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Abstract

Programming-language mechanisms for throwing and
handling exceptions can simplify some computer programs.
However, the use of exceptions can also be error prone,
leading to new programming errors and code that is hard
to understand. This paper describes ways to tame the ex-
ception usage in C#. In particular, the paper describes the
treatment of exceptions in Spec#, an experimental superset
of C# that includes code contracts.

0. Introduction

Modern programming languages, including C# [24],
provide exceptions as a mechanism to help program-
mers handle errors systematically. While exceptions can
benefit the architecture of an application, the use of ex-
ceptions is delicate and can lead to problems in its own
right. For example, unrestricted use of exceptions of-
ten leaves the program in an undetermined state, from
which it is difficult to recover. As another example, with-
out care, the new control flows introduced by the throw-
ing of exceptions can lead to precious resources being
leaked.

Despite these shortcomings, we argue that throwing and
handling exceptions is still the best known way to propa-
gate error information. But we advocate that the exceptions
be used according to a checkable discipline. In this paper,
we describe such a discipline applied to C# and the .NET
Framework. In particular, we describe the exception fea-
tures in our design of Spec#, a language that is a superset
of C# and includes code contracts. Our design is tailored
to C# and the way methods are documented in the .NET
Framework, but it more generally contributes programmer-
specified exceptions in parameter validation (otherwise
clauses) and an interplay between object invariants and
checked exceptions.

We base our exception discipline on work by Good-
enough [9], who classifies the failures that exceptions can

signal into client failures and provider failures. (Good-
enough called these domain failures and range failures, re-
spectively, but we have found that those terms are some-
times confusing.) Client failures occur when a procedure’s
inputs are not acceptable. Client failures correspond to pa-
rameter validation in Spec#. Provider failures occur when
a procedure is unable to complete the task it’s supposed to
perform. We further divide provider failures into two sub-
classifications, admissible failures and observed program
errors. Suppose a procedure reads bits from a network chan-
nel. An example of an admissible failure would then be that
the received bits contain too many parity errors. To make
note of the possibility of such admissible failures and to
give the implementation an out in such situations, Spec#
provides checked exceptions and throws sets. The other sub-
classification of provider failures occurs if the failure is due
to an intrinsic error in the program (e.g., an array bounds er-
ror) or a global failure that’s not particularly tied with the
procedure (e.g., an out-of-memory error). To signal such
failures, Spec# uses unchecked exceptions, which do not
need to be listed in the procedure’s throws set.

The Spec# compiler enforces the exception discipline in
two ways: it enforces some parts of the discipline by per-
forming various compile-time type checks, and it enforces
other parts of the discipline by introducing various run-time
checks into the target .NET virtual-machine code it gener-
ates. A Spec# program can also be checked entirely at com-
pile time, using the program checker Boogie [2]. This pa-
per is not a reference guide for Spec#, but serves to high-
light the ways in which Spec# helps programmers use ex-
ceptions.

The design of Spec# draws from several previous ef-
forts and designs, including: the Eiffel language (which in-
cludes code contracts) [18], the Java language (which ad-
mits a CLU- or Modula-3-like discipline of using excep-
tion) [10], the Java Modeling Language (JML, which pro-
vides contracts in the context of Java) [13, 3], and the cur-
rent design of the C# language and .NET Framework. Sec-
tion 8 gives a more detailed look at previous work.



1. Exceptions in C# and the .NET Framework

This section briefly reviews exception handling mecha-
nisms in C# and the .NET Framework.

C# provides basic support for exception handling. The
statement throw E ; interrupts the control flow and sig-
nals an error or other condition by the exception denoted by
the expression E . The statement

try { S } catch (X x ) { T }
catches any exception of type X thrown in statement S (or
in code called from S ) and then invokes the “handler” state-
ment T , in which x denotes the exception thrown. A try
statement can have multiple catch clauses, in which case
the first one whose exception type matches the thrown ex-
ception is picked. The statement

try { S } finally { T }
executes statement S followed by the “clean-up code”
statement T , and then, if S terminates with an exception
x and T terminates normally, re-throws x . For syntactic
convenience, C# allows a try-finally statement statement
whose try block is a try-catch statement to be writ-
ten simply as that try-catch statement followed by the
finally block.

