Xn] and α ∈ F, fx=α denotes f with the variable x substituted to α. A
multilinear polynomial f ∈ F[Xn] is said to depend on a variable x if the derivative of f w.r.t x, denoted by
∂f
∂x := f |x=1 − f |x=0, is non-zero. Intuitively, ∂f

∂x is the coefficient polynomial of x in the sum of monomials
representation of f . Let the variable-set of f be var(f) := {x | x ∈ Xn, f depends on x}. Observe that the
irreducible factors of a multilinear polynomial depend on disjoint sets of variables. If f1 ·. . . fk is the factorization
of a multilinear polynomial f , then par(f) := {var(fi)}i∈[k] is defined to be the partition of f . Two polynomials
f, g ∈ F[Xn] are said to be linearly dependent, abbreviated LD, and denoted by f ∼ g, if ∃α, β ∈ F such that
αf = βg; otherwise, they are linearly independent, abbreviated LI.

5

Blackbox PIT: The following well-known lemma immediately implies a randomized algorithm for Polynomial
Identity Testing (PIT).

Lemma 1 (DeMillo-Lipton-Schwartz-Zippel [Sch80, Zip79, DL78]). Let f ∈ F[x1, . . . , xn] be a non-zero poly-
nomial of degree d ≥ 0. Let S be a finite subset of F and let r1, . . . , rn be selected randomly from S. Then
Pr[f(r1, r2, . . . , rn) = 0] ≤ d

|S| .

Kaltofen’s Blackbox Factoring: We state the multivariate blackbox factoring algorithm by Kaltofen &
Trager [Kal89, KT90] (we assume |F| > n5).

Lemma 2 (Kaltofen’s Blackbox Factoring [Kal89, KT90]). There is a randomized algorithm which, given
blackbox access to a degree-d polynomial f ∈ F[x1, . . . , xn] and the parameters n and d, with probability 1−2−Ω(n),
outputs blackboxes to all the irreducible factors of f (with their respective multiplicities) in time K(n, d, cmax) =
poly(n, d, cmax) where cmax is the maximum bit length of any coefficient appearing in f .

Interpolation of Sparse Polynomials: There are many interpolation algorithms known for the class of ΣΠ
circuits, which are essentially sparse polynomials (see [KS01] and references within).

Lemma 3 (Sparse Interpolation [KS01]). Given blackbox access to a degree-d s-sparse polynomial f ∈ F[x1, . . . , xn],
we can determine the monomials of f with their coefficients in time I(n, d, s, cmax) = poly(n, d, s, cmax) where
cmax is the maximum bit length of any coefficient appearing in f . If |F| < (nd)6, we are allowed to make queries
over an appropriate polynomial-sized extension of F.

Determining the coefficient of a given monomial: Although for general polynomials this problem is
#P-complete (over Q), it is easy for multilinear polynomials. For this we would need the following lemma from
our previous work.

Lemma 4 ([GKL11]). Let F be a field with at least d + 1 elements and f ∈ F[Xn] be a degree-d polynomial.
Given blackbox access to f and r, we can simulate blackbox access to f [r] in time poly(n, d).

Lemma 5 (Determining a coefficient). Let F be a field with at least n + 1 elements and f ∈ F[Xn] be a
multilinear polynomial. Given blackbox access to f and a set S ⊆ Xn, we can determine the coefficient of MS

in f in time poly(n), where MS denotes the monomial
∏

x∈S x.

Proof. In time poly(n), using Lemma 4, obtain the blackbox for f [|S|]. For all x ∈ Xn, substitute x to 1 if
x ∈ S and 0 otherwise. Clearly the value obtained is the coefficient of MS as every other degree-|S| monomial
will have at least one variable from Xn\S and hence would vanish. �

2.1 The Operators Dx and ∆xy

Recall the definitions of the operators Dx and ∆xy from Section 1.2, repeated here for convenience.

Definition (The Dx Operator12). The binary operator Dx : F[Xn]× F[Xn] 7→ F[Xn] is defined as follows. For
polynomials P,Q ∈ F[Xn] and a variable x ∈ Xn,

Dx(P,Q) :=

∣

∣

∣

∣

∣

∣

∂P
∂x P |x=0

∂Q
∂x Q|x=0

∣

∣

∣

∣

∣

∣

=
∂P

∂x
·Q|x=0 −

∂Q

∂x
· P |x=0.

Definition (The ∆xy Operator). The unary operator ∆xy : F[Xn] 7→ F[Xn] is defined as follows. For a
polynomial P ∈ F[Xn] and variables x, y ∈ Xn,

∆xy(P) := Dy(
∂P

∂x
, P |x=0) = (P |x=0,y=0 · P |x=1,y=1)− (P |x=1,y=0 · P |x=0,y=1) .

12The operator Dx was defined and used in [KMSV10, SV11] to prove structural results about multilinear ΣΠΣΠ(2) identities
ultimately leading to a blackbox PIT algorithm for multilinear ΣΠΣΠ(k) circuits with bounded top fanin.

6

It is easy to see that Dx is a bilinear operator and satisfies the following useful properties.

Lemma 6 (Properties of Dx operator, [SV11]). Let P,Q,R ∈ F[Xn] be multilinear polynomials, x ∈ Xn and
α, β ∈ F. Then the following properties hold:

1. Dx(P +R,Q) = Dx(P,Q) +Dx(R,Q)

2. If x /∈ var(R) then Dx(R · P,Q) = R ·Dx(P,Q)

3. Dx(Q,P) = −Dx(P,Q)

4. If x 6= y then Dx(P |y=α, Q|y=α) = Dx(P,Q)|y=α

5. If P is irreducible and x ∈ var(P) then Dx(Q,P) ≡ 0 iff P | Q

6. If x ∈ var(P) and Q 6≡ 0 then Dx(Q,P) ≡ 0 iff x ∈ var(gcd(Q,P))

Meanwhile, ∆xy captures the irreducibility of a multilinear polynomial in the following manner.

Corollary 1. For a multilinear polynomial P ∈ F[Xn] and a pair of variables x, y ∈ var(P), ∆xy(P) ≡ 0 if
and only if the (unique) irreducible factor of P which depends on x is distinct from the irreducible factor which
depends on y. In particular, P is reducible iff ∃x 6= y ∈ var(P) such that ∆xy(P) ≡ 0.

In fact, the ∆xy operator has some really neat properties given below (including the above corollary).

Proposition 1 (Properties of ∆xy operator). Let P,Q,R be multilinear polynomials, x, y, z be variables and
α, β ∈ F. Then the following properties hold.

1. ∆xy(P) = −∆yx(P).

2. If x, y /∈ var(R) then ∆xy(R · P) = R2 ·∆xy(P). In particular ∆xy(α · P) = α2 ·∆xy(P).

3. If z 6= x, y then ∆xy(P)|z=α = ∆xy(P |z=α).

4. If x /∈ var(P) then ∆xy(P) = 0.

5. If P is irreducible and x, y ∈ var(P) then ∆xy(P) 6= 0.

6. ∆xy(P) is nonzero if and only if x, y ∈ var(P) and occur in the same irreducible factor of P . In particular,
P is irreducible if and only if ∆xy(P) is nonzero for all x, y ∈ var(P).

7.

∆xy(P +Q) = ∆xy(P) +Dy(P |x=1, Q|x=0)−Dy(P |x=0, Q|x=1) + ∆xy(Q)

= ∆xy(P) +Dx(P |y=1, Q|y=0)−Dx(P |y=0, Q|y=1) + ∆xy(Q)

8. If ∆xy(Q) = 0 and x, y /∈ var(R) then R divides ∆xy(R · P +Q).

These operators turn out to be very informative and useful in understanding multilinear circuits. We would
be heavily using the above properties of the Dx and ∆xy operators to devise our reconstruction algorithms
for the class of multilinear ΣΠΣΠ(2) circuits. Note that, by definition, the Dx operator is nothing but the
resultant of two polynomials in F(Xn \ {x})[x] that are linear in x. As expected, it inherits all the properties
of the resultant operator. Intuitively, the Dx operator can be interpreted as an indirect way of working modulo
polynomials. Note that for any field F, although F[Xn] is a unique factorization domain (UFD), the same is not
true for its factor rings, for e.g. F[Xn]/(x1x2−x3x4). As many of the techniques involved in the previous works
on reconstruction algorithms (especially for ΣΠΣ(k) circuits) involved working over factor rings modulo affine
forms, directly extending these techniques to the depth-4 case seems difficult. While working modulo a set of
polynomials, one usually has to fix an admissable monomial ordering and do computations using the reduced
Gröbner basis of the ideal generated by these polynomials. For more details, see the book by Cox, Little, and
O’Shea [CLO97].

7

3 Reconstructing Multilinear ΣΠΣ(2) Circuits

In this section, we present a reconstruction algorithm for multilinear ΣΠΣ(2) circuits. Our main theorem for
depth-3 is

Theorem 2. Let f ∈ F[x1, . . . , xn] be the polynomial computed by a multilinear ΣΠΣ(2) circuit C. There is
a randomized algorithm SPSRECON which, given blackbox access to f and the parameter n, outputs C in time
poly(n, cmax), where cmax is the maximum bit length of any coefficient appearing in f . When |F| < n5, the
algorithm is allowed to make queries to f from a suitable polynomial-sized extension field13 of F.

As already mentioned, our algorithm will be more or less based on the steps described earlier in Section 1.2.
Recall that the polynomial produced by such a circuit C has the form

f(Xn) = G · (T1 + T2) = G1 · . . . ·Gr ·

(

d1
∏

i=1

Li(Si) +

d2
∏

i=1

Mi(S
′
i)

)

, (4)

where gcd(T1, T2) = 1, Gi’s, Li’s, and Mi’s are linear polynomials, and par(T1) = {Si}i∈[d1] and par(T2) =
{S′i}i∈[d2] are partitions of var(T1 + T2). We say C is set-multilinear if these partitions are same.

3.1 Obtaining blackbox access to sim(C)

The following lemma (first proved in [Shp09]; reproved below for completeness) immediately results in Step 1.

Lemma 7. Let f ∈ F[Xn] be the polynomial computed by a multilinear ΣΠΣ(2) circuit C as given in equation
(4) such that it is not a product of linear polynomials. Then for any linear polynomial ℓ we have ℓ | f ⇐⇒ ℓ | G.

