
A Visual Programming Language
for Biological Processes

Andrew Phillips
with
Luca Cardelli

Microsoft Research, Cambridge UK

Biological Computing

2

Systems Biology

The Human Genome project:
Map out the complete genetic code in humans

To unravel the mysteries of how the human body functions

The code raised many more questions than answers

Systems Biology:
Understand and predict the behaviour of biological systems

Two complementary approaches:
Look at experimental results and infer system properties

Build detailed models of systems and test these in the lab

Biological Modelling:
Conduct virtual experiments, saving time and resources

Clarify key mechanisms of how a biological system functions

Beginning to play a role in understanding disease

Large, Complex, Biological Models

http://www.celldesigner.org

Biological Programming

Complex Models:
Difficult to understand, maintain and extend

Hundreds of reactions, soon to be tens of thousands

Would not write a program as a list of 10000 instructions

Modularity:
Need a way of decomposing a model into building blocks

Not your average computer programs

Massive parallelism, each instruction has a certain probability

Suggests a need for a biological programming language...

Programming Languages for Biology

Languages for complex,
parallel computer systems:

Languages for complex,
parallel biological systems:

stochastic p-calculus

p-calculus by [Milner et al. 1989]. Stochastic version by [Priami et al. 1995]

First used in a biological context by [Regev et al. 2001]

Language Development

7

SOUND & COMPLETE

let gLow() = delay@g_pep; (Low() | gLow())

and Low()= (

new low@uLow:chan

do !pep(low); ?low; Low()

or delay@d_pep

)

let gMed() = delay@g_pep; (Med() | gMed())

and Med()= (

new med@uMed:chan

do !pep(med); ?med; Med()

or delay@d_pep

)

let gHigh() = delay@g_pep; (High() | gHigh())

and High()= (

new high@uHigh:chan

do !pep(high); ?high; High()

or delay@d_pep

)

let gMHC() = delay@g_MHC;(gMHC() | MHCo())

and gTPN() = delay@g_TPN;(gTPN() | TPN())

and TPN()= (

new uT@unbind_TPN:chan

do !tpn(uT); ?uT; TPN()

or delay@degrade_TPN

)

and MHCo()=

do ?pep(u);MHCc_pep(u)

or ?tpn(uT);MHCo_TPN(uT)

or delay@degrade_MHCo

and MHCc_pep(u:chan) =

do delay@egress; MHCe_pep(u)

or !u; MHCo()

and MHCe_pep(u:chan) = delay@degrade_MHCe

and MHCo_TPN(uT:chan)=

do ?pep(u)*a; MHCc_TPN_pep(u,uT)

or !uT*v; MHCo()

and MHCc_TPN_pep(u:chan,uT:chan)=

do !uT; MHCc_pep(u)

or !u*q; MHCo_TPN(uT)

EQUIVALENT

Phillips and Cardelli, 2004

Phillips, Cardelli and Castagna, 2006

Phillips and Cardelli, 2007

GUI by Filippo Polo, MSR Cambridge

Exact Stochastic Simulation Algorithm Graphical Representation and Execution Model

Graphical Editor and Simulator

SPiM: Stochastic p for Biology

A variant of stochastic p calculus

Supports expressive power of p

Graphical syntax and semantics

Biological constructs, e.g. complexation

Efficient implementation

8

SPiM Processes

Xp = a
_
. X Y = a. Yp

X = d. Xp Yp = d
_
. Y

Message-Passing Approach

Chemical Reactions

Xp + Y a X + Yp

X + Yp d Xp + Y

Compact, Modular Models

Chemical Reactions SPiM Processes

EGFR Model [Hornberg et. al 2005]

11

EGFR Model [Hornberg et. al 2005]

12

Modular EGFR

Outline

Basic Examples

Gene Networks

C. elegans Development

Immune System Modelling

14

Basic SPiM Examples

Protein Production
Protein Interaction
Protein Binding

A protein P can be produced with propensity 0.1

Probability of a reaction depends on propensity

Exact simulation: what happens next?

