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Abstract der logics.
There has been a resurgence of work on encapsulated
Imperative and object-oriented programs make ubiqui- invariants in stateful programs. State-dependent types ar
tous use of shared mutable objects. Updating a shared ob-needed to enforce simple data-type invariants in low-level
ject can and often does transgress a boundary that was supcode where local variables (registers) are re-used and can-
posed to be established using static constructs such as anot be given a single fixed type [15, 1]. Ownership type
class with private fields. This paper shows how auxiliary systems [11, 16] and Separation Logic [19] focus on par-
fields can be used to express two state-dependent encagtitioning the heap so an internal data structure can be de-
sulation disciplines: ownership, a kind of separation, and scribed as a pool of objects separated from outside clients.
local co-dependence, a kind of sharing. A methodology is  |n addition to aliasing, one of the challenges when deal-
given for specification and modular verification of encapsu- ing with object invariants is object reentrancy. Common
lated object invariants and shown sound for a class-basedobject-oriented design patterns —some explicitly intehde
language. to express higher order functional style— involve invoking
an operation on an encapsulated abstraction while one is
already in progress. This is a problem even in sequential
1. Introduction programs, to which we confine our attention in this paper.
The discipline formalized in this paper protects invari-
The use of pointer-based data structures makes formaRnts using ownership, but expressing ownership notin terms
reasoning about programs quite difficult. In common prac- of types [11, 9] or logical connectives [23, 19] but rather
tice, pointer structures are widely used both forintersplr ~ auxiliary state. As explained in the sequel, this addresses
resentations and for interfaces between components. Functhe problem of reentrancy in a flexible way. Moreover, it
tional languages offer strong encapsulation to proteetint ~ offers a conceptually attractive way to limit the part of pea
nal invariants from outside interference, but in higheresrd  0n which an object invariant depends, achieving encapsu-
imperative programs various kinds of aliasing subvert en- lation in a way that offers a glimpse of what amperative
capsulation. The thorniest problems, due to interaction be notion of modulenight be.
tween local variables and nested procedures [14, 20], are Finally, the discipline goes beyond separation to deal
precluded [18, 3] in widely used imperative and object- with cooperation between objects without total dissolutio
oriented languages owing to restrictions on non-local ref- of their individual encapsulation. The object is not theyonl
erences and/or nesting. But these restrictions on proce-useful unit of granularity for reasoning, but it is the urfit o
dure abstraction force the use of heap structure to encodexddressability in object-oriented languages. Moreover, t
higher level patterns. Performance considerations also neclass construct is the primary unit of scope.
cessitate the use of heap sharing and programmers are often In Section 2 we explicate the problems in terms of pro-
taught to exploit “object identity” in specification and de- gram logic, leading to an approach using both ownership
sign. Compositional reasoning depends on control of alias-and pre/post commitments that describe cooperative inter-
ing but straightforward ways to control aliasing in the heap ference between objects. In Section 3 we show how the ap-
have been found too restrictive for general use (see surveydroach has been realized in a verification discipline called
in [10, 16]). The contribution of this paper is to formalize Boogie [5, 7]. The reader is encouraged to consult the cited
and prove sound a discipline that supports modular reasonpapers for an expository introduction. Informal soundness
ing about object invariants, caters for common patterns of arguments are sketched in [5, 7]. The technical contributio
*Partially supported by NSF award CCR-0208984; SR Visifiie- of this paper is to formalize and prove soundness in terms
lowship; Microsoft Research of a standard semantic model.




Predicates are treated semantically so the results areverifying body ) is left unchanged. For the remaining nodes,
useful both for verification systems based on weakest-7 is conjoined everywhere. The result,, concludes with
precondition semantics, like ESC/Java [13] and the Boo- {Pain AZ} Smain {Qmain AL} . Each use of the dubious
gie project, and for those like the LOOP project [12] which rule (1) has become
treat program logic as derived rules for reasoning directly
in terms of semantics. Moreover there is no need for non- {P AT} body{QNT}
standard logical connectives, type systems, or any péaticu {PAZym{QAT}
language for expressing properties of pointer structures O
of the benefits of the discipline is that properties such aswhich is allowed by an ordinary procedure call rule. But
double-linking in a list can be expressed in a decentralizedr’ is not a proof tree, because some other nodes no longer
way that lessens the need for reachability or other indactiv match rules. Suppose that the program exhibits proper en-
predicates on the heap. capsulation, in the sense that the state on whicttepends
is only manipulated insidéody . Then rule (2) may be used
to justify the introduction ofZ so 7/ can be transformed to
a proof tree. The end result is a proof of

2. How encapsulation and atomicity justify

modular reasoning about object invariants
{Pmain} init {,Pmain/\z-} Smain {Qmain/\I} = {Qmain}
Suppose thaf is a predicate intended to be an invariant
for an encapsulated data structure on which methoécts and the original task has been accomplished.
and P, Q are predicates on data visible to callerssof. Object-oriented programming subverts this story in two
The aim of this paper is to justify reasoning of this form:  ways. First, free use of pointers makes it difficult to ensure
or even define and reason about the separation needed for
{PAT}body{QNT} (1)  the condition in rule (2). Second, our argument treats calls
{P} m{Q} of m asatomicin a sense: Within the subtree for a call
node, we did not and cannot conjaihthroughout; invari-
In the rule, m is an invocation of the method arigdy is ants are violated during updates to data structures. But if
its implementation. The rule is very attractive. It allows body invokes an operation on some object outside the en-
the implementer ofn to exploit the invariant while notex-  capsulation boundary, there is the possibility of a reentra
posing it to the client:Z can involve identifiers that are in  call. When that call occurs] might not hold, but the point
scope forbody but not for call sites. of rule (1) is to insist that, unbeknownst to the clieft,is
On the face of it, the rule is unsound: f@ to be es-  established before every invocation of. The discipline
tablished may well depend on preconditidnwhich is not  presented in Section 3 deals with both of these problems.