A C# exception is an object whose type is a subclass of
System.Exception . The exception types thus form a hier-
archy. Here is a portion of that hierarchy:

• System.Exception

– System.SystemException
∗ System.ArgumentException
∗ System.ArithmeticException
∗ System.IndexOutOfRangeException
∗ System.InvalidCastException
∗ System.IO .IOException
∗ System.OutOfMemoryException

– System.ApplicationException

Since they are objects, exceptions can contain data in object
fields.

A C# program can throw any exception at any time, but
the type of the exception is intended to indicate the rea-
son for throwing the exception. Program-specific excep-
tion types are declared as new classes, typically deriving
from System.ApplicationException . Exceptions are also
thrown by the .NET virtual machine (the Common Lan-
guage Runtime, CLR) in the event that the program misuses
a virtual-machine instruction (such as dereferencing the null
reference) or exhausts some resource (such as memory).

C#, unlike Java, doesn’t have throws sets. Methods can
throw any exception without making this explicit in the

method signature. Thus, in C#, one has to rely completely
on informal comments, which can be wrong or simply miss-
ing. It is not possible for a caller to be certain a call won’t re-
sult in a thrown exception. Moreover, when an exception is
thrown, it is unclear in which state the callee and its reach-
able data structures remain.

2. Parameter validation

A common usage of exceptions in the .NET Framework
is to report that a method has been invoked under inappro-
priate circumstances. We refer to this usage as parameter
validation. For example, the GetString method of class
Encoding in the current Base Class Library (BCL),

public virtual string GetString(byte[ ] bytes);

is not allowed to be called with a null parameter. The docu-
mentation specifies this as follows:

A NullArgumentException will be thrown if
bytes is null .

Here, the throwing of a NullArgumentException indicates
an error at a call site. In a correctly written program, no
NullArgumentException will ever be thrown.

In Spec#, parameter validation is specified using pre-
conditions. For example, the documentation of GetString
above can be incorporated directly into the program text, as
a part of GetString ’s signature:

public virtual string GetString(byte[ ] bytes)
requires bytes ! =null ;

This declaration makes manifest that it is an error to in-
voke GetString unless bytes is not null. The Spec# com-
piler emits run-time checks to enforce preconditions; if a
check fails, an unchecked RequiresViolationException is
thrown. The preconditions are checked in the order in which
they are declared (when all preconditions hold, as would be
the case in a correct program, this order doesn’t matter, be-
cause the compiler insists that the expressions given as pre-
conditions have no side effects on the program state).

Preconditions are inherited. That is, a declared precondi-
tion is in effect for all overrides of a virtual method. Con-
sequently, the Spec# compiler emits run-time checks that
are applied regardless of which method implementation a
call dynamically dispatches to, eliminating the possibility
that an override would leave off its parameter validation. In
.NET, one expects parameter validation to occur, so Spec#
does not allow preconditions to be weakened in subtypes
(for more information, see [2]).

To support the programming practice used with the
.NET Framework, a Spec# precondition declaration can in-
dicate an unchecked exception type other than the default
RequiresViolationException . For example, to follow the



original documentation for GetString above, one can de-
clare:

public virtual string GetString(byte[ ] bytes)
requires bytes ! =null

otherwise NullArgumentException ;

In the event that a caller does happen to call this method
with null, the run-time check emitted by the Spec# compiler
will detect the error and throw a NullArgumentException .

By including preconditions as an integral part of a
method’s signature, Spec# makes it easy to explicate the in-
tended usage of methods, which we’d like to encourage.
However, we are sensitive to the fact that some pre-
conditions may appear too costly to check at run time.
Therefore, Spec# allows .NET custom attributes to be asso-
ciated with each precondition. Consequently, it is possible
to add the run-time check only in certain builds. For exam-
ple, the declaration:

public static
int Find(IComparable[ ] a, IComparable val)

requires val ! =null ;
[Conditional(”DEBUG”)]
requires IsSorted(a) ;

instructs the compiler to emit into the debug build code for
checking both preconditions, but emit into the retail build
code for checking the first precondition only.

3. Exceptional returns

In a correct program, the exceptions described in the pre-
vious section are never thrown. That is, the exceptions that
may be thrown due to violated preconditions signal error
conditions. But there is another use of exceptions, which
is to signal a rare condition that may require special han-
dling in the user program. An example of such an excep-
tion is SocketClosedException , which signals that the ap-
plied operation could not be performed due to some exter-
nal event. Such an exception is typically caught and han-
dled by the application, but this handling can be placed off
to the side in a catch block, which can handle the possi-
ble failure of several operations in the corresponding try
block.

