
Stochastic Primal-Dual Coordinate Method for Regularized

Empirical Risk Minimization

Yuchen Zhang∗ Lin Xiao†

September 2014

Abstract

We consider a generic convex optimization problem associated with regularized empirical risk
minimization of linear predictors. The problem structure allows us to reformulate it as a convex-
concave saddle point problem. We propose a stochastic primal-dual coordinate (SPDC) method,
which alternates between maximizing over a randomly chosen dual variable and minimizing
over the primal variable. An extrapolation step on the primal variable is performed to obtain
accelerated convergence rate. We also develop a mini-batch version of the SPDC method which
facilitates parallel computing, and an extension with weighted sampling probabilities on the
dual variables, which has a better complexity than uniform sampling on unnormalized data.
Both theoretically and empirically, we show that the SPDC method has comparable or better
performance than several state-of-the-art optimization methods.

1 Introduction

We consider a generic convex optimization problem that arises often in machine learning: regular-
ized empirical risk minimization (ERM) of linear predictors. More specifically, let a1, . . . , an ∈ R

d

be the feature vectors of n data samples, φi : R → R be a convex loss function associated with the
linear prediction aTi x, for i = 1, . . . , n, and g : Rd → R be a convex regularization function for the
predictor x ∈ R

d. Our goal is to solve the following optimization problem:

minimize
x∈Rd

{
P (x)

def
=

1

n

n∑

i=1

φi(a
T
i x) + g(x)

}
. (1)

Examples of the above formulation include many well-known classification and regression prob-
lems. For binary classification, each feature vector ai is associated with a label bi ∈ {±1}. We
obtain the linear SVM (support vector machine) by setting φi(z) = max{0, 1− biz} (the hinge loss)
and g(x) = (λ/2)‖x‖22, where λ > 0 is a regularization parameter. Regularized logistic regression
is obtained by setting φi(z) = log(1 + exp(−biz)). For linear regression problems, each feature
vector ai is associated with a dependent variable bi ∈ R, and φi(z) = (1/2)(z − bi)

2. Then we get
ridge regression with g(x) = (λ/2)‖x‖22, and the Lasso with g(x) = λ‖x‖1. Further backgrounds on
regularized ERM in machine learning and statistics can be found, e.g., in the book [13].

∗Department of Electrical Engineering and Computer Science, University of California, Berkekey, CA 94720, USA.
Email: yuczhang@eecs.berkeley.edu. (This work was perfomed during an internship at Microsoft Research.)

†Machine Learning Groups, Microsoft Research, Redmond, WA 98053, USA. Email: lin.xiao@microsoft.com.

1

We are especially interested in developing efficient algorithms for solving problem (1) when the
number of samples n is very large. In this case, evaluating the full gradient or subgradient of the
function P (x) is very expensive, thus incremental methods that operate on a single component func-
tion φi at each iteration can be very attractive. There have been extensive research on incremental
(sub)gradient methods (e.g. [40, 4, 21, 2, 3]) as well as variants of the stochastic gradient method
(e.g., [46, 5, 11, 17, 43]). While the computational cost per iteration of these methods is only a
small fraction, say 1/n, of that of the batch gradient methods, their iteration complexities are much
higher (it takes many more iterations for them to reach the same precision). In order to better
quantify the complexities of various algorithms and position our contributions, we need to make
some concrete assumptions and introduce the notion of condition number and batch complexity.

1.1 Condition number and batch complexity

Let γ and λ be two positive real parameters. We make the following assumption:

Assumption A. Each φi is convex and differentiable, and its derivative is (1/γ)-Lipschitz contin-
uous (same as φi being (1/γ)-smooth), i.e.,

|φ′
i(α)− φ′

i(β)| ≤ (1/γ)|α− β|, ∀α, β ∈ R, i = 1, . . . , n.

In addition, the regularization function g is λ-strongly convex, i.e.,

g(y) ≥ g(x) + g′(y)T (x− y) +
λ

2
‖x− y‖22, ∀ g′(y) ∈ ∂g(y), x, y ∈ R

n.

For example, the logistic loss φi(z) = log(1 + exp(−biz)) is (1/4)-smooth, the squared error
φi(z) = (1/2)(z− bi)

2 is 1-smooth, and the squared ℓ2-norm g(x) = (λ/2)‖x‖22 is λ-strongly convex.
The hinge loss φi(z) = max{0, 1 − biz} and the ℓ1-regularization g(x) = λ‖x‖1 do not satisfy As-
sumption A. Nevertheless, we can treat them using smoothing and strongly convex perturbations,
respectively, so that our algorithm and theoretical framework still apply (see Section 3.1).

Under Assumption A, the gradient of each component function, ∇φi(a
T
i x), is also Lipschitz

continuous, with Lipschitz constant Li = ‖ai‖22/γ ≤ R2/γ, where R = maxi ‖ai‖2. In other
words, each φi(a

T
i x) is (R2/γ)-smooth. We define a condition number κ = R2/(λγ), and focus

on ill-conditioned problems where κ ≫ 1. In the statistical learning context, the regularization
parameter λ is usually on the order of 1/

√
n or 1/n (e.g., [6]), thus κ is on the order of

√
n or n.

It can be even larger if the strong convexity in g is added purely for numerical regularization
purposes (see Section 3.1). We note that the actual conditioning of problem (1) may be better
than κ, if the empirical loss function (1/n)

∑n
i=1 φi(a

T
i x) by itself is strongly convex. In those

cases, our complexity estimates in terms of κ can be loose (upper bounds), but they are still useful
in comparing different algorithms for solving the same given problem.

Let P ⋆ be the optimal value of problem (1), i.e., P ⋆ = minx∈Rd P (x). In order to find an
approximate solution x̂ satisfying P (x̂)−P ⋆ ≤ ǫ, the classical full gradient method and its proximal
variants require O((1 + κ) log(1/ǫ)) iterations (e.g., [24, 26]). Accelerated full gradient (AFG)
methods [24, 41, 1, 26] enjoy the improved iteration complexity O((1 +

√
κ) log(1/ǫ)).1 However,

each iteration of these batch methods requires a full pass over the dataset, computing the gradient

1For the analysis of full gradient methods, we should use (R2/γ + λ)/λ = 1 + κ as the condition number of
problem (1); see [26, Section 5.1]. Here we used the upper bound

√
1 + κ < 1 +

√
κ for easy comparison. When

κ ≫ 1, the additive constant 1 can be dropped.

2

of each component function and forming their average, which cost O(nd) operations (assuming the
features vectors ai ∈ R

d are dense). In contrast, the stochastic gradient method and its proximal
variants operate on one single component φi(a

T
i x) (chosen randomly) at each iteration, which only

costs O(d). But their iteration complexities are far worse. Under Assumption A, it takes them
O(κ/ǫ) iterations to find an x̂ such that E[P (x̂) − P ⋆] ≤ ǫ, where the expectation is with respect
to the random choices made at all the iterations (see, e.g., [30, 23, 11, 17, 43]).