Proof. Clearly if ℓ | G then ℓ | f as G | f . For the converse, suppose ℓ ∤ G. Then we have that ℓ | T1 + T2 or
T1 ≡ T2 (mod ℓ). Now if ℓ | T1 then ℓ | T2 and hence ℓ | gcd(T1, T2), a contradiction. Hence ℓ 6 | T1, T2. Let
x ∈ var(ℓ) with α as its coefficient in ℓ. Let ℓ = αx+ ℓ′. Also w.l.o.g. let x ∈ S1, S

′
1. Hence,

T1 ≡ T2 (mod ℓ) ⇐⇒ L1|x=−ℓ′/α

d1
∏

i=2

Li(Si) = M1|x=−ℓ′/α

d2
∏

i=2

Mi(S
′
i).

As gcd(T1, T2) = 1 the above can hold only if d1, d2 < 3. But if degree of T1 + T2 is at most 2, then it is of
the form ℓm for some linear m and hence f is a product of linear polynomials, a contradiction. �

Hence, determining linear factors of f completely determines gcd(C) and from this it is easy to obtain
blackbox access to sim(C) = f/ gcd(C)14.

3.2 Reconstructing when a factor of one of the product gates is known

In the following lemma, we prove the claim we made in Step 2 of our program, which essentially says that,
for the purpose of reconstruction of a simple circuit C, it is enough to determine a factor of any one of the
multiplication gates T1, T2.

Lemma 8. Let f ∈ F[Xn] be the polynomial computed by the following simple multilinear ΣΠΣ(2) circuit C,
where Li’s and Mi’s are linear functions and {Si}i∈[d1] and {S

′
i}i∈[d2] are partitions of Xn,

f(Xn) = T1 + T2 =

d1
∏

i=1

Li(Si) +

d2
∏

i=1

Mi(S
′
i). (5)

Given blackbox access to f and the linear function L1 explicitly, algorithm RECONFACTOR described below outputs
the Li’s and Mi’s in time poly(n, cmax), where cmax is the maximum bit length of any coefficient in f .

13We can assume this w.l.o.g. since, if F is small, then a large enough extension F′ of F can be found using the deterministic
poly(log |F′|)-time method of Adleman & Lenstra [AL86].

14Since variable sets of sim(C), gcd(C) are disjoint, the value of sim(C) for any assignment to its variable set can be determined
by simply choosing a random assignment for the variables in Xn\var(sim(C)). This is easy to do and we omit the details.

8

Algorithm : RECONFACTOR(n,Of , L1).
Input: oracle Of for the polynomial f ∈ F[Xn] computable by a simple multilinear ΣΠΣ(2) circuit C as given
in equation (5) and a linear factor L1 of T1.
Output: sets of linear functions {L1, . . . , Ld1}, {M1, . . . ,Md2} s.t. equation (5) holds or FAIL.

1. Product of linear functions case : Using Algorithm 2, obtain blackboxes for the factors of f . For every
factor g determine if it is linear as follows. For any xi ∈ Xn, gi = g|xi=1 − g|xi=0 is the coefficient
polynomial of xi in g. For all gi’s, using blackbox-PIT on gi|xj=1 − gi|xj=0, determine if gi depends on
some xj . If all non-zero gi’s are independent of Xn, then g is linear. If any factor is linear, by Lemma 7
all the factors are linear, and so simply interpolate them and output a multilinear ΠΣ circuit for f .

2. var(L1) * var(T2) case : By iterating over x ∈ var(L1) guess a variable x (if it exists) such that x /∈ var(T2).
Let L1 = αx + L′1 and obtain the blackbox for f |x=−L′1/α. Obtain its linear factors M ′

1, . . . ,M
′
d2

as
described above and check if they are on disjoint sets of variables. If not, proceed to next x, else obtain
the blackbox for f − f |x=−L′1/α, factorize it, and check the linearity of its factors. If all the factors
L′1, . . . , L

′
d1

are linear then simply output the sets {M ′
1, . . . ,M

′
d2
} and {L′1, . . . , L

′
d1
}.

3. Pick any x ∈ var(L1) and let L1 = αx + L′1. Obtain the blackbox for f |x=−L′1/α, factorize it and obtain
its factors M ′

1, . . . ,M
′
d2

(if any factor is non-linear output FAIL). If d2 ≤ 2 proceed to Step 5 that handles
the low degree cases. Since exactly one of the Mi’s depends on x, exactly one of the obtained M ′

i ’s is
“corrupted”.

4. Guess this corrupted factor by iteration, i.e, for every i ∈ [d2] do:

(a) Assume that ∀j ∈ [d2] \ {i}, Mj = M ′
j and pick such a factor Mj of T2.

(b) Repeat all the above steps for Mj as a factor of T2 to get a list of all the correct Li’s except one. By
iterating over this list of Li’s as above guess the corrupted factor.

(c) Hence w.l.o.g. assuming that we correctly know L1, . . . , Ld1−1 and M1, . . . ,Md2−1, determine Ld1

and Md2 as follows.

i. If var(Li) ∩ var(Mj) 6= ∅ for some i, j, 1 ≤ i ≤ d1 − 1 and 1 ≤ j ≤ d2 − 1. Let Mi =
αx + M ′

i then we can obtain the blackbox for f |x=−M ′

i/α
and its linear factors. One of these

factors would be Lj |x=−M ′

i/α
(after easily taking care of a scalar multiple) and the rest would be

L1, . . . , Lj−1, Lj+1, . . . , Ld1 . Hence we know Li’s, from which we can determine Mi’s by factoring
f −

∏

i Li. Using blackbox-PIT check if these linear functions form a multilinear ΣΠΣ(2) circuit
satisfying equation (5). If they do, output {M1, . . . ,Md2}, {L1, . . . , Ld1}, else proceed.

ii. So, we have var(Li) ∩ var(Mj) = ∅ for all i, j, 1 ≤ i ≤ d1 − 1 and 1 ≤ j ≤ d2 − 1. By
factoring f |M1=0 and f |M2=0 (and knowing L1, . . . , Ld1−1), exactly determine Ld1(mod M1) and
Ld1(modM2).Let φ : Fn+1 7→ Fn+1 be an invertible linear transformation15 such that φ(M1) = y1
and φ(M2) = y2 (as M1,M2 are LI). Hence, from above, we exactly know φ(Ld1)(mod y1) and
φ(Ld1)(mod y2) from which we can easily determine φ(Ld1), and then Ld1 using φ

−1. Again check
if the obtained candidate polynomials form a multilinear ΣΠΣ(2) circuit satisfying equation (5);
else proceed to next i ∈ [d2] if it exists or FAIL.

5. Low-degree cases:

(a) Case d1 ≥ 3, d2 ≤ 1. Pick any x ∈ var(L1) and guess any y ∈ var(L2) (also w.l.o.g. let the coefficient
of y in L2 be 1). Factorize the coefficient polynomial of xy in f (scaled by the inverse of the coefficient
of x in L1) to get the factors L3, . . . , Ld1 . Pick any z ∈ var(L3). Factorize the coefficient polynomial
of xz in f (scaled by the inverse of the coefficient of z in L3) to get L2. Having determined all the
Li’s we can determine M1 from f −

∏

i Li.

15affine forms on Xn can be viewed as linear forms on Xn ∪ {xn+1}

9

(b) Case d1 ≤ 1, d2 ≥ 3. As done above, we can pick any x ∈ var(L1) with L1 = αx + L′1, obtain the
blackbox for f |x=−L′1/α, factorize it and obtain its linear factors M ′

1, . . . ,M
′
d2

and guess the corrupt
factor by iteration. As d2 ≥ 3 this case reduces to the previous case.

(c) Case d1 ≥ 3, d2 = 2. As done above we are reduced to the stage when we know L1, . . . , Ld1−1 and
M1. We can determine M2 as in step 4c and after.

(d) Case d1 = 2, d2 ≥ 3. Reduces to the previous case, using the same the argument as in step 5b.

(e) Case d1 = 2, d2 = 1. Compute the degree 2 homogenous part and factor it to get L2L
′
1 where L′1 is

the degree 1 part of L1. Take M1 to be f − L2L1.

(f) Case d1 = 2, d2 = 1. Reduces to the previous case, using the same the argument as above.

(g) Case d1 = d2 = 2. As done above, we are reduced to the stage when we know L1 and M1. From 4c we
are done if they share a common variable. Let φ : Fn+1 7→ Fn+1 be an invertible linear transformation
such that φ(L1) = y1 and φ(M1) = y2 and only the xi’s in var(L1) depend on y1 and only the xi’s in
var(M1) depend on y2. Hence we know M ′

2 = φ(M2)(mod y1) and L′2 = φ(L2)(mod y2). Determine
α, the coefficient of y1y2 in φ(f). Then φ(f) can be represented as y1(αy2+L′2)+ y2M

′
2, from which

we can determine L2,M2.

Proof. Before we analyze the correctness, let’s verify the running time. From the test described in step 1, the
linearity of a multilinear polynomial can be tested in O(n3) time. In step 1, the time to factorize a multilinear
polynomial is K(n, n, cmax). Checking linearity of at most n factors can be done in O(n4) time and interpolation
in n.I(n, n, n, cmax) time. In step 2, for each of at most n variables, we spend at most K(n, 2n, cmax) time to
factorize, O(n3) time to determine the variable sets of factors and repeat this step for another polynomial.
In step 3, to factorize and testing linearity the time spent is again poly(K(n, 2n, cmax)). It follows that the
substeps (c) and (d) can clearly be done in time poly(K(n, 2n, cmax), I(n, n, n, cmax)) which includes inverting
a matrix of dimension n + 1, factoring, identity testing, etc. As we iterate over pairs of corrupted factors in
two lists with at most n factors, the time taken is n2 times the total time taken till now. Each of the low
degree cases take time at most the time required till now and hence the algorithm runs in time poly(n, cmax).
Blackboxes to homogenous components can be found as in Lemma 4. Repeating poly(n) times we can make the
failure probability of blackbox-PIT to be 2−Ω(n). Again, using repetition and blackbox-PIT, failure probability
of Algorithm 2 can be made to be 2−Ω(n). Hence using union bound the failure probability of the algorithm is
2−Ω(n).
Correctness: We will show the above algorithm succeeds in at least one of the steps based on the cases handled
by those steps.