Since it is important that there be a handler for this other
kind of exception and since it is important for application
writers to be aware of any such exceptions that a called
method may throw, the Spec# language provides support in
two ways.

First, Spec# separates exception types into two kinds. A
checked exception signals a rare condition that is neverthe-
less expected to be handled by an application, an admissi-
ble failure. In contrast, an unchecked exception is used to
signal a client failure (like RequiresViolationException )

or observed program error (like NullReferenceException ).
Unchecked exceptions are typically caught only by the run-
time system’s default exception handler (which terminates
the program) or by a handler in an outermost tier of an ap-
plication.

An exception class is a checked-exception type
if it implements the Spec#-provided interface
ICheckedException .

Second, Spec# insists that any checked exception that
can be thrown by a method be accounted for in the method’s
signature, namely in the method’s throws set. For example,
the declaration

public string ReadMessage()
throws SocketClosedException ;

says that method ReadMessage may terminate exception-
ally with a SocketClosedException (or with an exception
of any subclass of SocketClosedException ), but does not
terminate exceptionally with any other kind of checked ex-
ception.

It is also possible in Spec# to say something about the
program state in the event that an exception is thrown. (One
can also say something about the program state in the event
of normal termination, but that’s not our focus here.) For ex-
ample,

public string ReadMessage()
throws SocketClosedException

ensures unchanged(thisˆConnection) ;

says that if SocketClosedException is thrown, then the val-
ues of all fields declared for this in Connection and its
superclasses are the same as they were upon entry to the
method. If a method throws an exception whose type is a
subtype of several exception types listed in the throws set,
then all corresponding ensures clauses apply.

Using conservative syntactic data-flow rules somewhat
akin to the rules of definite assignment, the Spec# type
checker makes sure that all checked exceptions possibly
thrown by a method body are accounted for in the method’s
throws set. Since Spec# has to retrofit C# with checked ex-
ceptions (unlike Java, where checked exceptions were built
in from the start), Spec# has to put a restriction on throw
statements to avoid being foiled by up-casts of a checked
exception to an unchecked-exception type. In particular, if
the static type of the expression E in

throw E ;

is not a checked exception, then Spec# checks at run time
that the value produced by E indeed is not a checked ex-
ception.

A program written entirely in Spec# is type safe, also
with respect to checked exceptions. That is, in any execu-
tion, any value held by a variable is allowed by the vari-
able’s declared type and any checked exception thrown by



a method is allowed by the types in the method’s throws
set. However, this type safety for checked exceptions is not
guaranteed whenever a body of Spec# code calls code in a
non-Spec# assembly, because other .NET languages don’t
enforce the discipline of checked exceptions.

We conclude this section by pointing out the differences
between parameter validation and admissible failures. Pa-
rameter validation throws unchecked exceptions for client
failures. These exceptions typically propagate up the call
chain, until they are caught by a handler in an outermost
tier of an application. In contrast, checked exceptions spec-
ified in throws sets become the responsibility of the caller.

Let us give an example of this difference by considering
a Hashtable class that provides two lookup methods. One
lookup method assumes the given key to be in the table, the
other works even if the key is not in the table:

public object Lookup(object key)
requires key ! =null && ContainsKey(key) ;
throws ;

public object TryLookup(object key)
requires true ;
throws KeyNotInHashtable

ensures !ContainsKey(key) &&
unchanged(thisˆHashtable) ;

Suppose you are a client of this class. Sometimes, you
just want to look up the value at a key that you “know”
is in the hashtable. In this case, you would use Lookup .
The fact that you assume the key to be in the table means
you’re not going to write an exception handler for the call.
If your assumption is wrong, the call to Lookup will re-
sult in an unchecked RequiresViolationException . Other
times, you don’t know whether or not the key is in the ta-
ble. In this case, you would call the TryLookup method
and would need to provide a handler for the checked
KeyNotInHashtable exception.