To make fair comparisons with batch methods, we measure the complexity of stochastic or
incremental gradient methods in terms of the number of equivalent passes over the dataset required
to reach an expected precision ǫ. We call this measure the batch complexity, which are usually
obtained by dividing their iteration complexities by n. For example, the batch complexity of the
stochastic gradient method is O(κ/(nǫ)). The batch complexities of full gradient methods are the
same as their iteration complexities.

By carefully exploiting the finite average structure in (1) and other similar problems, several re-
cent work [32, 36, 16, 44] proposed new variants of the stochastic gradient or dual coordinate ascent
methods and obtained the iteration complexity O((n+κ) log(1/ǫ)). Since their computational cost
per iteration is O(d), the equivalent batch complexity is O((1+κ/n) log(1/ǫ)). This complexity has
much weaker dependence on n than the full gradient methods, and also much weaker dependence
on ǫ than the stochastic gradient methods. In this paper, we present a new algorithm that has the
batch complexity

O
(
(1 +

√
κ/n) log(1/ǫ)

)
, (2)

which is more efficient when κ > n.

1.2 Outline of the paper

Our approach is based on reformulating problem (1) as a convex-concave saddle point problem,
and then devising a primal-dual algorithm to approximate the saddle point. More specifically, we
replace each component function φi(a

T
i x) through convex conjugation, i.e.,

φi(a
T
i x) = sup

yi∈R
{yi〈ai, x〉 − φ∗

i (yi)} ,

where φ∗
i (yi) = supα∈R{αyi − φi(α)}, and 〈ai, x〉 denotes the inner product of ai and x (which is

the same as aTi x, but is more convenient for later presentation). This leads to a convex-concave
saddle point problem

min
x∈Rd

max
y∈Rn

{
f(x, y)

def
=

1

n

n∑

i=1

(
yi〈ai, x〉 − φ∗

i (yi)
)
+ g(x)

}
. (3)

Under Assumption A, each φ∗
i is γ-strongly convex (since φi is (1/γ)-smooth; see, e.g., [14, The-

orem 4.2.2]) and g is λ-strongly convex. As a consequence, the saddle point problem (3) has a
unique solution, which we denote by (x⋆, y⋆).

In Section 2, we propose a stochastic primal-dual coordinate (SPDC) method, which alternates
between maximizing f over a randomly chosen dual coordinate yi and minimizing f over the
primal variable x. We also apply an extrapolation step to the primal variable x to accelerate the
convergence. The SPDC method has iteration complexity O((n +

√
κn)) log(1/ǫ)). Since each

iteration of SPDC only operates on a single dual coordinate yi, its batch complexity is given by (2).
We also present a mini-batch SPDC algorithm which is well suited for distributed computing.

3

Algorithm 1: The SPDC method

Input: parameters τ, σ, θ ∈ R+, number of iterations T , and initial points x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n

i=1 y
(0)
i ai.

for t = 0, 1, 2, . . . , T − 1 do

Pick an index k ∈ {1, 2, . . . , n} uniformly at random, and execute the following updates:

y
(t+1)
i =

{
argmaxβ∈R

{
β〈ai, x(t)〉 − φ∗

i (β)− 1
2σ (β − y

(t)
i)2

}
if i = k,

y
(t)
i if i 6= k,

(4)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) + (y

(t+1)
k − y

(t)
k)ak, x

〉
+

‖x− x(t)‖22
2τ

}
, (5)

u(t+1) = u(t) +
1

n
(y

(t+1)
k − y

(t)
k)ak, (6)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)). (7)

end

Output: x(T) and y(T)

In Section 3, we present two extensions of the SPDC method. We first explain how to solve
problem (1) when Assumption A does not hold. The idea is to apply small regularizations to the
saddle point function so that SPDC can still be applied, which results in accelerated sublinear rates.
The second extension is a SPDC method with non-uniform sampling. The batch complexity of this
algorithm has the same form as (2), but κ is defined as κ = R̄/(λγ), where R̄ = 1

n

∑n
i=1 ‖ai‖, which

can be much smaller than R = maxi ‖ai‖ if there is considerable variation in the norms ‖ai‖.
In Section 4, we discuss related work. In particular, the SPDC method can be viewed as

a coordinate-update extension of the batch primal-dual algorithm developed by Chambolle and
Pock [8]. We also discuss two very recent work [34, 18] which achieve the same batch complexity (2).

In Section 5, we discuss efficient implementation of the SPDC method when the feature vectors
ai are sparse. We focus on two popular cases: when g is a squared ℓ2-norm penalty and when g is
an ℓ1 + ℓ2 penalty. We show that the computational cost per iteration of SPDC only depends on
the number of non-zero elements in the feature vectors.

In Section 6, we present experiment results comparing SPDC with several state-of-the-art opti-
mization methods, including two efficient batch methods (AFG [24] and L-BFGS [27, Section 7.2]),
the stochastic average gradient (SAG) method [32, 33], and the stochastic dual coordinate ascent
(SDCA) method [36]. On all scenarios we tested, SPDC has comparable or better performance.

2 The SPDC method

In this section, we describe and analyze the Stochastic Primal-Dual Coordinate (SPDC) method.
The basic idea of SPDC is quite simple: to approach the saddle point of f(x, y) defined in (3),
we alternatively maximize f with respect to y, and minimize f with respect to x. Since the
dual vector y has n coordinates and each coordinate is associated with a feature vector ai ∈ R

d,
maximizing f with respect to y takes O(nd) computation, which can be very expensive if n is large.
We reduce the computational cost by randomly picking a single coordinate of y at a time, and

4

Algorithm 2: The Mini-Batch SPDC method

Input: mini-batch size m, parameters τ, σ, θ ∈ R+, number of iterations T , and x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n

i=1 y
(0)
i ai.

for t = 0, 1, 2, . . . , T − 1 do

Randomly pick a subset of indices K ⊂ {1, 2, . . . , n} of size m, such that the probability
of each index being picked is equal to m/n. Execute the following updates:

y
(t+1)
i =

{
argmaxβ∈R

{
β〈ai, x(t)〉 − φ∗

i (β)− 1
2σ (β − y

(t)
i)2

}
if i ∈ K,

y
(t)
i if i /∈ K,

(8)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

1

m

∑

k∈K
(y

(t+1)
k − y

(t)
k)ak, x

〉
+

‖x− x(t)‖22
2τ

}
, (9)

u(t+1) = u(t) +
1

n

∑

k∈K
(y

(t+1)
k − y

(t)
k)ak,

x(t+1) = x(t+1) + θ(x(t+1) − x(t)).

end

Output: x(T) and y(T)

maximizing f only with respect to this coordinate. Consequently, the computational cost of each
iteration is O(d).

We give the details of the SPDC method in Algorithm 1. The dual coordinate update and primal
vector update are given in equations (4) and (5) respectively. Instead of maximizing f over yk and

minimizing f over x directly, we add two quadratic regularization terms to penalize y
(t+1)
k and

x(t+1) from deviating from y
(t)
k and x(t). The parameters σ and τ control their regularization

strength, which we will specify in the convergence analysis (Theorem 1). Moreover, we introduce

two auxiliary variables u(t) and x(t). From the initialization u(0) = (1/n)
∑n

i=1 y
(0)
i ai and the update

rules (4) and (6), we have

u(t) =
1

n

n∑

i=1

y
(t)
i ai, t = 0, . . . , T.