The first step handles the degenerate case that C is in fact a ΠΣ circuit in an obvious way.
Suppose first that var(L1) 6⊆ var(T2). Let x ∈ var(L1) \ var(T2) and let L1 = αx+ L′1. Then,

f |x=−L′1/α = L1|x=−L′1/α ·
d1
∏

i=2

Li(Si) +

d2
∏

i=1

Mi(S
′
i)|x=−L′1/α =

d2
∏

i=1

Mi(S
′
i) = T2.

Hence after factoring f |x=−L′1/α, Step 2 would have the correct Mi’s and factoring f − f |x=−L′1/α would result
in the correct Li’s.

Thus we can assume var(L1) ⊆ var(T2). We will first assume d1, d2 ≥ 3 and handle the remaining possibilities
in Step 5 of the algorithm and verify their correctness later. Suppose, for instance, x ∈ S1 ∩ S′d2 with L1 =
αx+ L′1. Then,

f |x=−L′1/α = L1|x=−L′1/α ·
d1
∏

i=2

Li(Si) + Md2 |x=−L′1/α ·
d2−1
∏

i=1

Mi(S
′
i) = Md2 |x=−L′1/α ·

d2−1
∏

i=1

Mi(S
′
i).

Note thatMd2 |x=−L′1/α = Md2 (mod L1) is a non-zero linear function as C is simple. We call this the “corrupted”
linear form of T2. Moreover, for a given x ∈ var(L1), there is a unique linear form of T2 that is corrupted.

10

Hence, in general, after factoring f |x=−L′1/α we have a list of d2 linear functions such that all of them are factors
of T2 except one that is corrupted.

Since there’s no direct way to determine which factor of T2 is corrupted, we guess it nondeterministically ; in
reality, the algorithm implements this guess by iterating through all the factors of f |x=−L′1/α assuming each of
them to be the corrupt one and checking if this guess is correct (note that this checking can be done efficiently).
So, we assume, for concreteness, that the corrupted factor is Md2 and analyze the algorithm. At this stage,
the algorithm knows a correct factor of T2, say M1, w.l.o.g. (recall we are assuming d2 ≥ 3). Using M1 as a
factor T2 repeat the previous steps (which we did for L1 as a factor of T1). This will result is determining all
but one of the factors of T1 (or succeeding already in producing the circuit). Again, assume w.l.o.g. that these
are L1, . . . , Ld1−1.

So, we just need to determine Ld1 and Md2 at this point. In step 4(c), we check if any Mi and Lj

depend on a common variable x and, if they do, then determine T1 straightaway as follows. W.l.o.g., suppose
x ∈ var(M1) ∩ var(L1) and M1 = αx+M ′

1. Then,

f |x=−M ′

1/α
= L1|x=−M ′

1/α
·

d1
∏

i=2

Li(Si) + M1|x=−M ′

1/α
·

d2
∏

i=2

Mi(S
′
i) = L1|x=−M ′

1/α
·
d1−1
∏

i=2

Li(Si) · Ld1 .

Since we know L1, we can compute L1|x=−M ′

1/α
and we also know L2, . . . , Ld1−1. Using these we can determine

Ld1 . Hence T1 will be completely determined. Then using f − T1, all the Mi’s will be determined.
On the other hand, suppose none of the Li and Mj share a common variable. . Since d2 ≥ 3 and we know

L1, . . . , Ld1−1, in Step 4(c.ii), we determine Ld1 (mod M1) and Ld1 (mod M2) after factoring f (mod M1) and
f (mod M2). We then compute an invertible linear transformation φ such that φ(M1) = y1 and φ(M2) = y2 (as
M1,M2 have disjoint variable sets). Hence, we exactly know φ(Ld1)(mod y1) and φ(Ld1)(mod y2) using which
it is trivial to determine φ(Ld1) (which will be unique) and then Ld1 , using φ−1, which will again be unique.

Low degree cases: As already analyzed, the only possibility for the steps 1-3 to not succeed are that either
d1 ≤ 2 or d2 ≤ 2 which are handled in the remaining steps. We only analyze one of these cases as the rest
either follow from above or are self-explanatory. Suppose d1 ≥ 3, d2 ≤ 1. The algorithm picks an x ∈ var(L1)
and guesses a y ∈ var(L2). We have,

f(Xn) = T1 + T2 = (αx+ L′1)(y + L′2)(βz + L′3)

d1
∏

i=4

Li(Si) +M.

The coefficient polynomial of xy in f , scaled by α−1, is L3 · . . . Ld1 which can be factorized to obtain L3, . . . , Ld1 .
The coefficient polynomial of xz in f , scaled by β−1, is α(y + L′2) · L4 · . . . Ld1 . As Li’s are on disjoint sets
of variables we can factor the obtained polynomial and determine (y + L′2) after scaling it to make y monic.
Having determined all the Li’s determining M1 from f −

∏

i Li is trivial. �

3.3 Reconstructing Set-Multilinear ΣΠΣ(2) Circuits

Having reduced the problem of reconstructing a multilinear ΣΠΣ(2) circuit C to that of computing a non-
trivial factor of any of the multiplication gates of sim(C), we now present an algorithm below (Lemma 9) to
exactly reconstruct set-multilinear ΣΠΣ(2) circuits. We will be using this algorithm in the final step of our
reconstruction algorithm for multilinear ΣΠΣ(2) circuits to prove Theorem 2. We note that the ideas used in
the following algorithm are similar to those used in a recent result of Kayal [Kay11] on reconstructing general
ΣΠΣ(k) circuits (over an arbitrary F) satisfying certain mild technical conditions.

Lemma 9. Let f ∈ F[Xn] be computed by the following simple set-multilinear ΣΠΣ(2) circuit where Li’s, Mi’s
are linear forms

f(Xn) = T1 + T2 =

d
∏

i=1

Li(x̄i) +

d
∏

i=1

Mi(x̄i).

Then, given as input the partition {x̄i}i∈[d] and the blackbox to f , we can determine {Li}i∈[d], {Mi}i∈[d] in
randomized time poly(n, cmax), where cmax is the maximum bit length of any coefficient appearing in f .

11

Proof. If d = 1 then we can simply interpolate. Let d ≥ 2. Substitute all the variables in Xn\x̄1 to independent
random values over F (name this substitution R̄1) and interpolate to get the linear function L′1(x̄1). Let R̄2 be
another such independent substitution and M ′

1(x̄1) be the one obtained after interpolation. Then,

L′1(x̄1) = f(x̄1, R̄1) = αL1(x̄1) + βM1(x̄1) and M ′
1(x̄1) = f(x̄1, R̄2) = γL1(x̄1) + δM1(x̄1).

Clearly with probability 1−O(n)/|F| (recall that we assumed |F| > n5), α, β, γ, δ 6= 0. Also, from simplicity,
the polynomials

∏d
i=2 Li,

∏d
i=2Mi are LI and hence the polynomial α

∏d
i=2 Li − β

∏d
i=2Mi 6≡ 0. Now as R̄1,

R̄2 are independent substitutions, w.h.p. αδ−βγ = α
∏d

i=2 Li(R̄2)−β
∏d

i=2Mi(R̄2) 6= 0. Hence as L1,M1 are

LI linear forms, so are L′1,M
′
1. Now as

(α β
γ δ

)

is invertible, ∃p, q, r, s 6= 0 such that

L1(x̄1) = pL′1 + qM ′
1 and M1(x̄1) = rL′1 + sM ′

1.

Repeating this for every x̄i we have LI linear forms L′1, . . . , L
′
d,M

′
1, . . . ,M

′
d such that ∀i ∈ [d] :

Li(x̄i) = piL
′
i + qiM

′
i and Mi(x̄i) = riL

′
i + siM

′
i .

and hence, f(Xn) =
∏d

i=1(piL
′
i + qiM

′
i) +

∏d
i=1(riL

′
i + siM

′
i) = α

∏d
i=1(L

′
i + aiM

′
i) + β

∏d
i=1(L

′
i + biM

′
i), for

some α, β ∈ F. As we already have the L′i’s and M ′
i ’s we just need to determine α, β, ai’s, bi’s. Determine an

invertible linear transformation φ : Fn 7→ Fn such that ∀i ∈ [d] : φ(L′i) = yi, φ(M ′
i) = zi. We have,

φ(f)(y1, . . . , yd, z1, . . . , zd) = α
d
∏

i=1

(yi + aizi) + β
d
∏

i=1

(yi + bizi) (6)

Clearly, having φ−1 and blackbox access to f , we have blackbox access to φ(f)(y1, . . . , yd, z1, . . . , zd). Let d ≥ 3.
Substitute y4, . . . , z4, . . . randomly over F and interpolate the resulting sparse polynomial φ(f)′ where ai 6= bi
and w.h.p α′, β′ 6= 0

φ(f)′ = α′(y1 + a1z1)(y2 + a2z2)(y3 + a3z3) + β′(y1 + b1z1)(y2 + b2z2)(y3 + b3z3) (7)

= y3(c1.y1y2 + c2.z1y2 + c3.y1z2 + c4.z1z2) + z3(c5.y1y2 + c6.z1y2 + c7.y1z2 + c8.z1z2) (8)

:= y3.g(y1, y2, z1, z2) + z3.h(y1, y2, z1, z2) (9)

Note that we know ci’s. Substitute y1 = rz1 and y2 = sz2 to get,

z1z2[y3(c1.rs+ c2.s+ c3.r + c4) + z3(c5.rs+ c6.s+ c7.r + c8)] = y3.g(rz1, sz2, z1, z2) + z3.h(rz1, sz2, z1, z2)

and determine all the pairs (r, s) such that g(rz1, sz2, z1, z2) = h(rz1, sz2, z1, z2) = 0 i.e.

c1.rs+ c2.s+ c3.r + c4 = c5.rs+ c6.s+ c7.r + c8 = 0.

