The Spec# Programming System: An Overview

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte

Microsoft Research, Redmond, WA, USA
{mbarnett, leino, schulte}emicrosoft.com

Manuscript KRML 136, 12 October 2004. To appear in CASSIS 2004 proceedings.

Abstract. The Spec# programming system isanew attempt at amore cost effec-
tive way to develop and maintain high-quality software. This paper describes the
goals and architecture of the Spec# programming system, consisting of the object-
oriented Spec# programming language, the Spec# compiler, and the Boogie static
program verifier. The language includes constructs for writing specifications that
capture programmer intentions about how methods and data are to be used, the
compiler emits run-time checks to enforce these specifications, and the verifier
can check the consistency between a program and its specifications.

0 Introduction

Software engineering involves the construction of correct and maintainable software.
Techniquesfor reasoning about program correctness have strong rootsin the late 1960's
(most prominently, Floyd [25] and Hoare [33]). In the subsequent dozen years, sev-
eral systems were developed to offer mechanical assistance in proving programs cor-
rect (see, e.g., [37,27,51]). To best influence the process by which a software engineer
works, one can aim to enhance the engineer’s primary thinking and working tool: the
programming language. Indeed, a number of programming languages have been de-
signed especially with correctness in mind, via specification and verification, asin, for
exampl e, the pioneering languages Gypsy [1] and Euclid [38]. Other languages, perhaps
most well-known among them Eiffel [54], turn embedded specifications into run-time
checks, thereby dynamically checking the correctness of each program run.

Despite these visionary underpinnings and numerous victories over technical chal-
lenges, current software development practices remain costly and error prone (cf. [56,
52]). The most common forms of specification are informal, natural-language docu-
mentation, and standardized library interface descriptions (of relevance to this paper,
the .NET Framework, see, e.g., [61]). However, numerous programmer assumptions
are left unspecified, which complicates program maintenance because the implicit as-
sumptions are easily broken. Furthermore, there’s generally no support for making sure
that the program works under the assumptions the programmer has in mind and that
the programmer has not accidentally overlooked some assumptions. We think program
development would be improved if more assumptions were recorded and enforced. Re-
disticaly, this will not happen unless writing down such specifications is easy and
provides not just long-term benefits but also immediate benefits.

The Spec# programming system is a new attempt at a more cost effective way
to produce high-quality software. For a programming system to be adopted widely,

it must provide a complete infrastructure, including libraries, tools, design support,
integrated editing capabilities, and most importantly be easily usable by many pro-
grammers. Therefore, our approach is to integrate into an existing industrial-strength
platform, the .NET Framework. The Spec# programming system rests on the Spec#
programming language, which is an extension of the existing object-oriented .NET
programming language C#. The extensions over C# consist of specification constructs
like pre- and postconditions, non-null types, and some facilities for higher-level data
abstractions. In addition, we enrich C# programming constructs whenever doing so
supports the Spec# programming methodology. We alow interoperability with exist-
ing .NET code and libraries, but we guarantee soundness only as long as the source
comes from Spect#. The specifications also become part of program execution, where
they are checked dynamically. The Spec# programming system consists not only of a
language and compiler, but also an automatic program verifier, called Boogie, which
checks specifications statically. The Spec# system isfully integrated into the Microsoft
Visua Studio environment.
The main contributions of the Spec# programming system are

— asmall extension to an aready popular language,

— asound programming methodology that permits specification and reasoning about
object invariants even in the presence of callbacks,

— tools that enforce the methodology, ranging from easily usable dynamic checking
to high-assurance automatic static verification, and

— asmooth adoption path whereby programmers can gradually start taking advantage
of the benefits of specification.

In this paper, we give an overview of the Spec# programming system, its design,
and the rational e behind its design. The system is currently under devel opment.

1 The Language

The Spec# language is a superset of C#, an object-oriented language targeted for the
.NET Platform. C# features single inheritance whose classes can implement multiple
interfaces, object references, dynamically dispatched methods, and exceptions, to men-
tion the features most relevant to this paper. Spec# adds to C# type support for distin-
guishing non-null object references from possibly-null object references, method speci-
ficationslike pre- and postconditions, a discipline for managing exceptions, and support
for constraining the data fields of objects. In this section, we explain these features and
rationalize their design.

1.0 Non-Null Types

Many errors in modern programs manifest themselves as null-dereference errors, sug-
gesting the importance of a programming language providing the ability to discrimi-
nate between expressions that may evaluate to null and those that are sure not to (for
some experimental evidence, see [24, 22]). In fact, we would like to eradicate all null-
dereference errors.

We have opted to add type support for nullity discrimination to Spec#, because we
think types offer the easiest way for programmersto take advantage of nullity distinc-
tions. Backward compatibility with C# dictates that a C# reference type 7' denote a
possibly-null type in Spec# and that the corresponding non-null type get a new syntax,
which in Spec# we have chosento be T'!.

The main complicationinanon-null type system arisesin addressing non-null fields
of partially constructed objects, as illustrated in the following example:

class Student : Person {
Transcript! t;
public Student(string name, EnrollmentInfo! ei)
: base(name) {
t = new Transcript(ei);

}

Since the field ¢ is declared of a non-null type, the constructor needs to assign a non-
null valueto ¢. However, note that in this example, the assignment to ¢ occurs after the
call to the base-class constructor (as it must in C#). For the duration of that call, ¢ is
still null, yet the field is already accessible (for instance, if the base-class constructor
makes a dynamically dispatched method call). This violates the type safety guarantees
of the non-null type system.

In Spect, this problem is solved syntactically by allowing constructors to give ini-
tializersto fields before the object being constructed becomes reachabl e by the program.
To correct the example above, one writes:

class Student : Person {
Transcript! t;
public Student(string name, EnrollmentInfo! ei)
: t(new Transcript(ei)),
base(name) {

Spec# borrows this field-initialization syntax from C++, but a crucia point is that
Spec#, unlike C++, evaluates field initializers before calling the base-class constructor.
Note that such an initializing expression can use the constructor’s parameters, a useful
feature that we deem vital to any non-null type design. Spect# requires initializers for
every non-null field.

Spect# allows non-null types to be used only to specify that fields, local variables,
formal parameters, and return types are non-null. Array element types cannot be non-
null types, avoiding both problems with array element initialization and problemswith
C#'s covariant arrays.

