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Systems Biology

The Human Genome project:
Map out the complete genetic code in humans

To unravel the mysteries of how the human body functions

The code raised many more questions than answers

Systems Biology: 
Understand and predict the behaviour of biological systems

Two complementary approaches:
Look at experimental results and infer system properties

Build detailed models of systems and test these in the lab

Biological Modelling:
Conduct virtual experiments, saving time and resources 

Clarify key mechanisms of how a biological system functions

Beginning to play a role in understanding disease



Large, Complex, Biological Models 

http://www.celldesigner.org



Biological Programming 

Complex Models:
Difficult to understand, maintain and extend

Hundreds of reactions, soon to be tens of thousands

Would not write a program as a list of 10000 instructions

Modularity:
Need a way of decomposing a model into building blocks

Not your average computer programs

Massive parallelism, each instruction has a certain probability

Suggests a need for a biological programming language...



Programming Languages for Biology

Languages for complex, 
parallel computer systems:

Languages for complex, 
parallel biological systems:

stochastic p-calculus

p-calculus by [Milner et al. 1989]. Stochastic version by [Priami et al. 1995] 

First used in a biological context by [Regev et al. 2001]



Language Development
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SOUND & COMPLETE

let gLow() = delay@g_pep; (Low() | gLow())

and Low()= (

new low@uLow:chan

do !pep(low); ?low; Low()

or delay@d_pep

)

let gMed() = delay@g_pep; (Med() | gMed())

and Med()= (

new med@uMed:chan

do !pep(med); ?med; Med()

or delay@d_pep

)

let gHigh() = delay@g_pep; (High() | gHigh())

and High()= (

new high@uHigh:chan

do !pep(high); ?high; High()

or delay@d_pep

)

let gMHC() = delay@g_MHC;(gMHC() | MHCo() )

and gTPN() = delay@g_TPN;( gTPN() | TPN() )

and TPN()= (

new uT@unbind_TPN:chan

do !tpn(uT); ?uT; TPN()

or delay@degrade_TPN

)

and MHCo()= 

do ?pep(u);MHCc_pep(u)

or ?tpn(uT);MHCo_TPN(uT)

or delay@degrade_MHCo

and MHCc_pep(u:chan) = 

do delay@egress; MHCe_pep(u)

or !u; MHCo() 

and MHCe_pep(u:chan) = delay@degrade_MHCe

and MHCo_TPN(uT:chan)= 

do ?pep(u)*a; MHCc_TPN_pep(u,uT)

or !uT*v; MHCo()

and MHCc_TPN_pep(u:chan,uT:chan)= 

do !uT; MHCc_pep(u)

or !u*q; MHCo_TPN(uT)

EQUIVALENT

Phillips and Cardelli, 2004

Phillips, Cardelli and Castagna, 2006

Phillips and Cardelli, 2007

GUI by Filippo Polo, MSR Cambridge

Exact Stochastic Simulation Algorithm Graphical Representation and Execution Model 

Graphical Editor and Simulator 



SPiM: Stochastic p for Biology

A variant of stochastic p calculus

Supports expressive power of  p

Graphical syntax and semantics

Biological constructs, e.g. complexation

Efficient implementation
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SPiM Processes

Xp = a
_
. X Y  = a. Yp

X  = d. Xp Yp = d
_
. Y

Message-Passing Approach

Chemical Reactions

Xp + Y  a X + Yp

X + Yp d Xp + Y



Compact, Modular Models

Chemical Reactions SPiM Processes



EGFR Model [Hornberg et. al 2005]
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EGFR Model [Hornberg et. al 2005]
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Modular EGFR



Outline

Basic Examples

Gene Networks

C. elegans Development

Immune System Modelling
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Basic SPiM Examples

Protein Production
Protein Interaction
Protein Binding



A protein P can be produced with propensity 0.1 

Probability of a reaction depends on propensity

Exact simulation: what happens next?

Production: G produce G + P     P degrade 

16

reaction rate propensity (s-1)

produce 0.1 0.11

degrade 0.001 0.0010

1

G

P

=  produce.(P | G)

=  degrade.0



Production: G produce G + P     P degrade 

Another protein P can be produced

100 times more likely to produce than degrade
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1

1 reaction propensity (s-1)

produce 0.1

degrade 0.001



And another...