Eliminating rs from these equations results in a linear function using which one can solve r in terms of s and
substitute in one of the above equations to get a quadratic equation in s which can be easily solved. We now
show that there will exactly be two (r, s) pairs (−a1,−b2) and (−a2,−b1) that satisfy the above equations. For
such a pair (r, s), from equation (7) we have,

z1z2[α
′(r+a1)(s+a2)(y3+a3z3)+β′(r+ b1)(s+ b2)(y3+ b3z3)] = y3.g(rz1, sz2, z1, z2)+z3.h(rz1, sz2, z1, z2) = 0

But as (y3 + a3z3) and (y3 + b3z3) are LI, the only way this this equation holds is that (r + a1)(s + a2) =
(r + b1)(s + b2) = 0. As ai 6= bi, this exactly results in the two pairs (−a1,−b2) and (−a2,−b1). Also, as
ai 6= bi, repeating this process with coefficient polynomials of y2, z2 gives us a3, b3. Similarly, repeating this
procedure for y1, y2, yi, z1, z2, zi correctly and uniquely determines ai’s and bi’s. Having determined ai’s and bi’s,
we can determine α, β by evaluating φ(f)(ȳ, z̄) := αP (ȳ, z̄) + βQ(ȳ, z̄) at two independent, randomly chosen
substitutions S̄1 and S̄2 to get αP (S̄1) + βQ(S̄1) = µ1 and αP (S̄2) + βQ(S̄2) = µ2. As we know ai’s and bi’s,

12

from equation (6), we know P,Q. Again from the earlier argument w.h.p
(P (S̄1) Q(S̄1)

P (S̄2) Q(S̄2)

)

is invertible and hence

we can determine α, β.
Finally we handle the case when d = 2. Interpolate the sparse polynomial φ(f)(y1, y2, z1, z2) = (p1y1 +
q1z1)(p2y2 + q2z2) + (r1y1 + s1z1)(r2y2 + s2z2) = µ1y1y2 + µ2y1z2 + µ3z1y2 + µ4z1z2 to get the µi’s. Then this
equality can also be represented as,

(

p1 r1
q1 s1

)(

p2 q2
r2 s2

)

=

(

µ1 µ2

µ3 µ4

)

.

Clearly this equation has multiple solutions and hence φ(f) has multiple allowed representations. For our
purpose it is enough to choose any one and we choose φ(f) = (µ1y1 + µ3z1)y2 + (µ2y1 + µ4z1)z2. �

3.4 Proof of Theorem 2

We now combine all the ingredients from previous subsections to prove Theorem 2. We begin by presenting
the algorithm SPSRECON claimed in the theorem.

Algorithm : SPSRECON(n,Of)
Input: oracle Of for the polynomial f ∈ F[Xn] computable by a multilinear ΣΠΣ(2) circuit C as given in
equation (4).
Output: sets of linear functions {G1, . . . , Gr}, {L1, . . . , Ld1}, {M1, . . . ,Md2} s.t. equation (4) holds, else FAIL.

1. Obtaining Gi’s and oracle to sim(C) : Using Algorithm 2, obtain blackboxes for the factors of f and test
their linearity. Output the linear factors as Gi’s and define fs to be the product of non-linear factors. To
avoid introducing more notations we assume var(fs) = Xn.

2. var(T1) 6= var(T2) case : By iterating over x ∈ Xn guess a variable x (if it exists) such that either
x ∈ var(T1) but x /∈ var(T2) or vice versa. Obtain the coefficient polynomial of x, factorize it and
determine a linear factor ℓ, if it exists. If the output of RECONFACTOR(n,Ofs , ℓ) is FAIL, proceed, else test
whether the output {L′1, . . . , L

′
d1
}, {M ′

1, . . . ,M
′
d2
} form a multilinear ΣΠΣ(2) circuit for fs and if they do,

output these sets, else proceed.

3. Case d1 = 1 or d2 = 1. W.l.o.g. let d2 = 1. For d1 = 2, compute the degree 2 homogenous part and
factor it to get L1L2. Take M1 to be the linear part of fs. For d1 ≥ 3, iterate over x, y ∈ Xn to guess
an x ∈ var(L1) and a y ∈ var(L2). Factorize the coefficient polynomial of xy in fs and determine a linear
factor ℓ, if it exists. If the output of RECONFACTOR(n,Ofs , ℓ) is FAIL, proceed, else test whether the output
{L′1, . . . , L

′
d1
}, {M ′

1, . . . ,M
′
d2
} form a multilinear ΣΠΣ(2) circuit for fs and if they do, output these sets,

else proceed to the next pair.

4. par(T1) 6= par(T2) case : By iterating over pairs of distinct variables x, y ∈ Xn guess a pair x, y (if it
exists) such that x, y are in distinct sets of par(T1) but in one set of par(T2), or vice versa. Obtain the
coefficient polynomial of xy in fs, factorize it and determine a linear factor ℓ, if it exists. If the output of
RECONFACTOR(n,Ofs , ℓ) is FAIL, proceed, else test whether the output {L′1, . . . , L

′
d1
}, {M ′

1, . . . ,M
′
d2
} form

a multilinear ΣΠΣ(2) circuit for fs and if they do, output these sets, else proceed.

5. Case d1 = 2 or d2 = 2. W.l.o.g. let d2 = 2. If d1 ≥ 4, again as in step 3, we can guess a triplet (x, y, z) such
that x ∈ var(L1), y ∈ var(L2), z ∈ var(L3), factorize the coefficient polynomial of xyz in fs to get a linear
factor of T1 and use RECONFACTOR. If d1 = 3, again guess a pair x, y such that x ∈ var(L1), y ∈ var(L2),
factorize the coefficient polynomial of xy in fs to get a linear factor of T1 and use RECONFACTOR. Let
d1 = 2. By iterating over pairs of distinct variables x, y ∈ Xn guess a pair x, y (if it exists) such that x, y
are in distinct sets of par(T1) but in one set of par(T2), or vice versa. Obtain ∆xy(fs) and factorize it to
obtain at most 2 linear factors out of which, at least one would be a factor of T2. Use RECONFACTOR as
earlier. If no pair is successful then construct a partition of the variable set assuming that x 6= y are in
different sets iff the coefficient of xy in fs is non-zero, and use the following case.

13

6. Set-multilinear case : Let par(T1) = par(T2) = {x̄i}i∈[d]. Determine this partition by iterating over all
pairs of distinct variables x, y ∈ Xn and concluding that x, y are in the same set of the partition iff the
coefficient polynomial of xy in fs is 0. For each i ∈ [d], homogenize the linear forms on x̄i by a distinct
variable yi i.e. obtain the oracle for the polynomial fH

s = fs(
x̄1
y1
, . . . , x̄d

yd
) · y1 · . . . yd where x̄1

y1
= (x

y1
,)x∈x̄1 .

Using the oracle to fH
s and Algorithm 9 reconstruct the multilinear ΣΠΣ(2) circuit for fH

s in which
substitute the yi’s by 1 to obtain a multilinear ΣΠΣ(2) circuit for fs. Output the appropriate sets of
linear functions corresponding to Li’s and Mi’s.

Now, we prove the running time and correctness of the above algorithm.

Proof. Lets first bound the running time. In step 1, the time to factorize a multilinear polynomial isK(n, n, cmax).
Checking linearity of at most n factors can be done in O(n4) time and linear interpolation in n.I(n, n, n, cmax)
time. In step 2, for each of at most n variables, the time spent to factorize, test linearity, interpolating linear
factors and RECONFACTOR is again poly(n, cmax). In steps 3, 4 and 5, analysis is similar, except that we iterate
over O(n2) pairs or O(n3) triplets of variables. In step 6, again the time is poly(n, cmax). The failure probability
of the algorithm is 2−Ω(n) from an analysis similar to the one in the proof of Lemma 8.
Correctness : We will show that the above algorithm succeeds in at least one of the steps based on the cases
handled by those steps. Let f be the multilinear polynomial computed by a multilinear ΣΠΣ(2) circuit C, as
given in equation (4) restated below

f(Xn) = G · (T1 + T2) = G1 · . . . Gr ·

(

d1
∏

i=1

Li(Si) +

d2
∏

i=1

Mi(S
′
i)

)

From Lemma 7 it follows that Gi’s exactly comprise of the linear factors of f and hence fs is the polynomial
computed by sim(C). Now if var(T1) 6= var(T2) then w.l.o.g. say ∃x ∈ var(T1)\var(T2). In step 2, due to an
iteration over all the variables, this variable would be guessed in one of the iterations. W.l.o.g. let L1 = αx+L′1.
At this point c the coefficient polynomial of x would be αL2 · . . . Ld1 and on any linear factor ℓ from this list,
RECONFACTOR would correctly output the Li’s and Mi’s. The only possibility for this to not succeed is the case
when d1 = 1 which is handled in step 3 as if, say fs = L1 + (αx + M ′

1)(βy + M ′
2)M3 . . ., then in one of the

iterations the pair x, y would be guessed and the coefficient polynomial of xy would be αβM3 . . . which has
M3, . . . as its linear factors and hence RECONFACTOR would succeed.

Hence, the only possibility for steps 2-3 to not succeed is the case var(T1) = var(T2) and hence we are now
reduced to this case. Now if it is the case that par(T1) 6= par(T2) then, as var(T1) = var(T2), there would exist a
pair x, y such that w.l.o.g. x, y occur in the same linear factor of T2 but different factors of T1, say x occurs in
L1, y occurs in L2 but both x, y occur in M1. In one of the iterations, this pair would be guessed and we would
have the coefficient polynomial of xy to have L3, . . . as its linear factors. On any such factor RECONFACTOR

would correctly output the Li’s and Mi’s. The only possibility for this to not succeed is the case when d1 = 2
which is handled in step 5. If d2 ≥ 4 then the argument is similar to the one in the d1 = 1 case above. If d2 = 3,
and as var(T1) = var(T2), there would exist a pair x, y such that x, y occur in the same Li but different Mi’s,
as if not then either par(T2) = par(T1) or |par(T2)| = 1. Hence from a similar argument step 5 would succeed.
If d2 = 2 and par(T1) 6= par(T2) then w.l.o.g. , as before, a pair x, y would be guessed such that both occur in
the same linear factor of T2 but different factors of T1, say x occurs in L1, y occurs in L2 but both x, y occur
in M1. In this case, we leave it to the reader to verify that M2 | ∆xy(fs) 6≡ 0, as fs is irreducible of degree 2
(see Corollary 1).