given in the conclusion. The idea is thatshoulddepend The last problem we address is thlearing of mutable
only on encapsulated stage that it cannot be falsified by  state Rule (2) deals with separation of state. This is made
client code. To explain, we consider this rule. beautifully explicit in Separation Logic, where is re-

i ] placed by the separating conjunctienwhich obviates the
{P}s{} S does not interfere witd (2  needforany side condition: FrofP} 5 {Q} we can infer
{PANT}S{QNT} {P=+Z} S {Q=Z}. This expresses the absence of relevant
- ] _ o sharing: S and Z depend on disjoint parts of the heap.
The condition “S" does not interfere wittZ " is intended  \yhen applicable this is very powerful. But what about the
to apply whens5' is outside the scope of encapsulation. In- sjtation where sharing is needed? Common design patterns
simple settings the condition can be expressed in terms ofapound with situations where a configuration of several in-
disjointness of identifiers. With aliasing it can be extréme  igrjinked objects cooperate in a controlled way.
difficult to express. _ o We write Z (o) to make explicit the object for which an
The benefit of rule (2), which has specifications symmet- jariant is considered. Suppogéo) depends on fieldf
ric to those in (1), is to undo the apparent unsoundness ofyf another objectp, say because there is a field with
(2). The argument is instructive. Consider a proof tree 0.g = p andZ(0) requireso.g.f > 1. Moreover, for some
for some triple {Prmain} Smain {Qmain}, that uses rule  yeasono does not ownp. ThoughZ(o) is at risk from

(1) and various other rules. That is, each node is an in-ypqates ofp. £, supposep cooperates by only increasing
stance of arule as usual. Now consider the treebtained

from = by Changing some of the pre- and post-conditions, 10'Hearnet al.[19] express similar reasoning in a rule of this shape:
as follows. For every ngqla fqr rule (1) we gonjoinI to {PYm{Q} - {P'} S {Q}

the pre- and post-conditions in the conclusion, leaving the {(PAT}body {QANT}F {P' AT} S{Q AT}
antecedent unchanged. Every node in the subtree(at.,




the value of f . Consider the following rule. inv to indicate whether an object’s invariant holds. Being

, , a boolean, it poses no difficulty with aliasing. Instead of

{(PYE.f := E"{Q} UNTYE.f:= E {1} struggling to decide in which states the rules should requir
{PANUNTI}E.f:=E {QANT} 7 to hold, we require that the following holds &l states:

The id_ea istha{ P} E.f = E’ {Q} specifies the as_sign- (Vo e 0.inv = Lype(o)(0) ) 4)
ment in the class performing the updateof . The triple
{UNT}E.f:=FE {I} is acommitment, advertised by Our quantifications range over locations allocated in the

the class ofo, expressing that under conditién its invari- ~ currentheap. We writéype o for the type of the object (its
ant is not falsified. The conclusion is used in a way similar S0-called dynamic class, though in this extended abstract w
to rule (2) but imposes proof obligatidi . omit subclassing). If a method specification ka.inv as
The above rule is sound, being an instance of the stan-Precondition thenZ(self) can be assumed for verification
dard rule of conjunction. But its intended use is forde- ~ Of itsimplementation. _ _
clared in one class and.f : = E’ occuring in code of a The field inv is an auxiliary, meaning that it may be
different class. The rule must be rejected for being incom- Used in specifications but not in ordinary code. To update
patible with scope-based encapsulation. this and other auxiliaries, we do not use ordinary field as-

The rule above is intended to be used in the context of theSignments but rather special statements that can be distin-
class of objecp , which “grants”too permissionto depend 9uished from ordinary assignments and are subject to spe-
on p.f, and the left-hand antecedent would be dischargedCia| rules. The reasoner is free to decide whéte does
in that context. But the antecedefit AZ} E.f : = E' {I} and does not hold. The rule fdt.f : = E’ has as precon-
should be discharged in the “friend” class to which access isdition —E.inv which ensures that an update does not vi-
granted. In that context is visible butE, E’ are not. The  Olate (4); we add further preconditions in the sequel. The
solution studied in this paper is for the friend class, inethi ~ SPecial statementpack E" sets E.inv true; setting it
7 is declared, to include in its interface a commitment false is the purpose ofinpack. These are defined later

because they involve the next topic.
{U(z,y) NI} 2.f : =y {T} ©)

wherex, y are fresh variables used only to specify the com-
mitment [7]. The actual formulation hideg, so the com-
mitment s that “under preconditia¥ (z, ) , an assignment
x.f := y does not falsify my encapsulated invariant” and
U is chosen to expose appropriate state:ofThe commit-
ment can be extended to yield a postcondition as well [7]
but soundness for that is straightforward and omitted here.

Ownership. Like atomicity, ownership and cooperative
friendship are treated using auxiliary fields which express
state-dependent encapsulation. Encapsulation is rdafize
system invariantike (4) which can be exploited wherever
they are needed in verification.