Equation (7) obtains x(t+1) based on extrapolation from x(t) and x(t+1). This step is similar to
Nesterov’s acceleration technique [24, Section 2.2], and yields faster convergence rate.

Before presenting the theoretical results, we introduce a Mini-Batch SPDC method in Algo-
rithm 2, which is a natural extension of SPDC in Algorithm 1. The difference between these two
algorithms is that, the Mini-Batch SPDC method may simultaneously select more than one dual
coordinates to update. Let m be the mini-batch size. During each iteration, the Mini-Batch SPDC
method randomly picks a subset of indices K ⊂ {1, . . . , n} of size m, such that the probability of
each index being picked is equal to m/n. The following is a simple procedure to achieve this. First,
partition the set of indices into m disjoint subsets, so that the cardinality of each subset is equal
to n/m (assuming m divides n). Then, during each iteration, randomly select a single index from
each subset and add it to K. Other approaches for mini-batch selection are also possible.

With a single processor, each iteration of Algorithm 2 takes O(md) time to accomplish. Since

5

the updates of each coordinate yk are independent of each other, we can use parallel computing to
accelerate the Mini-Batch SPDC method. Concretely, we can use m processors to update the m
coordinates in the subset K in parallel, then aggregate them to update x(t+1). Such a procedure
can be achieved by a single round of communication, for example, using the Allreduce operation in
MPI [20] or MapReduce [10]. If we ignore the communication delay, then each iteration takes O(d)
time, which is the same as running one iteration of the basic SPDC algorithm. Not surprisingly,
we will show that the Mini-Batch SPDC algorithm converges faster than SPDC in terms of the
iteration complexity, because it processes multiple dual coordinates in a single iteration.

2.1 Convergence analysis

Since the basic SPDC algorithm is a special case of Mini-Batch SPDC with m = 1, we only present
a convergence theorem for the mini-batch version.

Theorem 1. Assume that each φi is (1/γ)-smooth and g is λ-strongly convex (Assumption A).
Let R = max{‖ai‖2 : i = 1, . . . , n}. If the parameters τ, σ and θ in Algorithm 2 are chosen such
that

τ =
1

2R

√
mγ

nλ
, σ =

1

2R

√
nλ

mγ
, θ = 1− 1

(n/m) +R
√

(n/m)/(λγ)
, (10)

then for each t ≥ 1, the Mini-Batch SPDC algorithm achieves

(1

2τ
+ λ

)
E
[
‖x(t) − x⋆‖22

]
+
(1

4σ
+ γ
)
E
[
‖y(t) − y⋆‖22

]

m

≤ θ t

((1

2τ
+ λ

)
‖x(0) − x⋆‖22 +

(1

2σ
+ γ
)‖y(0) − y⋆‖22

m

)
.

The proof of Theorem 1 is given in Appendix A. The following corollary establishes the expected
iteration complexity of Mini-Batch SPDC for obtaining an ǫ-accurate solution.

Corollary 1. Suppose Assumption A holds and the parameters τ , σ and θ are set as in (10). In
order for Algorithm 2 to obtain

E[‖x(T) − x⋆‖22] ≤ ǫ, E[‖y(T) − y⋆‖22] ≤ ǫ, (11)

it suffices to have the number of iterations T satisfy

T ≥
(
n

m
+R

√
n

mλγ

)
log

(
C

ǫ

)
,

where

C =

(
1/(2τ) + λ

)
‖x(0) − x⋆‖22 +

(
1/(2σ) + γ

)
‖y(0) − y⋆‖22/m

min
{
1/(2τ) + λ, (1/(4σ) + γ)/m

} .

Proof. By Theorem 1, we have E[‖x(T) − x⋆‖22] ≤ θTC and E[‖y(T) − y⋆‖22] ≤ θTC. To obtain (11),
it suffices to ensure that θTC ≤ ǫ, which is equivalent to

T ≥ log(C/ǫ)

− log(θ)
=

log(C/ǫ)

− log
(
1−

(
(n/m) +R

√
(n/m)/(λγ)

)−1) .

Applying the inequality − log(1− x) ≥ x to the denominator above completes the proof.

6

Recall the definition of the condition number κ = R2/(λγ) in Section 1.1. Corollary 1 establishes
that the iteration complexity of the Mini-Batch SPDC method for achieving (11) is

O
((

(n/m) +
√
κ(n/m)

)
log(1/ǫ)

)
.

So a larger batch size m leads to less number of iterations. In the extreme case of n = m, we
obtain a full batch algorithm, which has iteration or batch complexity O((1 +

√
κ) log(1/ǫ)). This

complexity is also shared by the AFG methods [24, 26] (see Section 1.1), as well as the batch
primal-dual algorithm of Chambolle and Pock [8] (see discussions on related work in Section 4).

Since an equivalent pass over the dataset corresponds to n/m iterations, the batch complexity
(the number of equivalent passes over the data) of Mini-Batch SPDC is

O
((

1 +
√
κ(m/n)

)
log(1/ǫ)

)
.

The above expression implies that a smaller batch size m leads to less number of passes through
the data. In this sense, the basic SPDC method with m = 1 is the most efficient one. However, if
we prefer the least amount of wall-clock time, then the best choice is to choose a mini-batch size m
that matches the number of parallel processors available.

2.2 Convergence of primal objective

In the previous subsection, we established iteration complexity of the Mini-Batch SPDC method
in terms of approximating the saddle point of the minimax problem (3), more specifically, to meet
the requirement in (11). Next we show that it has the same order of complexity in reducing the
primal objective gap P (x(T))− P (x⋆). But we need an extra assumption.

Assumption B. There exist constants G ≥ 0 and H ≥ 0 such that for any x ∈ R
d,

g(x)− g(x⋆) ≤ G‖x− x⋆‖2 +
H

2
‖x− x⋆‖22.

We note that Assumption B is weaker than either G-Lipschitz continuity or H-smoothness. It
is satisfied by the ℓ1 norm, the squared ℓ2-norm, and mixed ℓ1 + ℓ2 regularizations.

Corollary 2. Suppose both Assumptions A and B hold, and the parameters τ , σ and θ are set as
in (10). To guarantee E[P (x(T))− P (x⋆)] ≤ ǫ ≤ 1, it suffices to run Algorithm 2 for T iterations,
with

T ≥
(n

m
+R

√
n

mλγ

)
log
(C(4G2 +H + 1/γ)

ǫ2

)
,

where

C = ‖x(0) − x⋆‖22 +
(
1/(2σ) + γ

1/(2τ) + λ

)‖y(0) − y⋆‖22
m

.

Proof. Using the (1/γ)-smoothness of P − g and Assumption B, we have

P (x(T))− P (x⋆) ≤ 〈(P − g)′(x⋆), x(T) − x⋆〉+ 1

2γ
‖x(T) − x⋆‖22 + g(x(T))− g(x⋆)

≤ (‖(P − g)′(x⋆)‖2 +G)‖x(T) − x⋆‖2 +
H + 1/γ

2
‖x(T) − x⋆‖22.

