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1 Introduction

This document describes how a number of spatially homogeneous chemical systems can be modeled in the stochastic
pi-calculus and simulated using the Stochastic Pi Machine1. Each of the systems presented here was previously
defined as a set of reaction equations, which were simulated using the Gillespie algorithm. For further details on
the models and the references to the original literature, see: Gillespie, D. (1977) Exact stochastic simulation of
coupled chemical reactions. J. Chem. Phys. 81 2340-2361.

2 Radioactive Decay Reactions

One of the simplest systems that can be simulated is the irreversible isomerization reaction, commonly referred to
as radioactive decay. In this system, a species of molecule X decays with rate c to a species Z:

X
c→ Z (1)

This can be modeled in the stochastic pi-calculus as a process X(), which performs a stochastic delay τc with rate
c and then executes the process Z():

X() = τc.Z() (2)

directive sample 10.0 1000
directive plot X()
val c = 0.5

let X() = delay@c
run 1000 of X()

Figure 1: SPiM code and simulation results for reaction (2) with c = 0.5 and X0 = 1000. The two-standard
deviation envelope (dotted) has been calculated from the stochastic formulation of (1) and superimposed on the
results

This system was simulated up to time t = 10, with c = 0.5 and an initial number of X molecules X0 = 1000.
The number of X molecules was then plotted versus time. The SPiM code for this simulation is given in Figure
1, together with the corresponding simulation results. A graphical representation of the code is also shown, in

1simulator and documentation available from http://research.microsoft.com/˜aphillip/spim/
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which an oval represents a choice of zero or more actions, and a box represents a parallel composition of one or
more processes. Note that since the process Z() does not participate in any reactions it can be omitted from the
pi-calculus model.

In this simple example, it is possible to analytically solve the stochastic formulation of (1) and calculate the
mean and rms deviation. It turns out that the stochastic mean X(1)(t) = X0e

−ct and the deviation ∆(t) =
(X0e

−ct(1− e−ct))1/2. The two-standard deviation envelope, defined as X(1)(t)±∆(t), was superimposed on the
simulation results for Figure 1 in order to compare them with the predictions of the stochastic formulation. One can
observe that the stochastic fluctuations of a given simulation generally lie within the boundaries of this envelope.

3 The Malek-Mansour and Nicolis Reaction

The following system of reactions was once proposed as a refutation of the basic stochastic hypothesis:

X + Y
c1→ 2Y + X

2Y
c2→ Z

(3)

In particular, Malek-Mansour and Nicolis showed that the stochastic formulation of this system based on a Master
equation has only a single steady-state solution at Y = 0, while the deterministic formulation has two steady-
state solutions, one at Y = 0 that is mathematically unstable and another at Y = c1X/c2 that is mathematically
stable. As a result, they concluded that the stochastic formulation destroys the stable solution of the deterministic
formulation, and preserves only the trivial unstable solution. They hypothesised that, according to the stochastic
formulation, even if the system starts with a large number of Y molecules it will eventually reach a steady state at
Y = 0, in apparent contradiction with the deterministic formulation.

In order to check this hypothesis, the system of equations (3) can be modeled as a pi-calculus process and
simulated in SPiM. Each X molecule is modeled as a process X(), which can perform an input on channel c1 and
remain as X(). Each Y molecule is modeled as a process Y (), which can either perform an output on c1 and evolve
to two parallel copies of Y (), or perform an input on c2 and evolve to Z(), or perform an output on c2.

X() = ?c1.X()
Y () = !c1.(Y () | Y ()) + ?c2.Z() + !c2

(4)

The input and output on c2 are used to model the fact that two Y molecules can interact with each other to
produce a Z molecule. In this model, a given pair of Y molecules can interact in two possible ways: either the first
Y molecule can perform an input on c2 and the second molecule can perform an output on c2, or vice-versa. As a
result, the rate of channel c2 needs to be adjusted so that rate(c2) in the pi-calculus model (4) is equal to c2/2 in
the reaction model (3).

The system was simulated up to time t = 5, with rate(c1) = 5.0, rate(c2) = 0.0025 and an initial number of
Y molecules Y0 = 10. The number of Y molecules was plotted over time and the simulation was then repeated
with Y0 = 3000. The SPiM code for the first simulation is given in Figure 2, together with the results for both
simulations. As with the previous system, the process Z() does not participate in any reactions and can be omitted
from the pi-calculus model.