Ownership is a state-dependent form of encapsulation:
an invariantZ (o) is allowed to depend on fields ef and
fields of objects owned by. The auxiliary field own
. . . holds a reference to an object’s owner andhisll if there
3. Recovering encapsulation and atomicity in is no owner. The auxiliary fieldcomm is a boolean that

the presence of sharing and reentrancy represents whether an objectdsmmittedto its owner, in

which case only its owner is allowed to unpack it. The

Atomicity.  Atomicity poses a difficult problem for invari-  special statemenset-owner E to E’ has the effect
ants in object-oriented programs. A sound approach whichE.own : = E’. Making it a special statement indicates
has seen considerable use is faadler to establish its own  that it has no observable effect on the program seman-
invariant before it makes any outgoing method call, just in tics, although it is subject to stipulated preconditiong, e
case it leads to a reentrant call back. In terms of the above-FE.inv just as with any field update. The stipulated pre-
proof tree transformation, this meafismust hold as a pre-  conditions are summarized in Table 1.
condition at nodes for each outgoing calllindy and then The statemenpack E has the effect of settind”.inv
it is conjoined to predicates in the subtree for that call, to true and also setting.comm true for all o owned by F.
ensure that it holds for any nested calls back to the object(Table 5 gives the formal definition.) In order to maintain
for which we are maintainin@ . This approach has been system invariant (4), the stipulated precondition inckide
called visible state semantics of invariants [17], butrinte that Z(E) holds. The other preconditions involve features
mediate states are not observable in the sense of pre/postxplained in the sequel; see [5] or [7] for a more leisurely
specifications. Although sound, this proposal is too restri introduction to the ownership discipline.
tive for many practical purposes. Statementunpack FE has precondition—F.comm,

The discipline that we study [5] avoids exposing details that is, only an object’s owner is allowed to unpack it. Be-
about internal state by introducing a public boolean field sides settingt.inv false, this statement setscomm false



E #null A —E.inv AZg(E) A (Vp e p.own = E = —p.comm A p.inv ); pack FE

E # null A Elinv A = E.comm,; unpack F

—self.inv A B’ # null; attach F’

—self.inv A B/ # null A (=E’.inv V (Vg: B € pivotsC e E’.g # self )); self : B+ detach E’

E # null A —E.inv E.f:=F
A(Vpepe E.deps A f € readstype(p), B) = —p.inv \/L{type(p),af(p,E,E’) );

E #null A =E.inv A (E' = null V =E'inv) set-owner E to E’

A (Vp ep € E.deps A own € readgtype(p), B) = —p.inv \/L{type(p),aown(p, E E));

Table 1. Stipulated preconditions. Static types are assumedto be B and E': C'.

for all o with o.owun = E, thus making owned objects The third special declaration is the update guard. In any
available for unpacking. classC there should be at least one declaration

The pack and unpack statements effectively achieve a hi-
erarchical notion of ownership, sb(o) is allowed to de-
pend on objects that it transitively owns. The discipline for each B, f with f € readC,B). It can be
yields system invariants (10) and (11), included in the sum-the predicatefalse by default. Here the predicate
mary at the end of this section. As a consequence of thel/. g f(self, piv, val) is overself: C, piv: B,val: T', where
invariants, the precondition E.inv for field update means T is the type of f in B and piv, val are special variables
that an object cannot be updated unless its owner is un-used only for this purpost.Note that the pivot name
packed. Surprisingly, this is sound even with all fields con- need not be visible taB. Generalizing from (3) in Sec-
sidered public —not to say that is advisable in practice. tion 2, there may be several class@sin friends B that

read f, and each one’s guard is needed as precondition to

Friendship. In the discipline of [7], which extends [5] to  Updatef.
handle cooperative sharing, three special declaratioys ma 10 accomodate dynamic allocation of unboundedly
appearin aclas®. First, there may be a sequence of friend many instances o, each of which could potentially de-

guard piv.f : = val by Uc g, f(self, piv,val)  (7)

declaration$ pend on a giverp of type B, we introduce one last aux-
friend C reads f (5) iliary field, deps, so thatp.deps is a set of locations of
. o ) friends o that may depend op in that o.g = p for some
where each field nam¢’ in f is either declared inB pivot ¢ . The system invariant associated wifhps is that
or is the agmharyown. _Thg set_of nameg’ for which 0.inv = o € p.deps if o has a pivot pointing ap, see
B has a friend declaration is writtefiriends B. More-  pefinition 1(12). To maintain this invariant, an admissible

over, reads gives the fields that a friend reads from a gpject invariantZ (o) is required to implyo € p.deps (see
granter: read$C', B) = f for the declaration above, and  pefinition 6 in Section 6).

read$C;, B) = @ if C' ¢ friends B. Besides writingZ (o) to denote instantiation with loca-
Second, in each class there should be exactly onedec- {jon , we use a squiggly notatio®[E. f : ~ E'] for the
laration ) ) ) _ semantic counterpart of substitution (i.e., the inversagen
invariant Z¢ pivots pivs (6) of field update). Also, unqualifieg is short forself.g .
whereZ¢ is a predicate oself : C' (and the heap of course) Declaration (7) generates a proof obligation. For each
and pivs is a sequence of (fieldname,classname) pairs, (9: B) € pivotsC' and eachf € readsC, B), the follow-
written ¢ : B. Define pivotsC' = pivs. For each(g: B) ing must be valid (whereelf : '),

in pivotsC, field g must be declared i’ and C' must TcAg # mullA\Uc, g f(self, g, val) = T¢[g.f : ~val] (8)
be in friends B. Definition 6 in the sequel requires that '

T (o) depends orp.f only if either p = o, p is transi- Tha_t is, if Zc depends ory.f thenitis _rr_1aintained by an
tively owned byo, or p = o.g for some pivot field. Thus ~ assignmentokal to g.f under preconditioiic 5, .
we limit friend dependencies to a single step of indirection  “The notationl{c, 5, ; is just a way for our formalism to keep track

in this extended abstrat. (in Table 1) that this is the predicate used to guard any epoayf in an
object of type B with respect to the invariant of” . It is important to
2The term “reads” is slightly misleading in that (in this pgapal fields allow more than one update guard for givéh B, f, offering a choice for
are public and thus subject to update from code in any class. use at different update sites.
3Dependence ow.g.h for immutable fieldh of o.g is clearly allow- Note that in program logic it is common to treat a field (or wyrap-
able (e.g. length if g is an array). And friendship localizes invariants, date a.f := FE as a simple assignment := [a | f := E] but our
lessening the need for farther reaching expressions. formulations are in terms of the syntaxf := FE .



