Friends Need a Bit More:
Maintaining Invariants Over Shared State
February 6, 2004

Mike Barnett and David A. Naumann

0 Microsoft Research
nbar nett @i crosoft.com
1 Stevens Institute of Technology
naumann@s. st evens-t ech. edu

Abstract. A friendship systenis introduced for modular static verification of
object invariants. It extends a previous methodology, thaseownership hierar-
chy encoded in auxiliary state, to allow for state dependeagross ownership
boundaries. Friendship describes a formal protocol fgramting classto grant
afriend classpermission to express its invariant over fields in the grantilass.
The protocol permits the safe update of the granter’s fielttsoart violating the
friend’s invariant. The ensuing proof obligations are mial and permit many
common programming patterns. A soundness proof is sketdieelmethod is
demonstrated on several realistic examples, showingtthayriificantly expands
the domain of programs amenable to static verification.

0 Introduction

Whether they are implicit or explicit, object invariant®am important part of object-
oriented programming. An object’s invariant is, in gengadiealthinesguarantee that
the object is in a “good” state, i.e., a valid state for cglmethods on it.

For example, in a base class library for collection typegaoe method calls may
be made on an enumerator only if the underlying collectianrtat been modified since
the enumerator was created. Other examples are that aricagnaph is indeed acyclic
or that a sorted array has its elements in the proper order.

Various proposals have been made on how object invariantbedormally ex-
pressed and on different mechanisms for either guaramtéedt such invariants hold
[LNO2,LG86,Mul02] or at least dynamically recognizing ments in execution where
they fail to hold [BS03,CL02,Mey97]. For the most part, theystems require some
kind of partitioning of heap objects so that an object’s hisvat depends only on those
objects over which it has direct control. This is intuitignce it is risky for one data
structure to depend on another over which it has no controlvé¥er, systems such
asownership type$CNP01,Cla01,BLS03,Mul02] are inflexible in that they demd
object graphs to be hierarchically partitionable so thatdtpendencies induced by ob-
ject invariants do not cross ownership boundaries. Therenany situations where an
object depends on another object but cannot reasonablytown i

* Partially supported by NSF CCR-0208984; SRI Visiting ReBbip; Microsoft Research.

We relax these restrictions with a new methodology; our wetilows the defini-
tion of a protocol by which @ranting classcan give priviliges to anothdriend class
that allows the invariant in the friend class to depend onl$i@h the granting class. As
in real life, friendship demands the active cooperationathiparties. A friend class can
publish restrictions on field updates of the granting cld$® granting class must be
willing to operate within these restrictions. In return¢kanstance of the friend class
must register itself with the instance of the granting clhsd it is dependent on. And
as in real life, the quality of the friendship depends on harous its burdens are. We
believe our system imposes a minimal set of constraints @pahticipating parties.

Our method builds on ownership-based invariants [BlBa], formalized using
an auxiliary field owner [LMO3]. We refer to the combination of [BDF03a] and
[LMO3] as theBoogie methodologyAn on-going project at Microsoft Research named
“Boogie” is building a tool based on that methodology. In 8at 1, we review the
relevant features of the object invariant system from thatkw

Section 2 presents a representative example of an instéracgranting class per-
forming a field update that could violate the invariant of astance of a friend class.
We describe the required proof obligations for the grantibgct to perform the field
update without violating the invariants of its friends oe thbject invariant system. In
Section 2.0, we describe how a granting class declares wiésses are its friends
and how granting objects track friends that are dependemt itplt is important that
a granting object has an abstraction of the invariants dfigads, rather than the full
details. Our method for this is explained in Section 2.1.MmeSection 2.2, we define
the obligations incumbent upon the friend class for natifygranting objects of the
dependence. Section 2.3 summarizes all of the features afieihod.

Section 3 sketches a soundness argument for our methodbrséalescribes two
extensions. The first, in Section 4.0, presents a convenietihodology that shows
how reasoning about dependents can be linked to the codesajfréinting class. In
Section 4.1, we describe a syntactic means for transmiitifagmation after a field
update back to the granting object from a friend object. We geveral examples in
Section 5 that present our methodology in action on chaifengxamples. Section 6
reviews related work and Section 7 summarizes our contabw@nd points out future
work.

We assume some familiarity with the principles of objedented programming
and the basics of assertions (pre- and post-conditionsifié@dlause, and invariants)
as well as their use in the static modular verification of sedial object-oriented pro-
grams. However, we do not presuppose any particular veigitcéechnology.

For simplicity, we describe our method without taking int@waunt subtyping. The
full treatment is described in a forthcoming technical mpbfollows the same pattern
as the Boogie work [BDF 03a]. A companion paper [NB04] gives a rigorous proof of
soundness in a semantic model. The concrete syntax thatevis ust definitive and
illustrates one particular way to encode the informatioadssl by our method.

class Set { class Node {
fst : Node := null; val : int
insert(x : int) next : Node
Node(z : int)
t : Node := new Node(z); {val := z; next := null}
“code to insertt” }
} class Fun {

remove(z : int)

{“delete first node with vat” }

map(g : Fun) }
{“apply g to all elements; remove duplicatés”

apply(z : int) : int
{return z mod 7; }

Fig. 0. A set of integers is represented by a linked list, withoutlidape values, rooted afst .
Method insert adds an element if not already present. Methodp(g) updates the set to be its
image throughg.apply . Class Node has only a constructor; nodes are manipulateddn.

1 Using auxiliary fields for ownership-based invariants: A Review

Using the contrived example code in Figure 0 we review thegdmapproach to invari-
ants and ownership. In our illustrative object-orientetjlaage, class types are implic-
itly references; we use the term “object” to mean objectrezfee.

An instance of clas$et maintains an integer set represented by a sequence without
duplicates, so thatemove(z) can be implemented by a linear search that terminates as
soon ase is found. The specification of clas&¢ could include invariant

Invges © fst is the root of an acyclic sequence without duplicate values.

We denote the invariant for a clasé by Invr . Note that since the invariant mentions
instance fields, it is parameterized by an instance of tJpé&Ve write Invr(0) where

o is an object of typeT’ when we want to make explicit the value of an invariant for a
particular instance.

An object invariant is typically conceived as a pre- and jmastdition for every
method of the class. For example,rifmove(z) is invoked in a state where there are
duplicates, it may fail to establish the intended postctimdithat = is not in the set.
Constructors establish invariants.

The methodmap takes the function supplied as an argument and, abstratwilys
the function over the set to yield an updated set. Supposértplemented by first up-
dating all of the values in place and only after that remowdoglicates to re-establish
the invariant. One difficulty in maintaining object invania is the possibility of reen-
trant calls: If an objecy has access to the instangeon which s.map(g) is invoked,
then within the resulting call tg.apply there could be an invocation efremove . But
s atthat pointis in an inconsistent state —i.e., a state irclwiivs.. (s) does not hold.
Itis true that by considering the body apply as given in Figure O we can rule out this

possibility. But for modular reasoning aboStt we would only have a specification
for apply —quite likely an incomplete one. (Alsdiun could have been written as an
interface; orapply can be overridden in a subclass Bin .)

A sound way to prevent the problem of re-entrance is for thariant to be arex-
plicit precondition and postcondition for every methagply must establisHnvge:(s)
before invokings.remove , and it cannot do so in our scenario. But this solution vadat
the principle of information hiding: Usingvode and maintaininglnvg.; are both de-
cisions that might be changed in a revision%ft (or in a subclass). Indeed, we might
want the fieldfst to be private toSet whereas the precondition of a public method
should mention only visible fields.

Itis possible to maintain proper encapsulation by makitigatresponsibility ofSet
to ensure that its invariant hold avery“observable state”, not only at the beginning
and end of every method but also before any “out” call is madefwithin a method.
In the example Set would have to establistinvs..(s) within map before each call to
apply . Though frequently proposed, this solution is overly liestre. For instance, it
would disallow the sketched implementation:afip in which removal of duplicates is
performed only after all the calls tapply . In a well structured program with hierarchi-
cal abstractions there are many calls “out” from an encapisul unit, most of which
do not lead to reentrant callbacks.

Programmers often guard against reentrant calls using laificprogress” field;
this field can be explicitly mentioned in method specificasioln some respects this is
similar to a lock bit for mutual exclusion in a concurrenttiget. Disallowing a call to
remove While a call tomap is in progress can be seen as a protocol and it can be useful
to specify allowed sequences of method invocations [DFBQ3).