The simulation results show that different initial conditions of Y0 = 10 and Y0 = 3000 lead to a situation
in which the number of Y molecules fluctuates in an apparently stable manner around the steady state value
of c1X/c2 = 1000, as predicted by the deterministic formulation of (3). Although in theory the number of Y
molecules will eventually reach 0 as t −→ ∞, in practice the system will continue to oscillate indefinitely around
the steady state value of c1X/c2, with a very low probability of randomly fluctuating from this steady state value
to Y = 0. In fact, analytical calculations have shown that the variance about the steady-state mean Y

(1)
s is given

by ∆2
s = (3/2)Y (1)

s which gives a standard deviation of about 39 for a steady state value of 1000. This comparison
between analytical calculation and simulation results illustrates how stochastic simulations can help clarify the
subtle differences between deterministic and stochastic formulations of chemical systems.

4 The Lotka Reactions

The Lotka reactions can be used to model a simple predator-prey ecosystem, in which a prey species Y1 feeds on an
inexhaustible food source X to reproduce, a predator species Y2 feeds on Y1 to reproduce and the predator species
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directive sample 5.0 1000
directive plot Y()
new c1@5.0:chan
new c2@0.0025:chan

let X() = ?c1; X()
let Y() =
do !c1; (Y() | Y())
or !c2
or ?c2

run (X() | 10 of Y())

Figure 2: SPiM code and simulation results for reaction (4) with rate(c1) = 5, rate(c2) = 0.005 and initial values
Y0 = 10. The simulation results for Y0 = 3000 are also given.

Y2 can die of natural causes:
X + Y1

c1→ 2Y1 + X

Y1 + Y2
c2→ 2Y2

Y2
c3→ Z

(5)

This system can be given a deterministic formulation using differential equations, which can be shown to have a
steady state of Y1 = Y1s = c3/c2 and Y2 = Y2s = c1X/c2. Therefore, if the system has initial populations Y1 = Y1s

and Y2 = Y2s at time t = 0, the deterministic formulation predicts that this situation should persist indefinitely.
In order to check this hypothesis, the system of equations (5) can be modeled as a pi-calculus process and

simulated in SPiM. The inexhaustible food source X is modeled as a process X(), which can be eaten by performing
an input on channel c1 and then remain as X(). The prey Y1 is modeled as a process Y1(), which can eat by
performing an output on c1 and then reproduce as two Y1() processes in parallel, or be killed by performing an
input on c2 and then disappear. The predator Y2 is modeled as a process Y2(), which can eat by performing an
output on c2 and then reproduce as two Y2() processes, or die of natural causes by performing a stochastic delay
τc3 and then disappear.

X() = ?c1.X()
Y1() = !c1.(Y1() | Y1()) + ?c2

Y2() = !c2.(Y2() | Y2()) + τc3

(6)

This system was simulated up to time t = 30, with rate(c1) = 10.0, rate(c2) = 0.01, c3 = 10.0, initial
populations Y1 = Y2 = 1000 and an inexhaustible species X. The SPiM code for the simulation is given in Figure
3, together with the corresponding simulation results. The results show that, instead of remaining at a constant
value of 1000, the number of Y1 and Y2 species oscillates with a fairly stable frequency and phase, but markedly
unstable amplitude. Figure 3(a) shows how the predator population lags behind that of the prey, Figure 3(b) shows
the stability of the frequency and instability of the amplitude of the oscillations in the prey population and Figure
3(c) shows the counter clockwise orbits traced out in the Y1Y2 plane.

The simulation results can be logically explained by the fact that a rise in the prey population provides additional
food for the reproduction of the predators, resulting in a rise in predator population shortly afterwards. This is
turn leads to an increase in consumption of prey species, resulting in a decline in the prey population, followed
closely by a decline in predator population, and so on. The results can also be explained by analysing the stability
of the solutions of the deterministic formulation. Such analysis shows that the orbits in the Y1Y2 plane are neutrally
stable, i.e. when perturbed slightly to a point (Y11, Y21) off the orbit, the system will begin orbiting on the solution
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orbit that passes through the new point (Y11, Y21). Therefore, any random fluctuations in Y1 and Y2 will result in
the system wandering between neutrally stable orbits. Furthermore, the wide fluctuations in amplitude indicate
that it is only a matter of time before the orbits intersect with either the Y1 or Y2 axis. Therefore, as t −→ ∞
either the Y1 prey species becomes extinct and the Y2 predator species dies out soon afterwards, or the Y2 predator
species becomes extinct and the Y1 species tends to infinity. This contrasts with the predictions of the deterministic
formulation, which suggest that the populations of predator and prey will remain constant over time. These results
indicate the importance of taking into account stochastic fluctuations when trying to predict the behaviour of a
system.