To make the use of non-null types even more palatable for migrating C# program-
mers, Spec# stipulates the inference of non-nullity for local variables. Thisinferenceis
performed as a dataflow analysis by the Spec# compiler.

We have settled on this simple non-null type system for three reasons. First, prob-
lemswith null references are endemic in object-oriented programming; providing a so-
Iution should be very attractive to alarge number of programmers. Second, our simple

solution covers a majority of useful non-null programming patterns. Third, for condi-
tions that go beyond the expressiveness of the non-null type system, programmers can
use method and class contracts, as described below.

1.1 Method Contracts

Every method (including constructors and the properties and indexers of C#) can have
a specification that describes its use, outlining a contract between callers and imple-
mentations. As part of that specification, preconditions describe the states in which the
method is allowed to be called, and hence are the caller’s responsibility. Postconditions
describe the states in which the method is allowed to return. The throws set and its asso-
ciated exceptional postconditions limit which exceptions can be thrown by the method
and for each such exception, describe the resulting state. Finally, frame conditions limit
the parts of the program state that the method is allowed to modify. The postconditions,
throws set, exceptional postconditions, and frame conditions are the implementation’s
responsibility. Method contracts establish responsibilities, from which one can assign
blame in case of a contract-violation error.

Uniform error handling in modern programming languagesis often provided by an
exception mechanism. Because the exception mechanismsin C# and the .NET Frame-
work are rather unconstrained, Spec# adds support for a more disciplined use of excep-
tions to improve the understandability and maintenance of programs. As a prelude to
explaining method contracts, we describe the Spec# view of exceptions.

Exceptions Spect categorizes exceptions according to the conditionsthey signal. L ook-
ing at exceptions as pertaining to particular methods, Goodenough [28] categorizes ex-
ceptions into two kinds of failures, which we call client failures and provider failures.
A client failure occurs when a method is invoked under an illegal condition, that is,
when the method's precondition is not satisfied. We further refine provider failuresinto
admissible failures and observed program errors. An admissible failure occurs when a
method is not able to complete its intended operation, either at al (e.g., the parity of a
received network packet iswrong) or after some amount of effort (e.g., after waiting on
input from a network socket for some amount of time). The set of admissible failuresis
part of the contract between callers and implementations. An observed program error is
either an intrinsic error in the program (e.g., an array bounds error) or a global failure
that's not particularly tied with the method (e.g., an out-of-memory error).

An important consideration among these kinds of exceptionsis whether or not one
expects a program ever to catch the exception. Admissible failures are part of a pro-
gram’sintended possible behaviors, so we expect correct programsto catch and handle
admissible failures. In contrast, correct programs never exhibit client failures or ob-
served program errors, and it’s not even clear how a program is to react to such errors.
If the program handles such failures at all, it would be at the outermost tier of the ap-
plication or thread.

Because of these considerations, Spec# follows Java [29] by letting programmers
declare classes of exceptions as either checked or unchecked. Admissible failures are
signaled with checked exceptions, whereas client failures and observed program errors
are signaled using unchecked exceptions.

ArrayList.Insert Method (Int32, Object)

Inserts an element into the ArrayList at the specified index.
public virtual void Insert(int index, object value);

Parameters

— index The zero-based index at which value should be inserted.
— wvalue The Object toinsert. The value can be anull reference.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException index islessthan zero.
index isgreater than Count .
NotSupportedException The ArrayList isread-only.
The ArrayList has afixed size.

Fig.0. The .NET Framework documentation for the method ArrayList.Insert .

In Spect, any exception class that implementsthe interface IChecked Ezception is
considered a checked exception. For more information about the exception design in
Spec#, see our companion paper on exception safety [48].

Preconditions Perhapsthe most important programmer assumption isthe precondition.
Hereis a simple example of amethod with a precondition:

class ArrayList {
public virtual void Insert(int indezx, object value)
requires 0 <= index && index <= Count;
requires !IsReadOnly && IsFixzedSize;

(..}

The precondition specifies that theindex into which the object isto beinserted in the ar-
ray list must be within bounds, and that the list can grow. To enforce these preconditions,
the Spec# compiler emits run-time checks that throw a Requires ViolationException,
indicating a client failure, if a precondition is not met. If the user invokes Boogie on a
call site, then Boogie attempts to verify statically that these preconditions hold at the
call site, reporting an error if it cannot.

The .NET Framework documentation for this method is shownin Figure 0. Thereis
asubtledifference betweenthe .NET documentationfor Insert and our specification of
it above. Both specifications state what's expected of the caller; the differenceliesinthe
action taken in the event that preconditions are violated. To support this typical robust-
programming style of .NET Framework specifications, Spec#'s preconditions can have
otherwise clauses. These can be used to tell the compiler to use a specified exception,

rather than the default Requires ViolationException , in the event that a precondition
violation is detected at run time:

class ArrayList {
void Insert(int indezx, object value)
requires 0 <= inder && inder <= Count
otherwise ArgumentOutOfRangeFException;
requires !IsReadOnly && IsFixedSize
otherwise NotSupportedException;

(..}

Sinceit represents aclient failure, the exception used in an otherwise clause must be
an unchecked exception.

Postconditions Method specifications can & so include postconditions. For example,
one can specify the postconditions of Insert asfollows:

ensures Count == old(Count) + 1;

ensures value == this[indez];

ensures Forall{int ¢in0: indez; old(this[i]) == this]i]};

ensures Forall{int i in index : old(Count); old(this[i]) == this[i + 1]};

These postconditions say that the effect of Insert isto increase Count by 1, to insert
the given value at the given index, and to keep al other elementsin their same relative
positions. This example also shows some other Spect# specification features: In the first
line, old(Count) denotesthevalueof Count onentry to the method. In thethird line,
the special function Forall is applied to the comprehension of the boolean expression
old(this[i]) == this[i], where i ranges over the integer values in the half-open
interval from 0 to less than index . Comprehensions and quantifiers are syntactically
restricted in such away that the compiler can always generate code that computesthem.

Boogie attempts to verify each implementation of Insert against these postcondi-
tions. When Boogie's verification is successful, then the run-time checks (which would
throw an EnsuresViolationFException in this case) are not needed since they would
never fail.