4. Object invariants

If an exception is thrown in the midst of a data-structure
update, then that data structure may be left in a corrupted
state, that is, in a state where the data structure’s invari-
ant is broken. Spec# allows data-structure invariants to be
recorded as object invariants. For example, the declarations

class Map {
object[ ] domain ;
object[ ] range ;
invariant domain ! =null&& range ! =null ;
invariant domain.Length == range.Length ;
int cardinality ;
invariant 0 < cardinality &&

cardinality <= domain.Length ;

say that in “stable states”, the domain and range arrays of
maps are not null, they have positive and equal capacities,
and the map’s cardinality is also positive and does not ex-
ceed that capacity. A “stable state” obtains when the pro-
gram is not operating on the object. To make that notion
precise, which is necessary in order to enforce object invari-
ants, Spec# features a statement expose , which brackets
the operations on an object. For example, here is a method
that increases the capacity of a map:

public void IncreaseCapacity() {
expose (this) {

object[ ] d = new object[2 ∗ domain.Length] ;
object[ ] r = new object[2 ∗ range.Length] ;
domain.CopyTo(d , 0) ;
range.CopyTo(r , 0) ;
domain = d ;
range = r ;

}
}

The idea is that an object’s fields are modified only within
an expose statement on that object (or within calls per-
formed within that expose statement), somewhat akin to
the way shared variables in C# are to be accessed only
within appropriate lock statements and the way certain dis-
posable objects are to be used only within using state-
ments. At the moment, the policy of operating on an object’s
fields only within an appropriate expose statement is not
checked at run time, but is checked by the compile-time pro-
gram checker Boogie. An object’s invariant is supposed to
hold at the end of an expose statement, which is checked
at run time (and, by Boogie, at compile time). If the invari-
ant does not hold, an InvariantException is thrown. (For
more details and motivation about Boogie’s checking of ob-
ject invariants, see [1].)

In the examples in this section, we show the expose
statements explicitly. However, by default, Spec# wraps the
bodies of public instance methods within an

expose (this) { . . . }

statement, which covers the most common usage of
expose . Hence, explicit expose statements are not as
ubiquitous in the code as one might first think.

Object invariants work with exceptions in the following
way. If the body of an expose statement terminates excep-
tionally with a checked exception, then the object invariant
is still checked, as it would be upon normal termination of
the expose body. Since checked exceptions are presumed
to be caught by the program, this checking of object invari-
ants ensures that further operations find the object in a con-
sistent state. For example, if the first call to ReadMessage



results in a SocketClosedException in the following code:

expose (this) {
object[ ] d = new object[2 ∗ domain.Length] ;
domain.CopyTo(d , 0) ;
domain = d ;
domain[cardinality] = conn.ReadMessage() ;
object[ ] r = new object[2 ∗ range.Length] ;
range.CopyTo(r , 0) ;
range = r ;
range[cardinality] = conn.ReadMessage() ;
cardinality++ ;

}
then the checking of the object invariant at the end
of the expose statement will result in the throw-
ing of an InvariantException (carrying the thrown
SocketClosedException as an inner exception).

Unchecked exceptions, on the other hand, are used dif-
ferently, and there often isn’t anything sensible an applica-
tion can do in response to an unchecked exception. There-
fore, Spec# does not do any checking of object invariants
when the body of an expose statement terminates excep-
tionally with an unchecked exception. Instead, unchecked
exceptions are propagated. For example, if the second allo-
cation fails in the following code:

expose (this) {
object[ ] d = new object[2 ∗ domain.Length] ;
domain.CopyTo(d , 0) ;
domain = d ;
object[ ] r = new object[2 ∗ range.Length] ;
range.CopyTo(r , 0) ;
range = r ;

}
then the whole expose statement terminates exceptionally
with an OutOfMemoryException and the data structure of
the Map object is left in a corrupted state.

We note that a simple programming pattern that avoids
many possible corrupted-state errors by limiting the win-
dow of vulnerability is to first prepare new values for
all fields and then perform a series of consecutive as-
signment statements, as in the IncreaseCapacity method
shown above.

5. Resource Usage

A danger with exceptions that we have not yet discussed
arises with objects whose resources need to be disposed.
Resources like file and widget handles, sockets, and reg-
istry entries are precious; they should be released as quickly
as possible and shouldn’t be leaked when exceptions are
thrown.

In the .NET Framework, a resource is a class or
struct that implements the Dispose method of the inter-
face System.IDisposable . Code that wants to dispose a re-
source should call its Dispose method. The contract for
Dispose says that it has to release all the resources that it
or its superclasses own. Calls to Dispose should be idem-
potent. For Spec#, we also require that Dispose not throw
any checked exception.