The only possibility for steps 2-5 to not succeed is the case when var(T1) = var(T2), par(T1) = par(T2) and
d = d1 = d2 ≥ 3. Hence we are now reduced to the case when C is set-multilinear. First we show that step
6 correctly determines the partition i.e. for every pair of distinct variables x, y, the coefficient polynomial of
xy is zero iff they are in the same set of the partition. If they are in the same set then clearly it is 0. If they
are not, say fs = (αx+ L′1)(βy + L′2)L3 . . .+ (γx+M ′

1)(δy +M ′
2)M3 . . . then the coefficient polynomial of xy

would be αβL3 . . .+γδM3 If this is zero then, by set-multilinearity, we would have L3 ∼M3 which violates
simplicity. Having determined the correct partition, and homogenizing with distinct variables, we would be
assured that Algorithm 9 would correctly output the required linear forms. �

14

4 Reconstruction of Multilinear ΣΠΣΠ(2) Circuits

In this section, we prove our main result (Theorem 1) by presenting an algorithm to reconstruct multilinear
ΣΠΣΠ(2) circuits over an arbitrary field F. Recall that our primary objects of interest are polynomials of the
form given by

f(x1, . . . , xn) = gcd(C) · sim(C) = G · (T1 + T2) = G1 · . . . Gr ·

(

d1
∏

i=1

Pi +

d2
∏

i=1

Qi

)

, (10)

where {Gi}i∈[r], {Pi}i∈[d1] and {Qi}i∈[d2] are sets of variable-disjoint s-sparse irreducible multilinear polynomials.
The main ingredients of the proof, as in the case of depth-3, are: (i) obtaining blackbox access sim(C) by
separating out gcd(C), (ii) reconstructing when a factor of one of the Ti’s is known, and (iii) reconstructing set-
multilinear ΣΠΣΠ(2) circuits. The crucial difference is, whereas we had linear factors in the depth-3 case, here
we have s-sparse multilinear polynomials as factors. This difference makes the case of ΣΠΣΠ(2) reconstruction
significantly more intricate than ΣΠΣ(2) circuits.

Before we move on to the proof, as promised in the introduction, we will handle the degeneracy con-
ditions avoided in the formal statement of Theorem 1, namely, the conditions ‖C‖ ≤ 4s4 or degm(C) < 3. If
‖C‖ ≤ 4s4, we simply interpolate the polynomial as a ΣΠ circuit using Lemma 3 with sparsity parameter 8s4.
Clearly this is also a ΣΠΣΠ(2) circuit of size only polynomially larger than C. For the other condition, note
that if both d1 and d2 are at most 2, then ‖T1‖, ‖T2‖ ≤ s2 and this case has already been handled by the above
interpolation solution. So, we can assume that, say, d1 ≥ 3 and d2 ≤ 2. The arguments needed to handle these
cases are already contained in the proof to be given in Section 4.4. For example, if d1 ≥ 3 and d2 = 2, the
arguments when var(T1) = var(T2) but par(T1) 6= par(T2) that are used to justify Step 3 of algorithm SPSPRECON

would help find a factor Q2 of T2 and then we can use the algorithm SPSPFACTOR to completely reconstruct C
(note that we can, by now, assume that ‖C‖ ≥ 4s4. The other degenerate cases are handled similarly.

4.1 Obtaining blackbox access to sim(C)

Lemma 10 (Density Lemma). Let 0 6 ≡ P,Q ∈ F[Xn] be polynomials such that P is multilinear. Then
P | Q⇒ ||Q|| ≥ ||P ||.16

Proof. Let Q = P.R for some 0 6≡ R ∈ F[Xn] of degree at most d. The proof is via induction on |var(R)|. We
first reduce the claim to the case when var(R) ⊆ var(P). If var(R) = ∅, then R ∈ F∗ and hence the assertion
holds. For an x ∈ var(R)\var(P), let R =

∑d
i=0Ri.x

i for some R′is ∈ F[var(R)\{x}] and Rk 6≡ 0 for some

k ∈ [0 : d]. Then, Q =
∑d

i=0 P.Ri.x
i and hence ||Q|| =

∑d
i=0 ||P.Ri||. If ||P.Rk|| ≥ ||P || then ||Q|| ≥ ||P ||.

Hence w.l.o.g. we assume var(R) ⊆ var(P).
Let x ∈ var(R)∩var(P). Let P = P1x+P0 and R =

∑h
i=l Ri.x

i where P0, P1 ∈ F[var(P)\{x}] are multilinear
(also P1 6≡ 0) and R′is ∈ F[var(R)\{x}] are such that xh, xl are the highest and lowest powers of x appearing

in R respectively, i.e. Rh, Rl 6≡ 0. Then, Q = (P1x+ P0)(
∑h

i=l Ri.x
i) = P1.Rh.x

h+1 + . . .+ P0.Rl.x
l and hence

||Q|| ≥ ||P1.Rh|| + ||P0.Rl||. By induction hypothesis, ||P1.Rh|| ≥ ||P1|| and ||P0.Rl|| ≥ ||P0|| (when P0 6≡ 0).
Hence, ||Q|| ≥ ||P1||+ ||P0|| = ||P ||. If P0 ≡ 0 then still ||Q|| ≥ ||P1|| = ||P ||. �

Lemma 11. Let f ∈ F[Xn] be the polynomial computed by a multilinear ΣΠΣΠ(2) circuit C of size s with
||C|| ≥ 2s3 as given by equation (10). Then, for any s-sparse multilinear polynomial R, R | f ⇐⇒ R | G.

Proof. Clearly if R | G then R | f . For the converse, suppose R | f but R ∤ G and hence R | sim(C). Since any
s-sparse multilinear polynomial is a product of irreducible s-sparse multilinear polynomials, w.l.o.g. we show
a contradiction assuming R is irreducible. Since ||C|| = max{||T1||, ||T2||} > 2s3, w.l.o.g. let ||T1|| > 2s3. Let
x ∈ var(R). Then from Lemma 6 we have Dx(T1+T2, R) = Dx(T1, R)+Dx(T2, R) ≡ 0. Hence if Dx(T1, R) ≡ 0

16In general, for two polynomials P,Q, P | Q 6⇒||Q|| ≥ ||P ||. For instance
∑n−1

i=0 xi | xn − 1.

15

then Dx(T2, R) ≡ 0, and vice versa. But if Dx(T1, R) = Dx(T2, R) ≡ 0 then R | gcd(T1, T2) = 1 which is
contradiction. Hence Dx(T1, R), Dx(T2, R) 6≡ 0. W.l.o.g. let x ∈ var(P1) ∩ var(Q1). Then we have,

Dx(P1, R)

d1
∏

i=2

Pi = −Dx(Q1, R)

d2
∏

i=2

Qi.

Since gcd
(

∏d1
i=2 Pi,

∏d1
i=2Qi

)

= 1, we have
∏d1

i=2 Pi | Dx(Q1, R). As R,Q1 are s-sparse multilinear polynomials

we have ||Dx(Q1, R)|| ≤ 2s2. Also, since ||T1|| > 2s3 and P1 is s-sparse, ||
∏d1

i=2 Pi|| ≥ 2s2. But as
∏d1

i=2 Pi is

multilinear, from Lemma 10, ||
∏d1

i=2 Pi|| ≤ ||Dx(Q1, R)||, a contradiction. �

Given this lemma, we can obtain each of the Gi’s by first factoring f (Lemma 2) into irreducible factors
and then testing each of these factors if it is s-sparse (Lemma 3). By dividing f by the product G =

∏r
i=1Gi,

we obtain blackbox access for sim(C).

4.2 Determining a factor of any one of the product gates

The following lemma shows that for the purpose of reconstructing a simple multilinear ΣΠΣΠ(2) circuit (except
for a few boundary cases), it is enough to determine a factor of one of the two multiplication gates.

Lemma 12. Let f ∈ F[Xn] be the polynomial computed by the following simple multilinear ΣΠΣΠ(2) circuit C
of size s, where the Pi’s and the Qi’s are irreducible, {Si}i∈[d1] and {S

′
i}i∈[d2] are partitions of Xn, ||C|| > 4s3,

and d1, d2 ≥ 3:

f(Xn) = T1 + T2 =

d1
∏

i=1

Pi(Si) +

d2
∏

i=1

Qi(S
′
i). (11)

Given n, s, blackbox access to f , and the s-sparse polynomial P1 explicitly, there is a randomized algorithm
SPSPFACTOR that outputs the Pi’s and the Qi’s. The algorithm runs in time poly(n, s, cmax), where cmax is the
maximum bit length of any coefficient in f .

Before moving on to the proof of Lemma 12, we first show that it is enough to determine a factor of each
of the two multiplication gates, i.e., T1 and T2, such that these two factors depend on a common variable.

Lemma 13. Let f ∈ F[Xn] be the polynomial computed by a simple multilinear ΣΠΣΠ(2) circuit C of size s
as given in equation (11). Given n, s, blackbox access to f , and the irreducible multilinear polynomials P1 and
Q1 explicitly such that var(P1) ∩ var(Q1) 6= ∅, there is a randomized algorithm RECONPAIR described below that
outputs the Pi’s and Qi’s in time poly(n, s, cmax), where cmax is the maximum bit length of any coefficient in f .

Algorithm : RECONPAIR(n, s,Of , P1, Q1)
Input: oracle Of for the polynomial f ∈ F[Xn] computable by a simple size-s multilinear ΣΠΣΠ(2) circuit C
as given in equation (11) and irreducible factors P1 of T1 and Q1 of T2.
Output: sets of s-sparse irreducible polynomials {P1, . . . , Pd1}, {Q1, . . . , Qd2} s.t. equation (11) holds, else
FAIL.

1. Using blackbox-PIT determine an x ∈ var(P1) ∩ var(Q1), if it exists and if not, output FAIL. Obtain the
blackbox to Dx(Q1, P1) and output FAIL if it is zero. Else using Algorithm 2 compute the blackboxes
to the irreducible factors of Dx(Q1, P1) with their respective multiplicities. Determine the multilinearity
of each of these factors by testing the identity of the coefficient polynomial of x2 for every variable x.
Interpolate the multilinear s-sparse ones using Algorithm 3, aimed to interpolate s-sparse polynomials
and identity testing.

16

2. Obtain blackboxes to the irreducible multilinear factors of Dx(f, P1) with their respective multiplicities
and interpolate them. Using these factors and their respective multiplicities determine the factors of
Dx(f, P1)/Dx(Q1, P1) and let them be Q2, . . . , Qd2 , after easily taking care of a scalar multiple by evalu-
ating at a random input. Similarly, from Dx(f,Q1) determine P2, . . . , Pd1 and output the sets {P1, . . .},
{Q1, . . .}.