directive sample 30.0 1000
directive plot Y1(); Y2()
new c1@10.0:chan
new c2@0.01:chan
val c3 = 10.0

let X() = ?c1; X()
let Y1() =
do !c1; (Y1() | Y1())
or ?c2

let Y2() =
do !c2; (Y2() | Y2())
or delay@c3

run (X() | 1000 of Y1() | 1000 of Y2())

a

b

c

Figure 3: SPiM code and simulation results for the Lotka reactions (6) with rate(c1) = 10.0, rate(c2) = 0.01,
c3 = 10.0 and initial values Y1 = Y2 = 1000. Results for (a) Y1, Y2 vs. t with 0 < t ≤ 10, (b) Y1 vs. t with
0 < t ≤ 30 and (c) Y2 vs. Y1.

A number of variations of the Lotka reactions can also be simulated. In particular, the food source X can be
made finite by changing the definition of reaction c1:

X + Y1
c1→ 2Y1

This can be modeled in the pi-calculus by changing the corresponding definition of process X():

X() = ?c1
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The resulting system can be simulated in SPiM by starting with a large quantity of food source X, as shown in
Figure 4. The simulation results indicate that the depletion of the prey food source X is more detrimental to the
predator than to the prey. In this simulation the predators become extinct at t ' 21, after which the remaining
food source X is consumed by the prey for reproduction.

A more realistic system can be defined by adding a reaction to allow the prey to die of natural causes:

Y1
c4→ Z

This can be modeled in the pi-calculus by changing the definition of the corresponding process Y1():

Y1() = !c1.(Y1() | Y1()) + ?c2 + τc4

The resulting system can be simulated in SPiM by taking c4 = c3, as shown in Figure 4. As expected, both the
predator Y1 and the prey Y2 eventually become extinct. However, it is interesting to note that the predator species
becomes extinct significantly before the prey, even though they have the same life expectancy (1/c3 = 1/c4). More
surprisingly, over 40% of the initial food source remains after both the predator and prey have become extinct.
These results indicate how useful and sometimes unexpected insight can be gained through stochastic simulation
of systems.

a b

Figure 4: Simulation results for the Lotka reactions (6) but with a limited number of X species. (a) Simulation
up to time t = 30, with rate(c1) = 0.0001, rate(c2) = 0.01, c3 = 10.0. Initial values Y1 = Y2 = 1000, X = 105.
(b) Simulation with an additional reaction Y1

c4→ Z that allows the prey to die of natural causes. Simulation up to
time t = 30, with rate(c1) = 0.0002, rate(c2) = 0.01, c3 = 10.0, c4 = 10.0. Initial values Y1 = Y2 = 1000, X = 105.
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A The Oregonator Reactions

directive sample 6.0 10000
directive plot Y1(); Y2(); Y3()
new c1@2.0:chan
new c2@0.1:chan
new c3@104.0:chan
new c4@0.008:chan (* 0.016 / 2 *)
new c5@26.0:chan

let X1() = ?c1; X1()
let X2() = ?c3; X2()
let X3() = ?c5; X3()
let Y1() =
do !c2
or !c3; (Y3() | Y1() | Y1())
or !c4
or ?c4

and Y2() =
do !c1; Y1()
or ?c2

and Y3() = !c5; Y2()
run (X1() | X2() | X3() | 500 of Y1())
run ( 1000 of Y2() | 2000 of Y3())

a

b

c

d

Figure 5: SPiM code and simulation results for the Oregonator reactions (7) with c1 = 2, c2 = 0.1, c3 = 104,
c4 = 0.016 and c5 = 26. Initial values Y1 = 500, Y2 = 1000, Y3 = 2000. (a) Y1, Y2, Y3 vs. t for 0 ≤ t ≤ 6. (b) Y2 vs.
Y1 for 0 ≤ t ≤ 6 (c) Y3 vs. Y1 (d) Y3 vs. Y2
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X1 + Y2
c1→ X1 + Y1

Y1 + Y2
c2→ Z1

X2 + Y1
c3→ X2 + 2Y1 + Y3 (7)

2Y1
c4→ Z2

X3 + Y3
c5→ X3 + Y2

Definition A.1. Oregonator Reactions

a b

Figure 6: Simulation of Oregonator reactions (7) as in Figure 24, but with a limited number of X1 species. Rate
c1 = 0.0002. Initial values X1 = 104. Results for Y1, Y2, Y3 vs. t and X1 vs. t, respectively.

Figure 7: Simulation of Oregonator reactions (7) as in Figure 24, but with a limited number of X2 species. Rate
c3 = 0.00104. Initial values X2 = 105. Results for Y1, Y2, Y3 vs. t and X2 vs. t, respectively.
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