For run-time checking, we have adopted Eiffel’s mechanismfor evaluating old(E) .
On entry to amethod, the expression E of any old(E) occurring in a postconditionis
evaluated and the resulting value is saved away. Then, whenever (and if) this value of
old(E) is needed during the evaluation of the postcondition, the saved value of E is
used. Note that the value of old(E) may in fact not be needed during the eval uation of
the postcondition due to short-circuit boolean expressions or because the method does
not terminate normally.

The example above also illustrates a more general point about the differences be-
tween checking contracts statically and dynamically. Boogie has knowledge about the
program and its built-in data structures. It a so has support for quantifiersand can there-
fore check the postconditions of Insert statically. Contracts that use procedural ab-
straction, however, can be a problem for static modular checking, since such checking
has access only to a limited part of the program. Likewise, contracts that use higher-
level data structures can be a problem for static checking, because of limitations of

decisions procedures and axiomatizations of some theories. Here, dynamic checking is
straightforward. On the other hand, the dynamic checking of postconditions can be quite
involved when old expressions mention quantified variables, as exemplified above.

Though we expect the bulk of specificationsto be simple, the more general point is
that Spec# supports expressive specifications even when those specifications push the
limits of today’s checking technol ogy.

Exceptional postconditions Asin Java, each method whose invocation may result in
a checked exception must account for that exception in the method's throws set. For
example, the declaration

char Read()
throws SocketClosedException;

(...}

where SocketClosedException is a checked exception class, alows the method to
throw any checked exception whose allocated type is a subclass of SocketClosed Ex-
ception , but is not allowed to throw any other checked exception. The Spec# compiler
holds every implementation to its throws set by a conservative control-flow analysis. A
throws clausein Spec# can only mention checked exceptions.

Spectt allows a throws declaration to be combined with a postcondition that takes
effect in the event that the exception is thrown. For example, the exceptional postcon-
ditionin

void ReadToken(ArrayList a)
throws EndOfFileException ensures a.Count == old(a.Count);

(...}

says that the length of « is unchanged in the event that the method results in an
EndOfFileEzception .

Without further restrictions, it would be possible for aprogramto foil the compiler’'s
throws-set analysis, which would then undermine Spec# s guarantee that every checked
exception is accounted for. Consider the following example:

void EzxceptionScam() {
Ezception e = new MyCheckedException();
throw e;

}

The root of the exception class hierarchy, Fzception, is an unchecked exception (be-
causeit comesfrom C#, whereall exceptionsare unchecked). Since checked exceptions
are subtypes of Fxzception, the throw statement in ExceptionScam would have the
effect of throwing a checked exception even though the method does not advertise it.
Spec# prevents this: whenever the static type of a thrown expression is an unchecked
exception and the static analysis cannot guarantee that the dynamic type is likewise
unchecked, then the compiler inserts a run-time check that detects any violation of
Spec#' s distinction between checked and unchecked exceptions.

For more information about exceptions in Spec#, see our companion paper on ex-
ception safety [49].

Frame conditions Spec# method contractsalsoinclude modifies clauses(also known
as frame conditions), which restrict which pieces of the program state a method imple-
mentation is allowed to modify. For example, in the class

class C' {
int x, y;
void M() modifiesz; { ... }

method M is permitted to have a net effect on the value of z, whereas the value of y
on exit from the method must have the same value as on entry.

Any redlistic design of modifies clausesincludes somefacility for abstracting over
program state that for reasons of information hiding cannot be mentioned in the method
contract. For example, the implementation of ArrayList.Insert is going to modify
the private representation of the ArrayList, but private variables are not allowed to be
mentioned explicitly in the contract of apublic method. Instead, awildcard can be used.
For example, the specification

modifies this” ArrayList;

alows any field of this declared in class ArrayList to be modified. Spec# aso sup-
ports other flavors of wildcards (see [3]), which additionally address the problem of
specifying the modification of state in subclasses (cf. [41]).

But wildcards are till just a partia solution to the frame problem, because they
don't extend to aggregate objects. For example, the ArrayList implementation con-
sists of an array and a count. The modifies clause above allows the count and the
reference to the array to be changed, but does not give explicit permission to modify
the array elements. To deal with aggregate objects, Spec# uses a concept of ownership.
We say that the ArrayList ownsitsunderlying array, that the array is committed to the
ArrayList . Modificationsto the state of committed objects do not need to be mentioned
explicitly in the modifies clause. For more details, see [3], which also describes the
connection between ownership and object invariants.

Frame conditions serve as documentation and are used and enforced by Boogie,
but they are currently not enforced at run time. There are two reasons for not checking
modifies clauses at run time. First, they can be prohibitively expensive, since the
checking must compare arbitrarily large portions of the heap in a method’s pre-state
and post-state. Second, we are aiming for a smooth transition to Spec# from C#; we do
not want to incur run-time errorsin C# programsthat otherwise are correct.

Inheritance of specifications In Spec#, amethod'scontract isinherited by the method’s
overrides. The run-time checks evoked by the method contract are thus also inherited.
Not only does this make the specifications more definitive and reliable than today’s
documentation, but the Spec# specifications also make the code of an implementation
easier to read, since today’s manually written code for checking preconditions can be
rather lengthy.

A method override can add more postconditions by declaring additional ensures
clauses. The override can add exceptional postconditions only for those exceptionsthat
areaready covered by thethrows set. The overrideis not allowed to give any modifies

clause: enlarging the framewould be unsound, and shrinking the frame can be donewith
an added postcondition. Spec# does not allow any changesin the precondition, because
callers expect the specification at the static resolution of the method to agree with the
dynamic checking.

Methods declared in an interface can have specifications, just like the methods de-
clared in a class. Interfaces give rise to a form of multiple inheritance, because a class
can inherit a method signature from the superclass and its implemented interfaces.
Traditionally, these inherited specifications are combined [62], which is what Spec#
does for postconditions. Spec# also combines exceptional postconditions, but the in-
herited specifications must have identical throws sets. If aclassimplements an interface
method, then the interface declaration of the method must have aframe conditionthat is
asuperset of the class implementation of the method. Spec# does not combine precon-
ditions, unlessthey are the same, for the reason explained above. Since the obvious def-
initions of “the same” are either syntactic and brittle, or semantic and require theorem
proving, Spec# uses the radical solution of allowing multiple inherited specifications
only when these have no requires clauses.