Production: G produce G + P P degrade 

16

reaction rate propensity (s-1)

produce 0.1 0.11

degrade 0.001 0.0010

1

G

P

= produce.(P | G)

= degrade.0

Production: G produce G + P P degrade 

Another protein P can be produced

100 times more likely to produce than degrade

17

1

1 reaction propensity (s-1)

produce 0.1

degrade 0.001

And another...

Production: G produce G + P P degrade 

18

2

1 reaction propensity (s-1)

produce 0.1

degrade 0.0012

A protein b can be degraded at rate 0.001

Low probability, but still possible

Production: G produce G + P P degrade 

19

3

1 reaction propensity (s-1)

produce 0.1

degrade 0.0013

Eventually...

Production: G produce G + P P degrade 

20

2

1 reaction propensity (s-1)

produce 0.1

degrade 0.0012

Equilibrium at about 100 proteins.

Propensities of both reactions are equal.

Production: G produce G + P P degrade 

21

100

1 reaction propensity (s-1)

produce 0.1

degrade 0.001100

Gene Simulation

Simulation results show evolution over time

Level of protein P fluctuates around 100

22

Interaction: Xp + Y d
a X + Yp

Xp and Y can interact on channel a

Xp activates Y by sending its phosphate group

23

1 1

Xp = a
_
. X Y = a. Yp

X = d. Xp Yp = d
_
. Y

Interaction: Xp + Y d
a X + Yp

X and Yp can interact on channel d

24

1 1

Interaction: Xp + Y d
a X + Yp

Interactions can continue indefinitely...

25

1 1

Interaction: Xp + Y d
a X + Yp

What happens if we mix 100Xp and 100Y ?

Assume rate(a) = 100s-1 and rate(d) = 10s-1

An Xp and Y protein can interact on channel a.

26

100 100

reaction propensity (s-1)

a 100100100

d 0

Interaction: Xp + Y d
a X + Yp

An additional Xp and Y protein can interact.

27

99 99

1 1

reaction propensity (s-1)

a 1009999

d 1011

Interaction: Xp + Y d
a X + Yp

An X and Yp protein can interact

28

98 98

2 2

reaction propensity (s-1)

a 1009898

d 1022

Interaction: Xp + Y d
a X + Yp

Eventually an equilibrium is reached...

29

1 1

99 99

reaction propensity (s-1)

a 1009999

d 1011

Interaction: Xp + Y d
a X + Yp

At equilibrium when rate(a)[Xp][Y]  rate(d)[X][Yp]

30

24 24

76 76

reaction propensity (s-1)

a 1002424

d 107676

Interaction: Xp + Y d
a X + Yp

At equilibrium: 100s-1[Xp][Y]  10s-1[X][Yp]

Approximately 24Xp and 76X

31

Binding: X + Y -b
+b X'Y'

X and Y can bind on channel +b

32

1 1

X = +b
_
.X' Y = +b.Y'

X' = -b
_
.X Y' = -b.Y

Binding: X + Y -b
+b X'Y'

X' and Y' can unbind on channel -b

33

1 1

1

- - - (-b) - -

Binding: X + Y -b
+b X'Y'

Binding and unbinding can continue indefinitely...

34

1 1

Binding: X + Y -b
+b X'Y'

What happens if we mix 100X and 100Y ?

Assume rate(+b) = 100s-1 and rate(-b) = 10s-1

An X and Y protein can bind on channel +b.

35

100 100

reaction propensity (s-1)
+b 100100100
-b 0

Binding: X + Y -b
+b X'Y'

An additional X and Y protein can bind.

36

99 99

reaction propensity (s-1)
+b 1009999
-b 101

1 1

1

- - - (-b) - -

Binding: X + Y -b
+b X'Y'

An X' and Y' protein can unbind on channel -b

37

98 98

reaction propensity (s-1)
+b 1009898
-b 102

1 1

2

- - - (-b) - -

Binding: X + Y -b
+b X'Y'

Eventually...

38

reaction propensity (s-1)
+b 1009999
-b 101

99 99

1 1

1

- - - (-b) - -

Binding: X + Y -b
+b X'Y'

At equilibrium when rate(+b)[X][Y]  rate(-b)(-b) ([X'] [Y'])

39

3 3

97

reaction propensity (s-1)
+b 10033
-b 1097

1 1- - - (-b) - -

Binding: X + Y -b
+b X'Y'

At equilibrium: 100s-1[X][Y] = 10s-1[X'Y']

Approximately 3X and 97X'Y'

40

Programming Gene Networks

with
Luca Cardelli (MSR Cambridge)
Ralf Blossey (IRI Lille)

Repressilator [Elowitz and Leibler, 2000]

A gene network engineered in live bacteria.