Production: G produce G + P     P degrade 
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2

1 reaction propensity (s-1)

produce 0.1

degrade 0.0012



A protein b can be degraded at rate 0.001

Low probability, but still possible

Production: G produce G + P     P degrade 
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3

1 reaction propensity (s-1)

produce 0.1

degrade 0.0013



Eventually...

Production: G produce G + P     P degrade 
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2

1 reaction propensity (s-1)

produce 0.1

degrade 0.0012



Equilibrium at about 100 proteins. 

Propensities of both reactions are equal.

Production: G produce G + P     P degrade 
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100

1 reaction propensity (s-1)

produce 0.1

degrade 0.001100



Gene Simulation

Simulation results show evolution over time

Level of protein P fluctuates around 100

22



Interaction: Xp + Y  d
a X + Yp

Xp and Y can interact on channel a

Xp activates Y by sending its phosphate group
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1 1

Xp = a
_
. X Y  = a. Yp

X  = d. Xp Yp = d
_
. Y



Interaction: Xp + Y  d
a X + Yp

X and Yp can interact on channel d
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1 1



Interaction: Xp + Y  d
a X + Yp

Interactions can continue indefinitely...

25

1 1



Interaction: Xp + Y  d
a X + Yp

What happens if we mix 100Xp and 100Y ?

Assume rate(a) = 100s-1 and rate(d) = 10s-1

An Xp and Y protein can interact on channel a.
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100 100

reaction propensity (s-1)

a 100100100

d 0



Interaction: Xp + Y  d
a X + Yp

An additional Xp and Y protein can interact.
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99 99

1 1

reaction propensity (s-1)

a 1009999

d 1011



Interaction: Xp + Y  d
a X + Yp

An X and Yp protein can interact
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98 98

2 2

reaction propensity (s-1)

a 1009898

d 1022



Interaction: Xp + Y  d
a X + Yp

Eventually an equilibrium is reached... 
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1 1

99 99

reaction propensity (s-1)

a 1009999

d 1011



Interaction: Xp + Y  d
a X + Yp

At equilibrium  when rate(a)[Xp][Y]  rate(d)[X][Yp] 
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24 24

76 76

reaction propensity (s-1)

a 1002424

d 107676



Interaction: Xp + Y  d
a X + Yp

At equilibrium: 100s-1[Xp][Y]  10s-1[X][Yp]

Approximately 24Xp and 76X
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Binding: X + Y  -b
+b X'Y'

X and Y can bind on channel +b
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1 1

X = +b
_
.X' Y  = +b.Y'

X'  = -b
_
.X Y' = -b.Y



Binding: X + Y  -b
+b X'Y'

X' and Y' can unbind on channel -b
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1 1

1

- - - (-b) - -



Binding: X + Y  -b
+b X'Y'

Binding and unbinding can continue indefinitely...
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1 1



Binding: X + Y  -b
+b X'Y'

What happens if we mix 100X and 100Y ?

Assume rate(+b) = 100s-1 and rate(-b) = 10s-1

An X and Y protein can bind on channel +b.
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100 100

reaction propensity (s-1)
+b 100100100
-b 0



Binding: X + Y  -b
+b X'Y'

An additional X and Y protein can bind.
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99 99

reaction propensity (s-1)
+b 1009999
-b 101

1 1

1

- - - (-b) - -



Binding: X + Y  -b
+b X'Y'

An X' and Y' protein can unbind on channel -b

37

98 98

reaction propensity (s-1)
+b 1009898
-b 102

1 1

2

- - - (-b) - -



Binding: X + Y  -b
+b X'Y'

Eventually...

38

reaction propensity (s-1)
+b 1009999
-b 101

99 99

1 1

1

- - - (-b) - -



Binding: X + Y  -b
+b X'Y'

At equilibrium when rate(+b)[X][Y]  rate(-b)(-b) ([X'] [Y']) 
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3 3

97

reaction propensity (s-1)
+b 10033
-b 1097

1 1- - - (-b) - -



Binding: X + Y  -b
+b X'Y'

At equilibrium: 100s-1[X][Y] = 10s-1[X'Y']

Approximately 3X and 97X'Y'
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Programming Gene Networks

with
Luca Cardelli (MSR Cambridge)
Ralf Blossey (IRI Lille)



Repressilator [Elowitz and Leibler, 2000]

A gene network engineered in live bacteria.  

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory 

Network of Transcriptional Regulators. Nature 403:335-338.