We give an example that shows Spec#'s radical precondition solution not to be too
draconian. Consider the following interfaces:

interface I { void M (int z) requires z <= 10; }
interface J { void M (int z) requires z >= 10; }

Suppose a class C' wants to implement both interfaces I and J. In this case, Spec#
does not dlow C' to provide one shared implementation for .M and J.M . Instead,
class C' needsto give explicit interface method implementationsfor M :

class C : I, J {
void I.M(int) { ... }
void J. M(int z){ ... }

(Explicit interface method implementations are a feature of C#.) Because an explicit
interface method implementation cannot be accessed other than through the interface,
it getsits contract straight from the interface.

Taken together, the Spec# rules for contract inheritance guarantee that a derived
specification always properly obeysthe behavioral subtyping rules[21, 23].

1.2 Class Contracts

Specifying therulesfor using alibrary or abstraction is done primarily through method
contracts, which spell out what's expected of the caller and what the caller can expect
in return from the implementation. To specify the design of an implementation, one
primarily uses specificationsthat constrain the val ue space of theimplementation’sdata.
These specifications are called object invariants and spell out what is expected to hold
of each object’s data fields in the steady state of the object. For example, the class
fragment

class AttendanceRecord {
Student[]! students;
bool[]! absent;
invariant students.Length == absent.Length;

10

declaresthat the lengths of the arrays students and absent areto bethe same.

As we can see from the simple example above, it is not possible for an object in-
variant always to hold, because it is not possible in the language to change the lengths
of two arrays simultaneously. This is why we say the object invariant holds in steady
states, which essentially means that the object is not currently being operated on. Fol-
lowing our methodology for object invariants [3, 45, 6], Spec# makes explicit when an
object is in its steady state versus when it is exposed, which means the object is vul-
nerable to modifications. Spec# introduces a block statement expose that explicitly
indicates when an object’s invariant may temporarily be broken: the statement

expose (0) {
S;
¥

exposes the object o for the duration of the sub-statement .S, which may then operate
on the fields of o. Because field modifications in an object-oriented program tend to
be encapsulated in the class that declares the field, the expression o is usually this.
The object invariant is supposed to hold again at the end of the expose statement and
Spec# enforces this with arun-time check. Object invariants are also checked at the end
of constructors (though there’s some flexibility that allowsthe initial check of an object
invariant to be performed elsewhere; we omit the details here).

By default, whenever a class or any of its superclasses has a declared invariant,
every public method of the class has an implicit

expose (this) { ... }

around the method body. Our preliminary experience suggests that this default removes
most of the need for explicit expose statements. In situations where reentrancy is
desired, the default can be disabled by a custom attribute on the method.

Exposing an object is not idempotent. That is, it is a checked run-time error if
expose (0) ... isreached when o isaready exposed. In this way, the expose mech-
anism is similar to thread-non-reentrant mutexes in concurrent programming, where
monitor invariants [34] are the analog of our object invariants. If exposing were idem-
potent, then one would not be able to rely on the object invariant to hold immediately
inside an expose block, in the same way that the idempotence of thread-reentrant mu-
texes means that one cannot rely on the monitor invariant to hold at the time the mutex
isacquired.

For Spect#'s object-invariant methodology to be sound, al modifications of a field
o.f must take place while the object o is exposed. Furthermore, the methodology uses
an ownership relation to structure objects into a tree-shaped hierarchy. The relation is
state dependent, which allows ownership transfer. Such modifications and ownerships
are enforced by Boogie, but are not enforced at run time.

Object invariants can be declared in any class. To support modular checking of
invariants, so that a class does not need to know the invariants of its superclasses and
future subclasses, object invariants are partitioned into class frames according to the
class that declares each invariant [3,17]. The expose mechanism deals with class
frames.

11

To reducethe programmer’sinitial cost of adding expose statementsand to handle
non-virtual methods in a more backward compatible way (see [3]), Spec# allows one
expose statement to expose more than one class frame. To explain thisfeature, wefirst
need to show the more general form of the expose statement in Spec#, which is

expose (oupto T) { ... }

where T is a superclass of the static type of the expression o. If “upto 7" is omit-
ted, T defaultsto the static type of expression o. More precisely than we described it
above, the statement exposes all of o’s class frames from above its currently exposed
class frame through 7' (also exposing the class frame T' itself). Non-idempotence re-
quiresthat at least one class frame is exposed as part of the operation. At the end of the
expose block, the class frames that were exposed on entry are un-exposed, and the
object invariant for each of those class framesis checked. Thisisdoneat run time using
compiler-emitted dynamically dispatched methods that check the invariants.

Exposing an unknown number of class frames, and in particular checking the in-
variants for class frames whose declarations may not be in scope, poses a problem for
modular, static verification. Therefore, we use a stricter model for expose in Boogie.
In particular, whereas the precondition for

expose (oupto T) { ... }

as enforced by run-time checksisthat o’s T class frame is un-exposed—that is, that
the o’s most-derived un-exposed class frame is a subclass of T'—Boogie strengthens
this precondition by requiring o’s most-derived un-exposed class frame to be exactly
T. This way, Boogie is able to find all the object invariants that it needs to check at
the end of the expose block. In effect, this difference in policy between the run-time
behavior and what's enforced by Boogie means that programmers can start writing and
running Spec# programs more easily, but then may need to exert additiona effort in
order to obtain the higher confidence in the program’s correctness assured by Boogie
(just as additional effort is required to make sure Boogie's modification and ownership
rules are satisfied).

Object invariantsare allowed to mention only constants, fields, array elements, state
independent methods, and confined methods. A method is state independent if it does
not depend on mutable state. A confined method may depend on the state of owned
objects. The Spec# compiler includes a conservative effect analysis to check that these
properties are obeyed.

Spec# also supports class invariants, which are useful to document assumptions
about static fields. Methodology and constraints for class invariants are similar to those
for object invariants, except that there is no inheritance [44]. The expose statement
simply takes a class instead of an object as a parameter.

1.3 Other Details

Exceptions within contracts If an exception isthrown during the evaluation of a con-
tract in Spec#, then the exception is wrapped in a contract evaluation exception and
propagated. This is in contrast to the run-time evaluation of contractsin JML, where
such exceptions are caught and the surrounding formula is treated as if it returned a
boolean value according to certain rules, see[14].

12

Custom attributes on specifications C# provides custom attributes as away to attach
arbitrary data to program structures, such as classes, methods, and fields. A custom
attribute is compiled into metadata whose standard format allows various applications
to read the custom attributes attached to a particular declaration. Spec# also allows each
specification clause to be annotated with custom attributes.

