
The SPiM Language

c©Andrew Phillips 2007

Version 0.05

Contents

1 Introduction 2

2 Programs 2

3 Declarations 3

4 Processes 4

5 Actions 6

6 Patterns 7

7 Values 7

8 Types 8

9 Lexical Syntax 9

10 Language Summary 11

1

1 Introduction

This document presents the SPiM Language Definition. The Language is defined in BNF notation,
where optional elements are enclosed in braces as {Optional}.

2 Programs

Syntax A Program consists of one or more Declarations, together with optional top-level
Directives for sampling and plotting simulation results.

Program ::= {Directive1 . . . DirectiveM} Directives,M ≥ 1
Declaration1 . . . DeclarationN Declarations, N ≥ 1

Directive ::= directive sample Float {Integer} Sample Directive
| directive graph Graph Directive
| directive plot Point1 . . . PointN Plot Directive

Point ::= !Channel {as String} Output Point
| ?Channel {as String} Input Point
| Name (V alue1, . . . ,V alueN) {as String} Process Point, N ≥ 0

Sample Directive

directive sample Float {Integer}

Specifies the maximum duration of a simulation, together with the maximum number of plots.
The maximum duration of the simulation is specified by the given Float. The units of simu-

lation time are not given explicitly, but are determined by the reaction rates in the program. For
example, if the rates are given in seconds−1 then the simulation time is assumed to be in seconds.
The simulation is halted when the simulation time exceeds the maximum duration.

The maximum number of plots is specified by the given Integer. This is used to compute the
minimum interval of time between plots. For example, if the duration is 10.0 and the maximum
number of plots is 1000 then there will be a minimum time of 0.01 between plots. This has the
effect of sampling plots at regular time intervals. If no maximum number of plots is given then all
of the plots are used.

If no sample directive is given then the simulation continues until the program terminates.

Graph Directive

directive graph

Instructs the simulator to output a graphical representation of the program in .dot format. The
resulting file can be viewed using the Graphviz DOT layout engine1, which can also be used
to export a directed graph in .ps or .png format. The graphical representation corresponds to
the program code, where top-level value, type and channel declarations are omitted. The graph
directive is disabled for the GUI version of the simulator, which uses a menu command to export
a graphical representation of the program that was last simulated.

Plot Directive

directive plot Point1 . . . PointN

Specifies one or more points to be recorded at each time step. If no plot directive is given then
the number of possible inputs and outputs on all channels is recorded at each time step.

1Available from http://www.graphviz.org/ compatible with version 2.8

2

The simulation results for a given SPiM program are stored in a corresponding .csv file as
a sequence of comma-separated values. The first line of the file contains the headers for the
remaining lines. The first header denotes the simulation time, and each subsequent header denotes
the number of possible inputs ?x or outputs !x on a given channel x, or the number of running
processes P (n) with parameters n. Each subsequent line contains the current simulation time,
followed by the number of inputs, outputs or processes. A new line is written to the result file for
each simulation step.

The result file can be viewed using a suitable spreadsheet in order to plot a graph of the
results. For example, Microsoft Excel can be used to open the result file in order to plot a scatter
diagram of selected inputs, outputs and processes over time. The result file can also be imported
into Microsoft Excel as external data, which can be refreshed whenever the result file is updated
during a simulation.

Points A point can be an output or input on a Channel or the Name of a process, together
with an optional String header.

!Channel {as String}

Records the number of possible outputs on the given Channel at each time step, using the given
String header. If no string header is specified then the header ”!Channel” is used by default. If
more than one channel is declared with the same name then the sum of all the outputs on these
channels is recorded.

?Channel {as String}

Records the number of possible inputs on the given Channel at each time step, using the given
String header. If no string header is specified then the header ”?Channel” is used by default. If
more than one channel is declared with the same name then the sum of all the inputs on these
channels is recorded.

Name (V alue1, . . . ,V alueN) {as String}

Records the number of processes with the given Name and parameters (V alue1, . . . ,V alueN),
using the given String header. If no string header is specified then the header ”Name(V alue1,
. . . ,V alueN)” is used by default. Only processes of a certain form can be recorded, i.e. those that
are defined as a choice of actions preceded by zero or more channel, type or value declarations. If
no parameters are specified then the sum of all the processes with the given Name is recorded.

Declarations

Declaration1 . . . DeclarationN

Specifies one or more top-level declarations to be executed.