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory

Network of Transcriptional Regulators. Nature 403:335-338.

Parameterised Gene Gate

Gate G(a,b)

Autoinhibitory G(b,b)

Bistable G(a,b) | G(b,a)

Oscillator G(a,b) | G(b,c) | G(c,a)

ba

b

ca

b

a

b

G(a,b)

B(a,b)

P(b)

= a.B(a,b) + produce.(P(b) | G(a,b))

= unblock.G(a,b)

= b.P(b) + degrade.0

Repressilator [Elowitz and Leibler, 2000]

Modelled as a simple combination of gene gates:

G(lac,tet)

| G(tet,lambda)

| G(lambda,lac)

| G(tet,gfp)

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory

Network of Transcriptional Regulators. Nature 403:335-338.

tet

lambdalac

gfp

Graphical Programming

45

How does the oscillator work?

G(a,b) | G(b,c) | G(c,a)

46

b

ca

Oscillator: 0s

Initially there is one copy of each gene

Any one of the proteins can be produced at rate 0.1

47

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*3 0 0 0 0 0 0.3

1 1 1

1 1 1

Oscillator: 5.568177s

The b protein can block the c gene at rate 1

48

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*3 0 0.001 1 0 0 1.301

Oscillator: 6.329912s

Now no c protein can be produced.

But an a protein can still be produced at rate 0.1

49

1

1

1

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*2 0.0001 0.001 0 0 0 0.2011

1

1

1

1

Oscillator: 11.62149s

The a protein can block the b gene at rate 1

50

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*2 0.0001 0.001*2 0 0 1.0 1.2021

1 1

1

1 1

Oscillator: 13.21617s

Now no b or c protein can be produced.

A b protein can degrade at rate 0.001

51

reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001*2 0 0 0 0.1022

Oscillator

Meanwhile, lots of a protein is produced

52

1 1

1

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001 0 0 0 0.1012

Oscillator

The a protein dominates

Equilibrium between transcription and degradation

Eventually, the c or a gene unblocks at rate 0.0001

53

1 1

1

100

reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001*100 0 0 0 0.2002

Suppose the a gene unblocks

There is a high probability that it will block immediately

1

1

1

100

Oscillator

54

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*2 0.0001 0.001*100 0 0 1.0*100 100.3001

Eventually, the c gene unblocks at rate 0.0001

1 1

1

100

Oscillator: 11039.31s

55

reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001*100 0 0 0 0.2002

Oscillator: 11039.77s

There is nothing to block the c gene.

The c protein can now take over...

Eventually...

56

1

1 1

100

Oscillator Simulation

Alternate oscillation of proteins: b, c, a, b

Oscillations in a particular order

57

Analysing Simulation Traces

A simulation trace can be visualised as a sequence of
messages exchanged between parallel processes.

Can debug a biological system in a similar way to a
communication protocol. Causality, critical paths...

Borgstroem, Gordon, Phillips, 2007

Repressilator Trace

59

A Gene Gate in 3D

60

The Repressilator in 3D

61

Graphical Debugging

GUI by Rich Williams, MSR Cambridge

Parameter Analysis

Range of parameters for good oscillations (produce=0.1):

produce/degrade > 1000, unblock > degrade, block > 100*produce

Blossey, Cardelli, Phillips, 2007

degrade = 0.001, unblock = 0.00001, block = 1.0 degrade = 0.0001, unblock = 0.00001, block = 1.0

degrade = 0.0001, unblock = 0.0001, block = 1.0 degrade = 0.0001, unblock = 0.0001, block = 10.0

Model Refinement:

Different behaviour, same network G(a,b) | G(b,c) | G(c,a)

Blossey, Cardelli, Phillips, 2007

Cooperativity improves robustness

Proteins form complexes before repressing

Blossey, Cardelli, Phillips, 2007

Cooperativity Simulations

Monomers Tetramers

Blossey, Cardelli, Phillips, 2007

Bacteria Logic Gates [Guet et al., 2002]

