Modular verification of static class invariants

K. Rustan M. Leind and Peter Miller?

1 Microsoft Research, Redmond, WA, USlAei no@xi cr osof t . com
2 ETH Zirich, Switzerlandpet er . muel | er @ nf . et hz. ch

Abstract. Object invariants describe the consistency of object-oriented data struc-
tures and are central to reasoning about the correctness of ohigutedr soft-
ware. But object invariants are not the only consistency conditions achveh
program may depend. The data in object-oriented programs constgtsnhof
object fields, but also of static fields, which hold data that is shared amwiong
jects. The consistency of static fields is describedthyic class invariantswvhich

are enforced at the class level. Static class invariants can also mentiarcensta
fields, describing the consistency of dynamic data structures rootediafistals.
Sometimes there are even consistency conditions that relate the instéseffie
many or all objects of a class; static class invariants describe these rgjation
since they cannot be enforced by any one object in isolation.

This paper presents a systematic wayn@hodologyfor specifying and verify-

ing static class invariants in object-oriented programs. The methodolpgpas

the three major uses of static fields and invariants in the Java library. Tthedie
ology is amenable to static, modular verification and is sound.

Keywords: Static class invariant, verification, object-oriented programming, sta-
tic field

1 Introduction

A central problem in reasoning about a computer progranreectness comes down
to reasoning about which program states the program canreaeh. Programmers
rely on that only some states are reached, most prominepthsuming that the pro-
gram’s data structures satisfy certain properties. Thesggepties are callethvariants
By declaring invariants explicitly, the programmer can gigpport from tools (like the
tools for JML [4] or Spec# [2]) that make sure the program rtairs the invariants. In
this paper, we present a systematic wayn@thodologyfor specifying and reasoning
about invariants in object-oriented programs. In paréigulve consider invariants that
are described and enforced at the level of each class, i#led class invariants

The main data structures in modern object-oriented progi@ stored as the state
of individual objects, in variables known @&sstance fieldsand as the state of classes,
in variables known astatic fields We have identified three major uses of static fields
and invariants in the standard Java libraries (Java 2 Stdifttfition version 5.0). First
and foremost, static fields are used to store shared valaesx&mple, the well-known
static field System.out in Java provides an output stream whose characters flow to the
console. Second, static fields are used to hold the rootsjetbblata structures. For
example, the implementation of th#ring class in Java has a shared pool of interned
strings, storing canonical string references for certharacter sequences. Third, static
fields are occasionally used to reflect something about sthirtes of a class. For ex-
ample, Java'sThread class assigns unique identifiers to its instances and udat@ s

field to keep track of which identifiers are in use. In all ofgb¢hree cases, implicit or
informally documented static class invariants descrileeintended consistency condi-
tions. The methodology we present in this paper enablesqbiecie specification and
formal verification of these invariants.

Previous work on specifying and verifying invariants in etijoriented programs
have developed methodologies @iject invariantswhich describe the consistent state
of individual objects and aggregate objects, formationsdividual objects into one
logic unit [16, 1, 10, 3]. However, these methodologies dbapply to static class in-
variants, because the classes of a program build on eachiothevay that is different
from the principal way in which objects in an aggregate bailceach other: whereas an
object has a unique point of use in an aggregate, a classdsoysaany other classes.

Our basic methodology draws from the Boogie methodologwpligect invariants [1,
10, 3], but innovates in significant ways to handle statislmvariants. First, to ad-
dress the abstraction problem that arises when a classdsysseveral other classes,
our methodology performs different bookkeeping for ingats, tailored to work with
any partial order among classes. Second, our methodolaggirces such a partial or-
der on classes. This order makes it possible for a methodidedo rely on the static
class invariant of the subclass even when the method spaifian a superclass is not
able to name the subclass. The order also prescribes hovititdize classes, which
provides a way to avoid unexpected class initializatioorstrThird, our methodology
adds the ability for an invariant to quantify over objectsr (xample, specifying that
no two linked-list nodes have the same successor), whialies a syntactic restric-
tion on programs. We present our methodology for a programgrasinguage similar to
the sequential subset of Java or C#. The only major semaiffécethce is how class
initialization is performed, as explained later.

To support programming in the large, a crucial aspect of gegification and veri-
fication methodology is that it bmodular. That is, it should be possible to reason about
smaller portions of a program at a time, say a class and itsriteg classes, without
having access to all pieces of code in the program that usddhe or extend the class.
Our methodology is modular.

To save space, we combine the three kinds of static classantginto one running
example, theService and Client classes in Figs. 1 and 2. Objects of cl&gsvice rep-
resent instances of a system service. These instancesast@amamnon job cache, which
is referenced from the static fielghbs. The first class invariant irfervice says that
jobs is non-null, and the second says that the non-null elemdrtteeccache are dis-
tinct. Objects of claslient represent users of the service. Each client has an ID and
the static fieldids keeps track of the number of IDs ever given out. The first dlassi-
ant says thatds is a natural number, the second says tliatexceeds all client IDs, and
the third says that clients have unique IDs. Here and througglguantifications over
objects range over allocated, non-null objects. The dfieations in the class invariants
in Client are also restricted tealid Client objects, indicated by..inveyien: = valid
and explained later. Note that the third invariantGient does not mention any static
fields, but we nevertheless consider it a class invariacesindividual objects cannot
maintain this invariant. No previous methodology can hartbdese kinds of invariants

class Service imports Client {
static rep Client|[] jobs ;
static invariant Service.jobs # null ; // simple
static invariant (Vint 7,5 | 0 <1 < j < Service.jobs.length e
Service.jobs[i] # null = Service.jobs[i] # Service.jobs[j]) ; I/ ownership
static initializer {Service.jobs := new (Service) Client[10] ;}
static void cache(Client c)
requires Service.sinv = tvalid N\ ¢ # null ;

if (¢ & Service.jobs) {
int free := arbitrary value in{ 0, . . ., Service.jobs.length — 1 } ;
expose Service {
expose Service.jobs for Client[] ; Service.jobs|free] := c ;
unexpose Service.jobs for Client[] ;