3 Declarations

Syntax A Declaration can be a Channel, Type, V alue or Process declaration, or one or more
mutually recursive Definitions.

Declaration ::= new Name{@V alue}:Type Channel Declaration
| type Name = Type Type Declaration
| val Pattern = V alue Value Declaration
| run Process Process Declaration
| let Definition1 and . . . and DefinitionN Process Definitions, N ≥ 1

Definition ::= Name (Pattern1, . . . ,PatternN) = Process Process Definition, N ≥ 0

3

Channel Declaration

new Name{@V alue}:Type

Creates a new channel with rate V alue and with the given Type, and assigns this channel to the
given Name. The Rate is a floating point number that corresponds to the rate of an interaction
on the channel. If no rate is specified then the channel is assumed to have an infinite rate.

Type Declaration

type Name = Type

Assigns the given Type to the given Name. If the Name occurs in the Type then a recursive type
is declared.

Value Declaration

val Pattern = V alue

Assigns the given V alue to the given Pattern. If the Pattern is a Name then a single value
is declared. If the Pattern is a tuple of N patterns Pattern1, . . . ,PatternN then N values are
declared.

Process Declaration

run Process

Executes the given Process.

Process Definitions

let Definition1 and . . . and DefinitionN

Declares one or more mutually recursive processes.

Process Definition

Name (Pattern1, . . . ,PatternN) = Process

Assigns the given Process to the given Name, parameterised by zero or more Pattern arguments.
An instance of the given Process can be executed by invoking the given Name with corresponding
V alue arguments.

4 Processes

Syntax A Process can be Null, a Parallel Composition of processes, an Action, a Choice of
actions, an Instance of a definition, a Replicated action, a Conditional process, a Pattern Matching
process, a Repeated process or a collection of nested Declarations.

Process ::= () Null Process
| (Process1 | . . . | ProcessM) Parallel,M ≥ 2
| Action{; Process} Action Process
| do Action1{;Process1} or . . . or ActionM{;ProcessM} Choice,M ≥ 2
| Name (V alue1, . . . ,V alueN){; Process} Instantiation, N ≥ 0
| replicate Action{; Process} Replicated Action
| if V alue then Process {else Process} Conditional Process
| match V alue case Case1 . . . case CaseN Matching, N ≥ 1
| Integer of Process Repetition
| (Declaration1 . . . DeclarationN Process) Nested Declarations, N ≥ 0

Case ::= V alue -> Process Match Case

4

Null

()

Terminates the execution of a process.

Parallel Composition

(Process1 | . . . | ProcessM)

Executes two or more processes in parallel.

Action Process

Action{; Process}

Tries to perform the given Action and then execute the given Process. If no Process is specified
then nothing is executed after the action is performed.

Choice

do Action1{;Process1} or . . . or ActionM{;ProcessM}

Tries to perform two or more competing actions simultaneously. Once a chosen Actioni has been
performed, any competing actions are discarded and Processi is executed. If no Processi is
specified then nothing is executed after the action is performed.

Instantiation

Name (V alue1, . . . ,V alueN){; Process}

Spawns a copy of the process defined by the given Name, instantiated with the given V alue
arguments, in parallel with the given Process. If no Process is specified then nothing is executed
in parallel with the instantiated process. From version 0.042, the use of the optional {; Process}
is deprecated.

A number of predefined processes are available: print(s) prints the given string s on the console,
println(s) prints the given string s on the console followed by a new line character and break()
halts the simulation until the user presses Enter.

Replicated Action

replicate Action{; Process}

Tries to perform the given Action and then spawn a copy of the given Process. This has the effect
of repeatedly executing the given Action followed by the given Process.

Conditional

if V alue then Process {else Process}

Executes the first Process if the given V alue is true. Otherwise, the optional second process is
executed.

Matching

match V alue case Case1 . . . case CaseN

Tries to match the given V alue with one or more Cases, where each Casei is of the form:

V aluei -> Processi

The cases are matched in order, from first to last. For each Casei, if the given V alue matches
V aluei then Processi is executed. Otherwise, the next case is examined. Note that any variables
in V aluei are bound during matching. If none of the cases match the given V alue then nothing
is executed.

5

Repetition

Integer of Process

Executes zero or more copies of the given Process, as specified by the given Integer.