We wish to allow reentrant calls. They are useful, for exampi the ubiquitous
Subject-View pattern where a reentrant callback is used Wigwa to inspect the state
of its Subject. On the other hand, general machinery forgraffocols seems onerous
for dealing with object invariants in sequential prograMsreover this is complicated
by subclassing: a method added in a subclass has no sugesptasfication to be held
to.

Boogie associates a boolean figldh with the object invariant. This association is
realized in the followingystem invarianta condition that holds ieverystate. (That is,
at every control point in the program text.)

(Yo e oinv = Invp(o) whereT = type(o)) (0)

Here and throughout the paper, quantification ranges ojecishallocated in the cur-
rent state. The dynamic (allocated) classofs written type(o).

As part of the methodology to ensure that (0) is in fact a systeariant, we stipu-
late that the auxiliary fieldnv may only be used in specifications and in special state-
mentspack andunpack. If the methods ofSet all requireinv as precondition, then
apply is prevented from invoking.remove as in the first solution above —but with-
out exposinglnvs.: in a public precondition. Nevertheless, the bodyrefnove can
be verified under preconditiomuvg.; owing to preconditioninv and system invariant
(0).

The special statementsack and unpack enforce a discipline to ensure that
(0) holds in every state. Packing an object sgts to true; it requires that the ob-

ject’s invariant holds. Unpacking an object séts to false. Since an update to the
field o.f could falsify the invariant ofo, we require that each update be preceded by
assert —o.inv.

The details are deferred so we can turn attention to anosiseeiraised by the
example, namely representation exposure. The nodes tiioheSet. fst are intended
to comprise an encapsulated data structure, but evést ifs declared private there
is a risk that node references deaked e.g., some client of a set could change
the value in a node and thereby falsify the invariant. Reprtedion exposure due to
shared objects has received considerable attention [LN®&Lding ownership type
systems [Mul02,CD02,BN02a,BLS03] and Separation Lo@i¥'IR04]. In large part
these works are motivated by a notionafnership the Nodes reached froms.fst,
on which Invg.;(s) depends, are owned by that instancand should not be accessed
except bys. This ensures that the invariant efis maintained so long as methods of
Set maintain it.

The cited works suffer from inflexibility due to the consetisen necessary for static
enforcement of alias confinement. For example, type systewesdifficulty with trans-
fering ownership. However, transfer is necessary in maalywerld examples and state
encapsulation does not necessarily entail a fixed ownershagion. (This is empha-
sized in [OYR04,BNO03].)

A more flexible representation of ownership can be achieséthlauxiliary fields
owner and comm in the way proposed by Barnett al. and refined by Leino and
Muller [LMO3]. The field owner, of type Object, designates the owner, arull if
there is no owner. The boolean fieldmm designates whether the object is currently
committed tdts owner: if it is true, then its invariant holds and its owiedepending
on having sole access for modifying it. The latter is true méwer the ownerp, sets
its own inv bit, o.inv. Since o’s invariant may depend on the objects that it owns,
it cannot guarantee its invariant unless no other objecugalate any objecp where
p.owner = o, or wherep is a transitively owned object. There are two associated
system invariants. The first is thatinv implies that every objech owned byo is
committed.

(Vo e oinv = (Vp e powner =0 = p.comm)) Q)
The second ties committment to invariants:
(Yo e o.comm = o.inv) 2

The special fieldsinv, comm, owner are allowed in pre- and post-conditions; only
owner is allowed to occur in object invariants. A consequenceas ith a state where
o transitively ownsp , we haveo.inv = p.comm .

The point of ownership is to constrain the dependence ofiarts and to encapsu-
late the objects on which an invariahtvr depends so that it cannot be falsified except
by methods ofT'.

Definition 1 (admissible object invariant). An admissible object invariantnvy (o)
is one such that in any state, Iwr (o) depends on some object fieldf in the sense
that update ofp.f can falsify Invy (o), then either

— p = o (this means thathis.f is in the formula forInv); or
— p is transitively owned by .

Transitive ownerships inductively defined to mean that eithgrowner = o or that
p.owner is transitively owned by .

Remarkably,f is allowed to be public, though for information hiding it iften
best for it to be private or protected. The ownership digegpmakes it impossible for
an object to update a public field of another object in a waythdates invariants.

Aside 1 The methodology handles situations where an object owresothat it does
not directly reference, e.g., nodes in a linked list. But anowon situation is direct
reference like fieldfst. To cater for this, it is possible to introduce a syntacticrikea
rep on afield, to designate that its value is owned. It is not diffim devise annotation
rules to maintain the associated system invariant

(YVo:T e o.inv A o.f #null = o.f.ouner =o0)

for everyrep field f declared in each clasg’. On the other hand, one can simply
include “this.f = null Vv this.f.owner = 0" as a conjunct of the invariant, so
in this paper we omit this feature. A similar feature is to karfield f as peer, to
maintain the invarianthis.f = null V this.f.owner = this.owner [LM03]. Again,

it is useful but does not solve the problems addressed imptiper and is subsumed
under our proposal.

The system invariants hold in every state —loosely put, ‘atrg semicolon™—
provided that field updates to the fiefd with expressions? and D, are annotated as

assert ~F.inv; 3)
E.f:=D;

and the special field$nv, comm, and owner are updated only by the special state-
ments defined below. Most important are the special statenf@niny and comm .

unpack £ = assert F # null A E.inv A —=E.comm;
E.inv := false;
foreach p such that p.owner = E do p.comm := false;

pack = assert F # null A ~E.inv A Invr(E)
A (Vp e powner =FE = —p.comm A p.inv);
foreach p such that p.owner = E do p.comm := true;
FE.inv := true;

Proofs thatpack and unpack maintain the system invariants (0), (1), and (2) can be
found in [BDF' 03a] and [NB04]. Let us consider how (3) maintains (0). An &hible

% Note that the foreach” statement inpack updates the auxiliary fieldcomm of an un-
bounded number of objects. An equivalent expression, mortéhe flavor of a specifica-
tion statement in which the fieldomm is viewed as an array indexed by objects, is this:
change comm such that (Vp e p.comm = p.commo A p.owner # E).

invariant for an objecto depends only on objects owned layand thus can only be
falsified by update of the field of such an object. But an updéte.f is only allowed
if —p.inv. If p is owned byo then —p.inv can only be achieved by unpacking
which can only be done if is not committed. But to un-commit requires unpacking
o —and then, since-o.inv, there is no requirement fainvr (o) to hold.

The special statementsack andunpack effectively impose a hierarchical disci-
pline of ownership, consistent with the dependence of iams on transitively owned
objects. Because the discipline is imposed in terms of muyiktate and verification
conditions rather than as an invariant enforced by a stgiiag system [Mul02,Cla01,BLS03,BN02a],
the temporary violations permitted jyack and unpack offer great flexibility.

Every constructor begins implicitly with initialization

v, comm, owner := false, false, null.
The last of the special statements is used to update:r.

set-owner Fto D =
assert £ # null A =E.inv A (D = null V =D.inv);

FE.owner:= D;

Atfirst glance it might appear that the preconditiBrowner = null V —E.owner.inv
is needed as well, but for non-null. owner , we get—E.owner.inv from —E.inv by
the system invariants.

A cycle of ownership can be made usisgt-owner, but the precondition for
pack cannot be established for an object in such a cycle.

One of the strengths of this approach to ownership is ¢bétowner can be used
to transfer ownership as well as to initialize it (see thenepi in Section 5.2). An-
other strength is the way invariants may be declared at degg} of an inheritance
chain; we have simplified those few parts of the methodologickvare concerned
with subclassing. The reader may refer to the previous gdjF+ 03a,LM03] for
more discussion.

2 The problem: objects without borders

The Boogie methodology is adequate for the maintenance némhip-based invari-
ants. Our contribution in this paper, summarized in Se@i@pis to go beyond owner-
ship to cooperating objects.

We describe the problem and our method using the code in Fighd invariant
0 < time in class Master abbreviates) < this.time. (Recall thatInvpsster(0)
denotes0 < o.time.) According to the rules for admissible invariants in Sextil,
Invpsasier 1S allowed.