7

Since x⋆ minimizes P , we have −(P − g)′(x⋆) ∈ ∂g(x⋆). Hence, Assumption B implies that
‖(P − g)′(x⋆)‖2 ≤ G. Substituting this relation into the above inequality, and using Hölder’s
inequality, we have

E[P (x(T))− P (x⋆)] ≤ 2G
(
E[‖x(T) − x⋆‖22]

)1/2
+

H + 1/γ

2
E[‖x(T) − x⋆‖22].

To make E[P (x(T)) − P (x⋆)] ≤ ǫ, it suffices to let the right-hand side of the above inequality
bounded by ǫ. Since ǫ ≤ 1, this is guaranteed by

E[‖x(T) − x⋆‖22] ≤
ǫ2

4G2 +H + 1/γ
. (12)

By Theorem 1, we have E[‖x(T) − x⋆‖22] ≤ θTC. To secure inequality (12), it is sufficient to

make θT ≤ ǫ2

C(4G2+H+1/γ)
, which is equivalent to

T ≥ log(C(4G2 +H + 1/γ)/ǫ2)

− log(θ)
=

log(C(4G2 +H + 1/γ)/ǫ2)

− log
(
1−

(
(n/m) +R

√
(n/m)/(λγ)

)−1) .

Applying − log(1− x) ≥ x to the denominator above completes the proof.

3 Extensions of SPDC

In this section, we derive two extensions of the SPDC method. The first one handles problems for
which Assumption A does not hold. The second one employs a non-uniform sampling scheme to
improve the iteration complexity when the feature vectors ai are unnormalized.

3.1 Non-smooth or non-strongly convex functions

The complexity bounds established in Section 2 require each φ∗
i to be γ-strongly convex, which

corresponds to the condition that the first derivative of φi is (1/γ)-Lipschitz continuous. In addition,
the function g needs to be λ-strongly convex. For general loss functions where either or both of these
conditions fail (e.g., the hinge loss and ℓ1-regularization), we can slightly perturb the saddle-point
function f(x, y) so that the SPDC method can still be applied.

For simplicity, here we consider the case where neither φi is smooth nor g is strongly convex.
Formally, we assume that each φi and g are convex and Lipschitz continuous, and f(x, y) has a
saddle point (x⋆, y⋆). We choose a scalar δ > 0 and consider the modified saddle-point function:

fδ(x, y)
def
=

1

n

n∑

i=1

(
yi〈ai, x〉 −

(
φ∗
i (yi) +

δy2i
2

))
+ g(x) +

δ

2
‖x‖22. (13)

Denote by (x⋆δ , y
⋆
δ) the saddle-point of fδ. We employ the Mini-Batch SPDC method (Algorithm 2)

to approximate (x⋆δ , y
⋆
δ), treating φ∗

i +
δ
2(·)2 as φ∗

i and g + δ
2‖·‖22 as g, which now are all δ-strongly

convex. We note that adding strongly convex perturbation on φ∗
i is equivalent to smoothing φi,

which becomes (1/δ)-smooth. Letting γ = λ = δ, the parameters τ , σ and θ in (10) become

τ =
1

2R

√
m

n
, σ =

1

2R

√
n

m
, and θ = 1−

(
n

m
+

R

δ

√
n

m

)−1

.

8

Although (x⋆δ , y
⋆
δ) is not exactly the saddle point of f , the following corollary shows that applying

the SPDC method to the perturbed function fδ effectively minimizes the original loss function P .

Corollary 3. Assume that each φi is convex and Gφ-Lipschitz continuous, and g is convex and
Gg-Lipschitz continuous. Define two constants:

C1 = (‖x⋆‖22 +G2
φ), C2 = (GφR+Gg)

2

(
‖x(0) − x⋆δ‖22 +

(1/(2σ) + δ

1/(2τ) + δ

)‖y(0) − y⋆δ‖22
m

)
.

If we choose δ ≤ ǫ/C1, and run the Mini-Batch SPDC algorithm for T iterations where

T ≥
(
n

m
+

R

δ

√
n

m

)
log

(
4C2

ǫ2

)
,

then E[P (x(T))− P (x⋆)] ≤ ǫ.

Proof. Let ỹ = argmaxy f(x
⋆
δ , y) be a shorthand notation. We have

P (x⋆δ)
(i)
= f(x⋆δ , ỹ)

(ii)

≤ fδ(x
⋆
δ , ỹ) +

δ‖ỹ‖22
2n

(iii)

≤ fδ(x
⋆
δ , y

⋆
δ) +

δ‖ỹ‖22
2n

(iv)

≤ fδ(x
⋆, y⋆δ) +

δ‖ỹ‖22
2n

(v)

≤ f(x⋆, y⋆δ) +
δ‖x⋆‖22

2
+

δ‖ỹ‖22
2n

(vi)

≤ f(x⋆, y⋆) +
δ‖x⋆‖22

2
+

δ‖ỹ‖22
2n

(vii)
= P (x⋆) +

δ‖x⋆‖22
2

+
δ‖ỹ‖22
2n

.

Here, equations (i) and (vii) use the definition of the function f , inequalities (ii) and (v) use the
definition of the function fδ, inequalities (iii) and (iv) use the fact that (x⋆δ , y

⋆
δ) is the saddle point

of fδ, and inequality (vi) is due to the fact that (x⋆, y⋆) is the saddle point of f .
Since φi is Gφ-Lipschitz continuous, the domain of φ∗

i is in the interval [−Gφ, Gφ], which implies
‖ỹ‖22 ≤ nG2

φ (see, e.g., [34, Lemma 1]). Thus, we have

P (x⋆δ)− P (x⋆) ≤ δ

2
(‖x⋆‖22 +G2

φ) =
δ

2
C1. (14)

On the other hand, since P is (GφR+Gg)-Lipschitz continuous, Theorem 1 implies

E[P (x(T))− P (x⋆δ)] ≤ (GφR+Gg)E[‖x(T) − x⋆δ‖2] ≤
√
C2

(
1−

(
n

m
+

R

δ

√
n

m

)−1
)T/2

. (15)

Combining inequality (14) and inequality (15), to guarantee E[P (x(T)) − P (x⋆)] ≤ ǫ, it suffices to
have C1δ ≤ ǫ and

√
C2

(
1−

(
n

m
+

R

δ

√
n

m

)−1)T/2

≤ ǫ

2
. (16)

The corollary is established by finding the smallest T that satisfies inequality (16).

There are two other cases that can be considered: when φi is not smooth but g is strongly
convex, and when φi is smooth but g is not strongly convex. They can be handled with the same
technique described above, and we omit the details here. (Alternatively, it is possible to use the
techniques described in [8, Section 5.1] to obtain accelerated sublinear convergence rates without
using strongly convex perturbations.) In Table 1, we list the complexities of the Mini-Batch SPDC
method for finding an ǫ-optimal solution of problem (1) under various assumptions. Similar results
are also obtained in [34].