Nested Declarations

(Declaration1 . . . DeclarationN Process)

Executes zero or more nested declarations, followed by the given Process. The syntax is further
constrained so that nested declarations cannot contain process definitions.

5 Actions

Syntax An Action can be a stochastic Delay or an Output or Input on a Channel.

Action ::= delay@V alue Delay
| !Channel {(V alue1, . . . ,V alueN)} {*V alue} Output, N ≥ 0
| ?Channel {(Pattern1, . . . ,PatternN)} {*V alue} Input, N ≥ 0

Delay

delay@V alue; Process

Waits for a period of time stochastically determined by the given V alue, and then executes the
given Process.

Output

!Channel {(V alue1, . . . ,V alueN)} {*V alue}; Process

Tries to send zero or more values on the given Channel and then execute the given Process. If
there is a parallel input on the same channel then the values are sent over the Channel and the
Process is executed. The rate of the reaction is multiplied by the given V alue.

Input

?Channel {(Pattern1, . . . ,PatternN)} {*V alue}; Process

Tries to receive zero or more values on the given Channel, assign them to the given patterns and
then execute the given Process. If there is a parallel output on the same channel then values are
received over the Channel and assigned to the patterns, and the Process is executed. The rate
of the reaction is multiplied by the given V alue.

6 Patterns

Syntax A Pattern can be a Wildcard, a Name with an optional type annotation, or a sequence
of zero or more patterns enclosed in parentheses:

Pattern ::= Wildcard Pattern
| Name{:Type} Name Pattern
| (Pattern1, . . . ,PatternN) Patterns, N ≥ 0

Assignment A V alue can be assigned to a given Pattern inside a given Process, written

Process{Pattern:=V alue}

6

7 Values

Syntax A V alue can be a Constant, a Constructed value or an Expression:

V alue ::= String String Value
| Integer Integer Value
| Float Float Value
| Character Character Value
| true Boolean True
| false Boolean False
| int of float Float to Integer
| float of int Integer to Float
| sqrt Square Root
| Name Variable
| show V alue String Representation
| -V alue Negation
| V alue+V alue Addition
| V alue-V alue Subtraction
| V alue*V alue Multiplication
| V alue/V alue Division
| V alue=V alue Equal
| V alue<>V alue Different
| V alue<V alue Less Than
| V alue>V alue Greater Than
| V alue<=V alue Less Than or Equal
| V alue>=V alue Greater Than or Equal
| Name (V alue1, . . . ,V alueN) Constructor Value, N ≥ 0
| [] Empty List
| V alue::V alue List Value
| (V alue1, . . . ,V alueN) Values, N ≥ 0

Constant Values A String, Integer, Float or Character constant, boolean true, or boolean
false.

Constructed Values A sequence of zero or more values, enclosed in parentheses:

(V alue1, . . . ,V alueN)

A data constructor consisting of a Name and a sequence of zero or more V alue arguments:

Name (V alue1, . . . ,V alueN)

A list, which can be either empty [] or of the form V alue1::V alue2, where V alue1 is the first
element of the list and V alue2 is the remainder of the list. Note that all values in a list must be
of the same type:

V alue::V alue

Expressions A value expression can be a variable Name representing a predefined value, a
prefix operator followed by a V alue argument, or an infix operator between two V alue arguments.

The prefix operator show V alue1 converts V alue1 to a string value. By definition, every value
has a corresponding string representation. The prefix operators int of float and float of int
perform float and integer conversions, respectively. The prefix operator - V alue is defined in Ta-
ble 1.

Infix operators take two arguments of any type, provided both types are the same. The
comparison operators (= ,<>,>,>=,<=) return a result of boolean type and rely on an ordering

7

to compare both arguments. The arithmetic operators (+,-,*,/) return a result of the same type
as their arguments. Table 1 describes the behaviour of the operators for each corresponding type
of arguments. The symbol means that the behaviour of the operator is unspecified, although the
result will always be of the correct type.