3 genes: tetR, lacI, lcI

5 promoters: PL1, PL2, PT, Pl-, Pl+

125 possible networks consisting of 3 promoter-gene units

2 inputs: IPTG (represses Lac), aTc (represses Tet)

1 output: GFP (linked to Pl-)

© 2002 AAAS. Reprinted with permission from Guet et al. Combinatorial Synthesis of Genetic Networks. Science 296 (5572): 1466 - 1470

Blossey, Cardelli, Phillips, 2006

Gene with protein inhibitor

68

G(a,b) Gi(a,b,i)

Blossey, Cardelli, Phillips, 2006

Bacteria Logic Gates

Model 125 networks using just 2 modules:

Enables modular simulation and analysis

Can easily refine the modules without rewiring the networks.

Blossey, Cardelli , Phillips, 2006

D038 D038 | Inh(aTc)

D038 | Inh(IPTG) D038 | Inh(aTc) | Inh(IPTG)

D038 = Gi(tet,tet,aTc)

| Gi(tet,lac,IPTG)

| G(lac,lambda)

| G(lambda,gfp)

A Computational Model of C.
elegans Vulval Development

with
Rosie Bloxsom (Cambridge University)
Tim Labeeuw (Cambridge University)
Jasmin Fisher (MSR Cambridge)
Hillel Kugler (MSR Cambridge)

C. elegans Nematode Worm

Model organism for development

1mm long, about 1000 cells

Completely transparent, can observe growth

71

C. elegans VPC Differentiation

72

Simplified Model of AC and VPC

73

Network of AC and 6 VPC

AC |

V(3,s3,s4,low) | V(4,s4,s5,low) | V(5,s5,s6,med) |

V(6,s6,s7,high) | V(7,s7,s8,med) | V(8,s8,s9,low)

74

Population Plot

75

Geometric Plot

76

Refined VPC Model

77

Simulation Results

78

A Computational Model of MHC
class I Antigen Presentation

with
Luca Cardelli (MSR Cambridge)
Leonard Goldstein (Cambridge University)
Tim Elliott (Southampton University)
Joern Werner (Southampton University)

MHC: A Biological Virus Scanner

80

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.

MHC: A Biological Virus Scanner

81

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.

Investigate the Role of Tapasin

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.

MHC I Structure

Interaction of MHC I with peptide

SPiM Peptide Editing Model

Graphs describe the behaviour components

Assume low, medium and high affinity peptides

Model Parameters

MHC spends < 2h on average in the ER.
Name Rate

min-1

Time

min

Range

min-1

Description

gPep 50 0.02 Active transport of peptides into the ER

dPep 10 0.1 Degradation of free peptides inside the ER

bind 1 1 Binding of peptides to MHC (per molecule)

low 3 0.33 Unbinding of low affinity peptides from MHC

med 1.2 0.83 Unbinding of medium affinity peptides from MHC

high 0.5 2 Unbinding of high affinity peptides from MHC

gMHC 10 0.1 Assembly of MHC complexes inside the ER

dMHCo 0.01 100 0.01 - 100 Degradation of free MHC inside the ER

dMHCe 0.01 100 Degradation of loaded MHC at the cell surface

egress 1 1 0.01 - 1 Egression of loaded MHC from the ER

gTPN 10 0.1 Production of tapasin inside the ER

dTPN 0.01 100 Degradation of free tapasin inside the ER

bindT 100 0.01 1 - 1000 Binding of tapasin to MHC (per molecule)

uT 1 1 0.01 - 1 Unbinding of tapasin from loaded MHC

Simulations Match Experiments

MHC needs to present stable peptides

Improved selection with tapasin. How?