The .NET Framework also supports finalizers (written
as destructors in C#). They are run during garbage collec-
tion. Finalizers should be used only as a safeguard to clean
up resources in case the Dispose method was not called. Of
course, finalizers are not allowed to throw any checked ex-
ception. The finalizer of an object shouldn’t be run if the ob-
ject’s Dispose method already has been called; to that end,
Dispose should call the GC .SuppressFinalize method for
the object it is disposing [19].

An approximation of the methodology in the previous
two paragraphs is enforced by the lint-like program checker
FxCop [8]. Because FxCop performs a modular analysis, it
doesn’t have information about all exceptions that may be
thrown by a method in C#. With Spec#, a tool like FxCop
can produce more targeted warnings, for example by hom-
ing in on the execution paths resulting from checked excep-
tions and ignoring any unchecked exceptions.

The C# programming language already provides some
help in the form of a using statement to make calls to
the Dispose method automatic. The using statement ob-
tains one or more resources, executes the given statements,
and then calls Dispose on the resources. The following
code example creates, uses, and cleans up an instance of
a Resource class:

public void ResourceUsage() {
using (Resource r = new Resource()) {

r .DoSomething();
}

}
The use of the using statement, however, is limited to

blocks where resources don’t escape. But suppose that you
want to store a new resource in a field or that you want to re-
turn the resource. Then, it might happen that a checked ex-
ception is thrown after the allocation of the resource and be-
fore the assignment to the field or return of the method. In
this case, a tool like FxCop can enforce that there is an en-
closing try-catch statement whose handler frees the re-
source.

We use a different strategy to deal with unchecked excep-
tions. Unchecked exceptions typically propagate to a han-
dler in an outermost tier of the application. A good disci-
pline for these catch-all exception handlers seems to be to
force a garbage collection. The garbage collection then trig-
gers a call to the finalizers of unreachable objects, which in
turn triggers calls to Dispose .



6. Example

In this section, we show how a specification of the
ArrayList .BinarySearch method can be written in Spec#.
Figure 0 shows how MSDN [19] specifies this method to-
day.

In Spec#, the parameter validation rules can be made
explicit, as shown in Figure 1. The first three requires
clauses say exactly what the MSDN documentation says,
namely that index and count , which together indicate the
range to be searched (as offset plus length), must represent
a valid subrange of the ArrayList . The fourth requires
clause says that if the comparer is null, then either value
or all of the elements of the ArrayList implement the
IComparable interface. (The operator ==> denotes logi-
cal implication; Forall is the universal quantifier; the range
expression {s : t} denotes the half-open interval from s up
to, but not including, t .) Finally, the last requires clause
says that if the comparer is null but value is not null, then
the types of all elements must be assignable to the type of
value or the other way around. In fact, this already points
out an ambiguity in the existing documentation, which uses
the wording “same” type, but that’s not what is intended.

Note that the documentation for BinarySearch does not
say anything about the array being sorted, though it is ques-
tionable whether calling BinarySearch on an unsorted ar-
ray makes any sense. For a full specification, one should
also add that BinarySearch doesn’t have side effects.

7. Discussion

With consideration for an existing C# coding pat-
tern, Spec# also provides a more complicated form of
the otherwise clause, wherein any expression eval-
uating to an exception can be used. This provides the
freedom to pass specific arguments to an exception con-
structor, for example. However, we recommend against us-
ing this more complicated form, because the additional
effort required in using it seems to far outweigh the bene-
fits.

For example, the .NET Framework currently includes
code of the form shown in Figure 2. Note the elaborate argu-
ments passed to the exception constructor. Not only is there
a risk that arguments like these contain errors, but the bene-
fits of having included them seem feeble. The exception in-
dicates a client failure, which is a program error. How does
knowing the name of the invalid parameter or the descrip-
tion of the exception thrown (translated into the local lan-
guage via a resource string) help recover from a program
error? It does not help any try-catch handler, nor does it
help the user or product support staff. If the client failure is
to be diagnosed, one needs a stack trace that gives enough

context. And if one has the stack trace, then the name of the
parameter provides no additional information.

8. Related Work

Various views have been put forth about the role of
exceptions in programs and the criteria for designing ex-
ception features in programming languages (e.g., [9, 16]).
Stroustrup defines exception safety in the standard C++ li-
brary in terms of the following three guarantees [21]:

• Basic guarantee: The basic invariants of the class are
maintained and no resources (which in C++ includes
memory) are leaked.