Custom attributes allow users of third-party tools to mark up specificationsin tool-
specific ways. For instance, the Spec# compiler usesthe Conditional custom attribute
to control which specifications are emitted as run-time checks in the current build. For
example, for the following method

int BinarySearch(object[]! a,object o,int lo, int hi)
requires 0 <= lo && lo <= hi && hi <= a.Length;
[Conditional(“ DEBUG")| requires IsSorted(a, lo, hi);

(...}

the compiler emits run-time checks for both preconditionsin the debug build, but emits
acheck only for thefirst preconditionin the non-debug build. This supportsthe common
programming style of debugging assertions (see, e.g., [53]).

Purity We want to have the property that a program that runs correctly with all con-
tract checking enabled also runs correctly if some of the contract checking is disabled.
Therefore, we require al expressions appearing in contracts to be pure, meaning that
they have no side effects and do not throw any checked exceptions. The compiler en-
forces this condition using a conservative effect system. We are considering more lib-
eral definitions of purity, such as observational purity [7] and that afforded by the heap
analysis of Salcianu and Rinard [58].

2 System Architecture

Architecturaly, the Spec# programming system consists of the compiler, a runtime li-
brary, and the Boogie verifier. The compiler has been fully integrated into the Microsoft
Visual Studio environment in terms of the project system, build process, design tools,
syntax highlighting, and the Intelli Sense context-sensitive editing and documentation
assistance.

The Spec# compiler differs from an ordinary compiler in that it does not only pro-
duce executable code from a program written in the Spec# language, but also preserves
all specifications into a language-independent format. Having the specifications avail-
able as a separate, compiled unit means program analysis and verification tools can
consume the specifications without the need to either modify the Spec# compiler or to
write a new source-language compiler.

The Spec# compiler can preservethe specificationsin the same binary with the com-
piled code because it targets the Microsoft .NET Common Language Runtime (CLR)
[10]. The CLR provides rich metadata facilities for associating many types of informa-
tion with most elements of the type system (types, methods, fields, etc.). The Spec#
compiler attaches a specification to each program component for which a specification

13

exists. (Technically, the specifications are preserved as strings in custom attributes. All
names are fully resolved; while this renders the format quite verbose, it makes it much
easier for any tools consuming it.)

As aresult, we made the design decision to have Boogie consume compiled code,
rather than source code. An additional benefit is that Boogie can be used to verify code
written in other languages than Spec#, as long as there is an out-of-band process for
attaching contracts to such code. We use such a process to attach specifications to the
.NET Framework Base Class Library (BCL), see Section 2.2.

2.0 Run-time Checking

Spec# preconditions and postconditions are turned into inlined code. We do this not
only for performance reasons, but also to avoid creating extra methods and fields in
the compiled code. All such inlined code is tagged so that code corresponding to the
Spec# contracts can be differentiated from the code that comes from the rest of the
Spec# program. Such separation is required by any analysis tool that consumes Spec#
contracts from the metadata. For instance, Boogie must be able to determineif the non-
contract code in a method meets its postcondition, rather than the combination of the
non-contract code followed by the code that checks the postcondition. Theinlined code
evaluates the conditions and, if violated, throws an appropriate contract exception.

To check object invariants, the compiler adds a new method to each class that de-
clares an invariant. Special object fields, such as theinvariant level [3] and owner of an
object [45], are added to the super-most class that uses Spec# features within each sub-
tree of the class hierarchy. As we mentioned in Section 1, the runtime does not enforce
the whole methodology; for instance, run-time checking does not check that an object
is exposed before updating a field. This means that an error may go undetected at run
time that would be caught by Boogie.

2.1 Static Verification

From the intermediate language (including the metadata), Spec#'s static program ver-
ifier, Boogie, constructs a program in its own intermediate language, BoogiePL . Boo-
giePL is a simple language with procedures whose implementations are basic blocks
consisting mostly of four kinds of statements. assignments, asserts, assumes, and pro-
cedure calls (cf. [47]).

An inference system processes the BoogiePL program using interprocedural ab-
stract interpretation [15,57] to obtain properties such as loop invariants. Any derived
properties are added to the program as assert statements or assume statements. The
BoogiePL program then goes through several transformations, ending as a verification
condition that is fed to an automatic theorem prover. The transformations, such as cut-
ting all loops to derive an acyclic control flow graph by introducing havoc statements,
are done in away that preserves the soundness of the analysis. A havoc statement as-
signs an arbitrary value to a variable; introducing havoc statements for all variables
assigned to in aloop causes the theorem prover to consider an arbitrary loop iteration.
All feedback from the theorem prover is mapped back onto the source program before
it is delivered to the user [43]. The result is that programmers interact with Boogi€e's

14

prover only by making changes at the program source level, for instance by adding
contracts.

Currently, Boogie uses the Simplify theorem prover [18], but we intend to switch to
anew experimental theorem prover being devel oped at Microsoft Research.

2.2 Out-of-band Specifications and Other Goodies

All .NET applications use the Base Class Library (BCL) in one form or the other. Thus
we want to provide specificationsfor the entire BCL. Thisgivesany client animmediate
benefit even before writing a single contract.

But this raises a problem: how to provide a mechanism for attaching Spec# con-
tracts to code that was written without them? (Note that we cannot modify the BCL
even if we would use itsimplementation, since doing so would break versioning.) Out-
of-band specifications, that is, specifications for code external to Spec#, are compiled
into a Spec# repository. The repository is consulted in case the Spec# compiler or Boo-
gie encounters a method or class for which it requires a specification (i.e., when the
compiler emits run-time checks or when Boogie generates verification conditions), but
the method or classin the original code does not have an attached specification.

Writing contracts for self-contained examples is easy, but realistic programming is
highly dependent on libraries, such asthe BCL. A large obstacle then is obtaining con-
tracts for the existing libraries. A companion project is working on semi-automatically
generating contracts for existing code. It has automatically extracted almost three thou-
sand preconditionsfor the current version of the BCL.

We have plans to build an explainer that translates Spec# method contracts into
natural-language documentation entries. For example, it seems that one could trans-
late preconditions and throws sets into the stylized exception tables used in the .NET
documentation, see Figure 0. This could better keep the documentation accurate and
up-to-date.