9

φi g iteration complexity Õ(·)
(1/γ)-smooth λ-strongly convex n/m+

√
(n/m)/(λγ)

(1/γ)-smooth non-strongly convex n/m+
√
(n/m)/(ǫγ)

non-smooth λ-strongly convex n/m+
√
(n/m)/(ǫλ)

non-smooth non-strongly convex n/m+
√

n/m/ǫ

Table 1: Iteration complexities of the SPDC method under different assumptions on the functions φi

and g. For the last three cases, we solve the perturbed saddle-point problem with δ = ǫ/C1.

3.2 SPDC with non-uniform sampling

One potential drawback of the SPDC algorithm is that, its convergence rate depends on a problem-
specific constant R, which is the largest ℓ2-norm of the feature vectors ai. As a consequence, the
algorithm may perform badly on unnormalized data, especially if the ℓ2-norms of some feature
vectors are substantially larger than others. In this section, we propose an extension of the SPDC
method to mitigate this problem, which is given in Algorithm 3.

The basic idea is to use non-uniform sampling in picking the dual coordinate to update at each
iteration. In Algorithm 3, we pick coordinate k with the probability

pk =
1

2n
+

‖ak‖2
2
∑n

i=1 ‖ai‖2
, k = 1, . . . , n. (17)

Therefore, instances with large feature norms are sampled more frequently. Simultaneously, we
adopt an adaptive regularization in step (18), imposing stronger regularization on such instances.
In addition, we adjust the weight of ak in (19) for updating the primal variable. As a consequence,
the convergence rate of Algorithm 3 depends on the average norm of feature vectors. This is
summarized by the following theorem.

Theorem 2. Suppose Assumption A holds. Let R̄ = 1
n

∑n
i=1 ‖ai‖2. If the parameters τ, σ, θ in

Algorithm 3 are chosen such that

τ =
1

4R̄

√
γ

nλ
, σ =

1

4R̄

√
nλ

γ
, θ = 1− 1

2n+ 2R̄
√

n/(λγ)
,

then for each t ≥ 1, we have

(1

2τ
+ λ

)
E
[
‖x(t) − x⋆‖22

]
+
(7

16σ
+

2γ

n

)
E
[
‖y(t) − y⋆‖22

]

≤ θ t

((1

2τ
+ λ

)
‖x(0) − x⋆‖22 +

(1

2σ
+ 2γ

)
‖y(0) − y⋆‖22

)
.

Comparing the constant θ in Theorem 2 to that of Theorem 1, we can find two differences.
First, there is an additional factor of 2 multiplied to the denominator 2n + 2R̄

√
n/(λγ), making

the value of θ larger. Second, the constant R̄ here is determined by the average norm of features,
instead of the largest one, which makes the value of θ smaller. The second difference makes the
algorithm more robust to unnormalized feature vectors. For example, if the ai’s are sampled i.i.d.

10

Algorithm 3: SPDC method with weighted sampling

Input: parameters τ, σ, θ ∈ R+, number of iterations T , and initial points x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n

i=1 y
(0)
i ai.

for t = 0, 1, 2, . . . , T − 1 do

Randomly pick k ∈ {1, 2, . . . , n}, with probability pk = 1
2n + ‖ak‖2

2
∑

n

i=1
‖ai‖2 .

Execute the following updates:

y
(t+1)
i =

{
argmaxβ∈R

{
β〈ai, x(t)〉 − φ∗

i (β)− pin
2σ (β − y

(t)
i)2

}
i = k,

y
(t)
i i 6= k,

(18)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

1

pkn
(y

(t+1)
k − y

(t)
k)ak, x

〉
+

‖x− x(t)‖22
2τ

}
, (19)

u(t+1) = u(t) +
1

n
(y

(t+1)
k − y

(t)
k)ak,

x(t+1) = x(t+1) + θ(x(t+1) − x(t)).

end

Output: x(T) and y(T)

from a multivariate normal distribution, then maxi{‖ai‖2} almost surely goes to infinity as n → ∞,
but the average norm 1

n

∑n
i=1 ‖ai‖2 converges to E[‖ai‖2].

For simplicity of presentation, we described in Algorithm 3 a weighted sampling SPDC method
with single dual coordinate update, i.e., the case of m = 1. It is not hard to see that the non-
uniform sampling scheme can also be extended to Mini-Batch SPDC with m > 1. Moreover, the
non-uniform sampling scheme can also be applied to solve problems with non-smooth φi or non-
strongly convex g, leading to similar conclusions as in Corollary 3. Here, we omit the technical
details.

4 Related Work

Chambolle and Pock [8] considered a class of convex optimization problems with the following
saddle-point structure:

min
x∈Rd

max
y∈Rn

{
〈Kx, y〉+G(x)− F ∗(y)

}
, (20)

where K ∈ R
m×d, G and F ∗ are proper closed convex functions, with F ∗ itself being the conjugate

of a convex function F . They developed the following first-order primal-dual algorithm:

y(t+1) = arg max
y∈Rn

{
〈Kx(t), y〉 − F ∗(y)− 1

2σ
‖y − y(t)‖22

}
, (21)

x(t+1) = arg min
x∈Rd

{
〈KT y(t+1), x〉+G(x) +

1

2τ
‖x− x(t)‖22

}
, (22)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)). (23)

When both F ∗ and G are strongly convex and the parameters τ , σ and θ are chosen appropriately,
this algorithm obtains accelerated linear convergence rate [8, Theorem 3].

11

algorithm τ σ θ batch complexity

Chambolle-Pock [8]
√
n

‖A‖2

√
γ
λ

√
n

‖A‖2

√
λ
γ 1− 1

1+‖A‖2/(2
√
nλγ)

(
1 + ‖A‖2

2
√
nλγ

)
log(1/ǫ)

SPDC with m = n 1
2R

√
γ
λ

1
2R

√
λ
γ 1− 1

1+R/
√
λγ

(
1 + R√

λγ

)
log(1/ǫ)

SPDC with m = 1 1
2R

√
γ
nλ

1
2R

√
nλ
γ 1− 1

n+R
√

n/λγ

(
1 + R√

nλγ

)
log(1/ǫ)

Table 2: Comparing SPDC with Chambolle and Pock [8, Algorithm 3, Theorem 3].

We can map the saddle-point problem (3) into the form of (20) by letting A = [a1, . . . , an]
T and

K =
1

n
A, G(x) = g(x), F ∗(y) =

1

n

n∑

i=1

φ∗
i (yi). (24)

The SPDC method developed in this paper can be viewed as an extension of the batch method
(21)-(23), where the dual update step (21) is replaced by a single coordinate update (4) or a mini-
batch update (8). However, in order to obtain accelerated convergence rate, more subtle changes
are necessary in the primal update step. More specifically, we introduced the auxiliary variable

u(t) = 1
n

∑n
i=1 y

(t)
i ai = KT y(t), and replaced the primal update step (22) by (5) and (9). The primal

extrapolation step (23) stays the same.
To compare the batch complexity of SPDC with that of (21)-(23), we use the following facts

implied by Assumption A and the relations in (24):

‖K‖2 =
1

n
‖A‖2, G(x) is λ-strongly convex, and F ∗(y) is (γ/n)-strongly convex.