Parameterised Gene Gate

Gate G(a,b)

Autoinhibitory G(b,b)

Bistable G(a,b) | G(b,a)

Oscillator G(a,b) | G(b,c) | G(c,a)

ba

b

ca

b

a

b

G(a,b)  

B(a,b)

P(b)

= a.B(a,b) + produce.(P(b) | G(a,b))

= unblock.G(a,b)

= b.P(b) + degrade.0



Repressilator [Elowitz and Leibler, 2000]

Modelled as a simple combination of gene gates:  

G(lac,tet) 

| G(tet,lambda) 

| G(lambda,lac) 

| G(tet,gfp)

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory 

Network of Transcriptional Regulators. Nature 403:335-338.

tet

lambdalac

gfp



Graphical Programming
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How does the oscillator work?

G(a,b) | G(b,c) | G(c,a)

46

b

ca



Oscillator: 0s

Initially there is one copy of each gene

Any one of the proteins can be produced at rate 0.1

47

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*3 0 0 0 0 0 0.3

1 1 1



1 1 1

Oscillator: 5.568177s

The b protein can block the c gene at rate 1

48

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*3 0 0.001 1 0 0 1.301



Oscillator: 6.329912s

Now no c protein can be produced.

But an a protein can still be produced at rate 0.1

49

1

1

1

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*2 0.0001 0.001 0 0 0 0.2011



1

1

1

1

Oscillator: 11.62149s

The a protein can block the b gene at rate 1
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1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1*2 0.0001 0.001*2 0 0 1.0 1.2021



1 1

1

1 1

Oscillator: 13.21617s

Now no b or c protein can be produced.

A b protein can degrade at rate 0.001
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reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001*2 0 0 0 0.1022



Oscillator

Meanwhile, lots of a protein is produced
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1 1

1

1

reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001 0 0 0 0.1012



Oscillator

The a protein dominates

Equilibrium between transcription and degradation

Eventually, the c or a gene unblocks at rate 0.0001
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1 1

1

100

reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001*100 0 0 0 0.2002



Suppose the a gene unblocks

There is a high probability that it will block immediately

1

1

1

100

Oscillator
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reaction produce unblock degrade b c a total

propensity (s-1) 0.1*2 0.0001 0.001*100 0 0 1.0*100 100.3001



Eventually, the c gene unblocks at rate 0.0001

1 1

1

100

Oscillator: 11039.31s
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reaction produce unblock degrade b c a total

propensity (s-1) 0.1 0.0001*2 0.001*100 0 0 0 0.2002



Oscillator: 11039.77s

There is nothing to block the c gene.

The c protein can now take over...

Eventually...
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1

1 1

100



Oscillator Simulation

Alternate oscillation of proteins: b, c, a, b

Oscillations in a particular order
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Analysing Simulation Traces

A simulation trace can be visualised as a sequence of 
messages exchanged between parallel processes. 

Can debug a biological system in a similar way to a 
communication protocol. Causality, critical paths... 

Borgstroem, Gordon, Phillips, 2007



Repressilator Trace
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A Gene Gate in 3D
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The Repressilator in 3D
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Graphical Debugging

GUI by Rich Williams, MSR Cambridge



Parameter Analysis

Range of parameters for good oscillations (produce=0.1):

produce/degrade > 1000, unblock > degrade, block > 100*produce

Blossey, Cardelli, Phillips, 2007

degrade = 0.001, unblock = 0.00001, block = 1.0 degrade = 0.0001, unblock = 0.00001, block = 1.0

degrade = 0.0001, unblock = 0.0001, block = 1.0 degrade = 0.0001, unblock = 0.0001, block = 10.0



Model Refinement:

Different behaviour, same network G(a,b) | G(b,c) | G(c,a)

Blossey, Cardelli, Phillips, 2007



Cooperativity improves robustness

Proteins form complexes before repressing

Blossey, Cardelli, Phillips, 2007



Cooperativity Simulations

Monomers Tetramers

Blossey, Cardelli, Phillips, 2007



Bacteria Logic Gates [Guet et al., 2002]

3 genes: tetR, lacI, lcI

5 promoters: PL1, PL2, PT, Pl-, Pl+

125 possible networks consisting of 3 promoter-gene units

2 inputs: IPTG (represses Lac), aTc (represses Tet)

1 output: GFP (linked to Pl-)

© 2002 AAAS. Reprinted with permission from Guet et al. Combinatorial Synthesis of Genetic Networks. Science 296 (5572): 1466 - 1470

Blossey, Cardelli, Phillips, 2006



Gene with protein inhibitor

68

G(a,b) Gi(a,b,i)

Blossey, Cardelli, Phillips, 2006



Bacteria Logic Gates

Model 125 networks using just 2 modules: 

Enables modular simulation and analysis

Can easily refine the modules without rewiring the networks.