Lastly, we are planning a tool for translating Spec# into plain C#. (There are still
some problems, like figuring out what to do with field initializers, that we need to ad-
dress.) This tool will alow the use of Spec# within the normal development process.
For instance, most Microsoft devel opment groups insist on building their products us-
ing only official Microsoft compilers. In this context, Spec# would function as a pre-
compiler; however, it is this invisibility that is important to gaining acceptance in a
rigorous build environment.

3 Related Work

A number of programming languages have been designed especially with correctness or
verification in mind. These include the pioneering languages Gypsy [1], Alphard [63],
Euclid [38], and CLU [49], which offered different degrees of formality. In Gypsy,
which wasthefirst languageto include specifications as an integral part of the program-
ming language, the specifications integrated in the source program were aimed directly
at program verification viaan interactive theorem prover. Alphard was designed around
a programming methodol ogy for designing and proving object-like data structures, but

15

the proofswere done by hand. In Euclid, specificationswritten in the programming lan-
guage's boolean expressions were checked at run time, with the idea that more compli-
cated specifications, which were supplied in comments, would be used by some external
program-verification tool. The CLU programming methodology prominently included
specifications, but these were recorded only as stylized comments.

Three modern systems with contracts that have had a direct effect on practical pro-
grams are Eiffel [54], SPARK [2], and B [Q].

Eiffel [54] is an object-oriented language with almost 20 years of use. The standard
library is well documented through contracts, so contracts fall prominently within the
purview of programmers. The contracts are enforced dynamically. However, without
a full methodology for modifies clauses and for object invariants in the presence of
callbacks, it would not be possible to obtain modular static verification.

SPARK [2] isalimited subset of Ada, without many dynamic languagefeatureslike
references, memory allocation, and subclassing, yet large enough to be useful for many
embedded applications. Praxis Critical Systems has used SPARK in the devel opment of
several industrial programs, and their measurementsindicate that the rigor provided by
SPARK can be cost effective [13]. SPARK offers a selection of static tools, from light-
weight sanity checking to full verification with an interactive theorem prover. Compat-
ibility with an existing language has been a high priority in the design of SPARK, just
like for Spect#, but their approach is quite different from ours. By ruling out difficult
features of Ada, SPARK achieves the property that any SPARK program can be com-
piled by any standard Ada compiler while retaining its SPARK meaning (all SPARK
specifications are placed in stylized Ada comments, and thus they are not used by the
compiler). To meet our goal of migrating normally skilled programmers to a higher-
integrity language, we have been unable to follow SPARK'’s approach of designing a
subset of an existing language. Instead, we have designed Spec# to be a superset of an
existing language, aiming to support easy and gradual adoption of its new features.

The B approach [0] uses a different methodology for writing programs: starting
from full specifications and supporting a machine-aided process for stepwise refining
the specifications into compilable programs. The resulting programs are similar in ex-
pressivenessto SPARK programs. This methodol ogy, which has been used with success
for examplein constructing the Paris Metro braking system software, producesonly cor-
rect programs. However, the skills needed to go through the refinement process make
for a steep learning curve for the system and become a barrier for many programmers.
It is aso not obvious how to extend the methodol ogy to more expressive abstractions,
like those in object-oriented programs today.

The JavaModeling Language (JML) [39, 40] is a notation for writing specifications
for Java programs. IML specifications, which include rich flavors of method contracts,
are recorded in Java source code as stylized comments. An impressive array of tools
have been build around JML, including tools for documentation, run-time checking,
unit testing, light-weight contract checking, and program verification [12]. Spec# pro-
vides a more focused methodol ogy than JML, which for example has yet to adopt afull
story for object invariants in the presence of callbacks. The design space of Spec# is
somewhat less constrained than JML, since JIML does not seek to alter the underlying

16

programming language (which, for example, has let Spec# introduce field initializers
and expose blocks).

The language AsmL [32] has many of the same aspirations as Spec#: to be an ac-
cessible, widely-used specification language tailored for object-oriented .NET systems.
However, AsmL is oriented toward supporting model -based devel opment with its facil -
itiesfor model programs, test-case generation, and meta-level state exploration [5]. Our
experiencesin using AsmL for interface specification [8], run-time verification [9], and
an on-going project with a product group [4] contributed to the design of Spec#. The
companion testing tool SpecExplorer [30], currently in use within Microsoft, uses the
Spec# language to provide model-based testing with features for test-case generation,
explicit-state model checking, and run-time conformance checking.

The Anna[50] specification language for Adalets programmerswrite down impor-
tant design decisions. The specifications are compiled into run-time checks.

Thefirst mechanical systemsfor proving programs correct were conceived and built
several decades ago. These include the early, but not entirely automatic, systems of
King [37,36] and Deutsch [20], Gypsy [27], and the Stanford Pascal Verifier [51].
More recent program verifiers include Penelope (for Ada) [31] and LOOP (for Java
and JML) [60], both of which requireinteractive theorem proving.

Setting early efforts by Sites [59] and German [26] into full motion, the Extended
Static Checker for Modula-3 (ESC/Modula-3) [19] changed the rules of the game by
leveraging the power of an automatic theorem prover not for proving the full functional
correctness of programs, but for the limited aim of finding common errorsin programs.
Continuing in that tradition, ESC/Java [24] wrapped that technology with a simpler
contract language (a subset of JML), aiming to deliver a practical high-precision tool
for normally skilled programmers. A key ingredient that enables these ESC tools to do
useful checking isthewillingness to miss certain errors, since that can lead to asimpler
specification language and to better odds for the automatic theorem prover to succeed
(see dlso [42]). Boogie attempts to completely verify a program without missing errors;
its ability to do so is bound to depend on the simplicity of the specifications.

Spec# provides a limited type system for non-null types. A more comprehensive
type-system solution has been proposed by Fahndrich and Leino [22]. Their design
deals with the complication of non-null fields by introducing additional raw types for
partially-constructed objects.

Various abstraction facilities that help define modifies clauses in modern object-
oriented languages have been proposed (e.g., [46, 55, 41]).

Our methodology for object invariants and modifies clausesrelies on object own-
ership to impose a structure on the heap [3,45, 6]. Similar effects have been achieved
by ownership types and other alias-confinement strategies (e.g., [16,11]). The earliest
such use we've seen dates back to Alphard [63], where the modifier unique specifies
that afield points to an owned object.