The field deps is manipulated by two special state-
ments: attach £ adds the value off to self.deps and
detach E removes it. See Table 5.

Field update revisited. Pre- and post-conditions in

method specifications may mention any of the special fields
inwv, comm, own, deps, as can intermediate assertions used
in reasoning. There is no restriction on method specifica-

In some examples the invariagdlf.g # null <= self €
self.g.deps is useful, but in others there is no need thips
to be so accurate.

A useful idea that we omit in the formal treatment is to
tag field declarations asep h to say that fieldh satisfies
invarianth = null vV h.own = self ; then we can also allow
E to be a sequence afep fields, as that implies transi-
tive ownership. Similarly, declaratiopeer h can be intro-

tions or on where special statements are used. But theséluced to indicate thak = null V self.own = h.own (this

statements and field updates are subject to the precorglition
stipulated in Table 1.

The primary benefit of the discipline is that object in-
variants hold at any control pointin the program wheére
holds, as formalized in (9) of the following.

Definition 1 (system invariant) The system invarian8Z
is the conjunction of the following.

(Vo eo.inu = Tyue0)(0))

9)
(Vo eo.inv = (Vp ep.own =0 = p.comm ))(10)
(11)

) (12)

(Yo eo.comm = o.inv)

For everyC and(g : B) € pivots C:
(Vp:C,0:B ep.g=0Ap.inv = p € o.deps

is admissible, given suitable friend and pivot declaratjon
Then E.f is allowed if E = h.hg.hy....h, whereh is
taggedrep and eachh; is taggedpeer. For example,

a List class could have fieldep head: Node and Node
could havepeer next: Node. These local invariants im-
ply that every node € o.head.next* is owned by listo,
without the need to express it using such a path expression
in the invariant of List .

In [7] the Subject/View pattern serves as an example
of reasoning aboutieps. The Subject notifies its views
when its state changes, so it maintains a data structure that
represents the set of its current viewss. Its invariant
p € self.deps = p € ws puts it in a position to estab-
lish the precondition for updating its fields on which Views
depend.

Because quantifiers range over locations allocated in the The discipline has been formulated in a way that admits

current heap, the antecedent in (12) holds wjpen= nil.

The main result of the paper is th&tZ is invariant for
any properly annotated program.

The precondition for field update may appear daunting.
But the program text gives finitely many such thatf €
read$C, B). So the condition can be expressed as a finite
conjunction, indexed by the classésin friends B such
that f € readgC, B) . Each conjunct takes the form

(Vp:C e p€ E.deps = —p.invVUcp¢(p, E,E"))

Thatis, the displayed condition must be established fdneac
of the friendsC' declared inB thatreadf . Typically there
are few or none.

Admissible formulas. Because the semantic Definition 6
of admissibility is slightly intricate, we mention here Buf
cient but not necessary conditions for a formula to denote an
admissible invariant. A formula oveelf : C' will denote an
admissible invariant provided that for every field referenc
E.f, f is neitherinv nor comm and moreover one of the
following hold:

e Fis self

e F is some variabler in the scope of( V& e z.own =
self = ...)

e F is self.g for declared pivotg: B with C €
friends B and moreover a top level conjunct of the for-
mula is or impliesself.g = null V self € self.g.deps

aliasing among pivots. An interesting exercise is to cogrsid
class B with field f:int and friend C reads f, where
Icis g.f =0 = ¢'.f =1 forpivots g,¢" : B.

4. An illustrative language

The key features of the discipline involve only field up-
date and the five primitive statements that manipulate aux-
iliary fields. To demonstrate that the discipline scales to
practical languages including general recursion and objec
oriented constructs, and to lay the groundwork for the
refinements needed to cope with subclassing and inheri-
tance [5], we use a language similar to the imperative core
of Java (as in, e.g., [4, 8]) including value parameters and
results, mutable local variables and object fields, and dy-
namic instantiation of objects. Expressions have no side
effects but may dereference chains of fields.

Syntax. The grammar is in Table 2. A complete program
is given as a&lass table CT', that associates each declared
class name with its declaration. The typing rules make use
of some helping functions that are defined in term&Xf,
so the typing relatior- depends orCT' but this is elided
in the notation. Because typing of each class is done in the
context of the full table, methods can be recursive (mutu-
ally) and so can field types.

To define the helping functions, suppogél’(C)
class C { f:Tp; M }. For fields, definefields C



CL:= classC { f:T; M} class named’ with public fieldsf, public methods\/

T == bool| unit|C data type, wheré€' ranges over class names
M == m(z:T):T{S} methodm with result typel’, parameters of typesT’
S == if Ethen SelseS|S; S alternative; sequence

x:=F|varz:T:=Fin S assign to variable; initialized local variable block

|
| z:=Em(E)|E.f:=E|x:=newC  invoke method; assign to field; construct object
| pack E | unpack E | set-owner F to E setand unsetw; updateown
| attach E | detach E add and remove frorelf.deps
E := z|null|true|false | E.f|E=FE variable; constants; field access; reference equality

Table 2. Programming language. A distinguished variable nameself , is used for the target parameter and
anotherresult, is used for the return value of a method. Identifiers [iRevith bars on top indicate finite lists (the bar
has no meaning). Typanit, often called “void”, has a single value and is used for methtbat return nothing useful.