The constructor forMaster exemplifies the usual pattern for constructors: it first
initializes the fields in order to establish the invariard #men usegpack to set theinv
bit. Methods that update state typically first executepack to turn off the inv bit
and then are free to modify field values. Before they returey tusepack once their
invariant has been reestablished.

class Master {

time : int;

invariant 0 < time;

Master()
ensures inv A comm,

{ time := 0; pack this; }

Tick(n : int)
requires inv A mcomm A 0 < n;
modifies time;
ensures time > old(time);

class Clock {
t: int;
m : Master;
invariant m # null A 0 < ¢ < m.time;
Clock(mast : Master)
requires mast # null A mast.inv;
ensures v A “comm;
{ m:= mast; t:=0; pack this; }
Sync()
requires inv A —comm,

{ modifies ¢;
unpack this; ensures t = m.time;
time := time + n; { unpack this; ¢t := m.time; pack this; }
pack this; }

}

}

Fig. 1. A simple system for clocks synchronized with a master claBkuciocr (this) depends
on this.m.time but does not owrthis.m .

The predicatelnvc,r, iS not an admissible invariant: it depends ontime, but
a clock does not own its master. Otherwise a master couldenasociated with more
than one clock. While it might be reasonable to let the masterthe clocks that point
to it, we wish to address situations where this ownershitic would not be suitable.
More to the point, such a solution would only allafvvy,,s:.- to depend on the clocks
whereas we wanfnvg,., to depend on the master.

Although Invgeer is not admissible according to Definition 1, the updatéiate
in Tick increases the value d@tme, which cannot falsifyInve,.r, . The problem that
our methodology solves is to allow non-ownership depenel@ma situation like this,
i.e., to support modular reasoning about the cooperatisgaaship whereinl'ick does
not violate Invcoer -

However, while T'ick is a safe method in relation thivg,cr, , We want to preclude
the classMaster from defining a methodreset :

Master.Reset ()
requires nv;
modifies time;
{ unpack this; time = 0; pack this; }

This is easily shown correctin terms &fvyqs¢er- , DUt 0. Reset can falsify the invariant
of any clock ¢ with ¢.m = o. If we allow Invg,e, to depend onm.time and yet
prevent this error, a precondition stronger than that im{@%t be used for field update.
(In Section 4.0, we show howReset can be correctly programmed without violating
the invariant of Clock .)

Leino and Muller’s discipline [LMO03], strengthens (3) teeld the following anno-

tation:
assert —this.inv A (Vp | type(p) = Clock e —p.inv);
this.time := 0;

Unfortunately, this does not seem to be a very practicaltesiuHow can modular
specifications and reasoning about an arbitrary instandéafier hope to establish a
predicate concerning all clocks whatsoever, even in thikelglevent that the predicate
is true? Given the ownership system, it is also unlikely twatinstance ofMaster
would be able tounpack any clock that refers to it via itsn field and whoseinv
field was true.

Consider taking what appears to be a step backwards, cangehe Boogie meth-
odology. We could weaken the annotation in the precedinggvaph to allow the mas-
ter to perform the field update time as long as it does not invalidate the invariants of
any clocks that could possibly be referring to it.

assert —this.inv A

(Vp | type(p) = Clock —p.inv V (Invcieck(p
this.time := 0;

))Bhis.time)

)

The substitution expressioRf, represents the expressidgh with all unbound occur-
rences ofz replaced byE, with renaming as necessary to prevent name capture. We
use substitution to express the weakest preconditRut the revised precondition does
not appear to provide any benefit: whitethis.inv is established by the preceding
unpack in Reset, there is still no clear way to establish either of the disjsrfor
arbitrary instances oflock . In addition, as stated, this proposal has the flaw that it
exposesinuciyer, outside of clasClock .

We solve both of these problems. Given the following gensrheme:

assert = E.inv A (Vp, T | ... @ =p.inv V (Ian(p))g'f);)
E.f:=D;
where the missing condition“. ..” somehow expressestipie(p) = 7' and Invr(p)

depends on¥, our methodology provides a way to manage the range ahd a way
to abstract from(Invr (p))g'f

In the following three subsections we first deal with resinig the range ofp in
(4). Then we show how to abstract fro@an(p))g'f in (4) to achieve class-oriented
information hiding. Finally we complete the story about thege of p and redefine

admissible invariants.

2.0 Representing Dependence

The first problem is to determine which objegishave Invci..;(p) dependent on a
given instance of\faster . (In general, there could be other classes with invaridrat t

! Substitution for updates of object fields can be formalized humber of ways and the tech-
nical details are not germane in this paper [AO97,F102]. In general, object update has a
global effect, and our aim is to achieve sound localizedaeiag) about such updates.

10

depend on instances dffaster, further extending the range ¢f needed for sound-
ness.) To allow for intentional cooperation, we introduneeaplicitfriend declaration

friend Clock reads time;
in class Master .? For a friend declaration appearing in cla®s:
friend T reads f;

we say 7T’ is thegrantingclass andT' thefriend. Field f is visible in code and specifi-
cations in classl’. (Read access is sufficient.) There are some technicaktests on

f listed in Section 2.3. If in factnvy(p) depends orv.f for some granting object
then o is reachable fronp . For simplicity in this paper, we confine attention to paths
of length one, sw = p.g for some fieldg which we call apivot field (We also allow
p.g.f.-h In Invp(p), whereh is an immutable field of , e.g., the length of an array.)

One of the benefits of our methodology is to facilitate thest@lized formulation
of invariants which lessens the need for paths in invarighktsexample is the condi-
tion linking adjacent nodes in a doubly-linked list: redsttity is needed if this is an
invariant of the list header, but our methodology allowsamgintain the invariant by
imposing a local invariant on each node that refers onlydaitccessor node; see the
example in Section 5.2.

To further restrict the range qf in (4), to relevant friends, we could explore more
complicated syntactic conditions, but with predictaleitations due to static analysis.
We choose instead to use auxiliary state to track whichdrieatances are susceptible
to having their invariants falsified by update of fields of amjing object.

We introduce an auxiliary fieldleps of type “set of object”. We will arrange that
for any o in any stateo.deps contains allp such thatp.g = o for some pivot fieldg
by which Inv(p) depends as friend on some field @f As with owner, this facilitates
making explicit the relevant program and system invariaBtg¢h owner and deps
function as “back pointers” in the opposite direction of aeledence.

The associated system invariant is roughly this:

(Vo:T e (Vp: T | pinv A “Invp(p) depends om.f” e p € o.deps)) (5)

for every T, T’ such thatT is a friend of T’ readingf. That dependence happens
via a pivot field will become clear later when we define adrbitiy for invariants.

We have reached the penultimate version of the rule for epafad field with friend
dependents:

assert = E.inv A (Vp | p € E.deps ® —p.inv V (Invtype(p)(p))g'f); ©6)

E.f:=D;

A friend declaration could trigger a requirement that figfdlates in the granting class
be guarded as in (6) and one could argue that in return fdviliigiof f in T', Invr
should simply be visible inT’. This is essentially to say that the two classes are in a
single module. Our methodology facilitates more hidingdérmation than that, while
allowing cooperation and dealing with the problem of thegeof p in (6). In the next
subsection we eliminate the exposure fafv in this rule, and then in the following
subsection we deal with reasoning abdaps .

2 Similar features are found in languages including C++ anda®# in the Leino-Muller work.

11

2.1 Abstracting from the friend’s invariant

Our solution is to abstract fromlan)g'f not as an auxiliary field but as a predicdte
(for update guardl The predicatel is declared in clasq’, and there it gives rise to a
proof obligation, roughly this: if both the friend objecifssariant holds and the update
guard holds, then the assignment statement will not vidketériend object’s invariant.
This predicate plays a role in the interface specificationla$s 7', describing not an
operation provided byI" but rather the effect o¥” of operations elsewhere. There is
a resemblance to behavioral assumptions in Rely-Guaraessening for concurrent
programs [Jon83,dRdBHO01].

In the friend classT it is the pivot field g and the friend fieldf that are visible, not
the expression& and D in an update that occurs in the code of the granting clélss
So, in order to define the update guard we introduce a speialle val to represent
the value the field is being assigned:

guard g.f := val by U(this, g, val);

This construct appears in the friend class and must be esgutes terms that are visi-
ble to the granting class (thus allowing the friend classide fits private information).
We write U (friend, granter, val) to make the parameters explicit. That &8, is de-
fined in the context ofT" using vocabulary(this, g, val) but instantiated by the triple
(p, E, D) at the update site in a granter method (see (6) and belowgx@mnple, the
update guard declared in the friend claGkck is:

guard m.time := val by m.time < val;

Thus Ugoer (this, m,val) = m.time < val. Notice thatthis does not appear in
this particular update guard. That is because, as statbergididoes not depend on the
state of the instance oflock .