Fororod

Fig. 1. Service has a static fieldobs, which references an array @flient objects. The class
invariants guarantee thavbs is not null and that eachClient object is stored at most once
in the jobs array. Both invariants are established by the static initializer. fidye keyword in
the declaration ofiobs indicates an ownership relation between #$w@vice class and the array
referenced byjobs .

in an object-oriented setting where the dynamic call or@eschot follow any statically
determined order on the classes, but our methodology haatllef them.

In Sec. 2, we present our methodology $ample class invariantsvhich talk about
the static fields of a class, handling the shared-values fustatic fields. In Sec. 3, we
extend this methodology townership-based class invariantsandling the roots-of-
object-structures use of static fields. In Sec. 4, we furtxtend the methodology to
global class invariantswhich quantify over all valid objects of the class, hanglthe
all-instances use of static fields and invariants. We foizedahe methodology and state
a soundness theorem in Sec. 5. We end the paper with relat&danwd a conclusion.

2 Methodology

In this section, we introduce our methodology for class liards, explain how we
overcome the central problem of abstraction and informdtiding, and prescribe class
initialization. We focus on the general ideas, tightenipghe details in Section 5.

As illustrated by the examples in Figs. 1 and 2, class inmtsiare declared by
clauses of the fornstatic invariant P; where P is a predicate that can mention
fields. A classC can contain several invariant claus&ge class invariant ofC, de-
noted by ClassInve , refers to the conjunction of all invariant clauses dedaneC'. In
this section, we focus on simple class invariants, thahigriants where the only fields
mentioned inP are static fields ofC'.

2.1 Basic methodology

Two fundamental issues drive the design of a methodologgléms invariants. First, in
general, class invariants relate the values of severakfi@lderefore, it is not possible

4

class Client imports String {
int id ; static int ids ;
static invariant 0 < Client.ids ; // simple
static invariant (V Client ¢ | c.invciiens = valid ® c.id < Client.ids) ; // global
static invariant (V Client ¢ | c.invciient = valid e
(V Client d | d.invciient = valid ® ¢ # d = c.id # d.id)) ; I/ global

static initializer { Client.ids:=0; }
Client()

requires Client.sinv = tvalid ;

ensures this.invejen: = valid ;

{

expose Client {
id := Client.ids ; Client.ids := Client.ids + 1 ;
unexpose this for Client ;
}
}
static String debugMsg()
requires Client.sinv = tvalid ;
{ result := “ Client objects created : ".appendNat(Client.ids) ; }

}

Fig. 2. Every object of claslient has an ID. The next available ID is stored in the static field
ids . Class invariants guarantee thalts has not been assigned to@ient object and that all
Client objects have different IDs.

to expect class invariants to hold at every program pointnust allow class invariants
to be temporarily violated.

Second, it is not possible to completely free clients of #sponsibility of making
sure the class invariant holds when a method of the clasdl&dc@his is because of
the possibility of reentrancy: a method declared in clasgC can call methods that
cause control to reentef’. A problem would occur ifm makes such a call at a time
C'’s invariant is temporarily violated and the method throwghich C is reentered
expects the invariant to hold. It would be overly restrietie forbid method calls while
an invariant is temporarily violated. For example, one maytto invoke a method on
the data structure rooted in a static field.

To deal with these two fundamental issues, the methodologst ipermit times
when the class invariant becomes violated. For this reagetintroduce a special pro-
gram statemengxpose C { s }, which allows the invariant of clas§' to be violated
for the duration of the sub-statementthroughout which time we say that is muta-
ble. Any update of any static field'.g must take place whil&' is mutable (but there
are no restrictions on when variables can be read). Theiokesant is checked to hold
at the end of theexpose block. We defineexpose blocks to be non-reentrant; that
is, it is illegal to expose an already mutable class. (N@nt@ncy and condition J2,
below, are what guarantee that the class invariant holdsitoyp ® sub-statement.)

When reasoning modularly about a program, it is importantrtovk whether or
not a class is mutable. For exampl@lient’s constructor in Fig. 2 needs to declare a
precondition that says clasSlient is valid, that is, not mutable; otherwise, it would
not be possible to prove that the program meets the nonregenptrequirement of the

expose block in the constructor’s implementation. To facilitatemtioning the valid-
ity status of a class, we introduce for each class special static field”.sinv (whose
possible values we will describe later), which can be meetibin method specifica-
tions. C.sinv is an abstraction of the static class invariantGh a specification can
mention C.sinv to require C' to be valid, which in effect says thdt 's invariant holds
but does not reveal the details of the invariant itself.