f:Ty. For use in the semantics, we extefidlds C' to formed according to the following rule (see also Table 3).
a function xfieldsC' that also assigns types to the auxil-

iary fields: inv: bool, comm :bool, own : (LocU{nil}), self : C,z: T, result: T+ S

deps : setof(Loc) . Here(LocU{nil}) and setof(Loc) are Crm(z:T):T{S}

not types in the programming language, but notation in the

metalanguage to streamline later definitions. Semantics. Methods are associated with classes, in a
For M inthelist M of method declarations, with/ —= method environmentather than with object states. For this

m(z:Ty): T {S}, we definemtypém,C) = z:T,—T. reason the semantic domains are relatively simple; there ar

In the semantics it is convenient for the input to a method to NC recursive domain equations to be solved (cf. [22, 21]).

be a store, mappingelf and z to their values. Table 4 defines the semantic domains. For data #pe

the domain[77] is a set of values. This induces the domain
[['] of storesas usual. The domaifistate C] of states for
an object of typeC is just stores forxfieldsC' (that is, in-
cluding the auxiliary fields). Aheapis a finite map from

C=Tzx x # self locations to object states, such that every location in any
TFz:— newC field is in the domain of the heap. Function application as-
sociates to the left, sb o f looks up f in the object state
I'HE,:C (f:T) € fieldsC THE T Zo.f \fNe ZISC} use a dot for emphasis with fields, writing
o.f for ho f.
D Eof:=E The domain[Heap ® I'] contains program stateg, s)
consisting of a heap and a stosec [I'] with no dangling
rre:C locations. Similarly, [Heap ® T contains pairs(h,v)
' pack E I' - unpack F wherev € [T] and is not a dangling location. The pre-
ceding domains are all complete partial orders, ordered by
I'FE:C C € friends(I self) equality. The next domains are function spaces into lifted
I' - attach £ I' - detach £ domains. The meaning of expressibrt- £: T is a func-
tion [Heap ® T] — [T.]. The meaning ofl' F S is
r-E:C r=Eg:c’ a function [MEnv] — [Heap @ T] — [(Heap ®T),]
I F set-owner E to E’ that takes a method environmemt(see below) and a state

(h,s) and returns a state at for divergence or error. Ta-
ble 5 gives the semantics for commands.
Table 3. Selected typing rules. The domain[C,z, T—T] is the set of meanings for
methods of clasg” with result T and parameters : T .
Ordered pointwise, this is a complete partial order with bot
A class table is well formed if each class is well formed, tom. Finally, amethod environment € [MEnv] sends
which simply means that each method declaration is well eachC' and method namen declared inC' to a meaning



[C] = {nil}U{o ]| o€ Loc A type o = C} [bool] = {tt, ff} [unit] = {it}

] = {s|doms=domT Asself ZnilA (Vz €domsesxec[l'z])}

[state C] = {s| dom s = dom(xfieldsC) A (V (f:T) € xfieldsC e s f € [T] )}

[Heap] = {h | dom h Cgy, Loc A noDanglingRef h A (Vo € dom h e h o € [state (type 0)] )}
wherenoDanglingRef hiff rng s N Loc C dom hforall s € rng h

[Heap @ T = {(h,s) | h €[Heap] Ns € [I'] Arng sN Loc C dom h}

[Heap @ T] = {(h,v)|h€[Heap] Av e [T]AN (v € Loc = v € dom h)}

[C, 2, T—T] = [Heap® (z:T,self:C)] — [(Heap @ T).]

[MEnv] = {p| (VC,m ey C mis defined iffmtypém, C) is defined,

and theru C m € [C, z, T—T] wheremtypém,C) = z:T—T ) }

Table 4. Semantic domains. For s € state C we takes own € Loc U {nil} and s deps € Pz, (Loc).

of the right type. This too is a complete partial order with Recall thatnil is not a location. It is also convenient to re-
bottom. strict the range of quantification to a particular type: defin
(Vo:C e P ) to abbreviate(Vo e type o = C = P ).
Definition 2 (semantics of method declaration)For ~a  Note that quantification is over all allocated objects, and
declarationM = m(T z):T {S} inclassC, and any  in the semantics there is neither explicit deallocation nor
method environment , define[M]u by garbage collection; the range of quantification includes un
reachable objects but this does not obtrude in the sequel.

[M]p(h,s) = let s1 = [s + result—defaulf in In terms of formulas, a predicate dependsory if up-

let I' = z:T,self : C, result : T"in dating E.f can falsify the predicate. The following seman-
let (ho, s0) = [T+ STu(h, s) in tic formulation is convenient for our purposes.
(ho, so result) Definition 4 (depends) Predicate? depends ono.f iff

there is soméh, s) such thatP dependson.f in (h,s).
Moreover, P depends orp.f in (h,s) iff (h,s) € P,
o€ domh,and([h|o.f—uv],s) ¢ P forsomev.

The default values aré& for unit, ff for bool, and nil
for object types, here and fatew . Thus a new object has
inv = ff, comm = ff, and own = nil; also deps = .

o ) There are several ways the system invaria$ifs could
Definition 3 (semantics of complete program)The be used: as a “fact”, included in what is sometimes called
semantics [CT| of a well formed class tableCT —  he “hackground predicate” that axiomatizes the semantics
is the least upper bound of the ascending chain ufihe programming language (e.g., absence of dangling lo-
p € N — [MEnv] defined byuo C'm = (A(h,s) e L) cations, self # null); as lemmas for reasoning directly

and pj1 € m = [M]p; for M the declaration ofn in in terms of program semantics; or in rules of a logic. We
c. want to justify thatSZ to be asserted at any control point,
and this is sound only if the stipulated preconditions are im
5. Dependence and assertions posed on field updates and special statements. Aiming for
a formulation that is perspicuous and lends itself to vari-
A predicatefor some state typé‘ is just a subsefP - ous uses like those Iisted, we usssert statements. Our