Like a method declaration, an update guard declaration sepa proof obligation.
The obligations on the friend clasB are:

Invp(this) A U(this, g,val) = (Invp(this))?] @)
for each pivotg of type T’ and friend fieldf. A suitable default is to takd/ to
be false so that the proof obligation is vacuous. Then the updateistdguivalent to
that in [LMO3]. At the other extreme, if, despite the dectamas, Inv does not in fact
depend on the pivot thely can be taken to bérue.

We have now reached the final version of the rule for updatefioéiad field:

assert = E.inv A (Vp | p € E.deps ® —p.inv VvV U(p,E,D)); (8)
E.f:=D;

We are now in a position that a field update may be performeldonttviolating the
invariants of an object’s friends by establishing the pretition

(Vp | p€ E.deps @ —p.inv V U(p,E,D))

12

where U was written by the author of the clasB in such a way that the clasg’

is able to (at least potentially) satisfy it. That is, it is @xpression containing values
and variables that are accessible in the context’6fand need not involve the private
implementation details of".

In the design of class’, some state variables may be introduced and made visi-
ble to T' precisely in order to exprest , without revealing too much of the internal
representation ofl’. We pursue this further in Section 4.1.

For the clock exampleUciock (p, this, time + n) = time < time + n which
follows easily from preconditio® < n of method Tick ; thus the update precondition
can be established independent from any reasoning adgust. On the other hand,
within the methodReset, Ucioer(p, this,0) = (time < 0) which does not follow
from p € this.deps and the precondition given foReset without information about
deps.

Reset should only be allowed if no clocks depend on this mastercivhvould
follow from deps = () according to system invariant (5). We show our discipline fo
reasoning aboutleps in the next subsection.

2.2 Notification of dependence

To maintain system invariant (5) we force each friend objecegister itself with the
granting object in order to include itself in the grantingeatt's deps field. Definition 2
of admissibility in Section 2.3 requires thatvr satisfy the following, for each pivot
field ¢:

Invp(this) = ¢ =null V this € g.deps 9)

One way to satisfy (9) is to adg = null Vv this € g.deps as a conjunct offnvr .
We allow the fielddeps to be updated only by the special statemeittsach and
detach which add and remove an object frothis. deps .

attach £ = assert F # null A —inv;
deps := deps U{E};

detach F = assert F # null A =F.inv A —inv;
deps := deps — {E};

The attach and detach statements are allowed only in theafdkie classT’ where
T’ declaresT to be a friend; their effect is to updatais. deps . Itis in code of T/ that
we need to reason aboutps and thus to usattach . This means that it is incumbent
upon a friend to call some method in the granter when settipiyat field to refer to
the granter. This gives the granter a chance to either reberidentity of the dependent
(see the Subject/View example in Section 5.0) or to changeesather data structure
to reflect the fact that the dependent has registered itaslin(the Clock example,
completed in Section 2.3).

Aside 2 One could imagine that attach is triggered automaticallythy assignment in
a dependent to its pivot field. It is possible to work out sushsiem but it has the flaw
that the granter is not given a chance to establish and mairtevariants aboutdeps .

13

Also, the conjunct-E.inv in the precondition todetach is stronger than necessary.
The alternative is to require either that is unpacked or that it no longer has its pivot
field referring tothis, but that would require the granter to know more about thepiv
fields in its friends than we would like. In [NBO4], we formiddhe detach statement
with the weaker pre-condition.

2.3 Summary

To summarize the required annotations and program invatiase begin with our orig-
inal example from Figure 1 and rewrite it as shown in Figur&l2e two invariants in

class Master { class Clock {
time : int; t : int;
invariant 0 < time; m : Master;
friend Clock reads time; invariant m # null A this € m.deps;
Master() invariant 0 < ¢t < m.time
ensures inv A —comm: guard m.time := val by m.time < val;
{ time := 0; pack this; } Clock(mast : Master)
Tick(n : int) requires mast # null A mast.inv;
requires inv A “comm A 0 < n; ensures vy A mcomm;
modifies time; {
ensures time > old(time); ?-:Omaé”t,
{ = 0; _
unpack this; m.Connect(this);
time := time + n; pa.ck this;
pack this; this.Sync();
} }
Connect(c : Clock) Sync()

requires inv A ~comm;

requires inv; modifies -
)

ensures c € this.deps;

{ ensures t = m.time;
unpack this; {)
attach c: unpack this;
’ .
pack this; ti= m.tz.me,
} pack this;
} }
}

Fig. 2. Clocks synchronized with a master clockvciocr (this) depends orthis.m.time but
does not ownthis.m .

the Clock are conjoined to be the invariant for the class. In the caosir for Clock , t
must be initialized to zero and the call to. Connect must occur in order to satisfy the
class invariant before callingack, but the call toSync is done after the call tpack

14

in order to fulfill the precondition oSync. Note that/nvc,.. Now satisfies (9) owing
to the conjunctthis € m.deps . This conjunct is established in the constructor by the
invocation m. Connect(this) . In this case,Connect is needed only for reasoning. In
most friendship situations the granter needs some methaéddstering friends in or-
der to maintain more information about them. An exampleésMuster class revised
to cater for Reset, in Section 4.0 and also all of the examples shown in Section 5

To summarize our methodology, we first recall the rule foraation of field up-
date, (8). A separate guard; is declared for each field on which a friend depends,
so the rule is as follows.

assert ~E.inv A (Vp | p € E.deps o —p.inv V Us(p, E,D));
E.f:=D;

It is straightforward to adapt this rule to cater for theréngemore than one friend
class, or more than one pivot field of the same granter typebuimit the details (see
[NBO4]). For this paper, we disallow multiple pivots of thense type.

A friend may declare more than one update guard for a gjvgin which case any
one may be chosen for use at an update site. Each update guard

guard g.f := val by U(this, g, val);
gives rise to the proof obligation

inv A U(this, g,val) = (Invr(this))?}
All of the update guards for a particular field are guaranteeshaintain the friend’s
invariant. That means a granter can pick the most convenjmfdte guard in order to
discharge its proof obligation before it does a field updatee four auxiliary fields
inv, comm, owner, deps may all appear in method specifications and assertions, but
they are updated only by special statements.

We refrain from repeating the definitions @fack and unpack, which remain
unchanged from Section 1. Thest-owner statement needs to be revised: a friend
may be granted access tavner, in which case there needs to be an update guard for
owner just like for ordinary fields:

set-owner Fto D =
assert F # null A —E.inv A (D =null V =D.inv);
assert (Vp | p € E.deps @ —=p.inv V Upyner(p, E, D));

E.owner = D;

Note that if D is an object, it must be unpacked as its invariant is at riskrwh
becomes owned.

Definition 2 (admissible invariant). An invariant Invr (o) is admissiblejust if for
every X.f on which it dependsf # inv, f Z comm, and either

— X is o (in the formula that meang is this);
— X is transitively owned by and f # deps; or

15

— X is o.g where fieldg (called a pivot) has some typg’ that declares “friend T
readsf".

Moreover, the implication
Invp(this) = ¢ =null V this € g.deps (10)
must be valid.

There are easy syntactic checks for the ownership condigian, it holds if X
has the formg.h..... j where each is arep field, or if X is variable bound by
(VX | X.owner = oe ...). Requirement (10) is met by including either the
conditionthis € g.deps or the conditiong = null V this € g.deps as a conjunct of
the declared invariant. (A fine point is that an admissiblariant shoulcdnly depend
on deps in this way; see [NB04].) Although we do not use it in this pgjites possible
to have apivot tag that marks the fields in the friend class that appear irfrigued’s
invariant. Then there would be an easy syntactic processnfoosing the requirement
and allowing no other dependence deps .

We extend the thregystem invariant0—2) with a fourth invariant. Taken together,
they ensure the following, for ab, T', f with type(o) = T'.

o.inv = Invr(o) (11)
o.inv = (Vp | p.owner =0 e p.comm) (12)
o.comm = 0.1V (13)

For everyT’, g, p such thatype(p) = T’ andInvr, depends on pivoj

p.g =0 A p.inv = p € o.deps (14)

It is really the first invariant that is the key to the entirethwdology. It abstracts an
object’s invariant, preserving data encapsulation arahatig flexibility for reentrancy.
The other invariants are all mechanisms needed in orderitttaia(11) in the presence
of inter-object dependence. The second and third work withinership domains while
our contribution adds cooperating objects.

3 Soundness

Consider any program annotated with invariants, friendatations, and update guards
satisfying the stated restrictions. We confine attentiahéacore methodology summa-
rized in Section 2.3. Suppose that the obligations are fnetnvariants are admissible
and the update guard obligations are satisfied. Supposé¢halsevery field update is
preceded by the stipulated assertion, or one that impli&¥dtclaim that (11-14) are
system invariants, that is, true in every state. We refraimfformalizing precisely what
that means, to avoid committment to a particular verificatigstem or logic.