Based on these conditions, we list in Table 2 the equivalent parameters used in [8, Algorithm 3]
and the batch complexity obtained in [8, Theorem 3], and compare them with SPDC.

The batch complexity of the Chambolle-Pock algorithm is Õ(1 + ‖A‖2/(2
√
nλγ)), where the

Õ(·) notation hides the log(1/ǫ) factor. We can bound the spectral norm ‖A‖2 by the Frobenius
norm ‖A‖F and obtain

‖A‖2 ≤ ‖A‖F ≤ √
nmax

i
{‖ai‖2} =

√
nR.

(Note that the second inequality above would be an equality if the columns of A are normalized.)
So in the worst case, the batch complexity of the Chambolle-Pock algorithm becomes

Õ
(
1 +R/

√
λγ
)
= Õ

(
1 +

√
κ
)
, where κ = R2/(λγ),

which matches the worst-case complexity of the AFG methods [24, 26] (see Section 1.1 and also
the discussions in [18, Section 5]). This is also of the same order as the complexity of SPDC with
m = n (see Section 2.1). When the condition number κ ≫ 1, they can be

√
n worse than the batch

complexity of SPDC with m = 1, which is Õ(1 +
√

κ/n).
If either G(x) or F ∗(y) in (20) is not strongly convex, Chambolle and Pock proposed variants of

the primal-dual batch algorithm to achieve accelerated sublinear convergence rates [8, Section 5.1].
It is also possible to extend them to coordinate update methods for solving problem (1) when either
φ∗
i or g is not strongly convex. Their complexities would be similar to those in Table 1.

12

4.1 Dual coordinate ascent methods

We can also solve the primal problem (1) via its dual:

maximize
y∈Rn

{
D(y)

def
=

1

n

n∑

i=1

−φ∗
i (yi)− g∗

(
− 1

n

n∑

i=1

yiai

)}
, (25)

where g∗(u) = supx∈Rd{xTu − g(x)} is the conjugate function of g. Here again, coordinate ascent
methods (e.g., [29, 9, 15, 36]) can be more efficient than full gradient methods. In the stochastic
dual coordinate ascent (SDCA) method [36], a dual coordinate yi is picked at random during each
iteration and updated to increase the dual objective value. Shalev-Shwartz and Zhang [36] showed
that the iteration complexity of SDCA is O ((n+ κ) log(1/ǫ)), which corresponds to the batch
complexity Õ(1 + κ/n). Therefore, the SPDC method, which has batch complexity Õ(1 +

√
κ/n),

can be much better when κ > n, i.e., for ill-conditioned problems.
For more general convex optimization problems, there is a vast literature on coordinate descent

methods. In particular, Nesterov’s work on randomized coordinate descent [25] sparked a lot of
recent activities on this topic. Richtárik and Takáč [31] extended the algorithm and analysis to
composite convex optimization. When applied to the dual problem (25), it becomes one variant
of SDCA studied in [36]. Mini-batch and distributed versions of SDCA have been proposed and
analyzed in [39] and [45] respectively. Non-uniform sampling schemes similar to the one used in
Algorithm 3 have been studied for both stochastic gradient and SDCA methods (e.g., [22, 44, 48]).

Shalev-Shwartz and Zhang [35] proposed an accelerated mini-batch SDCA method which incor-
porates additional primal updates than SDCA, and bears some similarity to our Mini-Batch SPDC
method. They showed that its complexity interpolates between that of SDCA and AFG by varying
the mini-batch size m. In particular, for m = n, it matches that of the AFG methods (as SPDC
does). But for m = 1, the complexity of their method is the same as SDCA, which is worse than
SPDC for ill-conditioned problems.

In addition, Shalev-Shwartz and Zhang [34] developed an accelerated proximal SDCA method
which achieves the same batch complexity Õ

(
1+

√
κ/n

)
as SPDC. Their method is an inner-outer

iteration procedure, where the outer loop is a full-dimensional accelerated gradient method in the
primal space x ∈ R

d. At each iteration of the outer loop, the SDCA method [36] is called to solve
the dual problem (25) with customized regularization parameter and precision. In contrast, SPDC
is a straightforward single-loop coordinate optimization methods.

More recently, Lin et al. [18] developed an accelerated proximal coordinate gradient (APCG)
method for solving a more general class of composite convex optimization problems. When applied
to the dual problem (25), APCG enjoys the same batch complexity Õ

(
1 +

√
κ/n

)
as of SPDC.

However, it needs an extra primal proximal-gradient step to have theoretical guarantees on the
convergence of primal-dual gap [18, Section 5.1]. The computational cost of this additional step is
equivalent to one pass of the dataset, thus it does not affect the overall complexity.

4.2 Other related work

Another way to approach problem (1) is to reformulate it as a constrained optimization problem

minimize
1

n

n∑

i=1

φi(zi) + g(x) (26)

subject to aTi x = zi, , i = 1, . . . , n,

13

and solve it by ADMM type of operator-splitting methods (e.g., [19]). In fact, as shown in [8],
the batch primal-dual algorithm (21)-(23) is equivalent to a pre-conditioned ADMM (or inexact
Uzawa method; see, e.g., [47]). Several authors [42, 28, 37, 49] have considered a more general
formulation than (26), where each φi is a function of the whole vector z ∈ R

n. They proposed
online or stochastic versions of ADMM which operate on only one φi in each iteration, and obtained
sublinear convergence rates. However, their cost per iteration is O(nd) instead of O(d).

Suzuki [38] considered a problem similar to (1), but with more complex regularization function g,
meaning that g does not have a simple proximal mapping. Thus primal updates such as step (5)
or (9) in SPDC and similar steps in SDCA cannot be computed efficiently. He proposed an algorithm
that combines SDCA [36] and ADMM (e.g., [7]), and showed that it has linear rate of convergence
under similar conditions as Assumption A. It would be interesting to see if the SPDC method can
be extended to their setting to obtain accelerated linear convergence rate.

5 Efficient Implementation with Sparse Data

During each iteration of the SPDC methods, the updates of primal variables (i.e., computing
x(t+1)) require full d-dimensional vector operations; see the step (5) of Algorithm 1, the step (9)
of Algorithm 2 and the step (19) of Algorithm 3. So the computational cost per iteration is O(d),
and this can be too expensive if the dimension d is very high. In this section, we show how to
exploit problem structure to avoid high-dimensional vector operations when the feature vectors ai
are sparse. We illustrate the efficient implementation for two popular cases: when g is an squared-ℓ2
penalty and when g is an ℓ1 + ℓ2 penalty. For both cases, we show that the computation cost per
iteration only depends on the number of non-zero components of the feature vector.