Type + - * / - (prefix) = ,<>,>,>=,<=
String Concatenate Lexicographic Order
Integer Add Subtract Multiply Divide Minus Integer Order
Float Add Subtract Multiply Divide Minus Float Order

Character ASCII Code Order
Boolean Or And Not Lexicographic Order

List Append Order of Elements
Data Lexicographic Order
Other

Table 1: Operator Definitions

8 Types

Syntax A Type can be a Constant type, a Constructed type or a type Expression:

Type ::= string String Type
| int Integer Type
| float Float Type
| char Character Type
| bool Boolean Type
| Name Type Variable
| ’Name Polymorphic Type
| chan{ (Type1, . . . ,TypeN)} Channel Type, N ≥ 0
| proc (Type1, . . . ,TypeN) Process Type, N ≥ 0
| Name (Type1, . . . ,TypeN) Constructor Type, N ≥ 0
| Type1 | . . . | TypeM Data Type,M ≥ 2
| list(Type) List Type
| (Type1, . . . ,TypeN) Types, N ≥ 0

Constant Types A string, int, float, char or bool type.

Constructed Types A channel that can carry zero or more values of given types:

chan{ (Type1, . . . ,TypeN)}

A process that can be instantiated with zero or more values of given types:

proc (Type1, . . . ,TypeN)

A sequence of zero or more types, enclosed in parentheses:

(Type1, . . . ,TypeN)

A data constructor consisting of a Name and a sequence of zero or more arguments of given types:

Name (Type1, . . . ,TypeN)

8

A data type consisting of a choice between two or more types:

Type1 | . . . | TypeM

A list that can contain values of a given type:

list(Type)

Type Expressions A type expression can be a Name representing a predefined type, or a
polymorphic type variable that can be instantiated with an arbitrary type.

Type-checking Before executing a given program, the simulator checks if the program is well-
typed and reports any type errors. The type system for the SPiM Language is based on the type
system for the Pict Language, available from http://www.cis.upenn.edu/˜bcpierce/papers/pict/

9 Lexical Syntax

Regular Expressions Regular Expressions (Regexp) are used to describe the syntax of Con-
stants and Variables in the SPiM Language:

Regexp ::= c Character
| c· · ·c Character Range
| ¬c Character Complement
| Regexp Regexp Concatenation of Expressions
| Regexp |Regexp Alternative Expressions
| Regexp? Optional Expression
| Regexp∗ Repetition of Expression
| Regexp+ Strict Repetition of Expression
| (Regexp) Nested Expression

Constants An Integer constant consists of an optional negative sign followed by one or more
digits:

Integer ::= (-)?(0· · ·9)+

A String constant consists of a sequence of zero or more characters enclosed in double quotes.
The sequence can only contain a double quote if it is preceded by a backslash:

String ::= ”((¬”) | (\”))∗”

A Float constant consists of an Integer, followed by a decimal point and one or more digits,
followed by an optional exponent. The exponent consists of e or E, followed by + or −, followed
by one or more digits:

Float ::= Integer.(0· · ·9)+((e |E)(+ | -)(0· · ·9)+)?

A Character constant consists of any character enclosed in single quotes, apart from the single
quote character. It can also consist of a backslash, followed by a special escaped character or a
three-digit decimal number, enclosed in single quotes:

Character ::= ’(¬’)’ Regular Character
| ’\” Single Quote
| ’\\’ Backslash
| ’\n’ Linefeed
| ’\r’ Carriage Return
| ’\t’ Horizontal Tabulation
| ’\b’ Backspace
| ’\(0· · ·9)(0· · ·9)(0· · ·9)’ ASCII Character Code

9

Variables A Name variable consists of a letter followed by zero or more letters, digits, under-
scores or single quotes:

Name ::= (A· · ·Z | a· · ·z)(A· · ·Z | a· · ·z | 0· · ·9 | | ’)∗

A Channel variable is a Name representing a Channel value:

Channel ::= Name

The following variable names are reserved keywords of the language:

and as bool chan char delay directive
do else float float to int if in int
int to float false let list new out or
of plot proc replicate run sample show
sqrt string then true type val

Comments A comment starts with the sequence of characters (* and ends with the sequence
of characters *). Comments can be nested, but they cannot occur inside single or double quotes.

10

10 Language Summary

This section presents a summary of the SPiM language definition, where optional elements are
enclosed in braces as {Optional}. The syntax is further constrained so that nested declarations
cannot contain process definitions.