4 Concluding Remarks

The foundation of the Spec# programming system is the Spec# programming method-
ology, the Speci# language, the Spec# compiler, and the Boogie static program verifier.

17

The methodology prescribesfor thefirst time how to deal soundly with object invariants
and subclasses in a modular setting. The Spec# language embodies the methodology:
Spec# enriches C# with non-null types, contracts, checked exceptions, comprehensions,
and quantifications. The Spec# compiler uses a combination of static-analysis tech-
niques and run-time checks to guarantee soundness of the language. The verifier tries
to check the consistency between a program and its specifications.

We are trying to make the Spect# system a practically useful software tool that en-
ables normally skilled programmersto write down and verify their assumptions. There-
fore, we start from a familiar programming language and use the metaphor of type
checking for exposing the new capabilities of our static checking technology. We do
not offer a way to axiomatize new mathematical theories. Rather our design focus is
on limited, partial functional specifications, those that can be written using boolean
expressions of the language and quantifiers.

We have designed Spect# to provideincremental benefit as programmersuse more of
its features. Even without writing their own specifications, programmers get immediate
benefit astheir Spec# codeis checked against the partially specified Base Class Library.
Programmers gradually receive more benefit as they add, for example, non-null types
and preconditionsto their code.

Our design of Spec# has focused on sequential programs, but we are already ex-
tending our methodol ogy to styles of concurrent programs[35]. It seems plausible that
Spec# could also be of direct help in building secure applications. It would be interest-
ing to explore the combination of our methodology with the stack walking mechanism
of code access security in the context of existing libraries for permissions, authentica-
tion, and cryptography.

Acknowledgments

Many colleagues have helped make Spec# what it is. Colin Campbell, Rob DeLine,
Manuel Fahndrich, Wolfgang Grieskamp, Nikolai Tillmann, and Margus Veanes. Peter
Miller and David Naumann have contributed to the more advanced versions of our
methodology for object invariants. Rob and Manuel are also members of the Boogie
project. Jim Larus and Sriram Rajamani have provided support and helpful discussions.
Craig Schertz provided thetool for extracting contracts from existing code. A big thanks
goes to Herman Venter, who has been invaluable in the implementation of the Spec#
programming language and devel opment environment. Finally, we thank Gary L eavens,
Peter Muller, and others for their useful comments on a draft of this paper.

References

0. J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

1. AllenL. Ambler, Donald |. Good, James C. Browne, Wilhelm F. Burger, Richard M. Cohen,
Charles G. Hoch, and Robert E. Wells. GYPSY : A language for specification and implemen-
tation of verifiable programs. SIGPLAN Notices, 12(3):1-10, March 1977.

18

10.

11.

12.

13.

14.

15.

16.

17.

. John Barnes. High Integrity Software: The SPARK Approach to Safety and Security.

Addison-Wesley, 2003. With Praxis Critical Systems Limited.

. Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, and Wolfram Schulte.

Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27-56, 2004.

. Mike Barnett, Wolfgang Grieskamp, Clemens Kerer, Wolfram Schulte, Clemens Szyperski,

Nikola Tillmann, and Arthur Watson. Serious specification for composing components. In
lvica Crnkovic, Heinz Schmidt, Judith Stafford, and Kurt Wallnau, editors, Proceedings of
the 6th ICSE Workshop on Component-Based Software Engineering: Automated Reasoning
and Prediction, May 2003.

. Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Tillmann,

and Margus Veanes. Towards a tool environment for model-based testing with AsmL. In
3rd International Workshop on Formal Approaches to Testing of Software (FATES 2003),
October 2003.

. Mike Barnett and David A. Naumann. Friends need a bit more: Maintaining invariants over

shared state. In Dexter Kozen, editor, Mathematics of Program Construction, Lecture Notes
in Computer Science, pages 54-84. Springer, July 2004.

. Mike Barnett, David A. Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure: Useful

abstractions in specifications. In Erik Poll, editor, Proceedings of the ECOOP Workshop
FTfJP 2004, Formal Techniques for Java-like Programs, pages 11-19, June 2004. University
of Nijmegen, NIl report NI11-R0426.

. Mike Barnett and Wolfram Schulte. The ABCs of specification: AsmL, behavior, and com-

ponents. Informatica, 25(4):517-526, November 2001.

. Mike Barnett and Wolfram Schulte. Runtime verification of .NET contracts. The Journal of

Systems and Software, 65(3):199-208, 2003.

Don Box. Essential .NET, Volume I: The Common Language Runtime. Addison-Wesley,
2002.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: Preventing dataraces and deadlocks. In Proceedings of the 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications, OOP-
SLA 2002, volume 37, number 11 in SIGPLAN Notices, pages 211-230. ACM, November
2002.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer (STTT), 2004. To appear.
Roderick Chapman. Industrial experience with SPARK. Presented at SIGAda 00, November
2000. Available from http://www.praxis-cs.co.uk.

Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD thesis,
lowa State University, April 2003. lowa State University, Department of Computer Science,
Technical Report TR #03-09.

Patrick Cousot and Rhadia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the Fourth Annual ACM Symposium on Principles of Programming Languages, pages
238-252. ACM, January 1977.

Robert DeLine and Manuel Fahndrich. Enforcing high-level protocolsin low-level software.
In Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), volume 36, number 5in SIGPLAN Notices, pages 59-69. ACM,
May 2001.

Robert DeLine and Manuel Fahndrich. Typestates for objects. In Martin Odersky, editor,
ECOOP 2004 — Object-Oriented Programming, 18th European Conference, volume 3086
of Lecture Notes in Computer Science, pages 465-490. Springer, June 2004.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

35.

36.

19

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, July 2003.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. Research Report 159, Compag Systems Research Center, December 1998.

L. Peter Deutsch. An Interactive Program Verifier. PhD thesis, University of California,
Berkeley, 1973.

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specifi-
cation inheritance. In Proceedings 18th International Conference on Software Engineering,
pages 258-267. |EEE, 1996.

Manuel Fahndrich and K. Rustan M. Leino. Declaring and checking non-null types in an
object-oriented language. In Proceedings of the 2003 ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2003, volume 38, num-
ber 11 in SIGPLAN Notices, pages 302-312. ACM, November 2003.