5.1 Squared ℓ2-norm penalty

Suppose that g(x) = λ
2‖x‖22. For this case, the updates for each coordinate of x are independent of

each other. More specifically, x(t+1) can be computed coordinate-wise in closed form:

x
(t+1)
j =

1

1 + λτ
(x

(t)
j − τu

(t)
j − τ∆uj), j = 1, . . . , n, (27)

where ∆u denotes (y
(t+1)
k − y

(t)
k)ak in Algorithm 1, or 1

m

∑
k∈K(y

(t+1)
k − y

(t)
k)ak in Algorithm 2, or

(y
(t+1)
k − y

(t)
k)ak/(pkn) in Algorithm 3, and ∆uj represents the j-th coordinate of ∆u.

Although the dimension d can be very large, we assume that each feature vector ak is sparse.
We denote by J (t) the set of non-zero coordinates at iteration t, that is, if for some index k ∈ K
picked at iteration t we have akj 6= 0, then j ∈ J (t). If j /∈ J (t), then the SPDC algorithm (and its

variants) updates y(t+1) without using the value of x
(t)
j or x

(t)
j . This can be seen from the updates

in (4), (8) and (18), where the value of the inner product 〈ak, x(t)〉 does not depend on the value of

x
(t)
j . As a consequence, we can delay the updates on xj and xj whenever j /∈ J (t) without affecting

the updates on y(t), and process all the missing updates at the next time when j ∈ J (t).
Such a delayed update can be carried out very efficiently. We assume that t0 is the last time

when j ∈ J (t), and t1 is the current iteration where we want to update xj and xj . Since j /∈ J (t)

implies ∆uj = 0, we have

xt+1
j =

1

1 + λτ
(x

(t)
j − τu

(t)
j), t = t0 + 1, t0 + 2, . . . , t1 − 1. (28)

14

Notice that u
(t)
j is updated only at iterations where j ∈ J (t). The value of u

(t)
j doesn’t change

during iterations [t0 + 1, t1], so we have u
(t)
j ≡ u

(t0+1)
j for t ∈ [t0 + 1, t1]. Substituting this equation

into the recursive formula (28), we obtain

x
(t1)
j =

1

(1 + λτ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j

λ

)
−

u
(t0+1)
j

λ
. (29)

The update (29) takes O(1) time to compute. Using the same formula, we can compute x
(t1−1)
j

and subsequently compute x
(t1)
j = x

(t1)
j + θ(x

(t1)
j − x

(t1−1)
j). Thus, the computational complexity of

a single iteration in SPDC is proportional to |J (t)|, independent of the dimension d.

5.2 (ℓ1 + ℓ2)-norm penalty

Suppose that g(x) = λ1‖x‖1 + λ2

2 ‖x‖22. Since both the ℓ1-norm and the squared ℓ2-norm are

decomposable, the updates for each coordinate of x(t+1) are independent. More specifically,

x
(t+1)
j = argmin

α∈R

{
λ1|α|+

λ2α
2

2
+ (u

(t)
j +∆uj)α+

(α− x
(t)
j)2

2τ

}
, (30)

where ∆uj follows the definition in Section 5.1. If j /∈ J (t), then ∆uj = 0 and equation (30) can be
simplified as

x
(t+1)
j =





1
1+λ2τ

(x
(t)
j − τu

(t)
j − τλ1) if x

(t)
j − τu

(t)
j > τλ1,

1
1+λ2τ

(x
(t)
j − τu

(t)
j + τλ1) if x

(t)
j − τu

(t)
j < −τλ1,

0 otherwise.

(31)

Similar to the approach of Section 5.1, we delay the update of xj until j ∈ J (t). We assume t0
to be the last iteration when j ∈ J (t), and let t1 be the current iteration when we want to update

xj . During iterations [t0 + 1, t1], the value of u
(t)
j doesn’t change, so we have u

(t)
j ≡ u

(t0+1)
j for

t ∈ [t0 + 1, t1]. Using equation (31) and the invariance of u
(t)
j for t ∈ [t0 + 1, t1], we have an O(1)

time algorithm to calculate x
(t1)
j , which we detail in Appendix C. The vector x

(t1)
j can be updated

by the same algorithm since it is a linear combination of x
(t1)
j and x

(t1−1)
j . As a consequence, the

computational complexity of each iteration in SPDC is proportional to |J (t)|, independent of the
dimension d.

6 Experiments

In this section, we compare the basic SPDC method (Algorithm 1) with several state-of-the-art
optimization algorithms for solving problem (1). They include two batch-update algorithms: the
accelerated full gradient (FAG) method [24, Section 2.2], and the limited-memory quasi-Newton
method L-BFGS [27, Section 7.2]). For the AFG method, we adopt an adaptive line search scheme
(e.g., [26]) to improve its efficiency. For the L-BFGS method, we use the memory size 30 as
suggested by [27]. We also compare SPDC with two stochastic algorithms: the stochastic average
gradient (SAG) method [32, 33], and the stochastic dual coordinate descent (SDCA) method [36].
We conduct experiments on a synthetic dataset and three real datasets.

15

20 40 60 80
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SAG
SDCA
SPDC

50 100 150
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SAG
SDCA
SPDC

(a) λ = 10−3 (b) λ = 10−4

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SAG
SDCA
SPDC

50 100 150 200 250 300
−4

−3

−2

−1

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SAG
SDCA
SPDC

(c) λ = 10−5 (d) λ = 10−6

Figure 1: Comparing SPDC with other methods on synthetic data, with the regularization coeffi-
cient λ ∈ {10−3, 10−4, 10−5, 10−6}. The horizontal axis is the number of passes through the entire
dataset, and the vertical axis is the logarithmic gap log(P (x(T))− P (x⋆)).

6.1 Ridge regression with synthetic data

We first compare SPDC with other algorithms on a simple quadratic problem using synthetic data.
We generate n = 500 i.i.d. training examples {ai, bi}ni=1 according to the model

b = 〈a, x∗〉+ ε, a ∼ N (0,Σ), ε ∼ N (0, 1),

where a ∈ R
d and d = 500, and x∗ is the all-ones vector. To make the problem ill-conditioned,

the covariance matrix Σ is set to be diagonal with Σjj = j−2, for j = 1, . . . , d. Given the set of
examples {ai, bi}ni=1, we then solved a standard ridge regression problem

minimize
x∈Rd

{
P (x)

def
=

1

n

n∑

i=1

1

2
(aTi x− bi)

2 +
λ

2
‖x‖22

}
.

In the form of problem (1), we have φi(z) = z2/2 and g(x) = (1/2)‖x‖22. As a consequence, the
derivative of φi is 1-Lipschitz continuous and g is λ-strongly convex.

16

Dataset name number of samples n number of features d sparsity

Covtype 581,012 54 22%
RCV1 20,242 47,236 0.16%
News20 19,996 1,355,191 0.04%

Table 3: Characteristics of three real datasets obtained from LIBSVM data [12].

We evaluate the algorithms by the logarithmic optimality gap log(P (x(t))− P (x⋆)), where x(t)

is the output of the algorithms after t passes over the entire dataset, and x⋆ is the global minimum.
When the regularization coefficient is relatively large, e.g., λ = 10−1 or 10−2, the problem is well-
conditioned and we observe fast convergence of the stochastic algorithms SAG, SDCA and SPDC,
which are substantially faster than the two batch methods AFG and L-BFGS.