Blossey, Cardelli , Phillips, 2006

D038 D038 | Inh(aTc)

D038 | Inh(IPTG) D038 | Inh(aTc) | Inh(IPTG)

D038 = Gi(tet,tet,aTc) 

| Gi(tet,lac,IPTG) 

| G(lac,lambda) 

| G(lambda,gfp)



A Computational Model of C. 
elegans Vulval Development

with
Rosie Bloxsom (Cambridge University)
Tim Labeeuw (Cambridge University)
Jasmin Fisher (MSR Cambridge)
Hillel Kugler (MSR Cambridge)



C. elegans Nematode Worm

Model organism for development

1mm long, about 1000 cells

Completely transparent, can observe growth
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C. elegans VPC Differentiation
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Simplified Model of AC and VPC
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Network of AC and 6 VPC

AC |

V(3,s3,s4,low) | V(4,s4,s5,low) | V(5,s5,s6,med) |  

V(6,s6,s7,high) | V(7,s7,s8,med) | V(8,s8,s9,low)
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Population Plot
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Geometric Plot
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Refined VPC Model
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Simulation Results
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A Computational Model of MHC 
class I Antigen Presentation

with
Luca Cardelli (MSR Cambridge)
Leonard Goldstein (Cambridge University)
Tim Elliott (Southampton University)
Joern Werner (Southampton University)



MHC: A Biological Virus Scanner

80

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.



MHC: A Biological Virus Scanner

81

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.



Investigate the Role of Tapasin

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.



MHC I Structure

Interaction of MHC I with peptide



SPiM Peptide Editing Model

Graphs describe the behaviour components

Assume low, medium and high affinity peptides



Model Parameters

MHC spends < 2h on average in the ER. 
Name Rate

min-1

Time

min

Range

min-1

Description

gPep 50 0.02 Active transport of peptides into the ER

dPep 10 0.1 Degradation of free peptides inside the ER

bind 1 1 Binding of peptides to MHC (per molecule)

low 3 0.33 Unbinding of low affinity peptides from MHC

med 1.2 0.83 Unbinding of medium affinity peptides from MHC

high 0.5 2 Unbinding of high affinity peptides from MHC

gMHC 10 0.1 Assembly of MHC complexes inside the ER

dMHCo 0.01 100 0.01 - 100 Degradation of free MHC inside the ER

dMHCe 0.01 100 Degradation of loaded MHC at the cell surface

egress 1 1 0.01 - 1 Egression of loaded MHC from the ER

gTPN 10 0.1 Production of tapasin inside the ER

dTPN 0.01 100 Degradation of free tapasin inside the ER

bindT 100 0.01 1 - 1000 Binding of tapasin to MHC (per molecule)

uT 1 1 0.01 - 1 Unbinding of tapasin from loaded MHC



Simulations Match Experiments

MHC needs to present stable peptides

Improved selection with tapasin. How? 

No Tapasin  Tapasin 

Time/mins Time/mins



Consider a loaded peptide with unbinding rate u

Competition between unbinding and egression

Egression probability determined by off-rate

Maximal discrimination as egress tends to 0

Peptide Discrimination

x1

x1

x1

x1



Parameter Space

Maximal discrimination determined by off-rate

High peptide turnover is a key factor 



Tapasin adds a second filtering stage

Egression probability determined by off-rate2

Peptide Discrimination

x1

x1

x1

x1



Parameter Space

Tapasin improves upper bound on discrimination 

Peptide editing is a 2-stage filter process



Peptide Loading: Flytrap Model

MHC I captures peptides like a Venus Flytrap. 

peptide enters 

open MHC
stable peptide is captured

and presented at cell surface

unstable

peptide escapes



Flytrap Peptide Editing Model

Extend the model with conformational change of 
MHC



MHC can open and close several times

But same upper bound on discrimination 

Peptide Discrimination: Flytrap

x1

x1



Key mechanisms identified

MHC can delay egression to sample a 
wider range of peptides

High peptide turnover is needed to 
maintain peptide distribution inside ER

Tapasin holds open MHC and 
increases peptide off-rate to quickly 
select high affinity peptides

Tapasin stabilises MHC to prevent 
degradation and increase presentation

Tapasin increases peptide on-rate by 
anchoring MHC at entrance to ER?