No Tapasin  Tapasin 

Time/mins Time/mins

Consider a loaded peptide with unbinding rate u

Competition between unbinding and egression

Egression probability determined by off-rate

Maximal discrimination as egress tends to 0

Peptide Discrimination

x1

x1

x1

x1

Parameter Space

Maximal discrimination determined by off-rate

High peptide turnover is a key factor

Tapasin adds a second filtering stage

Egression probability determined by off-rate2

Peptide Discrimination

x1

x1

x1

x1

Parameter Space

Tapasin improves upper bound on discrimination

Peptide editing is a 2-stage filter process

Peptide Loading: Flytrap Model

MHC I captures peptides like a Venus Flytrap.

peptide enters

open MHC
stable peptide is captured

and presented at cell surface

unstable

peptide escapes

Flytrap Peptide Editing Model

Extend the model with conformational change of
MHC

MHC can open and close several times

But same upper bound on discrimination

Peptide Discrimination: Flytrap

x1

x1

Key mechanisms identified

MHC can delay egression to sample a
wider range of peptides

High peptide turnover is needed to
maintain peptide distribution inside ER

Tapasin holds open MHC and
increases peptide off-rate to quickly
select high affinity peptides

Tapasin stabilises MHC to prevent
degradation and increase presentation

Tapasin increases peptide on-rate by
anchoring MHC at entrance to ER?

Tapasin shifts equilibrium to open
conformation as a way of delaying
egression?

94

MHC Alleles: Model Predictions

Explanation for immune system variability
B4402 (Dependent) B2705 (Partially) B4405 (Independent)

No

TPN

1000

TPN

egress = 0.1 uT = 1.0,

dMHCo = 100.0, TPN = 0

0

200

400

600

800

1000

0 200 400

egress = 1.0 uT = 10.0,

dMHCo = 0.01, TPN = 0

0

200

400

600

800

1000

0 200 400

egress = 0.1 uT = 100.0,

dMHCo = 0.01, TPN = 0

0

200

400

600

800

1000

0 200 400

egress = 0.1 uT = 1.0,

dMHCo = 100.0, TPN = 1000

0

200

400

600

800

1000

0 200 400

egress = 1.0 uT = 10.0,

dMHCo = 0.01, TPN = 1000

0

200

400

600

800

1000

0 200 400

egress = 0.1 uT = 100.0,

dMHCo = 0.01, TPN = 1000

0

200

400

600

800

1000

0 200 400

Extending the Model

Include function of additional chaperones.

Calreticulin

Erp57 TAP transporter

BBSRC Project 2006-2007

MRC Project 2007-2010

Extendable,Maintainable Models

Build complex models by composing simpler components.
The models are easier to extend and maintain.

Can we replace one model with another?

Verifying Biological Models
Mhc.txt

MHC(bind,bindT)

Modelling Immunodominance

- How peptides induce a dominant response

- From molecular mechanisms to global

response patterns

References

[Blossey et al., 2007] Blossey, R., Cardelli, L., and Phillips, A. (2007). Compositionality,

Stochasticity and Cooperativity in Dynamic Models of Gene Regulation. HFSP Journal.

[Blossey et al., 2006] Blossey, R., Cardelli, L., and Phillips, A. (2006). A compositional approach to

the stochastic dynamics of gene networks. Transactions in Computational Systems Biology,

3939:99–122.

[Borgstroem et al., 2007] Borgstroem, J. Gordon, A., and Phillips, A. (2007). A Chart Semantics for

the Pi-calculus. In Proceedings of Expressiveness in Concurrency.

[Gillespie, 1977] Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem., 81(25):2340–2361.

[Guet et al., 2002] Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. (2002) Combinatorial synthesis

of genetic networks. Science 296 1466-1470.

[Huang and Ferrel, 1996] Huang, C.-Y. F. and Ferrel, J. E. (1996). Ultrasensitivity of the mitogen-

activated protein kinase cascade. PNAS, 93:10078–10083.

[Lecca and Priami, 2003] Lecca, P. and Priami, C. (2003). Cell cycle control in eukaryotes: a biospi

model. In proceedings of Concurrent Models in Molecular Biology.

[Phillips and Cardelli, 2007] Phillips, A. and Cardelli, L. (2007). Efficient, Correct Simulation of

Biological Processes in the Stochastic Pi-calculus. In Proceedings of Computational Methods in

Systems Biology, 4695:184–199.

[Phillips et al., 2006] Phillips, A., Cardelli, L., and Castagna, G. (2006). A graphical representation

for biological processes in the stochastic pi-calculus. Transactions in Computational Systems

Biology, 4230:123–152.