A program cannot update the static field.sinv directly. Instead, the value of
C.sinv is changed automatically on entry and exit of eastpose statement. We
postpone until Section 2.4 the issue of setting the ini@le of C.sinv.

It is important to understand that our methodology does Betavisible state se-
mantics where methods can automatically assume all class intartarhold in the
pre-state. Instead, a method is allowed to rely only on thosaiants whose validity
follows from the explicit precondition. Conversely, oneedmot have to prove that all
class invariants hold when the method terminates. Instgadyrove that (1) the only
static fields that are assigned to are those of mutable slamisd (2) the class invariant
of a classC holds at the end of eadkixpose C statement.

2.2 Abstraction and information hiding

The special static fieldinv makes it possible for a program to record, usually in pre-
conditions of methods, when a class invariant is expectdublith. However, whenever
one class uses another, it would be clumsy, at best, to hawerition explicitly in a pre-
condition all classes whose validity is needed. For exanguppose thetring class
contains a global cache of integers and tH#iring representations. Then, many meth-
ods of String, including appendNat which is called bydebugMsg (Fig. 2), would
have a precondition that requires tering class to be valid. MethodebugMsg, in
turn, would then need to declare the precondition that lidthnt and String are valid.
And so on, for the methods of other classes that may traahitzall debugMsg. As
this example suggests, preconditions would become unyvitdreover, if one class
deep in a program one day is changed to call a methofitahg, then all transitive
callers would have to be changed to aglaing validity as a precondition. Such a pro-
gramming methodology would not respect good principlesififrimation hiding.

To address this problem, we derive from the class declarstid a program a par-
tial order on classes, the so-callealidity ordering and provide the ability, using the
special static fieldsinv, to express the transitive validity of a class. A cl&sss transi-
tively valid (or t-valid for short) if the invariant ofC' holds and all classes that precede
C' in the validity order are t-valid.

The most common edge in the validity ordering arises whernctass is a client of
another class. We require that if a claSsrefers to a clas®) or to an entity declared in
D, then eitherD is a superclass of’ or C' is declared explicitly tamport D. (Note
that in the latter case, the import declaration is mandabogontrast to Java’s “import”
construct, which is just a convenient alternative to wgtfolly qualified names.) IfC
imports D, then this import also gives rise to the edge— C (“ D precedesC”) in
the validity ordering. For instance, clagdient imports String, which, in particular,
allows debugMsg to call a method ofString . The case wheré is a superclass of’
is handled conversely as explained below.

It is now time we introduce actual values for thawv field:

— C.sinv = tvalid says thatC' is transitively valid, that is, that the invariant @f
holds and that all classes that preceden the validity order are t-valid.

— C.sinv = walid says that the invariant of’ holds, but says nothing about the
validity of C'’s predecessors.

— C.sinv = mutable says thatC'’s invariant may be violated and that the program
is allowed to execute statements that assign to the stdtis fi¢ C'.

As suggested by these bullets, and as we later shall justifimethodology guarantees
that the following properties anprogram invariants that is, that they hold at every

control point in a program (here and throughout, quantificetover class names range
over all classes of a program):

J1: (VC,D e D — C A C.sinv = tvalid = D.sinv = tvalid)
J2: (VC e C.sinv = tvalid vV C.sinv = valid = ClassInve)

We can now spell out the preconditions of the methods ineblnethe Fig. 2 ex-
ample. SinceClient imports String, String precedeClient in the validity ordering.
Assume the following declaration in clag®ring:

String appendNat(int n)
requires 0 < n A String.sinv = tvalid ;

Method debugMsg needs the preconditio@lient.sinv = tvalid, since it not only
needsClient’s invariant in order to establish that the parameter pagsegpendNat
is non-negative, but also needs the t-validitySfing in order to meet the precondition
of appendNat . Client’s constructor can requir€lient.sinv = tvalid, Client.sinv =
valid , or Client.sinv = tvalidV Client.sinv = valid , since the implementation of the
constructor does not depend on the validity of other clagdewever, Client.sinv =
tvalid is generally to be preferred, because that specificatioarisigl enough to allow
the implementation to be changed to rely on the validity beotclasses.

2.3 Subclasses

Since validity-ordering edges are introduced along withithports relation, a declared
class becomes a successor of all classes it imports. Inubisestion, we show that
subclassing has to be treated differently from other uskdions between classes.

To illustrate with an example, consider a hierarchy of dasgpresenting decision
procedures for various theories, as may be used in the ingpition of an automatic
theorem prover. Each theory implements a methedrtLiteral that adds a constraint
to the decision procedure. Fig. 3 declares cl@%sory, the root of the hierarchy.

Now, consider a particular theory, say the theory of lineéihmetic, represented by
a subclass.ATheory, see Fig. 3. Being a method overrided Theory.assertLiteral
has the same specification as the overriddérory.assertLiteral, and in particular,
the override cannot strengthen the precondition of thermaan method.