[Heap ® T']. Note that L ¢ P. An invariant for C' is main results show, essentially, that &oryconstituent com-

a predicateZc C [Heap ® (self : C)]. Care is needed mand S of a program properly annotated with assertions
in properly converting a predicate on one state space to aTable 1), we have{SZ} S {SZ} in the sense of partial
predicate on another but the details are straightforward. ACOITectness.

few details are in the Appendix. We writgh, s) = P to The notion of partial correctness we choose is error-

mean(h, s) € P, sometimes as a hint that coercion may be ignoring, for which reason our semantics identifies null-

needed, e.g., to take an instarige(o) to be in P[Heap] dereference errors with divergence. For practical purpose
so0 SZ depends only on heap. it is more useful to use a correctness notion that implies the
If P, isin P[Heap ®T] for every locationo then absence of runtime errors, especially for verification sys-
(Vo e P) is the subset of Heap © T defined by tems intended for use on development code which rarely has

full functional specifications. But for the main statements

(h,s) = (Yo e P, )iffforall o € domh, (h,s) eP, of interest in this paper it is straightforward to formulate



[T+ Eo.f:= E1]u(h,s) =letq=[I'F Ey:C](h,s) in
if ¢ =nilthen Lelseletv = [T+ Ey:T](h,s)in ([h]|q.f—],s)
[Tk z:=new C|u(h,s) = let ¢ = fresh(C,h) in let hy =[h 4 q— [fieldsC — defaults]] in (h1,[s | z+—q])
[T+ pack E]u(h,s) =letg=[T'F E:C](h,s) inif ¢ = nil then L else
let hy = (Ap € dom h e if hp.own = qthen [hp | comm—tt] else hp ) in
([h1 | g-inv—tt], )
[T F unpack E]u(h,s) =letq=[I'F E:C](h,s) inif g = nil then L else
let hy = (Ap € dom h e if hp.own = qthen [hp | comm—ff] else hp ) in
([h1 | giinv—ff], s)

[T F attach E]u(h, s) =letg=[I'F E:C](h,s)inif g = nil then L else
let p = s self in ([h | p.deps— hp.deps U{q}], s)
[T+ detach E)u(h,s) =letg=[T'F E:C](h,s) inif ¢ = nil then L else

let p = s self in ([h | p.deps— hp.deps — {q}], )
[T F set-owner Ejy to F1]u(h,s)=let g=[T'F E:C](h,s) inif ¢ = nil then L else
letp=[CF E:C'](h,s)in ([h | g.own—pl, s)

Table 5. Semantics of selected commands. We let v range over values of various types, and wrjter p where
the value is either a location otil. (N.B. elsewhere in the paper these identifiers usuallyeangr locations only.)
The function update expressidh | ¢.f +— v]| abbreviates the updaté | ¢— [hq | f—v]]. We write [A + g+ .. ]
for function extension. The metalanguage constrlett ¥ = «vin ..."is L if « = L. Assumefresh is an arbitrary
function to Loc such thattype(fresh(C, h)) = C and fresh(C,h) & dom h.

preconditions for the absence of such errors and they areDefinition 6 (admissible invariant) A predicate P C

included in Table 1. [Heap @ (self : C)] is admissible as an invariant fo€'
Soundness for commands is formulated as follows: If provided that for every(h,s) and everyo, f such that

h E 8T and [I'F SJu(h,s) # L then hy E ST P depends om.f in (h,s), field f is neitherinv nor

where (hg, sg) = [I'F SJu(h,s). In the case thatS is comim, and one of the following named conditions holds:

a method call, this depends on the assumption that each

method meaning: C m maintainsSZ. To show that the  °¢al 0= 5(self)

assumption is discharged requires more commitment to agwner: s(self) =" 0 and f # deps

particular program semantics and we have chosen a denota-

tional one in which method meanings are given as the lubfriend: o = h(s(self)).g and s(self) € ho.deps,
of a chain of approximations. Thus the main theorem states for some (¢g: B) € pivots C'. And either f €
that SZ is maintained by every method in the environment readsC, B) or f = deps; in the latter case, for
1 denoted by a properly annotated class table. any X with ([h | o.deps — X],s) ¢ P we have

Assert statements were not listed in the grammar because ~ ([h | 0.deps— X U {s(self)}],s) € P.
we allow semantic predicates not necessarily expressible i - . ) .
a particular language. Definfl’ - assert P]u(h,s) = The only.a_uxnlary field aIIovyed _meads{C, B)is own, S0
if (h,s) € P then (h,s) else L. This is independent the condition for f = deps in friend dependencies essen-

from y, and [Heap ® T] is flat, so there is no problem tially ensures that the only way for an object to depend on
with continuity. some other object'dleps is by s(self) € ho.deps.

Note thato <" o implies =h o.inv .
To clarify the definitions, supposé: is admissible for
6. Soundness C andh = ST. If Z¢(q) depends orv.f in (h,s) then

f #Zinv, f # comm, and one of the following holds:
Definition 5 (transitive ownership) For any heaph, the (local) o = ¢;

transitive ownership relatios” on dom h is defined in- (owner) ¢ <" o and f # deps ; or
ductively by the condition® = hp.own = o <" p and  (friend) 0 = hq.g and q € ho.deps, for some(g: B) €
0o="qANqg=hpown = o="p. pivots C' such thatf € readgC,B) or f = deps. In



casef = deps, we have thafh | o.deps — X] £ Ze(q)
implies [ | o.deps— X U {q}] E Zc(q) forany X .

Lemma 6.1 (co-dependence)f o € dom h and (h,s) =
Zc (o) for admissibleZ then for anyg € pivotsC we
haveho.g # nil = o € h(ho.g).deps.

Lemma 6.2 (transitive ownership) Supposeh E SZ,
o="p,andho.inv = tt. Thenhp.comm = tt.