Proof. From Lemma 6, Dx(f, P1) = Dx(T1 + T2, P1) = Dx(T2, P1) = Dx(Q1, P1)Q2 · . . . Qd2 , where Dx(Q1, P1) 6
≡ 0 by simplicity. From this Q2, . . . , Qd2 can be obtained by first obtaining blackboxes for the factors of
(Dx(f, P1)) / (Dx(Q1, P1)) (Lemma 2) and interpolating the factors using the sparse polynomial interpolation
algorithm (Lemma 3). �

We now present the algorithm SPSPFACTOR needed in the proof of Lemma 12.

Algorithm : SPSPFACTOR(n, s,Of , P1).
Input: oracle Of for the polynomial f ∈ F[Xn] computable by a simple size-s multilinear ΣΠΣΠ(2) circuit C
as given in equation (11) and irreducible factor P1 of T1.
Output: sets of s-sparse irreducible polynomials {P1, . . . , Pd1}, {Q1, . . . , Qd2} s.t. equation (11) holds, else
FAIL.

1. var(P1) * var(T2) case : For every x ∈ var(P1) obtain the blackbox for Dx(f, P1) and using Lemma 2
compute the blackboxes to its irreducible factors with respective multiplicities. Among these, remove the
factors of Dx(1, P1) and scale the rest appropriately such that their product equals Dx(f, P1)/Dx(1, P1).
Test whether the remaining factors Q1, . . . , Qd2 are s-sparse multilinear polynomials on disjoint set of
variables. If not, proceed to the next x, else test whether f −

∏

iQi is a product of s-sparse multilinear
polynomials P1, . . . , Pd1 on disjoint set of variables. If yes, output the sets {P1, . . .}, {Q1, . . .}, else proceed
to the next x.

2. Pick any x ∈ var(P1), obtain blackbox for Dx(f, P1), using Lemma 2 compute the blackboxes to its s-
sparse multilinear factors and interpolate them to get a list L. For each Q ∈ L, using Step 1, ensure that
if Q is some Qi then var(Q) ⊆ var(T1), or else output the reconstructed circuit. For every Q ∈ L and
z ∈ var(Q) obtain the s-sparse multilinear factors of Dz(f,Q) and interpolate them to get a list Lz

Q. For
every Q′ ∈ L and P ∈ Lz

Q∪{P1} test if RECONPAIR(n, s,Of , P,Q
′) outputs a multilinear ΣΠΣΠ(2) circuit

for f .

3. For every Q ∈ L, repeat Step 2 for Q (instead of P1).

4. We are reduced to the case when w.l.o.g. var(P1 · . . . Pd1−1) ⊆ var(Qd2) and var(Q1 · . . . Qd2−1) ⊆ var(Pd1).
Let L′ ⊆ L s.t. it contains all the 1-dense polynomials in L. If |L′| < 3 log s + 2 then iterate over all
subsets B of L′ of size at most 2 log s+ 1 and do:

(a) Determine G ⊆ L′\B such that s <
∏

Q∈G ||Q|| ≤ s2 − 1. Let g =
∏

Q∈G Q and Mg be the set of
non-zero monomials in g (as subsets of var(g)).

(b) Obtain blackboxes to all fS ’s such that S ∈Mg and where f =
∑

S⊆var(g) fS(Xn\var(g))
∏

x∈S x.

(c) For every S ∈ Mg, obtain blackboxes to the s-sparse multilinear factors of fS and interpolate them
to get a list LS . For every Q ∈ L, z ∈ var(Q), P ∈ Lz

Q and Q′ ∈ LS test if RECONPAIR(n, s,Of , P,Q
′)

outputs a multilinear ΣΠΣΠ(2) circuit for f .

Else if |L′| ≥ 3 log s+2, pick any 3 log s+2-sized subset D of L′ and carry out the above sub-steps for D.

5. For every Q ∈ L and z ∈ var(Q) repeat Step 4 for Lz
Q (instead of L). Output FAIL.

17

Proof of Lemma 12. First let’s analyze the running time. Step 1 requires poly(n, s, cmax) time by earlier anal-
ysis. In Step 2, as f and P1 are multilinear, Dx(f, P1) has degree of every variable at most 2 and hence has
at most 2n factors and so |L| ≤ 2n. Determining s-sparsity and interpolation can be done in poly(n, s, cmax)
time. As Step 1, RECONPAIR can be done in poly(n, s, cmax) time and as the sizes of the lists produced is at
most 2n, Step 2 uses them at most poly(n) times and hence the running time of Step 2 is poly(n, s, cmax). Step
3 uses Step 2 at most 2n times. In Step 4, the number of subsets of a (3 log s+ 2)-sized set is at most 4s3 and
hence the sub-steps are carried out at most 4s3 times. Step 4(a) can be done in poly(n, s) time. In Step 4(b),
as |Mg| ≤ s2, it can be done in poly(n, s) time. Step 4(c) again uses poly(n, s, cmax) time. As Step 5 uses Step
4 poly(n) times the time bound follows.
Correctness: Suppose, to begin with, that var(P1) 6⊆ var(T2). Let x ∈ var(P1) \ var(T2) and note that

Dx(f, P1) = Dx(T1, P1) +Dx(T2, P1) = 0 +Dx(1, P1) · T2.

Thus, Q1, . . . , Qd2 are among the s=sparse multilinear factors of Dx(f, P1). We remove the factors of Dx(1, P1)
from those of Dx(f, P1) scaling the rest appropriately, we obtain Dx(f, P1)/Dx(1, P1). If the remaining factors
are s-sparse multilinear polynomials on disjoint sets of variables, then we output them as Q1, . . . , Qd2 . By
factoring f −

∏

Qj and testing if those factors are also s-sparse and multilinear on disjoint sets of variables, we
obtain P1, . . . , Pd1 . Thus, we are done in the case when var(P1) 6⊆ var(T2).

So, we now assume that var(P1) ⊆ var(T2). For concreteness, suppose that P1 and Qd2 share a variable x.
Now,

Dx(f, P1) = 0 +Dx(Qd2 , P1) ·Q1 · . . . ·Qd2−1.

Let L be the list of s-sparse multilinear factors of Dx(f, P1). Since d2 ≥ 2, the list L contains at least one
“genuine” factor of T2,namely, Q1, . . . , Qd−2−1 and some “spurious” factors, namely, those of Dx(Qd2 , P1). We
nondeterministically guess a genuine factor of T2, say Q1 for concreteness17. We thus have a (guessed) factor
Q1 of T2 and will be done by an argument similar to the above paragraph if var(Q1) 6⊆ var(T1). It follows that
we are done if ∃j, 1 ≤ j ≤ d2 − 1, var(Qj) 6⊆ var(T1).

Hence we can assume now that var(Q1 · . . . ·Qd2−1) ⊆ var(T1). We will argue that we can in fact replace T1

here by a single factor of T1. Suppose var(Q1 ·. . .·Qd2−1) is split between two factors Pi and Pj of T1, i.e., we have
two variables y, z ∈ var(Q1 · . . . ·Qd2−1) such that y ∈ var(Pi)\ var(Pj) and z ∈ var(Pj)\ var(Pi). Let y ∈ var(Q),
for some Q among Q1, . . . , Qd2−1. Now, Dy(f,Q) is Dy(Pi, Q)Pj . . . and hence has Pj intact among its s-sparse
multilinear factors. Then, the variable z is common between Pj and some Q′ among Q1, . . . , Qd2−1. We can
now run RECONPAIR from Lemma 13 with the factors Pi and Q′ and be done. Hence if var(Q1 · . . . ·Qd2−1) is split
between two or more factors of T1, the algorithm nondeterministically guesses Q, Pi, and y as above, computes
Dy(f,Q), and guesses Pj among the factors of Dy(f,Q), guesses Q′, and runs RECONPAIR(n, s,Of , Pi, Q

′).
Thus, we only need to consider the case when var(Q1 · . . . ·Qd2−1) is not split among factors of T1. W.l.o.g.,

we assume var(Q1 · . . . ·Qd2−1) ⊆ var(Pd1). By now, we guessed a factor of T2, say Q1. Applying the foregoing
argument to Q1 and T2 (just as we did for P1 as a factor of T1), we again conclude we only need to consider
the case, w.l.o.g., that var(P1 · . . . · Pd1) ⊆ var(Qd2).

To summarize the argument so far, we are given the factor P1 of T1, a lists containing factors Q1, . . . , Qd2−1

of T2, and we can assume that var(Q1 · . . . · Qd2−1) ⊆ var(Pd1) and var(P1 · . . . · Pd1) ⊆ var(Qd2). Our goal
now is to fish for a factor Q of T2 and then apply RECONPAIR on P1 and that Q. How do we do that? Recall
the list L consisting of s-sparse multilinear factors of Dx(f, P1) and containing genuine factors Q1, . . . , Qd2−1

and spurious factors from Dx(Qd2 , P1). Because both P1 and Qd2 are s-sparse, ‖Dx(Qd2 , P1)‖ ≤ 2s2. Thus the
product of the sparsity of the spurious factors is at most 2s2.

By assumption ‖C‖ > 4s3 and hence ‖T1‖ > 4s3 or ‖T2‖ > 4s3. Let’s assume the latter. Then, since Qd2 is
s-sparse, we must have ‖Q1 · . . . ·Qd2−1‖ > 4s2. But we are in the case when var(Q1 · . . . ·Qd2−1) ⊆ var(Pd1) and
‖Pd1‖ ≤ s. Thus, there must be a monomial XS =

∏

i∈S xi for S ⊆ var(P1) that is produced by Q1 · . . . ·Qd2−1

but not by P1. The coefficient polynomial fS of XS in f must contain Qd2 as a factor. Our task is to compute
fS and extract Qd2 from it by factoring.

17The algorithm SPSPFACTOR implements this guess by iterating through all choices. It is easy to see there are only a polynomial
number (in s) of such choices and the correctness of a guess can be verified in randomized polynomial time.