Suppose thd.ATheory implementation ofassertLiteral makes use of some sta-
tic fields of LATheory and relies on the class invariant to hold of these staticdield
This means thal.ATheory.assertLiteral relies on the t-validity ofLATheory. Since

class Theory { void assertLiteral(Literal 1) { ... } ... }
class LATheory extends Theory imports String {
static String version ;
static invariant LATheory.version # null ;
static initializer { LATheory.version := “ Version ”.appendNat(3) ;}
override void assertLiteral(Literal 1) { ... }

}

Fig. 3. An example to illustrate the specification problem of a method override thes @ a
static class invariant.

this method override cannot strengthen the preconditioru$eertLiteral defined in
Theory, the precondition of Theory.assertLiteral must imply that LATheory is
t-valid. But how can such a precondition be declared in cl@ssory without ex-
plicitly mentioning LATheory (since Theory may not know about the existence of
LATheory, which may be authored long after the authoringitfeory)?

If LATheory precedesl'heory in the validity ordering, then we can solve the spec-
ification problem on account of program invariant J1. Thehadtin classTheory then
declares the precondition

requires Theory.sinv = tvalid ;

which by J1 impliesLATheory.sinv = tvalid, as needed in the method override. In
other words, a caller of methodssertLiteral, which may not even know about the
existence ofLATheory but may nevertheless hold a reference to an object of alidcat
type LATheory, must establish the t-validity offheory at the time of call, which
allows the implementation of ATheory to determine thaf. A Theory is t-valid, too.

To allow classLATheory to define the edgé ATheory < Theory in the validity
ordering, we use thextendselation that is already used to declare subclasses. That is
as part of our methodology, a subclass precedes its supseslan the validity ordering.

A class can extend one superclass (single inheritance)napaki any number of other
classes. However, we require that the resulting validiledng is acyclic.

An acyclic validity ordering prevents mutually dependdasses (except when one
class is a subclass of the other). Cyclic references betalasses can be allowed by
grouping classes intmodulesand declaring the validity ordering on modules instead of
classes. Then, the classes in one module can mutually deperath other. We explain
and formalize this approach in our technical report [9].

2.4 Class initialization

A static class invariant is first established by the statiializer of the class, a desig-
runtime system, so as to orchestrate the initialization oliple classes. For brevity,
we do not consider dynamic class loading here, but our metbggl can handle it [9].
Since the static initializer of a clags may access fields and methods of imported
classes, itrequire€’’s predecessors in the validity ordering to be valid. Thedkieved
by initializing classes in the order of the validity ordegin
A program is executed by invoking the static methadin on a specified class,
say M . Before main is actually called, the runtime system loadis and all classes

that M transitively imports or extends. The static fields of allsslas are initialized to
zero-equivalent values, in particulatin is initialized to mutable . Next, the runtime
system executes the static initializer of each class, dawgrto the validity ordering.
After executing the static initializer of a clags, C'.sinv is set totvalid .

C'’s static initializer can, therefore, assume on entry that@ is mutable, which
allows the initializer to assign t@'’s static fields, and (2) all predecessors @fare
t-valid. Thatis, C'’s static initializer may assume that the following preciiod holds:

C.sinv = mutable AN (VD o D «— C = D.sinv = tvalid)

The initializer is responsible for making sure the imple#sertionassert ClassIinvc
holds on exit. For example, consider clagd Theory in Fig. 3. Becausestring pre-
cedes LATheory, the second conjunct of the precondition impli§g-ing.sinv =
tvalid ; therefore, the initializer can meet the preconditionappendNat . Because of
the first conjunct of the precondition, the assignmentil’heory.version is permit-
ted. ProvidedappendNat returns a non-null value, the implicit assertion at the ehd o
the initializer body will hold.

Note, by the way, that thd.ATheory initializer cannot assumé&heory to be t-
valid, since Theory does not preced@ ATheory . This is different from the initializa-
tion order in Java, where superclasses are initializedreeheir subclasses. Most cor-
rect programs that require that superclass invariants siedbleshed before subclasses
are initialized can be modeled or rewritten to follow Javaitialization ordering. The
key idea is to separate out static fields and invariants obthperclass into a helper
class, which is imported by both the superclass and the astes.

2.5 Summary

We summarize the steps that lead us to our methodology: @Giesgants can state
relations between multiple static fields, and thus the nulogy must permit class
invariants to be temporarily violated. To allow calls whileclass invariant is violated
and since such calls may reenter the class, we explicithesgmt (bysinv) whether or
not a class invariant might be violated, which allows prelittons to be explicit about
which invariants are assumed to hold. The explicit repriedimm reveals the central
problem of abstraction, which we address by allowing cladsebe ordered (by the
validity ordering) and by representing transitive valdiff classes along that ordering.
Finally, the validity ordering has an impact on class ititiion.

The methodology allows programmers to specify invariamste state of each
class. The programmer is assured that the invariant of a ¢ldsolds wheneveC'. sinv
is walid or tvalid . Thus, by requiring that, for examplé;.sinv = tvalid holds on en-
try to a method, the implementation of the method can saédyyan C'’s class invariant
to hold on entry. Dependencies between classes are indibgtedges in the validity
ordering, which coupled with our initialization order aslsiclass initialization errors.

3 Ownership-based class invariants

Simple class invariants refer only to static fields of thelesiag class, but not to in-
stance fields. Preventing class invariants from dependirigstance fields is too restric-
tive for many interesting programs. For instance, cléssvice (Fig. 1) uses a global

cache, which is implemented by an array and rooted in thedtald jobs. Service
imposes restrictions on the elements stored in this arrgacob

Assume that the class invariant of a cl@ssefers to the instance fielfl of an object
X . The reason the methodology introduced so far cannot handleclass invariants is
that a methodn outside C' that gets hold of a reference 6 can updateX.f, thereby
potentially violating C'’s invariant. Since the invariant might not be knownsto, it is
not possible to determine modularly that this update hagtguarded by an assertion
that C is mutable. In our example, any method that has a refererntbe tervice. jobs
array can break théervice invariant by assigning to elements of the array.