Definition 7 (properly annotated class table) A properly
annotated class table is one such that

e there are declarations as defined in Section 3;
e each object invariart. is admissible;

e each field update and special statement is preceded b)z

an assert that implies the stipulated precondition (Ta-
ble 1); and
e each update guard satisfies its obligation (8).

We say method environmept maintainsSZ provided
forany C,m, h,s,if h}=SZ andu C m(h,s) = (ho,v)
(and thusp C m(h,s) # L) thenhy = ST.

Theorem 6.3 If CT is a properly annotated class table
then[CT] maintainsSZT .

The proof is by fixpoint inductiofi,using the following.

Lemma 6.4 (mainlemma) If CT is properly annotated
and p, maintainsSZ then any constituent commarft! of
a method inCT maintainsSZ . That is, for all (h, s), if
h = ST and(ho, s0) = [I'F S]u(h, s) thenhy E ST.

The proof is by structural induction o6 . The interesting
cases are the primitive commands that can falsiff, by
extending the range of quantificationagw ) or updating
fields. Method call is easy becaus& only involves heap.
In this extended abstract we consider some key cases.

Lemma6.5mew) If h E ST and (hy,s0) =
[T+ z := new C|u(h,s) thenhy = ST.

Supposeq is the fresh object, so thaty = [h }¢q —
defaults]. For (9): hg ¢g.inv = ff by definition. By h =
SZ, freshness, and admissibility, - (p) can depend on
g in (h,s) so addingg to the heap does not falsify (9) for
existing objects. For (12): The new objegtextends the
range foro in (12), but the antecedent is false @ss fresh.

It extends the range fgr as well, but therp.g = null and

o ranges over allocated, non-null locations.

5|t suffices that (a) the requisite property holds for everyhuod envi-
ronment in the approximation chain and (b) the property éserved by
lub (admissible for fixpoint induction). Both are straightfama.

Lemma 6.6 (pack) Supposeh = SZ and (hg,sy) =
[T+ pack E]u(h,s). Thenhy = ST provided that the
stipulated preconditions (Table 1) are satisfied, i.e.,

q # null
hq.inv = ff

h = Zs(q)
h=(Vp e p.own =q = —p.comm A p.inv )

whereq = [I' + E: B](h, s).

For (9): For anyo, if o # ¢ thenZ(o) by h E ST,
becausepack only changesnv and comm on which ad-
missible invariants do not depend.df= ¢ we haveZg(q)
by precondition. For (10): We haviey = (Vp e p.own =
= p.comm ) by semantics ofpack. For o # ¢,
o owner fields are changed ihg nor is any comm
changed to false imhy. For (11): If ho.comm = ff
but hg o.comm = tt then ho.own = ¢ by definition
of hg; and hg o.inv = tt by hypothesis. For (12): This
can be falsified by changing a pivot, but neithierv nor
comm can be pivots (as they have typmol). It can also
be falsified by updatingleps but pack does not modify
deps. Finally, it can be falsified by settingnv, which
is done here forg. So supposer:C is in dom h and
(9:C) € pivots B with hy g.g = o; then we must show
q € ho o.deps, and this follows by admissibility from
h = Z(q) becauseiy o.deps = ho.deps. O

Lemma 6.7 (field update) Suppose h = SZ and
(ho,80) = [T+ E.f := E'|u(h,s). Thenhy = ST pro-
vided that the stipulated preconditions are satisfied, i.e.

e ¢ #null andhq.inv = ff,
o forall p € hq.deps, if f € readstype(p), B) then
either hp.inv = ff or h |= Uyype(p), 8,7 (0, 4, 0)

whereq = [T+ E: B]u(h,s) andv =T+ E’: B].

By semantics,hg = [k | q.f — v]. For (9): Suppose,
for someo, D that Zp (o) depends ony.f in (h,s). We
must show that eithehg o.inv = ff or hy = Zp(o). By
admissibility of Zp, it suffices to consider these cases:

e g =o0 —Thenho.inv = ff by precondition.

e o =" ¢ —Then preconditionh g.inv = ff implies
h g.comm = ff by h = ST (11) and thenh o.inv = ff
by transitive ownership Lemma 6.2. 3@ o.inv = ff .

e ¢=ho.g ando € hq.deps forsomeg: B € pivotsD
such thatf € readsD, B). (As we are considering
ordinary field updatef # deps.) Now by precondition
we have eithet o.inv = ff, whencehg o.inv = ff by
definition of hg, or elseh = Up p,s(0,¢,v). In the
latter case, byho.g = ¢ # null andh | ZIp(o) we
can use the update guard obligation (8) to obtain=
ID (O)



For (10) and (11): the relevant fields are not updated. For
(12): This can be falsified in the update frainto hy only

by f being a pivot, i.e., at instancg, g : = ¢, f of (12).

But then preconditiorh q.inv = ff falsifies the antecedent.

7. Conclusions

(6]

We have formalized and shown soundness for the pro- [7]
gramming discipline of [7], built on [5], in which auxiliary

fields in annotations express intended atomicity and encap-

sulation. The Main Lemma 6.4 and Theorem 6.3 justify ap-
pealing to system invarialZ where needed. TheSZ(9)
licenses asserting an object invariahto) where o.inv
holds andZ is visible. As in Separation Logic, concepts
like ownership are “in the eye of the asserter” [19].

In [19], which deals with ownership for a single-instance
class and without reentrancy, a major result is that certain
predicates in specifications need to be restricted to be “pre
cise” in the sense that they uniquely determine a satisfying
region of heap. Otherwise there is a problem akin to the
problem of adaptation rules when auxiliary variables can
have more than one satisfying instantiation. We plan to ex- [12]
plore precision in connection with what is achieved by our
use of auxiliarieswn anddeps. We also planto check our
soundness proof using an existing deep embedding of the
semantics in the PVS prover. Finally, the discipline seems
well suited for extension to concurrency, both in its use of [13]
auxiliary state and in the update guards which can be seen
as a simple rely-guarantee interface.