Program ::= {Directive1 . . . DirectiveM} Directives,M ≥ 1
Declaration1 . . . DeclarationN Declarations, N ≥ 1

Directive ::= directive sample Float {Integer} Sample Directive
| directive graph Graph Directive
| directive plot Point1 . . . PointN Plot Directive

Point ::= !Channel {as String} Output Point
| ?Channel {as String} Input Point
| Name (V alue1, . . . ,V alueN) {as String} Process Point, N ≥ 0

Declaration ::= new Name{@V alue}:Type Channel Declaration
| type Name = Type Type Declaration
| val Pattern = V alue Value Declaration
| run Process Process Declaration
| let Definition1 and . . . and DefinitionN Definitions, N ≥ 1

Definition ::= Name (Pattern1, . . . ,PatternN) = Process Definition, N ≥ 0

Process ::= () Null Process
| (Process1 | . . . | ProcessM) Parallel,M ≥ 2
| Name (V alue1, . . . ,V alueN){; Process} Instantiation, N ≥ 0
| ActionProcess Action Process
| do ActionProcess1 or . . . or ActionProcessM Choice,M ≥ 2
| replicate ActionProcess Replicated Action
| if V alue then Process {else Process} Conditional Process
| match V alue case Case1 . . . case CaseN Matching, N ≥ 1
| Integer of Process Repetition
| (Declaration1 . . . DeclarationN Process) Nested Declarations, N ≥ 0

Case ::= V alue -> Process Match Case

ActionProcess ::= Action{; Process} Action Process

Action ::= delay@V alue Delay
| !Channel {(V alue1, . . . ,V alueN)} {*V alue} Output, N ≥ 0
| ?Channel {(Pattern1, . . . ,PatternN)} {*V alue} Input, N ≥ 0

Pattern ::= Wildcard Pattern
| Name{:Type} Name Pattern
| (Pattern1, . . . ,PatternN) Patterns, N ≥ 0

11

V alue ::= String String Value
| Integer Integer Value
| Float Float Value
| Character Character Value
| true Boolean True
| false Boolean False
| int of float Float to Integer
| float of int Integer to Float
| sqrt Square Root
| Name Variable
| show V alue String Representation
| -V alue Negation
| V alue+V alue Addition
| V alue-V alue Subtraction
| V alue*V alue Multiplication
| V alue/V alue Division
| V alue=V alue Equal
| V alue<>V alue Different
| V alue<V alue Less Than
| V alue>V alue Greater Than
| V alue<=V alue Less Than or Equal
| V alue>=V alue Greater Than or Equal
| Name (V alue1, . . . ,V alueN) Constructor Value, N ≥ 0
| [] Empty List
| V alue::V alue List Value
| (V alue1, . . . ,V alueN) Values, N ≥ 0

Type ::= string String Type
| int Integer Type
| float Float Type
| char Character Type
| bool Boolean Type
| Name Type Variable
| ’Name Polymorphic Type
| chan{ (Type1, . . . ,TypeN)} Channel Type, N ≥ 0
| proc (Type1, . . . ,TypeN) Process Type, N ≥ 0
| Name (Type1, . . . ,TypeN) Constructor Type, N ≥ 0
| Type1 | . . . | TypeM Data Type,M ≥ 2
| list(Type) List Type
| (Type1, . . . ,TypeN) Types, N ≥ 0

12

Regexp ::= c Character
| c· · ·c Character Range
| ¬c Character Complement
| Regexp Regexp Concatenation of Expressions
| Regexp |Regexp Alternative Expressions
| Regexp? Optional Expression
| Regexp∗ Repetition of Expression
| Regexp+ Strict Repetition of Expression
| (Regexp) Nested Expression

Character ::= ’(¬’)’ Regular Character
| ’\” Single Quote
| ’\\’ Backslash
| ’\n’ Linefeed
| ’\r’ Carriage Return
| ’\t’ Horizontal Tabulation
| ’\b’ Backspace
| ’\(0· · ·9)(0· · ·9)(0· · ·9)’ ASCII Character Code

Channel ::= Name
Integer ::= (-)?(0· · ·9)+

String ::= ”((¬”) | (\”))∗”
Float ::= Integer.(0· · ·9)+((e |E)(+ | -)(0· · ·9)+)?

Name ::= (A· · ·Z | a· · ·z)(A· · ·Z | a· · ·z | 0· · ·9 | | ’)∗
Keywords ::=

and as bool chan char delay directive
do else float float to int if in int
int to float false let list new out or
of plot proc replicate run sample show
sqrt string then true type val

A comment starts with the sequence of characters (* and ends with the sequence of characters *).
Comments can be nested, but they cannot occur inside single or double quotes.

13