In this section, we extend our methodology by the notiorwhership This ex-
tension allows the invariant of a clags to depend on fields of objectsvnedby C
without restricting where these fields are declared. Therslé¢d methodology ensures
that a field of an object can be updated only if the object’siogglass is mutable.

3.1 Ownership

Ownership organizes objects into a hierarchycohtexts where the objects in each
context have a common owner (sedy, [5, 16]). In this paper, we use a restricted form
of ownership where objects can be owned by a class, but nothsr objects. This
restriction allows us to focus on the methodology for clamssiiants without getting
into details of the corresponding methodology for objestaitants. An extension to
ownership among objects is presented in our report [9]. Wadalaestrict references;
classes and objects may have non-owning references tasbjec

Following the encoding in our work on object invariants [1@F represent owner-
ship by a special fieldwner for every object. The value afwner is a class name. Itis
set when an object is created. The allocation statemeatnew (C) T creates a new
object of classT' owned by clas<” . In this paper, we assumavner to be immutable
after object creation. We described how to handle a mutabieer field for objects
(ownership transfer) in a previous paper [10].

We allow theowner field to be mentioned in class invariants. To specify owrigrsh
relations, we introduce a modifieep that can be used in the declaration of any static
field. A field declarationstatic rep S g; in a classC gives rise to the following
implicit class invariant about ownership i@ :

C.g #null = C.g.owner = C;

The invariant of a clasg” is allowed to refer to fields of objects owned I6y. In
our example, theep modifier of the static fieldService.jobs indicates that the object
referenced byService.jobs is owned byService, which allows the class invariant of
Service to refer to the fields (that is, array elements)jofs. Accessing array elements
is handled analogously to field access, as if each elemestaviéeld.

3.2 Mutability of owned objects

Analogously to the static fieldinv and following our methodology for objects, each
object type (class or array type) declares a two-valued fieléhve that indicates
whether the object invariant declared # may be assumed to hold. X.inve =

10

valid , we say that objecK is valid for C', or just X is validif the object type is clear
from the context. Conversely, we s&y is mutable forC if X.invg = mutable. An
instance fieldf declared inC can be assigned to only if the instance is mutabledor
That is, an updateX.f := E is guarded by the preconditioli .inve = mutable.

Consider a clas€’ that owns an objeck . C'’s invariant is allowed to depend on
X.f eveniff is declared in another class. Consequently, an updak pimay poten-
tially violate C'’s invariant. Our methodology handles this situation by fitieowing
rule: If a classC is valid, then all objects owned bg' are valid for their object type
and all supertypes. That is, ik is mutable forD so that X.f can be assigned to
(wheref is declared in clas®), then X 's owner, C, is also mutable, so violations of
C'’s static class invariant are allowed.

This rule is enforced by manipulating thewv field according to a strict protocol:
imvp can be manipulated only by statements analogous in furadiigrio expose
for classes. However, although exposing and unexposingctibtypically is done in
a block-structured way, it does not have to be. In particidame constructors, like
Client’s constructor in Fig. 2, unexpose the newly created objétttout previously
exposing it. Therefore, instead of @xpose block statement for objects, we use two
separate statementsxpose X for D and unexpose X for D, which expose and
unexpose an object for a classD, respectively. When applied to a valid obje€tand
foraclassD, expose X for D checks thatX 's owner is mutable and sef§.invp to
mutable. unexpose X for D checks thatX is mutable and setX .invp to valid .
When an object of clas€’ is created, itsnvp fields start off asnutable for all super-
classesD of C'.

The cache method of classService in Fig. 1 illustrates how ownership-based
invariants are handled. It require&rvice to be t-valid. To satisfy the precondition
Service.jobs.invcyieny) = mutable of the updateService.jobs|free] := ¢, Service
has to be mutable. Thexpose statement setService.sinv to mutable, which makes
the jobs array exposable and allows updates to temporarily viokateice's class in-
variant. In our example, the invariant is not actually viethby the update, because we
insert ¢ only if it is not already contained in the array.

Because of lack of space and to focus on static class invayiae do not present in
this paper the complete object-centered methodology tlatsa program to ensure
its field updates apply only to mutable objects, but see [JL, 10

4 Global class invariants

In this section, we explain how our methodology allows clagariants to quantify over
all valid objects of the enclosing class.

4.1 Quantification over valid objects

A class invariant of a clas§’ is allowed to universally quantify over all' objects that
are valid for C' and to refer to those instance fields of these objects thateslared in
C'. For example,Client’s third invariant (Fig. 2) quantifies over valid@lient objects
and refers to thed field declared inClient . We only let a class invariant quantify over

11

valid objects, because during the time when an object isgbgpated, which occurs
when the object is mutable, the object cannot be expecteatigfysall invariants.

A global class invariant of a clas§' is potentially violated by unexposing' ob-
jects for C', since making aC' object valid for C' enlarges the range of the quantifi-
cation in the invariant. Therefore, additional requiretseor unexpose are needed
to guarantee that a class is mutable whenever one of its objects is unexposed for
C'. Note that updates of instance fields do not require additiproof obligations for
global class invariants, because only fields of mutableatéjean be updated.