• Strong guarantee: In addition to the basic guarantee,
the operation either succeeds or has no effect.

• No-throw guarantee: In addition to the basic guaran-
tee, no exception is thrown.

All operations of the standard C++ library are to adhere
to the basic guarantee, key operations are to adhere to the
strong guarantee, and a few simple operations may adhere
to the no-throw guarantee. These guidelines can lead to
more predictable behavior, but they are not enforced by
the language. The language also lacks built-in class invari-
ants. The features of Spec# enable this exception-safety pol-
icy to be stated explicitly and checked. For checked ex-
ceptions, Spec# checks that invariants are maintained and
leans on tools like FxCop to check that no resources are
leaked, providing the basic guarantee. When the success
of an operation depends only on the operation’s input, use
of Spec# requires-otherwise declarations provides the
strong guarantee. More generally, the strong guarantee can
be specified with postconditions and the unchanged con-
struct (or using modifies clauses, not described in this pa-
per). Lastly, an empty throws set trivially specifies the no-
throw guarantee.

Exceptions are used for systematic error handling in
many languages. CLU [17] was the first language to include
in a procedure’s signature the set of exceptions it may pos-
sibly throw. If the execution of a procedure’s body results
in the throwing of an exception not in the procedure’s de-
clared throws set, the exception is turned into a special ex-
ception Failure . A similar design was later used in Mod-
ula-3 [20].

Java [10] evolves this design in three ways. First, ex-
ceptions in Java are objects whose types are rooted at a
language-defined exception class, so a method is allowed to
throw any exception whose type derives from a class named
in the method’s throws set. Second, through designated ex-
ception classes, Java makes the distinction between checked
and unchecked exceptions, the latter of which are implic-
itly part of any throws set. Third, the check that a method



The ArrayList .BinarySearch method searches a section of the sorted ArrayList for an element using the specified com-
parer and returns the zero-based index of the element.

public virtual
int BinarySearch(int index , int count ,object value, IComparer comparer);

Parameters

• index The zero-based starting index of the range to search.

• count The length of the range to search.

• value The object to locate. The value can be a null reference.

• comparer The IComparer implementation to use when comparing elements. -or- A null reference to use the default
comparer that is the IComparable implementation of each element.

Return Value
The zero-based index of value in the sorted ArrayList , if value is found; otherwise, a negative number, which is the bitwise
complement of the index of the next element that is larger than value or, if there is no larger element, the bitwise complement
of count .
Exceptions

• ArgumentException : index and count do not denote a valid range in the ArrayList . -or- comparer is a null refer-
ence and neither value nor the elements of ArrayList implement the IComparable interface.

• InvalidOperationException : comparer is a null reference and value is not of the same type as the elements of the
ArrayList .

• ArgumentOutOfRangeException : index is less than zero. -or- count is less than zero.

Remarks
. . . If comparer is a null reference, the comparison is done using the IComparable implementation provided by the element
itself or by the specified value . . . .
Comparing a null reference with any type is allowed and does not generate an exception when using IComparable . . . .

Figure 0. MSDN documentation for BinarySearch .

body does not result in the throwing of a checked excep-
tion not covered by the throws set is done statically, through
syntactic means. Exceptions in C# are also classes, but,
alas, all exception classes are unchecked. Spec# retrofits
the C# design with the addition of checked exceptions
and throws sets. Since Spec# incorporates contracts, each
throws clause can also specify a postcondition, like the
exceptional postconditions in, for example, JML [13].

Two of the earliest programming languages with built-in
pre- and postconditions are Gypsy [0] and Euclid [12]. Eu-
clid compiles these specifications into run-time checks; if
a check fails, the program is terminated. Eiffel [18] incor-
porates specifications into an object-oriented programming
language, and its libraries come equipped with specifica-
tions. The specifications are enforced at run time. The Java
Modeling Language (JML) [13] adds specifications to the
object-oriented programming language Java [10]. The JML
compiler inserts run-time checks for these specifications,
and various other JML tools attempt to check the speci-
fications statically [3]. New to Spec# are the otherwise
clauses that allow the stylized .NET Framework documen-

tation to be encoded as preconditions. Since the .NET
Framework documentation is similar to that of the Java li-
braries, we expect that otherwise clauses could be useful
for Java specifications as well.