During a presentation by Peter O’Hearn on a rule for [14]
monitors [August 2002], the first author was struck by the
realization that such a rule was no less than a way to pick up
athread dropped in the early '70s —What are the structural [15]
constructs that correspond to commands the way modules
correspond to lambda abstractions? The technical achieve-
ments and inspiring ideas of Reynolds, O’Heatral. are
gratefully acknowledged.
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8. Appendix

The appendix gives one more lemma and a bit more de-

tail about predicates. Tables 6, 7, and 8 give typing and
semantics cases omitted in the body of the paper.

Lemma 8.1 (detach) Supposeh = SZ and (hg,so) =
[T, self: B+ detach E'|u(h,s). Thenhy = SZ pro-
vided that the stipulated preconditions are satisfied, i.e.

e hp.inv=ff

e ¢ #null

e either hq.inv = ff or hq.g # p forall (¢9:B) €
pivotsC

wherep = s(self) andg = [I' - E': Clu(h, s) .

Proof: By semanticsh = [k | p.deps— p.deps — {q}].
For (9): We consider cases on hdw (o) could depend
on hp.deps forsomeD ando € dom h.

e o= p —butthenho.inv = ff by precondition.

e o <" p —but then, by admissibilityZ, does not de-
pend onh p.deps.

D € friends B, in which caseo € hp.deps by
ST (12). If ho = Ip(o) then by admissibility ofZp
and definition ofhy we have[h | p.deps — p.deps —
{¢} U{o}] & Zp(o). Thuso = ¢. Now by precon-
dition, either h q.inv = ff, falsifying the antecedent of
(9), or hq.g # p for all pivots ¢, in which case by ad-
missibility Zp (o) does not depend ohp.deps .

For (10) and (11): the relevant fields are not updated.
For (12): This can only be falsified ih, for the instance
[o,p := p,q] of (12), thatis: hq.g = p A hg.inv =
q € hp.deps. But we have the precondition that either
hq.inv = ff or hq.g # p forall pivots g. O

Details about predicates. Just as a formula over some
variablex may be taken to over, y, we need to adapt (se-
mantic) predicates to different state spaces. In this payrer
primary concern is with object invariants, that is, pretisa

P C [Heap ® (self : C)] for self, and their instantiations
P (o) for particular locationso. Now P(o) projects to a

predicate inP[ Heap] and lifts to other contexts. Negation

whateverI" you like, as remarked above) defined as fol-

lows:
(h,s) € P(o) <= o€ domhA (h,[s]|self—o]) € P

The conditiono € dom h ensures thafs | self — o] is
a closed store. Fof that depends on a larger store, say
self : C, z: T, the definition of P (o, v) is similar.

The weakest precondition for a field assignment can be
expressed as a kind of “substitution”, though as an opera-
tion on formulas care must be taken due to sharing (e.g.,
[2]). We use a wiggly assignment symbol to remind that
this is a semantic function —simply the inverse image of
field update. For field updates, if is value ando an ob-
ject, we defineP|o.f : &~ v] by

(h,s) € Plo.f:=v] < o€ domhA([h|o— flv,s) € P

is complement with respect to the appropriate state set and

this determines the meaning of implication. To streamline

the notation in this extended abstract we do not belabor the

point, as there are no technical difficulties, but rathegrint
pret the type of variou® in a loose way.

For variables, we only need substitution in specific cases
e.g., to substitute a specific locatiogelf in an invari-
ant. For this we use a streamlined notation. Af C
[Heap ® (self : C)] and o is a location of typeC' then
P(o) is the predicate (ovefHeap] or [Heap @ T'] for

11



I'Fa:Tx

I'  true:bool I'Fnoull:C

F"EQZTO F"EliTl

FFEQZEllbOOI

THE:C  (f:T) € fieldsC TFE:T T=Taz  x#self

THEf:T

't :=F

'-E:C mtypém, C) = z: T—T T=Tzx I'-E:T T # self

I' - E:bool I'= Sy

'tz :=Em(E)

T'HS, THFE:T  a#self (T,a:T)FS

I' +if F then Sj else S I'tvarz:T := Fin S

I'=So I'=5;
FFS(); Sl

Table 6. Additional typing rules for program expressions and commands.

[T Fx:T](h,s)
[T F null: C](h, s)
[T+ Ey = Eq:bool](h, s)

[CHE.f:T](h,s)

[T+ x:=E]u(h,s)
[T+ So; Silu(h,s)

sx
nil
let vo = [T+ Eg:To](h, s) in
let vy = [T+ Er:Ty](h, s) inif vg = vy then tt else ff
let o= [I'F E:C](h,s) inif o = nil then L else ho.f

Table 7. Semantics of expressions.

=letv=[CF E:T](h,s)in (h,[s | z—v])
= let (hl, 81) = [[F H So]],u(h,s) in [[F - Sl]]ﬂ(hlasl)

[T Fif E then Sj else S1]u(h,s)= letv =[I' + E:bool](h,s) in

if v then [T F So]u(h, s) else [T+ S1]u(h, s)

[TFvar2:T:=FEin SJu(h,s) =letv=[TF E:T](h,s)in

[0 Fx:=Em(E)]u(h,s)

let s3 = [s+x—wv]inlet (h1,s2) = [(T,z:T) F SJp(h,s1) in (hy, (s22))
=letg=[I'FE:C](h,s)in

if ¢ = nil then L else let 7: T—T = mtypém, C) in

let v = [[' + E:T](h,s)inlet s; = [T — ©,self — g] in

let (ho,vo) = p C m(h,s1)in (ho,[s | z+—vg])

Table 8. Semantics of additional commands.
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