A detailed formal proof of soundness for the full methodgl@ngiven in a compan-
ion paper [NB04]. An informal argument has been given forfésgures already present
in the previous Boogie papers [BDM3a,LM03] and our methodology augments the
preconditions used in those papers. We consider highlfghthe new features.

Consider first the new invariant (14), and the statementshvnuld falsify it.

16

— pack setsp.inv, but under the preconditiodinv(p), and by admissibility this
implies p € o.deps for any o on which p has a friend dependence.

— new initializes deps = () but alsoinv = false. By freshness, no existing object
has an owner or friend dependency on the new object.

— Afield update E.f := D can falsify it only if f is a pivot of E, but this is done
under precondition-E.inv .

— detach removes an element frotthis.deps but under preconditiomthis.inv .

Invariants (12) and (13) do not merit much attention as theyat involve the new
fields and the new commandstach anddetach do notinvolveinv or comm.

For (11), we must reconsider field updafe.f := E’, becausenvr (o) can have
friend dependencies. By invariant (14),dfis a friend dependent of, either —o.inv
or o € E.deps. In the latter case, the precondition for update requiigéo, E, E’).
The proof obligation for this update guard yields tHaw (o) is not falsified by the
update.

Both attach and detach have the potential to falsify (11) insofar as object in-
variants are allowed to depend aieps fields. A local dependence othis.deps is
no problem, owing to preconditionthis.inv. An admissible invariant is not allowed
to depend on theleps field of an owned object. What about friends? An admissible
invariant isrequiredto depend ong.deps for each pivotg, but in a specific way that
cannot be falsified byattach and that cannot be falsified byetach under its pre-
condition. Finally, thedetach F statement has the potential to falsify the consequent
in (14), and this too is prevented by its precondition th#iexi—F.inv or E has no
pivots referring tothis. The intricacy of this interdependence is one motivatian fo
carrying out a rigorous semantic proof of soundness.

4 Extensions

In this section, we present two extensions to our method.fifsieis a methodology
for creating an invariant that eases the burden of reas@bogt thedeps field in the
granting class. The second is a syntactic extension to tbatauard that provides
extra information to the granting class after it performsédfupdate.

4.0 Tracking dependencies in invariants

We look again at theReset method in Clock . In order to settime to zero, an instance
of Master must know either that each of the clocks referring to it hdagrtvalue of
t also as zero or that there are no clocks referring to it. Bezafithe proof obligation
(9) on the claslock , the latter case is true wheteps is empty. For this example, it
suffices for the master clock to maintain a reference coulatks, of the clocks that
are referring to it via their fieldn , incrementing it each timattach is executed and
decrementing it upon eacltetach statement. That is, variabl€ocks maintains the
invariant clocks = size(deps). Given that invariant, the precondition for the update to
time in Reset can be thatclocks is equal to zero.

In general, we refer to the invariant that the granting ctaasitains about itsleps
variable asDep. The invariant must be strong enough to derive enough irdition

17

aboutall objectsp € deps to establish the precondition in (8). Thus we formulatep
as a predicate on an elementdfps and introduce the following invariant as a proof
obligation in the granting class.

(Vp | p € deps o Dep(this,p)) (15)

As with U, we makethis an explicit parameter in the declaration.
We extend thédriend syntax in the granting class to defideep:

friend z : T reads f keeping Dep(this, z)

It binds z in predicate Dep which may also depend on state visible in the granting
class. The default iDep(this, z) = true, easing the obligation but providing no help
in reasoning abouteps . Like any invariant,Dep cannot depend otnv or comm . In
terms of the verification of the granting class, the effeciosjoin (15) to any declared
invariant.

Figure 3 shows a version affaster with Reset. Note that in the constructor, the
value of clocks must be set to zero in order to establish the “keeping” peddicince
initially deps is empty. The preconditions fo€onnect and Disconnect restrict the
value of deps in order to keep an accurate count of the number of clocksriefeto
the master clock. Clas€lock need not be revised from Figure 2.

In this example,Dep is independent of the individual identities of the friend ob
jects. The Subject/View example (Section 5.0) shows a nyguiedl use of Dep .

4.1 Getting results from friendship

In contrast to the fixed pack/unpagké protocol which abstracténv(p) to a boolean
field, we have formulated the friend-invariant rule in terofi® shared state predicate.
The associated methodology is to introduce public (or medgbped) state variables
with which to expressU . (Minimizing the state space on whicli depends could
facilitate fast protocol checking as in Fugue [DF01,DF03].

Whereas invariants are invariant, states get changed. fbpegal so far is that the
public interface of the dependent clags should reveal information about changes
relevanttoT. Given thatT publishes the condition under which shared state may be
changed, why not also publish the effect of such changes?

We extend the update guard declaration to include preditafer the result state:

guard ¢.f := val by U(this, g, val) yielding Y (this, g, val);
The proof obligation on the friend class becomes
inv A U(this, g,val) = (Invp(this) A Y (this, g, val))?/

val

Note the resemblance to a pre/post specification in whicimtlaiant is explicit.
At a field update site in the granting class, the yielding mat# can be depended
on after the update:

assert - F.inv;

assert (Vp | p € E.deps o —p.inv V U(p,E,D))
E.f:=D

assume (Vp | p € E.deps @ —p.inv V Y (p,E, D))

18

class Master {
time : int;
clocks : int;
invariant 0 < time;
friend ¢ : Clock reads time keeping clocks = size(deps);

Master()
ensures inv A —~comm;
{ time := 0; clocks := 0; pack this; }
Tick(n : int)
requires inv A —mcomm A 0 < n;
modifies time;
ensures time > old(time);
{ unpack this; time:= time + n; pack this; }
Reset()
requires inv A clocks = 0;
modifies time;
{ unpack this; time = 0; pack this; }
Connect(c : Clock)
requires inv A ¢ ¢ deps;
modifies clocks;
ensures c € this.deps;
{ unpack this; clocks := clocks + 1; attach c¢; pack this; }
Disconnect(c : Clock)
requires inv A ¢ € deps;
modifies clocks;
ensures ¢ ¢ this.deps;
{ unpack this; clocks := clocks — 1; detach c; pack this; }

Fig. 3. Master clock with reset.

19

The predicatesU and Y are likely to be useful in specifications of methods Bf
Together with method specifications, tgaard /yielding statements of a class give
the protocol by which it may be used.

5 Examples

In this section, we present several examples that deméasita methodology. We
show some, but not all, details of their verification. The [BatiView example 5.0
demonstrates the use of our methodology for enforcing aviets protocol. In Sec-
tion 5.1, the cooperation involves the use of a shared datetste. Finally, Section 5.2
illustrates how th@eerconcept[LMO03] mentioned in Aside 1 can be easily encoded as
a friendship relation.

5.0 Subject/View

In Figure 4, the clas$ubject represents an object that maintains a collection of objects
of type View that depend on it. We refer to the object of tyfebject as the subject
and each object that it holds a reference to in its collectioras a view. In particular,

class Subject {
val : int;
version : int;
rep vs : Collection(View);
friend v : View reads version, val keeping v € this.vs

void Update(n : int)

requires inv A “comm A (Vv € vs ® v.inv A ~w.comm A Sync(v, this));)

modifies val, version;

ensures val = n A version = old(version) +1 A (Vv € vs e Sync(v, this));
{

unpack this;

versiton := version + 1;

val := n;

pack this;

foreach v € vs do v.notify();

Fig. 4. The classSubject .

each view depends on the fact that whenever the state of tjecsurepresented by
the val field (which could be a much more elaborate data structusedhanged in
the method Update, then it will receive a call to itsNotify method. As part of its
Notify method, a view will make callbacks to its subject to retrieneatever parts of

20

the updated state it is interested in. We do not show these gteerying methods (also
known asobservers

To express the synchronization, the subject maintains @ fietsion which indi-
cates the number of times théfpdate has been called. A view also keeps track of a
version numberpsn ; a view is up to date if its version matches that of its subject

In this example, the metholipdate requires that the views be uncommitted so that
they can be re-synchronized using th&istify method. This is much easier to establish
than the requirement that they be unpacked. For examptesifficient for the views
to be peers of the subject, i.e., that they have the same owner

Note that the subject packs itself before callingtify for all of its views. The
views are then free to make state-observing calls on thesyhil of which presumably
have a precondition thairv holds for the subject. Yet it is very important to realize
that Update is safe from re-entrant calls while it is in the middle of rigitaig all of the
views, because a view would not be able to establish the gmditon that all of the
views are in sync with the subject. It is ordjter the methodUpdate has terminated
that a view can be sure all of the views have been notified, fahchiakes a re-entrant
call, then that would come beforE€pdate terminates.