Languages that build in specifications often pro-
vide some forms of invariants. For example, Eiffel provides
class invariants that are intended to hold for each in-
stance of the class whenever no method is active on the in-
stance. New in Spec# is the interplay between such
object-invariant checking and exceptions, and in partic-
ular checking object invariants whenever an expose
block is exited normally or exited with a checked excep-
tion.

Drawing from programming experience with, for exam-
ple, the Taos operating system, Levin and Wobber have de-
veloped a number of guidelines for using exceptions [15].
They suggest that exceptions resulting from fatal errors,
which correspond to our unchecked exceptions, be handled
only in specially designated backstops that catch all excep-
tions. Their recommendation is that programmers always
know where these backstops are, for example, in an outer-



public virtual
int BinarySearch(int index , int count ,object val , IComparer comparer)

requires 0 <= index otherwise ArgumentOutOfRangeException ;
requires 0 <= count otherwise ArgumentOutOfRangeException ;
requires count <= this.Count − index otherwise ArgumentException ;
requires comparer ==null ==>

value is IComparable || Forall{int i in{index : index + count}; this[i ] is IComparable}
otherwise ArgumentException ;

requires comparer ==null && value ! =null ==>
Forall{int i in{index : index + count}; this[i ] ! =null ==>

this[i ].GetType().IsAssignable(value.GetType()) ||
value.GetType().IsAssignable(this[i ].GetType())}

otherwise InvalidOperationException ;

Figure 1. Spec# contract for BinarySearch .

public virtual
int BinarySearch(int index , int count ,object val , IComparer comparer) {

if (index < 0 || count < 0) {
throw new ArgumentOutOfRangeException((index < 0 ? ”index” : ”count”),

Environment .GetResourceString(”ArgumentOutOfRange NeedNonNegNum”)) ;
}
if ( size − index < count) {

throw new ArgumentException(Environment .GetResourceString(”Argument InvalidOffLen”)) ;
}
. . .

Figure 2. Today’s parameter validation of BinarySearch in C#.

most tier of each thread or in a window-system event han-
dler. Otherwise, Levin and Wobber warn, “there will be
an irresistible tendency to catch fatal exceptions deep in
an implementation where they can’t be handled in a uni-
form manner”. The Spec# exception methodology seems
consistent with these recommendations: the compiler forces
callers to deal with the admissible failures documented in
the throws sets of callees, whereas the (in Spec# undocu-
mented) unchecked exceptions most easily are left unhan-
dled until backstops.

The semantics of exceptions has been formalized, for ex-
ample as weakest preconditions by Cristian [5]. Tools that
use weakest preconditions and a mechanical theorem prover
to reason statically about programs with exceptions include
ESC/Modula-3 [6] and ESC/Java [7, 14]. The LOOP pro-
gram verifier [22, 11] uses a Hoare logic to reason statically
about programs with exceptions, applying theorem-prover
tactics based on weakest preconditions. There are also other
tools that reason statically about programs with exceptions,

including the software model checkers Bandera [4] and Java
PathFinder-2 [23].

In our own work, we are developing Spec# hand in
hand with the automatic program verifier Boogie [2], which
uses automatic program-verification techniques like those
in ESC [6, 7]. For instance, Boogie checks at compile-time
that a method’s preconditions hold at each call site. If Boo-
gie can verify that the precondition always holds, then there
is an opportunity for the compiler to suppress the corre-
sponding run-time check.

9. Conclusion

Spec# includes features that allow programs to take ad-
vantage of the good side of exceptions—clean and system-
atic error handling—while taking measures to reduce the
possibilities of exceptions becoming a problem in their own
right.

Inspired by Goodenough [9], Spec# classifies failures



into client failures, admissible failures, and observed pro-
gram errors. Following Java [10], Spec# also distinguishes
between checked and unchecked exceptions. Unchecked ex-
ceptions are used to signal client failures and observed pro-
gram errors, whereas checked exceptions are used to signal
admissible failures.

Our requires-otherwise declarations allow us to
retrofit C# with precondition declarations that match cur-
rent programming practice used with the .NET Frame-
work.

We have also described a discipline for the interplay be-
tween declared object invariants and checked exceptions.
The discipline is completely enforced by a combination of
compile-time and run-time checks. The Spec# exception
discipline also seems to lend itself to better checking of re-
source usage and controlled disposal.

Our grand vision for Spec# is to develop a programming
system in which one can verify partial specifications for a
modern object-oriented language [2]. Exception safety is a
prerequisite for making strides toward this ambitious goal.
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