18

We first clean up L to obtain L′ ⊆ L by removing factors that are single variables, i.e., every polynomial in
L′ is 1-dense. Since ‖Dx(Qd2 , P1)‖ ≤ 2s2, the number of spurious factors in L′ is at most 2 log s+1. Hence if we
take any subset 3 log s+ 2, we will have at least log s+ 1 1-dense genuine factors Qi in it. Clearly, the product
of these Qi’s is at least 2s-dense (recall that var(Qi) are disjoint). Furthermore, since ‖Q1 · . . . ·Qd2−1‖ > 4s2

and ‖Qi‖ ≤ s, there must be a subset of these Q’s such that their product has sparsity at most s2. Therefore,
we guess a subset B of size at most 2 log s + 1 of spurious factors, and a subset G ⊆ L′ \ B of log s + 1 good
factors Qi such that g :=

∏

i∈G Qi and s < ‖g‖ < s2. �

4.3 Reconstructing set-multilinear ΣΠΣΠ(2) circuits

Our final ingredient handles the reconstruction of the special case of set-multilinear ΣΠΣΠ(2) circuits:

Lemma 14. Let f ∈ F[Xn] be the polynomial computed by the following simple set-multilinear ΣΠΣΠ(2) circuit
of size s where Pi’s, Qi’s are irreducible and d > 2:

f(Xn) = T1 + T2 =
d
∏

i=1

Pi(x̄i) +
d
∏

i=1

Qi(x̄i).

Then, given the partition {x̄i}i∈[d] and blackbox access to f , we can determine {Pi}i∈[d], {Qi}i∈[d] in randomized
time poly(n, s, cmax), where cmax is the maximum bit length of any coefficient appearing in f .

Proof. The algorithm is very similar to the one for reconstructing set-multilinear ΣΠΣ(2) circuits in Lemma 9.
Substitute all the variables in Xn\x̄1 to independent random values over F (name this substitution R̄1) and
interpolate to get the 2s-sparse polynomial P ′1(x̄1). Let R̄2 be another such independent substitution and
Q′1(x̄1) be the one obtained after interpolation. Then,

P ′1(x̄1) = f(x̄1, R̄1) = αP1(x̄1) + βQ1(x̄1) , Q′1(x̄1) = f(x̄1, R̄2) = γP1(x̄1) + δQ1(x̄1).

Clearly with probability 1−O(n)/|F| (recall that we assumed |F| > n5), α, β, γ, δ 6= 0. Also, from simplicity,
the polynomials

∏d
i=2 Pi,

∏d
i=2Qi are LI and hence the polynomial α

∏d
i=2 Pi − β

∏d
i=2Qi is non-zero. Now as

R̄1, R̄2 are independent substitutions, w.h.p. αδ − βγ = α
∏d

i=2 Pi(R̄2)− β
∏d

i=2Qi(R̄2) 6= 0. Now as
(α β
γ δ

)

is
invertible, ∃p, q, r, s 6= 0 such that

P1(x̄1) = pP ′1 + qQ′1 , Q1(x̄1) = rP ′1 + sQ′1.

Also, using the irreducibility of P1, Q1 and an argument on Dy(
∂P ′1
∂x , P ′1|x=0) for all x 6= y ∈ x̄1, it can be

easily shown that w.h.p. P ′1 is irreducible (see Corollary 1). Repeating this for every x̄i we have polynomials
P ′1, . . . , P

′
d, Q

′
1, . . . , Q

′
d such that ∀i ∈ [d] :

Pi(x̄i) = piP
′
i + qiQ

′
i , Qi(x̄i) = riP

′
i + siQ

′
i.

and hence, f(Xn) =
∏d

i=1(piP
′
i + qiQ

′
i)+

∏d
i=1(riP

′
i + siQ

′
i) = α

∏d
i=1(P

′
i + aiQ

′
i)+β

∏d
i=1(P

′
i + biQ

′
i), for some

α, β ∈ F. As we already have the P ′i ’s and Q′i’s we just need to determine α, β, ai’s, bi’s. We first determine
a1, a2, a3, b1, b2, b3. In f , substitute all the variables except x̄1, x̄2, x̄3 to independent random values over F, to
get f̂(x̄1, x̄2, x̄3). We have,

f̂ = α′(P ′1 + a1Q
′
1)(P

′
2 + a2Q

′
2)(P

′
3 + a3Q

′
3) + β′(P ′1 + b1Q

′
1)(P

′
2 + b2Q

′
2)(P

′
3 + b3Q

′
3). (12)

where ai 6= bi and w.h.p α′, β′ 6= 0. Hence,

f̂ = P ′3(c1.P
′
1P

′
2 + c2.Q

′
1P

′
2 + c3.P

′
1Q

′
2 + c4.Q

′
1Q

′
2) +Q′3(c5.P

′
1P

′
2 + c6.Q

′
1P

′
2 + c7.P

′
1Q

′
2 + c8.Q

′
1Q

′
2).

As described in the proof of Lemma 9, to determine the ai’s,bi’s, it is sufficient to determine the ci’s. W.l.o.g. we
only show how to determine c1 i.e. the coefficient of P ′1(x̄1)P

′
2(x̄2)P

′
3(x̄3) in f̂ . First we construct a substitution

S̄1 to the variables in x̄1 such that Q′1(S̄1) = 0 but P ′1(S̄1) 6= 0. For some x ∈ var(Q′1), let P
′
1(x̄1) = A(x̄1\{x})x+

19

B(x̄1\{x}) and Q′1(x̄1) = C(x̄1\{x})x + D(x̄1\{x}) where C 6 ≡ 0. Substitute the variables in x̄1\{x} to
independent random field elements S̄′1 to get P ′1(x, S̄

′
1) = ax+ b and Q′1(x, S̄

′
1) = cx+ d where w.h.p. c 6= 0. As

P ′1, Q
′
1 are LI and irreducible, the polynomial AD − BC is non-zero and hence w.h.p. ad− bc 6= 0. Define the

substitution S̄1 to be S̄′1 and x = −d/c. Clearly, P ′1(S̄1) = bc − ad 6= 0 and Q′1(S̄1) = 0. Similarly, construct
substitutions S̄2, S̄3 for the variables in x̄2, x̄3 such that Q′2(S̄2) = Q′3(S̄3) = 0 but P ′2(S̄2), P

′
3(S̄3) are non-zero.

Hence, f̂(S̄1, S̄2, S̄3) = c1.P
′
1(S̄1)P

′
2(S̄2)P

′
3(S̄3) where we know Pi’s explicitly and P ′1(S̄1)P

′
2(S̄2)P

′
3(S̄3) 6= 0.

Hence we can determine c1. Similarly, other ci’s can be determined.
Similarly, repeating this procedure for P ′1, P

′
2, P

′
i , Q

′
1, Q

′
2, Q

′
i correctly and uniquely determines ai’s and bi’s.

Having determined ai’s and bi’s, we can determine α, β by evaluating f at two independent, randomly chosen
substitutions, as described earlier in the proof of Lemma 9. �

4.4 Proof of Theorem 1

We now put together the ingredients from previous subsections to prove our main result (Theorem 1). We
begin by presenting the algorithm SPSPRECON claimed in the theorem.

Algorithm : SPSPRECON(n, s,Of)
Input: oracle Of for the polynomial f ∈ F[Xn] computable by a size-s multilinear ΣΠΣΠ(2) circuit C as given
by (3) with ||C|| > 4s4 and d1, d2 ≥ 3.
Output: sets of s-sparse multilinear polynomials {G1, . . . , Gr}, {P1, . . . , Pd1}, {Q1, . . . , Qd2} s.t. equation (3)
holds or FAIL.

1. Obtaining Gi’s and oracle to sim(C): Using the algorithm of Lemma 2, obtain blackboxes for the irre-
ducible factors of f . For each factor, test if it is s-sparse by first running the algorithm of Lemma 3 set for
interpolating s-sparse polynomials and then using blackbox-PIT to test whether it has been interpolated
correctly. Output the s-sparse factors as Gi’s and define fs to be the product of (the remaining) s-dense
factors. To avoid introducing more notation, we assume below that var(fs) = Xn.

2. var(T1) 6= var(T2) case: By iterating over x ∈ Xn guess a variable x (if it exists) s.t. either x ∈ var(T1)
but x /∈ var(T2) or vice versa. Obtain the coefficient polynomial of x, factor it, and test whether it is a
product of s-sparse multilinear polynomials on disjoint sets of variables. If not, proceed to the next x,
else, for every such factor H, test if SPSPFACTOR(n, s,Ofs , H) outputs a multilinear ΣΠΣΠ(2) circuit for
fs. If this succeeds for some x ∈ Xn, output the corresponding circuit fs and the Gi’s from Step 1 and
STOP; else move to the next step.

3. par(T1) 6= par(T2) or par(T1) = par(T2) 6= par(fs) case: Iterate over pairs of distinct variables x, y ∈ Xn

and do: Obtain the blackbox for ∆xy(fs), factor it and interpolate its s-sparse multilinear factors. For
every such factor H, test if SPSPFACTOR(n, s,Ofs , H) outputs a multilinear ΣΠΣΠ(2) circuit for fs. If
such a pair x, y ∈ Xn could be found, output the corresponding circuit fs and the Gi’s from Step 1 and
STOP; else move to the next step.

4. Set-multilinear case: Using blackboxes for the factors of fs (obtained in the first step), determine par(fs).
Using the algorithm of Lemma 14 on fs and par(fs), determine a multilinear ΣΠΣΠ(2) circuit for fs.

Proof. Running time follows easily from the earlier analysis and hence we only prove correctness. We will show
that the above algorithm succeeds in one of the steps based on the cases handled by those steps.

Let f be the multilinear polynomial computed by a multilinear ΣΠΣΠ(2) circuit C as given below:

f(x1, . . . , xn) = gcd(C) · sim(C) = G · (T1 + T2) = G1 · . . . Gr ·

(

d1
∏

i=1

Pi +

d2
∏

i=1

Qi

)

(13)

From Lemma 11, it follows that Gi’s exactly comprise of the s-sparse factors of f and hence fs in Step 1 is the
polynomial computed by sim(C).

20

Suppose now that var(T1) 6= var(T2). Assume w.l.o.g. that ∃x ∈ var(T1)\var(T2) and also w.l.o.g. let
P1 = Rx + S. It follows that the coefficient polynomial of x is R · P2 · . . . Pd1 and hence all its factors are
s-sparse polynomials on disjoint sets of variables. As d1, d2 > 2, one of those factors would be P2 and hence
SPSPFACTOR from Lemma 12 would correctly output the Pi’s and Qi’s. Since we iterate over all x ∈ Xn in Step
2, such an x will be found if var(T1) 6= var(T2) and we will output the correct ΣΠΣΠ(2) for fs.

Thus, the only possibility for Step 2 to not succeed is if var(T1) = var(T2) and hence we consider this case
now. Let us first suppose that par(T1) 6= par(T2). Then we must have x, y such that w.l.o.g. x, y occur in distinct
Pi, Pj respectively but both occur in the same Qk. Say P1 = Rx+S, P2 = Uy+W but Q1 = Axy+Bx+Cy+D.