For soundness, it is sufficient to guard the statememéxpose X for C' by a
precondition C.sinv = mutable. However, stronger requirements are necessary to
achieve a practical solution, as we discuss next.

4.2 Practicality

Assume that clas€lient has a methodClient Foo() and that we want to verify the
statemeniexpose Client { v:= X.Foo(); }, whereX is a valid Client object. To
prove thatClient’s class invariant holds at the end of teepose block, we have to
show in particular that the call tdoo does not create new validlient objects that
violate the global class invariants. For instance, theofailhg implementation offoo
does violateClient’s third invariant:
Client Foo()
requires Client.sinv = mutable N this.invcient = valid ;

{

result := new (Object) Client() ; result.id := this.id ;
unexpose result for Client ;

}

Since allocation and initialization of objects is typigationsidered an implementation
detail [8, 11], Foo''s specification will in general be too weak to determine vileettoo
creates valid objects, which makes it impossible to vetigyéxpose block above.

To be able to reason about the effects of a method call on algtdéss invari-
ant, we impose a syntactic requirement that prevents method constructors from
unexposing objects foiC, if called in a state in which clas€' is mutable: each
unexpose X for C operation has to be textually enclosed 6ys static initializer or
by anexpose C block. This syntactic requirement guarantees thiatinv = mutable
holds before making an object valid f@f . That is, we do not have to impose this con-
dition as a precondition for unexposing objects explicitly.

This syntactic requirement prevents a method called frothiwian expose C
block from unexposing objects fof', in particular, newly created objects. This prop-
erty gives rise to an implicit postcondition that allows doeverify the expose C
block. In our example above;oo does not meet the requirement because it unexposes
result outside anexpose Client block.

5 Technical treatment

In this section, we define precisely which invariants are iadifole, explain the proof
obligations that are necessary to maintain the progranrianvs J1 and J2 (Sec. 2.2),
and present a soundness theorem.

12

5.1 Admissible invariants

A class invariant of clasg can refer to static fields of’, instance fields of objects
owned by C', and, by quantification, instance fields of validl objects:

Definition 1 (Admissible class invariant).A class invariant declaration in clas§’ is
admissible if its subexpressions typecheck accordingdaules of the programming
language and if each of its field-access expressions hasfdhe éllowing forms:

1. C.y.

2. C.g.f where(C.g is declaredrep.

3. o.f where f is declared inC' and o is bound by a quantification of the form
(VCo | o.invec =walide ... o0.f ...)

The static fieldg must not be the predefined fieddhv, and the instance field must
be different from allinvr fields.

Simple class invariants contain only access expressio@asé 1. Access expres-
sions of Case 2 allow ownership-based class invariantsgeraeon fields of objects
owned by C'. Invariants that contain access expressions of Case 3alelgl

5.2 Proof rules

The methodology presented in this paper does not assumeieufarprogramming
logic to reason about programs and specifications. Spades are required only for
class initialization and those statements that deal wighsthv and invr fields (static
and instance field update, clasgpose, and objectexpose and unexpose) as well
as owner (Object creation). In this subsection, we present thessrahd explain why
they are necessary to maintain the program invariants JI12pdesented in Sec. 2.2.

The proof rules are formulated in terms of assertions, whatkse the program ex-
ecution to abort if evaluated tfalse. Proving the correctness of a program therefore
amounts to statically verifying that the program does natratlue to a violated asser-
tion. To do that, each assertion is turned into a proof obbbga One can then use an
appropriate program logic to show that the assertions fedlfil8, 7]). All of the proof
obligations can be generated and shown modularly. For thef pspne may assume that
the program invariants J1 and J2 hold.

Class loading and initialization. The program invariants J1 and J2 are first established
during class loading and initialization. Program exeautstarts with a class loading
phase, followed by a class initialization phase. In the ilogphase, each class of
the program is loaded and its static fields are set to zeriv@gut values. The zero-
equivalent value fowsinv is mutable . This guarantees that all classes are mutable after
the loading phase, which implies that both J1 and J2 hold.

In the following initialization phase, classes are iniiatl according to the validity
ordering, that is, a clasg¢’ is initialized after its predecessors in the validity order
ing. For each clasg’, C'’s static initializer is called before setting'.sinv to tvalid.
Since C.sinv is set tomutable by the loading phase and sin€€'s predecessors in the
validity ordering are initialized befor€’, the precondition ofC'’s static initializer is
established (see Sec. 2.4). In particular, all predecesdar’ are t-valid. The postcon-
dition of this initializer, ClassInve, guarantees that J2 is preserved whemninv is

13

set totvalid . Since C'’s predecessors are tvalid, J1 is preserved as well. Coardygu
both J1 and J2 hold after the initialization phase.

The static initializer of a clas® can create valid objects only fob’s prede-
cessors in the validity ordering. Consider a classthat isnot a predecessor ob .
D’s static initializer cannot expos€' since C is mutable, that is, the precondition
of expose C is not satisfied. Therefore, it cannot unexpose an object(fosince
the unexpose X for C statements can occur only withimxpose C blocks and
C'’s static initializer. Consequently'’s static initializer may assume the precondition
(VC X o X.invg = mutable), which is important to prove that it establishéss
global class invariants.