The exception to this is if a view somehow knew that it was thly @iew for the
subject. But in that case, a re-entrant call to Update doesause any problems with
the synchronization property. It still can lead to non-teration, but that is outside of
the scope of our specification.

In Figure 5, the clasd/iew publishes an update guard and update result for updates
by the subject to itsversion field, and an update guard without an update result for
modifications to the subject’sal field. The guards given are not the weakest possible,
but rather are chosen to avoid exposing internal state. \fleed€ync and Out as:

Sync(z : View, y : Subject) = x.vsn = y.version

Out(x : View, y : Subject) = z.vsn+ 1= y.version

Even though the clasSubject uses View's field vsn in the precondition and post-
condition of Update, View does not have to declare it as a friend class. However, the
field must be accessible in the scope of the clgéslgect , €.9., by being public. To keep
control of it, the classView could define a read-only property [Gun00] and make the
field itself private. We leave such details out of our exarapldne invariant for the class
is the conjunction of the two separately declared invasiant

The formal definitions for the update guards are:

Uversion (2,9, 2) = Sync(z,y) N z = z.vsn + 1

Upait(2,y,2) = x.u8n # y.version

Note that because of the implication fnvy;.., , the update guard fos.val is written

so as to falsify the antecedent; the guard is independent, afhich represents the
value assigned to the field. This enforces a restriction emther in which theSubject
can update the fields, even though the reverse order hasatentieffect. TheSubject
must first update itsversion field to make the implication vacuously true, and only
then update its)al field.

21

class View {
private s : Subject;
vsn : int;
private cache : int;
invariant s.version — 1 < vsn < s.version A (vsn = s.version = cache = s.val);
invariant s = null V this € s.deps;
guard s.version := val by Sync(this, s) A val = vsn + 1 yielding Out(this, s);
guard s.val := val by vsn # s.version;

void Notify()
requires —comm A inv A s.inv A Out(this, s);

ensures Sync(this, s);
modifies vsn;

{

unpack this;
vsn = vsn + 1;
“read state froms” ; // This is whys.inv was required.
pack this;
}
}

Fig.5.The classView .

Allowing the View to impose this requirement ofiubject seems unfortunate, es-
pecially since theSubject has unpacked itself at the beginning &pdate and so it
would seem it should be able to update its fields in any orderagas it can re-establish
its invariant before it tries to pack itself again. The ex#npustrates the price to be
paid for the Boogie approach. Having the system invariaoks &t “every semicolon”
is conceptually simple and technically robust, but like pnggramming discipline this
one disallows some programs that are arguably correct atidieggned. If an incon-
sequential ordering of two assignments is the only annay#men we are doing very

well indeeed.

There are four proof obligations imposed by our methodaltgthe granting class
Subject, the assert before each of the two field updated/mmilate must be satisfied
(8) and we have to show that theep predicate holds for every member déps (15).
That is, we have to show the following condition is invariant

(Vp | p€deps e peuws) (16)

The obligations on the friend cladgiew are that its advertised update guards main-
tain its invariant (7) and that it is in thdeps field of the subject upon which it is de-
pendent (9). We show the details of verifying the obligasi@mly for the first three
obligations.

22

To verify the assignment toersion in Subject. Update , the corresponding update
guard from View must be satisfied.

(Vp | p € this.deps e —p.inv V U(p,this, this.version + 1))

= {Definition of guard

(Vp | p € this.deps e —p.inv V (Sync(p,this) A this.version +1 = p.vsn + 1))
< {Strengtheniny

(Vp | p€ deps o Sync(p,this) A this.version +1 =p.vsn+1)

< {(16)}

(Vo | v € wvse Sync(v,this) A this.version +1=v.vsn+1)

< {Update.requires = Sync(p,this) A Sync(p,this) = v.vsn = this.version}
(Vv | v € vs e this.version + 1 = this.version + 1)

< true

This fulfills the proof obligation (8).
To verify the assignment t@al in Subject. Update, we use the update guard in
View for val.

(Vp | p € this.deps e —p.inv vV U(p,this,n))

= {Definition of guard

(Vp | p € this.deps ® —p.inv V p.vsn # this.version)
< {(16)}

(Vv | v € vse —w.invV v.usn # this.version)

< {pre-condition ofUpdate re: Sync and update ofersion}
(Vo | v€wvse —w.invV vsn #v.usn+1)

< true

This fulfills the proof obligation (8).
In order to satisfy the proof obligation for (16¥ubject must provide a method in
which attach is executed:

void Subject. Register(v : View)
requires —comm A inv A v & vs;
ensures v € vs;
modifies vs;
{
unpack this;
vs:= vs + {v};
attach v;
pack this;

}

Clearly, this makes (16) an invariant, since there are neratbhcurrences chttach
that could modify the value ofleps . For reasons of space, we do not show the code in
View that calls it.

Each update guard iView must be shown to fulfill the obligation of (7), that its
invariant will not be violated as long as the guard holds.eHee show only the update

23

guard forwversion , the one forval is even easier.

(Invyiew A Sync(this, s) A val = this.vsn + 1) = (Imn/iew)“q,;f1
= {Simplifying Sync(this, s) A Invviey }
(this.vsn = s.version A val = this.vsn + 1) = (Invyjey)555"
= {Substitution}
(vsn = s.version A val = vsn + 1) =

val — 1 < wsn < val A (vsn = val = cache = s.val)
< {Simplification}
true

5.1 Producer/Consumer

In this example, we show two objects that share a commonibifiere are two classes,
Producer and Consumer . Their definitions are shown in Figure 6 and Figure 7, re-
spectively.

class Producer {
buf : int[]; n : int; con : Consumer;
invariant 0 < n < buf.length;
friend o : Consumer reads con, n, buf keeping o = con;

Producer(b : int[])
requires b # null A b.length > 1;
ensures deps =) A inv A —~comm;
{ buf := b; n:= 0; pack this; }
void SetCon(c : Consumer)
requires inv A —comm A ¢ # null A deps = 0
modifies con;
ensures deps = {c} A con = ¢;
{ unpack this; attach c; con:= ¢; pack this; }
void Produce(z : int)
requires inv A ~comm A |con.n — n| > 0;
modifies n, buf;
{ unpack this; buf[n % buf.length] := z; n:= (n + 1) % buf .length; pack this; }

}

Fig. 6. The classProducer .

We call instances of the formeroducersand instances of the latteonsumersA
producer places elements into a circular buffer while carems read them. Each object
maintains a cursor into the common buffer; the producer ¢acepmore elements into
the buffer as long as it does not overrun the consumer. Li@wthe consumer can
only read elements from the buffer as long as its cursor doesverrun the producer’s

24

class Consumer {
buf :int[|; n : int; pro : Producer;
invariant pro.con = this A buf # null;
invariant pro.buf = buf = 0 < |pro.n — n| < buf.length;

guard pro.buf := val by false;
guard pro.con := val by val = this;
guard pro.n:= val by 0 < |n — vall;

Consumer(p : Producer)
requires p.inv A —p.comm A p.con = null;
modifies p.con;
ensures inv
{ buf := p.buf; pro:= p; n:= b.length — 1; pro.SetCon(this); pack this; }
int Consume()
requires inv A ~comm A (n+ 1) % buf.length < pro.n;
modifies n;
{ unpack this; n:= (n 4+ 1) % buf.length; pack this; return(buf[n]); }

}

Fig. 7. The classConsumer .

cursor. The buffer is empty when the producer’s cursor iselament ahead (modulo

the buffer length) of the consumer’s cursor. When the botlans are equal, then the
buffer is full. Because of this encoding, the buffer’s léngtust be greater than one and
one slot in the array is never used. (The particular slot txoostant, but the capacity

of the buffer is one less than the number of slots.)

It is important to note that this is not a full specificationtbé functional behavior
of the two classes. The specification is only of the synclnation between the two,
just as was done for the Subject/View example. For schematterns this is especially
useful; the specification can be combined with a particutage of the pattern to fill
out the details.