Hence, fs = (Rx+ S)(Uy +W)
∏d1

i=3 Pi + (Axy +Bx+ Cy +D)
∏d2

i=2Qi. Note now that

∂fs
∂x

= R(Uy +W)

d1
∏

i=3

Pi + (Ay +B)

d2
∏

i=2

Qi and fs|x=0 = S(Uy +W)

d1
∏

i=3

Pi + (Cy +D)

d2
∏

i=2

Qi.

Thus, we have

∆xy(fs) =

d2
∏

i=2

Qi ·

[

[R(UD −WC) + S(AW −BU)]

d1
∏

i=3

Pi + (AD −BC)

d2
∏

i=2

Qi

]

.

Claim 1. ∆xy(fs) is nonzero.

Proof of Claim 1: Since gcd
(

∏d1
i=3 Pi,

∏d2
i=2Qi

)

= 1 and AD −BC 6≡ 0 by irreducibility of Q1, we have

∆xy(fs) ≡ 0 =⇒
d1
∏

i=3

Pi

∣

∣

∣
AD −BC and

d2
∏

i=2

Qi

∣

∣

∣
R(UD −WC) + S(AW −BU) 6≡ 0.

But since ||AD−BC|| ≤ 2s2 and degree of every variable in it is at most 2, from Lemma 10, ||
∏d1

i=3 Pi|| ≤ 2s2.

Similarly, ||
∏d2

i=2Qi|| ≤ 4s2. As ||C|| > 4s4, either ||T1|| > 4s4 or ||T2|| > 4s4. In the former, as ||P1P2|| ≤ s2

we have ||
∏d1

i=3 Pi|| > 4s2 and in the later ||
∏d2

i=2Qi|| > 4s3. We get a contradiction in both cases, proving the
claim. �

Since
∏d2

i=2Qi | ∆xy(fs), and d1, d2 > 2, Step 3 would be able to find a Qi as one of its s-sparse multilinear
factors and hence SPSPFACTOR would succeed. We conclude that Step 3 succeeds in the case that var(T1) =
var(T2) but par(T1) 6= par(T2).

We next consider the case that both var(T1) = var(T2) and par(T1) = par(T2), but neither of these partitions
is the partition par(fs) for fs. Let fs = f1(x̄1) · . . . fd(x̄d) be the factorization of fs, where fi’s are irreducible.
Returning to the case of Step 3 when par(T1) = par(T2) 6= par(fs), we observe that par(fs) can only be coarser
than par(T1) = par(T2). Specifically,

Claim 2. If a pair of variables x, y occurs in different sets of par(fs) then this pair must also occur in different
sets in par(T1) = par(T2)

Proof of Claim 2: Suppose not. Then we have x, y occurring in different sets of par(fs) but in the same set of
par(T1). Then, by Corollary 1, ∆xy(fs) ≡ 0. Now, let P1 = Rxy+Sx+Uy+W and Q1 = Axy+Bx+Cy+D

so that fs = (Rxy + Sx+ Uy +W)
∏d1

i=2 Pi + (Axy +Bx+ Cy +D)
∏d2

i=2Qi. We then have,

0 ≡ ∆xy(fs) =

d1
∏

i=2

Pi

[

(RW − SU)

d1
∏

i=2

Pi + (RD +AW − SC −BU)

d2
∏

i=2

Qi

]

+ (AD −BC)

(

d2
∏

i=2

Qi

)2

.

By the pairwise coprimality of the Pi’s and the Qi’s we get

d1
∏

i=2

Pi

∣

∣

∣
(AD −BC) and

d2
∏

i=2

Qi

∣

∣

∣
(RW − SU) and

d2
∏

i=2

Qi

∣

∣

∣
(RD +AW − SC −BU).

21

But since ||AD−BC||, ||RW −SU ||, ||RD+AW −SC −BU || ≤ 4s2 and the degree of any variable in these is
at most 2, by Lemma 10 and the assumption that ||C|| ≥ 4s2, we arrive at a contradiction, proving the claim.

�

Thus par(T1) = par(T2) 6= par(fs) means that there exists a pair x, y of variables s.t. x, y occur in different
sets of par(T1) but in the same set of par(fs). By corollary 1, we then have ∆xy(fs) 6≡ 0. Let us now say

P1 = Rx+S, P2 = Uy+W , Q1 = Ax+B, and Q2 = Cy+D so that fs = (Rx+S)(Uy+W)
∏d1

i=3 Pi+(Ax+

B)(Cy +D)
∏d2

i=3Qi. Therefore,

∂fs
∂x

= R(Uy +W)

d1
∏

i=3

Pi +A(Cy +D)

d2
∏

i=3

Qi and fs|x=0 = S(Uy +W)

d1
∏

i=3

Pi +B(Cy +D)

d2
∏

i=3

Qi.

Altogether we then have,

0 6≡ ∆xy(fs) = (RUBD +ACSW −RWBC −ADSU)

d1
∏

i=3

Pi ·
d2
∏

i=3

Qi.

It follows we will be able to catch one of the Pi orQi for i ≥ 3, among the factors of ∆xy(fs) in Step 3 and succeed
in reconstructing the circuit for fs. Hence, we are finally left with the case that par(T1) = par(T2) = par(fs).
Clearly, this partition can be determined by factoring fs and hence the algorithm for the set-multilinear case
given by Lemma 14 would succeed. �

22

5 Discussion and Open Problems

The problem of reconstructing polynomials from arithmetic complexity classes is, in a broad sense, analogous
to learning concept classes of Boolean functions using membership and equivalence queries (cf. Chapter 5 of
[SY10]). Over the last several decades, research on the theory of learnability in the Boolean world has evolved
into a mature discipline. However, circuit reconstruction in the arithmetic world has been gaining momentum
only in the recent years. Because of connections to major challenges such as Polynomial Identity Testing
(PIT) and explicit lower bounds, progress on reconstruction has largely been limited to restricted models of
computation. In this paper, we presented a randomized reconstruction algorithm for ΣΠΣΠ(2) multilinear
circuits. Several open problems remain in this area, some of which are listed below.

• Handle larger (constant) top fan-in: It would be interesting to generalize our results to multilinear
ΣΠΣΠ(k) circuits, with k = O(1). Handling non-constant top fan-in for depth-4 multilinear circuits
appears to be a more serious challenge. We do not “even” know PIT algorithms for such circuits (cf.
Saraf and Volkovich [SV11] for constant k).

• Remove dependence on field size for ΣΠΣ(k) (no multilinear restriction) circuits: The running
time of the algorithm by Karnin & Shpilka, for reconstructing ΣΠΣ(k) circuits with k = O(1), has a
dependence on the field size. An interesting problem is to remove this dependence, even for the ΣΠΣ(2)
case.

In addition to considering weak models of computation, another research direction to make progress in on the
reconstruction problem is to consider its distributional complexity on random (according to that distribution)
instances, but computable by more powerful models. Very recently, we [GKL11] were able to make progress in
this direction for “random” multilinear formulas i.e. formulas sampled from a certain natural distribution over
the set of multilinear formulas.

• Average case reconstruction of random arithmetic formulas: Is it possible to efficiently recon-
struct random (general) arithmetic formulas? This would be very surprising as no non-trivial size lower
bound is known for general formulas and the techniques might even lead to non-trivial lower bounds for
some interesting sub-class of formulas.

• Reconstruction for random depth-3 circuits: In [GK98, GR98], exponential lower bounds for depth-
3 circuits over finite fields were proved. Consider a “random” ΣΠΣ(k) circuit over a finite field F to be
one in which the affine forms computed at the bottom Σ layer have their coefficients chosen randomly
from F. Is there an algorithm to reconstruct such a circuit w.h.p. over the choice of the coefficients with
running time efficient in n, k?

23

References

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS, pages 92–
105, 2005.

[AL86] Leonard M. Adleman and Hendrik W. Lenstra, Jr. Finding irreducible polynomials over finite fields.
In STOC, pages 350–355, 1986.

[AMS10] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on noncommutative
and commutative polynomial identity testing. Computational Complexity, 19(4):521–558, 2010.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In FOCS, pages
67–75, 2008.

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Varricchio.
Learning functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.

[CLO97] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms - an introduction
to computational algebraic geometry and commutative algebra. Springer, second edition, 1997.

[DL78] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic circuits.
In STOC, pages 577–582, 1998.

[GKL11] Ankit Gupta, Neeraj Kayal, and Satya Lokam. Efficient reconstruction of random multilinear
formulas. In FOCS, pages 778–787, 2011.

[GR98] Dima Grigoriev and Alexander A. Razborov. Exponential complexity lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields. In FOCS, pages 269–278, 1998.

[H̊as90] Johan H̊astad. Tensor rank is NP-complete. J. Algorithms, 11(4):644–654, 1990.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute (extended
abstract). In STOC, pages 262–272, 1980.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. In Randomness and
Computation, pages 375–412. JAI Press, 1989.

[Kay11] Neeraj Kayal. Affine projections of polynomials. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:61, 2011.

[KMSV10] Zohar Shay Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. Deterministic iden-
tity testing of depth-4 multilinear circuits with bounded top fan-in. In STOC, pages 649–658,
2010.

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In STOC, pages 216–223, 2001.

[KS06] Adam R. Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory of
Computing, 2(1):185–206, 2006.

[KS09] Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In IEEE Conference on Computational Complexity, pages 274–285, 2009.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given by black boxes for their
evaluations: Greatest common divisors, factorization, separation of numerators and denominators.
J. Symb. Comput., 9(3):301–320, 1990.

24

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J.
ACM, 56(2), 2009.

[Raz10] Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing, 6(1):135–
177, 2010. Preliminary version in STOC 2008, pp. 711 - 720.

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syntactically multilinear
arithmetic circuits. SIAM J. Comput., 38(4):1624–1647, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Computational Complexity, 18(2):171–207, 2009.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

[Shp09] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM J.
Comput., 38(6):2130–2161, 2009.

[SV09] Amir Shpilka and Ilya Volkovich. Improved polynomial identity testing for read-once formulas. In
APPROX-RANDOM, pages 700–713, 2009.

[SV11] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4 multilinear circuits. In
STOC, pages 421–430, 2011.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, editor, EU-
ROSAM, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

25