Robert Bruce Findler and Matthias Felleisen. Contract soundness for object-oriented lan-
guages. In Proceedings of the 2001 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, OOPSLA 2001, volume 36, number 11 in
SIGPLAN Notices, pages 1-15. ACM, November 2001.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Extended static checking for Java. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), vol-
ume 37, number 5 in SIGPLAN Notices, pages 234-245. ACM, May 2002.

Robert W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer
Science, volume 19 of Proceedings of Symposium in Applied Mathematics, pages 19-32.
American Mathematical Society, 1967.

Steven M. German. Automating proofs of the absence of common runtime errors. In Confer-
ence Record of the Fifth Annual ACM Symposium on Principles of Programming Languages,
pages 105118, 1978.

Donald I. Good, Ralph L. London, and W. W. Bledsoe. An interactive program verification
system. In Proceedings of the international conference on Reliable software, pages 482—492.
ACM, 1975.

John B. Goodenough. Structured exception handling. In Conference Record of the Second
ACM Symposium on Principles of Programming Languages, pages 204-224. ACM, January
1975.

James Godling, Bill Joy, and Guy Steele. The JavaT™ Language Specification. Addison-
Wesley, 1996.

Wolfgang Grieskamp, Nikolai Tillmann, and Margus Veanes. Instrumenting scenariosin a
model-driven development environment. Submitted manuscript, 2004.

David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Adaprograms.
IEEE Transactions on Software Engineering, 16(9):1058-1075, September 1990.

Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of AsmL. The-
oretical Computer Science, 2005. To appear.

C. A. R. Hoare. An axiomatic approach to computer programming. Communications of the
ACM, 12:576-580,583, 1969.

. C. A. R. Hoare. Monitors. an operating system structuring concept. Communications of the

ACM, 17(10):549-557, October 1974.

Bart Jacobs, K. Rustan M. Leino, and Wolfram Schulte. Verification of multithreaded object-
oriented programs with invariants. In Proceedings of the workshop on Specification and
Verification of Component-Based Systems, 2004. To appear.

James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385-394, July 1976.

20

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.
53.

James CorneliusKing. A Program Verifier. PhD thesis, Carnegie-Mellon University, Septem-
ber 1969.

Butler W. Lampson, James J. Horning, Ralph L. London, James G. Mitchell, and Gerald J.
Popek. Report on the programming language Euclid. Technical Report CSL-81-12, Xerox
PARC, October 1981. An earlier version of this report appeared as volume 12, number 2 in
SIGPLAN Notices. ACM, February 1977.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and lan Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175-188. Kluwer Academic Publishers, 1999.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of IML: A behavioral
interface specification language for Java. Technical Report 98-06u, lowa State University,
Department of Computer Science, April 2003.

K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In Pro-
ceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’98), volume 33, number 10 in SIGPLAN Notices,
pages 144-153. ACM, October 1998.

K. Rustan M. Leino. Extended static checking: A ten-year perspective. In Reinhard Wil-
helm, editor, Informatics—10 Years Back, 10 Years Ahead, volume 2000 of Lecture Notes in
Computer Science, pages 157-175. Springer, January 2001.

K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming, 2004. To ap-
pear.

. K. Rustan M. Leino and Peter Milller. Modular verification of global module invariants in

object-oriented programs. Technical Report 459, ETH Zirich, September 2004.

K. Rustan M. Leino and Peter Milller. Object invariants in dynamic contexts. In Martin
Odersky, editor, ECOOP 2004 — Object-Oriented Programming, 18th European Confer-
ence, volume 3086 of Lecture Notes in Computer Science, pages 491-516. Springer, June
2004.

K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding. ACM Trans-
actions on Programming Languages and Systems, 24(5):491-553, September 2002.

K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded
commands. In Bart Jacobs, Gary T. Leavens, Peter Muller, and Arnd Poetzsch-Heffter, ed-
itors, Formal Techniques for Java Programs, Technical Report 251. Fernuniversitat Hagen,
May 1999.

K. Rustan M. Leino and Wolfram Schulte. Exception safety for C#. In SEFM 2004—Second
International Conference on Software Engineering and Formal Methods, pages 218-227.
IEEE, September 2004.

Barbara Liskov and John Guttag. Abstraction and Specification in Program Development.
MIT Electrical Engineering and Computer Science Series. MIT Press, 1986.

D. C. Luckham. Programming with Specifications: An Introduction to Anna, a Language for
Specifying Ada Programs. Texts and Monographs in Computer Science. Springer-Verlag,
1990.

D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C. Oppen,
W. Polak, and W. L. Scherlis. Stanford Pascal Verifier user manual. Technical Report STAN-
CS-79-731, Stanford University, 1979.

Charles C. Mann. Why software is so bad. MIT Technology Review, July/August 2002.
Steve McConnell. Code complete: A practical handbook of software construction. Microsoft
Press, 1993.

. Bertrand Meyer. Object-oriented software construction. Series in Computer Science.

Prentice-Hall International, 1988.

55.

56.

57.

58.

59.

60.

61.
62.

63.

21

Peter Miller. Modular Specification and Verification of Object-Oriented Programs, volume
2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002. PhD thesis, FernUni-
versitat Hagen.

RTI Health, Social, and Economic Research. The economic impact of inadequate infras-
tructure for software testing. RTI Project 7007.011, Nationa Ingtitute for Standards and
Technology, May 2002.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. Theoretical Computer Science, 167(1-2):131—
170, 1996.

Alexandru Salcianu and Martin Rinard. A combined pointer and purity analysis for Java
programs. Technical Report MIT-CSAIL-TR-949, MIT, May 2004.

Richard L. Sites. Proving that Computer Programs Terminate Cleanly. PhD thesis, Stanford
University, May 1974. Technical Report STAN-CS-74-418.

Joachim van den Berg and Bart Jacobs. The LOOP compiler for Javaand JML. In Tiziana
Margaria and Wang Yi, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 7th International Conference, TACAS 2001, volume 2031 of Lecture Notes in
Computer Science, pages 299-312. Springer, April 2001.

Mickey Williams. Microsoft Visual C# .NET. Microsoft Press, 2002.

Jeannette Marie Wing. A two-tiered approach to specifying programs. PhD thesis, MIT
Department of Electrical Engineering and Computer Science, May 1983. MIT Laboratory
for Computer Science TR-299.

William A. Wulf, Ralph L. London, and Mary Shaw. An introduction to the construction
and verification of Alphard programs. |IEEE Transactions on Software Engineering, SE-
2(4):253-265, December 1976.