The class Consumer is given friend access téuf, con, and n. Being given
access touf does not give the consumer the right to depend on the cordeitsf in
its invariant. Such a dependence would be a dependencefdatigth two: one step to
the buf and the next to the sub-object at some indeXVe do not allow this; we allow
only direct dependence on a pivot field.

Someone familiar with reasoning about arrays is temptedew the assignment
to an element of buf inProduce as an assignment to the entire array with a new array
that is the same at all points except for the updated elertféhat were the case, then
the update inProduce would have to satisfy the update guard farf in Consumer.
However, the update is to a sub-object &ff ; the only difference is that the field
“name” is a number rather than an identifier. It is only updatethe actual field itself
that must satisfy the update guard.

25

The friend access fobuf is given to the consumer because it needs to make sure
the producer does not update the field to a new, differenehuithis is expressed by the
update guard fopro.buf being false. It is possible to allow the producer to change
its buffer, either by requiring that the buffer is empty, eee to allow the consumer
to continue reading from the old buffer as long as the prodoodonger is using it.
However, we do not consider these more advanced scenarios.

The update guard foron is slightly different: it allows the producer to modify
the field, but only to assign the consumer to it. The updatedyfa the producer’s
cursor, n, allows the producer to fill as many slots as are availablen &vough in this
particular implementation, the producer fills only one siba time.

We do not show the proofs for the field updateshiroducer ; all of the proofs are
immediate.

5.2 Doubly-linked list with transfer

For our last example, we consider a doubly-linked list. TlhesList with its Insert
and Push methods is shown in Figure 8. Eadhist object has a reference to an object

class List {
head : Node;
invariant head = null V (head.prev = null A head.owner = this);
void Insert(z : int)
requires z > 0 A inv A —"comm;
modifies ;
ensures ;
{
n : Node; n:= new Node(z); this.Push(n);
}
void Push(n : Node)
requires inv A —comm,;
requires n # null A n.prev = null A n.next = null;
requires n.inv A —n.comm A n.owner = null;
modifies head, n.comm, n.owner;
ensures n.comm A n.owner = this;
{
unpack this;
set-owner n to this;
if (head = null) head := n; else head := head.Insert(n);
pack this;

}
}

Fig. 8. The classList. The design caters for a method to be added in Figure 12.

of type Node; the nodes have forward and backward references to dihée objects.

26

In [LMO3], this example serves to explain the conceppeérs objects who share a
common owner. Remember by Definition 2 that an object’s iavaiis allowed to de-
pend on its peers. The clad&de is shown in Figure 9. Because each of the nodes that

class Node {
val : int;
prev : Node;
next : Node; // pivot field
friend n : Node reads prev, owner keeping n = prev
invariant 0 < val A prev # this A
(next = null V (next.owner = owner A next.prev = this));
Node(z : int)
requires 0 < z;
ensures val = x A inv A prev = null A nert = null;

{
val := x;
prev := null;
next := null;
pack this;
}
}

Fig. 9. Part of the clasdVode . Other methods are in subsequent Figures.

are linked into a particular list share the same owner, ifderis able to pack and unpack
itself, then it is also able to do that for any other node inligteln terms of our method-
ology, this means no update guards are needed. Insteadkdiesive friend access is
needed so that a node’s invariant can depend on the nodedb whiezt field points.
The keeping clause maintains that a node keeps a reference to its frreitsl prev
field. Thus the quantification in the precondition for fielddage can be simplified by
the one-point rule. Notice that within the outer “else” dawf Insert (Figure 10), we
unpack the argument so that we can assign to its pivot fielcezt without worrying
about violating Invy,q4.(n) . All of the conditions required before packing it back up
are met through a combination of the (rather elaboratelpratitions on the method
and the assignments that take place in the body of the methedio not show the
details; all of the required conditions are immediatelysers.

To add realistic complications to the code, the list is naimed in ascending order
and if desired this could be expressed using node invariag#sn avoiding reachability
expressions.

Figure 12 shows an example of transferring ownership. I ¢hse, the first node
in one list is moved over to another list, It is important to see that it transfers the
actual object of typeNode, as well as the contents of the node. The helper function,
Disconnect (Figure 11), removes a node from the entanglements of theggsiin its
list and maintainsieps .

class Node {
Node Insert(n : Node)
requires inv A —comm,;
requires n # null A n.val > 0 A n.next = null A n.prev = null;
requires n.inv A —n.comm;
requires prev = null V prev.val < n.val;
requires owner = n.owner;
modifies next*.next, next™ .prev;
ensures result # null A result.prev = old(this.prev);

result : Node;

unpack this;

if (n.val > wval) {// insert after self
if (next = null) {// this is the last node

next ;= n;
} else {// pass it down the line
next := next.Insert(n);

}
unpack next;
next. Attach(this);
pack next;
result := this;

} else {// insert before self
unpack n;
n.next := this;
this. Attach(n);
pack n;
result := n;

}

pack this;

return result;

}

}

Fig. 10. The methodInsert in class Node .

27

28

class Node {
void Disconnect()
requires inv A prev = null A ~comm A next # null A next.inv;
ensures next = null A old(next).prev = null;
modifies next, next.prev, next.deps;

{

unpack this;
unpack next;
next.Detach(this);
pack next;

next := null;
pack this;

Fig.11.The Disconnect method in classVode .

6 Related Work

The most closely related work is that of Leino and Muller [QB] which uses an explicit
owner field that holds a paifo, T') of the owner together with the typ€ at which o
has a relevantinvariant. The paper by Muller et al. [MPHLQ8idly explains both the
challenges of modular reasoning about object invariardgiag solution using owner-
ship. They prove soundness for a system using types to fatmalvnership, based on
Muller's dissertation [M{1102] which deals with signifioedesign patterns in a realistic
object-oriented language. They also discuss the problahepéndence on non-owned
objects and describe how the problem can be addressed gdunéhsuring that an
object’s invariant is visible where it may be violated; ttaosind proof obligations can
be imposed, as is developed further in [LMO3]. Section 1 kagwed [LM03] and the
other Boogie paper [BDF 03a] at length and we encourage the reader to consult them
for further comparisons.

The Extended Static Checker for project, especially ES@iMa-3 [DLNS98,LN02,FLL 02],
treats object invariants by what Muller [MUl02] calls thesibility approach which
requires invariants to be visible, and thus liable for cliegkwherever they may be
violated. This can significantly increase the number of padwigations for a given
verification unit and the focus of the work is on mitigationdiystraction. An idiom is
used for expressing invariants as implicationgd =- ... wherewalid is an ordinary
boolean field, serving likénv .

Liskov, Wing, and Guttag [LG86,LW94] treat object invariaibut in a way that is
not sound for invariants that depend on more than one objjeetre has been a lot of
work on alias control to circumscribe dependency. Owneripie systems [CNP01,Cla01]
explicitly address the problem of encapsulating repregim objects on which an in-
variant may sensibly depend. Much of this line of work stiegdo reconcile efficient
static checking with the challenges of practical designepas. Boyapati, Liskov and
Shrira [BLS03] argue that their variation on ownership typehieves encapsulation

29

class List {
void TransferHeadTo(s : List)
requires s # this A head # null A —comm A inv A —s.comm A s.inv;
modifies s.7;
ensures ;

{

unpack this;

n : Node; n:= head; head := head.next;
if (n.next # null) n.Disconnect();
set-owner n to null;

pack this;

s.Push(n);

Fig. 12. The methodTransferHeadTo in class List .

sufficient for sound modular reasoning but they do not foirealeasoning. They ex-
ploit the semantics of inner objects in Java which providésa of owner field but
suffers from semantic intricacies and precludes ownershigsfer.

Banerjee and Naumann [BNO2a] use a semantic formulatiomwo&cship in terms
of heap separation and show that it ensures preservatiobj@dtdnvariants. They fo-
cus on two-state invariants, i.e., simulation relatiootitain a representation indepen-
dence result (for this purpose, read access by clientstigatesl). The ownership prop-
erty is enforced by a static analysis that does not imposarthetation burden of own-
ership types but like ownership types it requires the owmiprisivariant to hold in every
state. A version has been developed that includes transéevreership, but it depends
on a static analysis for uniqueness and the proof of sousdresdifficult [BNO3]. The
representation-independence theorem states that thésinvaf a classT is preserved
by clientsif it is they are preserved by methods ©f. The theorem allows invocation
of state-mutating methods on pointers outgoing from endaped representation ob-
jects, including reentrancy. Unlike work such as [MPHLQBE problem of verifying
methods of T is not addressed.