Tapasin shifts equilibrium to open 
conformation as a way of delaying 
egression?
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MHC Alleles: Model Predictions

Explanation for immune system variability
B4402 (Dependent) B2705 (Partially) B4405 (Independent)

No 

TPN

1000

TPN

egress = 0.1 uT = 1.0, 

dMHCo = 100.0, TPN = 0

0

200

400

600

800

1000

0 200 400

egress = 1.0 uT = 10.0, 

dMHCo = 0.01, TPN = 0

0

200

400

600

800

1000

0 200 400

egress = 0.1 uT = 100.0, 

dMHCo = 0.01, TPN = 0

0

200

400

600

800

1000

0 200 400

egress = 0.1 uT = 1.0, 

dMHCo = 100.0, TPN = 1000

0

200

400

600

800

1000

0 200 400

egress = 1.0 uT = 10.0, 

dMHCo = 0.01, TPN = 1000

0

200

400

600

800

1000

0 200 400

egress = 0.1 uT = 100.0, 

dMHCo = 0.01, TPN = 1000

0

200

400

600

800

1000

0 200 400



Extending the Model

Include function of additional chaperones. 

Calreticulin

Erp57 TAP transporter

BBSRC Project 2006-2007

MRC Project 2007-2010



Extendable,Maintainable Models

Build complex models by composing simpler components. 
The models are easier to extend and maintain.



Can we replace one model with another? 

Verifying Biological Models
Mhc.txt

MHC(bind,bindT)



Modelling Immunodominance

- How peptides induce a dominant response

- From molecular mechanisms to global 

response patterns
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SPiM Definition

Syntax
Semantics
Graphics



SPiM Syntax
p::= x(m) Receive value m on channel x

x
_
n Send value n on channel x

x
_
(m) Send restricted value m on channel x

r Delay at rate r

M::= p1.P1 + ... + pN.PN Choice between actions

P::= P1 | ... | PM Parallel composition of processes

X(n) Species X with parameters n

(x1,...,xN) P Restriction of channels x1,...,xN to P

D::= P Definition of a process

M Definition of a choice

E::= X1 (m1) = D1 ,..., Definitions for Xi with parameters mi

XN (mN) = DN

S::= E,P System of E and P
103



Graphical Syntax: Environment E

104

Definitions

E X1 (m1) = D1 ,..., XN (mN) = DN

Choice

M p1.P1 + ... + pN.PN

Parallel Species Restriction

P P1 | ... | PM X(n), if X(m) = D (x1,...xN) P



Graphical Syntax: Process P

Parallel Species Restriction

P P1 | ... | PM X(n), if X(m) = D (x1,...xN) (X1 (n1) | ... | XN (nN))
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X(m) = r.P1 + ... + pN.PN

X(m)

Graphical Semantics: Delay
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Graphical Semantics: Delay

X(m) = r.P1 + ... + pN.PN

X(m)    P1 
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Graphical Semantics: Interaction

X(n) = x
_
.P1 + ... + pN.PN ,   Y(m) = x.Q1 + ... + pM.QM

X(n) | Y(m) 
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Graphical Semantics: Interaction

X(n) = x
_
.P1 + ... + pN.PN ,   Y(m) = x.Q1 + ... + pM.QM

X(n) | Y(m)   P1 | Q1 
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Graphical Semantics: Binding

X(n) = x
_
(u).P1 + ... + pN.PN ,  Y(m) = x(u).Q1 + ... + pM.QM

X(n) | Y(m) 
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Graphical Semantics: Binding

X(n) = x
_
(u).P1 + ... + pN.PN ,  Y(m) = x(u).Q1 + ... + pM.QM

X(n) | Y(m)   (u) (P1 | Q1)
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Graphical Syntax
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Choice

M p1.P1 + ... + pN.PN

Parallel Species Restriction

P P1 | ... | PM X(n), if X(m) = D (x1,...xN) P

Species Restriction

P X(n), if X(m) = D (x1,...xN) (X1 (n1) | ... | XN (nN))