Static field update.Updating a static field cannot affect program invariant 1. 2,
we have to ensure that a static field update does not breakvhgant of a valid or
t-valid classC'. The only static fieldsC'’s class invariant can refer to are static fields
of C (Def. 1). Consequently, we can maintain J2 by requir@iido be mutable, which
is enforced by guarding each static field update of the farnfi:= E by the check
assert C.sinv = mutable.

Instance field update.Program invariant J1 is trivially preserved. An updatef := £
potentially breaks the class invariant of a classf (1) X is owned byC' (ownership-
based invariants) or (2 is declared inC and X is valid for C' (global invariants).
The checkassert X .invc = mutable guarantees that (1Y 's owner class is mutable
(see proof rule foexpose) and (2) X is not valid for C'.

Class exposeAs explained in Sec. 2.lgxpose C { s } essentially set<.sinv to
mutable, executess, and restores the original value ¢f.sinv. To prevent reentrant
expose blocks, an assertion checks th@tis not already mutable before the statement.
Program invariant J2 is maintained by asserting that class invariant holds before
C.sinv is restored.

Maintaining J1 is a bit more involved. Changir@.sinv from tvalid to mutable
implies thatC'’s t-valid successors in the validity ordering are no lortgealid, but just
valid. Therefore, for each clasB8 that transitively succeed€' (that is, C — D), if
D.sinv = tvalid, then theexpose statement temporarily changés.sinv to valid .
At the end of theexpose block, the initial values of theD.sinv’s are restored. This
results in the following pseudo code fexpose:

expose C {s} =
assert C.sinv # mutable ;
let Q={D | C— D A D.sinv = tvalid } ;
foreach D € Q { D.sinv:= valid ; }
C.sinv := mutable ;
s
assert ClassInvc ;
foreach D € {C'} U Q { D.sinv:= old(D.sinv) ; }

Object expose.expose and unexpose for objects do not modifyiny of any class,
so Jlis preserved. Exposing an object cannot break a clasgint.expose X for C
requires X’s owner to be mutable before setting.invc to mutable to maintain
the property that an object can be mutable only if its ownas<lis mutable. Since

14

unexpose X for C' modifies only the fieldX .invc, the only class invariant that can
be potentially broken by this operation is a global classiiant in classC . As dis-
cussed in Sec. 4.2, a syntactic requirement guarantee<thatmutable at the time
when X is unexposed folC', so no extra precondition is required. The Boogie method-
ology for object invariants requireX ’s object invariant to hold befor& is unexposed.
We omit this assertion since we do not consider object iavasiin this paper. In sum-
mary, we have the following pseudo code fstpose andunexpose:

expose X for C = unexpose X for C =
assert X # null A X.inve = valid ; assert X # null A X.invc = mutable ;
assert X.owner.sinv = mutable ;
X .inve := mutable X .itnve = valid

Object creation. Again, program invariant J1 is trivially preserved. As eipkd in

Sec. 3.2, the created object has itay; fields set tomutable and its owner field
initialized with the classC given in the creation expression. These assignments have
no impact on class invariants with field-access expressdf®rms 1 (no static field
involved), 2 (the new object is not referenced from a stadildfi or 3 (the new object

is not valid for its class) of Def. 1. Since the new object igatule, its owner class;,

has to be mutable as well, which is checked by the precomdicsinv = mutable.

5.3 Soundness

A programP is well-formed ifP is syntactically correct and type correPBts invariants
are admissible (Def. 1), and the syntactic requirementiissxpose (Sec. 4.2) is met.

Theorem 1. In each reachable state of a well-formed program, J1 and Jd.ho

For a lack of space, we do not present the soundness prodkipdper. We have
explained the arguments of the soundness proof along véthréssentation of the proof
rules. The complete proof is found in our technical repoft [9

6 Related Work

Classical proof systems for objects and invariants such egels work [15] or the
approach of Liskov, Wing, and Guttag [13, 12] do not cons&tatic fields or quantifi-
cation over objects.

JML [8, 4] provides both object and class invariants (callstance and static in-
variants, respectively). Object invariants may refer tdistfields, but class invariants
cannot refer to the states of objects. In contrast to our Wivi. applies a visible state
semantics, where invariants have to hold in the pre- andsiatts of all non-helper
methods. It does not provide a sound modular proof system.

The use of static fields is sometimes considered bad progiagrstyle that can be
avoided by using instance fields of a singleton objectSimple and ownership-based
class invariants can then be expressed as an object invafian. However, such a
programming model requires that all objects that need adoethe shared state af
have references ta and can expose and modify. Therefore, reasoning about the

15

shared object, in particular, about the validityof is tedious. It is generally based on
the fact thatu is a singleton, which is difficult to express by standard obijevariants.

Eiffel's once method§l4] provide a better abstraction mechanism for shared ob-
jects. A once method computes its result when it is calledfitisetime. This result
is cached and then returned upon succeeding calls. Therefach object can access
shared data (in particular, a reference to the singletpthhrough a once method instead
of storing the reference in a field. Validity af can then be guaranteed by the postcon-
dition of the once method returning the reference. Howesiage © may not be valid
in all execution states in which the method might be callecadditional flag is needed
for each once method, indicating whether the object retutnethe method is valid.
The methodology required to maintain such a flag is identwalur methodology for
class invariants and thenv field.