Separation logic [Rey02] can express very directly thatedigate depends only on
some subset of the objects in the heap. It has successfedyett modular reasoning
about an object invariant in the case of a single class withgesinstance [OYRO04].
Some of the attractive features are achieved in part by dat@sh to a low-level lan-
guage without object-oriented features. This is an exgitind active line of research
and it will be interesting to see how it scales to specificatiand programs like those
in Section 5.

30

class Node {

void Attach(n : Node)
requires —inv A n # null;
ensures prev = n A n € deps;
modifies deps, prev;

{ attach n; prev:=n; }

void Detach(n : Node)
requires —inv A n #% null A —n.inv;
ensures prev = null A n ¢ deps;
modifies deps, prev;

{ detach n; prev:= null; }

}

Fig. 13.The Attach and Detach methods in classVode .

7 Conclusions

Formal systems for programming must always cope with thdicohetween the flex-
ibility real programs display and the restrictions formabhlysis demands. Our work
extends Boogie’s system for object invariants to cope witbad-world situation: de-
pendence across ownership boundaries. We have constaugiedocol that imposes
minimal obligations upon the participating classes; itnisvitable that there are some
extra verification conditions. In addition, we have triedntaintain Boogie’s mantra:
hiding private implementation details while providing &g knowledge about the
state of an object’s invariant. Our contribution is a workadystem for specifying and
verifying cooperating classes.

While one approach would be to allow, or even to insist, fooperating classes
to be knowledgeable about each other’s private implemientatate, we believe that
is important to provide for as much abstraction as possitiie. protocols could all be
expressed in terms of more abstract properties insteachofete fields allowing a class
implementation to change without disturbing its friendsskes.

Our presentation has left out all mention of sub-classingtte actual definitions
have all been made taking it into account.

There are many ways in which we plan to extend our work. Fotairee, our
methodology could be presented independently from owiper€turrently, we think
it best to use ownership where possible and thus it is impbttet friendship fits well
with ownership. We also need to explore the use of staticyaisafor alias control in
common cases.

Our update guards are related donstraints[LW94]; it would be interesting to
formulate them as constraints, thus shifting more of thelénrto the granting class
instead of the friend class.

We will continue to explore different design decisions toalken the obligations.
The tradeoffs are between being able to easily verify theifpations and code against
allowing the most flexibility for the programmer.

31

We are implementing our scheme as part of the Boogie prdjegpirical evaluation
will doubtless point out many problems and opportunitiesrfgprovement.

Acknowledgements

We would like to thank Rustan Leino (not to mention K. Rustad #&. Leino) for all
of his comments and help. Wolfram Schulte made many helpfygjestions, especially
pointing out the connection between update guards andredmist Anindya Banerjee
and Rob DeLine made helpful expository suggestions.

References

[AO97]

[BDF * 03a]

[BDF * 03b]

[BLSO03]

[BNO2a]

[BNO2b]

[BNO3]

[BS03]
[CD02]

[CLO2]

[Cla01]

[CNPO1]

Krzysztof R. Apt and Ernst-Rudiger Olderoderification of Sequential and Con-
current Programs Springer, 2 edition, 1997.

Mike Barnett, Robert DeLine, Manuel Fahndrich, K. faasM. Leino, and Wol-
fram Schulte. Verification of object-oriented programshaitvariants. In Susan
Eisenbach, Gary T. Leavens, Peter Mulller, Arnd Poetzsefiitét, and Erik Poll,
editors,Formal Techniques for Java-like Programs 2008ly 2003. Available as
Technical Report 408, Department of Computer Science, ETHCH. A newer
version of this paper is [BDF 03b].

Mike Barnett, Robert DeLine, Manuel Fahndrich, K. FRus M. Leino,
and Wolfram Schulte. Verification of object-oriented prgs with in-
variants. Manuscript KRML 122b, December 2003. Availablenf
http://research.microsoft.com/"leino/papers.html.

Chandrasekhar Boyapati, Barbara Liskov, and LiBhara. Ownership types for
object encapsulation. IROPL, pages 213—-223, 2003.

Anindya Banerjee and David A. Naumann. Ownershipfioement ensures
representation independence for object-oriented progrankExtended version
of [BNO2b]. Available from http://www.cs.stevens-teatiué naumann/oceri.ps,
2002.

Anindya Banerjee and David A. Naumann. Repres@amatdependence, confine-
ment and access control. ROPL, pages 166-177, 2002.

Anindya Banerjee and David A. Naumann. Ownershimgfar and abstraction.
Technical Report TR 2004-1, Computing and Information Soés, Kansas State
Univ., 2003. http://www.cs.stevens-tech.edu/"naumatmarnse TR2004- 1. pdf.
Mike Barnett and Wolfram Schulte. Runtime verificatiof .NET contractsThe
Journal of Systems and Softwa6&(3):199-208, 2003.

David Clarke and Sophia Drossopoulou. Ownershigapaulation and the dis-
jointness of type and effect. @OPSLANovember 2002.

Yoonsik Cheon and Gary T. Leavens. A runtime assertibecker for the Java
Modeling Language (JML). In Hamid R. Arabnia and Youngsongn\Meditors,
Proceedings of the International Conference on Softwargitgering Research
and Practice (SERP '02), Las Vegas, Nevada, USA, June 22092, pages 322—
328. CSREA Press, June 2002.

David Clarke. Object ownership and containmentsBitation, Computer Science
and Engineering, University of New South Wales, Austri@01.

David G. Clarke, James Noble, and John M. Potter. p&irawnership types for
object containment. In Jagrgen Lindskov Knudsen, edE@(QOP 2001 - Object
Oriented Programming2001.

32

[DFO1]

[DFO3]

[DLNS98]

Robert DeLine and Manuel Fahndrich. Enforcing higiel protocols in low-level
software. InPLDI, pages 59-69, 2001.

Robert DeLine and Manuel Fahndrich. The Fugue maltchecker: Is your soft-
ware baroque? Available from http://research.microsoft/"maf/papers.html,
2003.

David L. Detlefs, K. Rustan M. Leino, Greg NelsomdaJames B. Saxe. Extended
static checking. Research Report 159, Compaq SystemsiReseanter, Decem-
ber 1998.

[dRABH™ 01] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemaozef Hooman, Yas-

[FLL *02]

[Gun00]

[Jon83]

[LG86]

[LMO3]

[LNO2]

[LW94]
[Mey97]

[MPHLO3]

[Miilo2]

INBO4]

[OYRO4]

[Rey02]

sine Lakhnech, Mannes Poel, and Job Zwie@oncurrency Verification: Intro-
duction to Compositional and Noncompositional Methddambridge University,
2001.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridger,e@ Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Ja\Rroteedings of the
2002 ACM SIGPLAN Conference on Programming Language Desigrimple-
mentation (PLDI) volume 37 ofSIGPLAN Noticespages 234-245. ACM, May
2002.

Eric Gunnersorm Programmer’s Introduction to C#Apress, Berkeley, CA, 2000.
Cliff B. Jones. Tentative steps towards a developgmeethod for interfering pro-
grams. ACM Transactions on Programming Languages and SystB($.596—
619, 1983.

Barbara Liskov and John Guttad\bstraction and Specification in Program De-
velopment MIT Press, 1986.

K. Rustan M. Leino and Peter Muller. Object invartanin dynamic
contexts. Manuscript KRML 132, December 2003. Availablendr
http://research.microsoft.com/"leino/papers.html.

K. Rustan M. Leino and Greg Nelson. Data abstractiod aformation hid-
ing. ACM Transactions on Programming Languages and Syst24(s):491-553,
2002.

Barbara H. Liskov and Jeannette M. Wing. A behaviamation of subtypingACM
Transactions on Programming Languages and Syst&6(§), 1994.

Bertrand MeyerObject-oriented Software ConstructidArentice Hall, New York,
second edition, 1997.

P. Muller, A. Poetzsch-Heffter, and G.T. Leavendodular invariants for object
structures. Technical Report 424, ETH Zrich, Chair oft®afe Engineering,
October 2003.

P. Muller. Modular Specification and Verification of Object-Orientetdrams
Number 2262 in LNCS. Springer, 2002.

David A. Naumann and Mike Barnett. Towards imperatmodules: Reasoning
about invariants and sharing of mutable state (extendedaabs Submitted; avail-
able from http://www.cs.stevens-tech.edu/"naumanrygtifn 2004.

P.W. O’Hearn, H. Yang, and J.C. Reynolds. Sepanaditd information hiding. In
POPL, pages 268-280, 2004.

John C. Reynolds. Separation logic: a logic for stlanutable data structures. In
LICS 2002.