References

[Priami, 1995] Priami, C. (1995). Stochastic p-calculus. The Computer Journal, 38(6):578–589.

Proceedings of PAPM’95.

[Priami et al., 2001] Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001). Application of a

stochastic name-passing calculus to representation and simulation of molecular processes.

Information Processing Letters, 80:25–31.

[Regev et al., 2001] Regev, A., Silverman, W., and Shapiro, E. (2001). Representation and

simulation of biochemical processes using the pi- calculus process algebra. In Altman, R. B.,

Dunker, A. K., Hunter, L., and Klein, T. E., editors, Pacific Symposium on Biocomputing, volume 6,

pages 459–470, Singapore. World Scientific Press.

[Sangiorgi and Walker, 2001] Sangiorgi, D. and Walker, D. (2001). The pi-calculus: a Theory of

Mobile Processes. Cambridge University Press.

[Silverman et al., 1987] Silverman, W., Hirsch, M., Houri, A., and Shapiro, E. (1987). The logix

system user manual, version 1.21. In Shapiro, E., editor, Concurrent Prolog: Collected Papers

(Volume II), pages 46–77. MIT Press, London.

Mark Howarth, Anthony Williams, Anne B. Tolstrup, and Tim Elliott. Tapasin enhances mhc class i

peptide presentation according to peptide half-life. PNAS, 101(32):11737–11742, 2004.

Sebastian Springer, Klaus Doring, Jonathan C. A. Skipper, Alain R. M. Townsend, and Vincenzo

Cerundolo. Fast association rates suggest a conformational change in the mhc class i molecule h-

2db upon peptide binding. Biochemistry, 37:3001–3012, 1998.

A. Williams, C. Au Peh, and T. Elliott. The cell biology of mhc class i antigen presentation. Tissue

Antigens, 59:3–17, 2002.

SPiM Definition

Syntax
Semantics
Graphics

SPiM Syntax
p::= x(m) Receive value m on channel x

x
_
n Send value n on channel x

x
_
(m) Send restricted value m on channel x

r Delay at rate r

M::= p1.P1 + ... + pN.PN Choice between actions

P::= P1 | ... | PM Parallel composition of processes

X(n) Species X with parameters n

(x1,...,xN) P Restriction of channels x1,...,xN to P

D::= P Definition of a process

M Definition of a choice

E::= X1 (m1) = D1 ,..., Definitions for Xi with parameters mi

XN (mN) = DN

S::= E,P System of E and P
103

Graphical Syntax: Environment E

104

Definitions

E X1 (m1) = D1 ,..., XN (mN) = DN

Choice

M p1.P1 + ... + pN.PN

Parallel Species Restriction

P P1 | ... | PM X(n), if X(m) = D (x1,...xN) P

Graphical Syntax: Process P

Parallel Species Restriction

P P1 | ... | PM X(n), if X(m) = D (x1,...xN) (X1 (n1) | ... | XN (nN))

105

X(m) = r.P1 + ... + pN.PN

X(m)

Graphical Semantics: Delay

106

Graphical Semantics: Delay

X(m) = r.P1 + ... + pN.PN

X(m)  P1

107

Graphical Semantics: Interaction

X(n) = x
_
.P1 + ... + pN.PN , Y(m) = x.Q1 + ... + pM.QM

X(n) | Y(m)

108

Graphical Semantics: Interaction

X(n) = x
_
.P1 + ... + pN.PN , Y(m) = x.Q1 + ... + pM.QM

X(n) | Y(m)  P1 | Q1

109

Graphical Semantics: Binding

X(n) = x
_
(u).P1 + ... + pN.PN , Y(m) = x(u).Q1 + ... + pM.QM

X(n) | Y(m)

110

Graphical Semantics: Binding

X(n) = x
_
(u).P1 + ... + pN.PN , Y(m) = x(u).Q1 + ... + pM.QM

X(n) | Y(m)  (u) (P1 | Q1)

111

Graphical Syntax

112

Choice

M p1.P1 + ... + pN.PN

Parallel Species Restriction

P P1 | ... | PM X(n), if X(m) = D (x1,...xN) P

Species Restriction

P X(n), if X(m) = D (x1,...xN) (X1 (n1) | ... | XN (nN))