The Boogie methodology for object invariants [1, 3, 10] does admit class in-
variants. However, visibility-based object invariants]8] can be generalized to allow
object invariants to mention static fields. For instan€&gent’s second class invariant
can also be expressed by the object invaridiis.id < Client.ids. With such object
invariants, a static field update potentially violates thgeot invariant of many objects,
all of which would have to be exposed before the update. Bieaind Naumann [3] show
thatupdate guardgan be used to exploit monotonicity properties to avoid ekmpall
objects possibly affected by a field update. An update gyaedies a condition under
which a field update is guaranteed not to break an invariamtnStance, increasing the
value of Client.ids cannot violate the above invariant for a¥ient object.

Like our work, Pieriket al. [17] extend the Boogie methodology to class invari-
ants. They handle simple class invariants in the same wayeatowOwnership-based
class invariants are not supported. Therefore, classiamtarcan refer to instance fields
only in a limited way. Invariants are allowed to quantify oadl objects of a class, for
example, to specify that a singleton object is the only imstaof a class. Invariants
that quantify over all objects of a class rather than ovevalid objects can be broken
by object creation. Therefore, one has to expose a classebafeating an instance of
it, an obligation that unfortunately falls on the client otlass. The client is then re-
sponsible for reestablishing the class invariant. Altéwedy, a client can prove that it
establishes areation guard which specifies a condition under which an object creation
is guaranteed not to break an invariant. However, a cregfiamd cannot refer to the
newly allocated object, so it is typicallfalse. Pierik et al. do not address either the
abstraction problem for class invariants or the initigiia-order problem for classes.

Miller’s thesis [16] also uses a visible state semantics liggat invariants. It sup-
ports invariants over so-called abstract fields in a sound which we consider future
work for the methodology presented here.

Leino and Nelson [11] developed a modular treatment of alijwariants over ab-
stract fields, which was used in the Extended Static Chedtevibdula-3 [6]. Leino
and Nelson treat some aspects of class invariants, butendithiller's nor Leino and
Nelson’s work fully supports class invariants.

16

7 Conclusions

We have presented a verification methodology for class iawts, which allows class
invariants to specify properties of static fields, of obfetictures rooted in static fields,
and of all valid objects of a class. The methodology is sourti@vers all typical ap-
plications of static fields we have found in programs. Thiskae part of a larger effort
to advance programming theory to catch up with the curresgnamming practice.

As future work, we plan to build on our previous work on viitjibased invariants
[10] to support less common class invariants that referaticstields and that quantify
over objects of other classes. Moreover, we plan to implérnan methodology as
part of the .NET program checker Boogie, which is part of tipec& programming
system [2].

References

1. M. Barnett, R. DeLine, M. &ndrich, K. R. M. Leino, and W. Schulte. Verification of object-
oriented programs with invariantdournal of Object Technolog®(6), 2004www. j ot . f m

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programmystesn: An overview.
In CASSIS 20Q4s0lume 3362 oL NCS pages 49-69. Springer-Verlag, 2004.

3. M. Barnett and D. A. Naumann. Friends need a bit more: Maintainiayients over shared
state. INMPC 2004 volume 3125 ot NCS pages 54-84. Springer-Verlag, July 2004.

4. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. ieas, K. R. M. Leino, and
E. Poll. An overview of JML tools and applicationSoftware Tools for Technology Transfer
(STTT) 2004.

5. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexiliées protection. In
OOPSLA '98 pages 48-64. ACM, October 1998.

6. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extendaticschecking. Research
Report 159, Compag SRC, December 1998.

7. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxa] & Stata. Extended
static checking for Java. IALDI 2002 pages 234-245. ACM, 2002.

8. G.T. Leavens, A. L. Baker, and C. Ruby. Preliminary design df:JMbehavioral interface
specification language for Java. Technical Report 98-06-ree2/g State University, 2003.

9. K. R. M. Leino and P. Mller. Modular verification of global module invariants in object-
oriented programs. Technical Report 459, ETtizh, 2004.

10. K. R. M. Leino and P. Nller. Object invariants in dynamic contexts. HCOOP 2004
volume 3086 oLNCS pages 491-516. Springer-Verlag, 2004.

11. K. R. M. Leino and G. Nelson. Data abstraction and information hidingOPLAS
24(5):491-553, September 2002.

12. B. Liskov and J. Guttag.Abstraction and Specification in Program DevelopmeMIT
Electrical Engineering and Computer Science Series. MIT Press, 1986

13. B. Liskov and J. M. Wing. A behavioral notion of subtypinBOPLAS 16(6):1811-1841,
1994,

14. B. Meyer.Eiffel: The LanguagePrentice Hall, 1992.

15. B. Meyer.Object-Oriented Software ConstructioRrentice Hall, 1997.

16. P. Miller. Modular Specification and Verification of Object-Oriented Progran@ume
2262 ofLNCS Springer-Verlag, 2002. PhD thesis.

17. C. Pierik, D. Clarke, and F. S. de Boer. Controlling object allocatgingucreation guards.
In Formal Methods (FM 2005).NCS. Springer-Verlag, 2005. In this volume.

18. A. Poetzsch-Heffter and P.iMer. A programming logic for sequential Java.ESOP 1999
volume 1576 oLNCS pages 162-176. Springer-Verlag, 1999.