Figure 1 shows the convergence of the five different algorithms when we varied λ from 10−3

to 10−6. As the plot shows, when the condition number is greater than n, the SPDC algorithm
also converges substantially faster than the other two stochastic methods SAG and SDCA. It is
also notably faster than L-BFGS. These results support our theory that SPDC enjoys a faster
convergence rate on ill-conditioned problems. In terms of their batch complexities, SPDC is up to√
n times faster than AFG, and (λn)−1/2 times faster than SAG and SDCA.

6.2 Binary classification with real data

Finally we show the results of solving the binary classification problem on three real datasets. The
datasets are obtained from LIBSVM data [12] and summarized in Table 3. The three datasets are
selected to reflect different relations between the sample size n and the feature dimensionality d,
which cover n ≫ d (Covtype), n ≈ d (RCV1) and n ≪ d (News20). For all tasks, the data points
take the form of (ai, bi), where ai ∈ R

d is the feature vector, and bi ∈ {−1, 1} is the binary class
label. Our goal is to minimize the regularized empirical risk:

P (x) =
1

n

n∑

i=1

φi(a
T
i x) +

λ

2
‖x‖22 where φi(z) =





0 if biz ≥ 1
1
2 − biz if biz ≤ 0
1
2(1− biz)

2 otherwise.

Here, φi is the smoothed hinge loss (see, e.g., [36]). It is easy to verify that the conjugate function
of φi is φ

∗
i (β) = biβ + 1

2β
2 for biβ ∈ [−1, 0] and ∞ otherwise.

The performance of the five algorithms are plotted in Figure 2 and Figure 3. In Figure 2, we
compare SPDC with the two batch methods: AFG and L-BFGS. The results show that SPDC
is substantially faster than AFG and L-BFGS for relatively large λ, illustrating the advantage of
stochastic methods over batch methods on well-conditioned problems. As λ decreases to 10−8, the
batch methods (especially L-BFGS) become comparable to SPDC.

In Figure 3, we compare SPDC with the two stochastic methods: SAG and SDCA. Here,
the observations are just the opposite to that of Figure 2. The three stochastic algorithms have
comparable performance on relatively large λ, but SPDC becomes substantially faster when λ
gets closer to zero. Summarizing Figure 2 and Figure 3, the performance of SPDC are always
comparable or better than the other methods in comparison.

17

λ RCV1 Covtype News20

10−4

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25
−20

−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−5

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25 30
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−6

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

20 40 60 80 100
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes
Lo

g
Lo

ss

AFG
L−BFGS
SPDC

10−7

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

50 100 150 200 250 300
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−8

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

100 200 300 400 500 600
−12

−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

Figure 2: Comparing SPDC with AFG and L-BFGS on three real datasets with smoothed hinge
loss. The horizontal axis is the number of passes through the entire dataset, and the vertical axis
is the logarithmic optimality gap log(P (x(t))−P (x⋆)). The SPDC algorithm is faster than the two
batch methods when λ is relatively large.

18

λ RCV1 Covtype News20

10−4

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25
−20

−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10−5

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25 30
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10−6

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

20 40 60 80 100
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes
Lo

g
Lo

ss

SAG
SDCA
SPDC

10−7

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

50 100 150 200 250 300
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10−8

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

100 200 300 400 500 600
−12

−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

Figure 3: Comparing SPDC with SAG and SDCA on three real datasets with smoothed hinge loss.
The horizontal axis is the number of passes through the entire dataset, and the vertical axis is the
logarithmic optimality gap log(P (x(T))−P (x⋆)). The SPDC algorithm is faster than the other two
stochastic methods when λ is small.

19

A Proof of Theorem 1

We focus on characterizing the values of x and y after the t-th update in Algorithm 2. For any

i ∈ {1, . . . , n}, let ỹi be the value of y
(t+1)
i if i ∈ K, i.e.,

ỹi = argmax
y∈R

{
y〈ai, x(t)〉 − φ∗

i (β)−
(y − y

(t)
i)2

2σ

}
.

Since φi is (1/γ)-smooth by assumption, its conjugate φ∗
i is γ-strongly convex (e.g., [14, Theo-

rem 4.2.2]). Thus the function being maximized above is (1/σ + γ)-strongly concave. Therefore,

−y⋆i 〈ai, x(t)〉+ φ∗
i (y

⋆
i) +

(y⋆i − y
(t)
i)2

2σ
≥− ỹi〈ai, x(t)〉+ φ∗

i (ỹi) +
(ỹi − y

(t)
i)2

2σ

+
(1
σ
+ γ
)(ỹi − y⋆i)

2

2
.

On the other hand, since y⋆i minimizes φ∗
k(y)− y〈ai, x⋆〉 (by property of the saddle-point), we have

φ∗
i (ỹi)− ỹi〈ai, x⋆〉 ≥ φ∗

i (y
⋆
i)− y⋆i 〈ai, x⋆〉+

γ

2
(ỹi − y⋆i)

2.

Summing up the above two inequalities, we obtain

(y
(t)
i − y⋆i)

2

2σ
≥
(1

2σ
+ γ
)
(ỹi − y⋆i)

2 +
(ỹi − y

(t)
i)2

2σ
+ (ỹi − y⋆i)〈ai, x⋆ − x(t)〉. (32)

According to Algorithm 2, the set K of indices to be updated are chosen randomly. For every

specific index i, the event i ∈ K happens with probability m/n. If i ∈ K, then y
(t+1)
i is updated

to the value ỹi, which satisfies inequality (32). Otherwise, y
(t+1)
i is assigned by its old value y

(t)
i .

Let Ft be the sigma field generated by all random variables defined before round t, and taking
expectation conditioned on Ft, we have

E[(y
(t+1)
i − y⋆i)

2|Ft] =
m(ỹi − y⋆i)

2

n
+

(n−m)(y
(t)
i − y⋆i)

2

n
,

E[(y
(t+1)
i − y

(t)
i)2|Ft] =

m(ỹi − y
(t)
i)2

n
,

E[y
(t+1)
i |Ft] =

mỹi
n

+
(n−m)y

(t)
i

n
.

As a result, we can represent (ỹi − y⋆i)
2, (ỹi − y

(t)
i)2 and ỹi in terms of the conditional expectations

on (y
(t+1)
i − y⋆i)

2, (y
(t+1)
i − y

(t)
i)2 and y

(t+1)
i . Plugging these representations into inequality (32), we

have

(
n

2mσ
+

(n−m)γ

m

)
(y

(t)
i − y⋆i)

2 ≥
(n

2mσ
+

nγ

m

)
E[(y

(t+1)
i − y⋆i)

2|Ft] +
nE[(y

(t+1)
i − y

(t)
i)2|Ft]

2mσ

+ 〈ai, x⋆ − x(t)〉
(
y
(t)
i − y⋆i +

n

m
E[y

(t+1)
i − y

(t)
i |Ft]

)
. (33)

20

Then summing over all indices i = 1, 2, . . . , n and dividing both sides of the inequality by n, we
have
(

1

2mσ
+

(n−m)γ

mn

)
‖y(t) − y⋆‖22 ≥

(
1

2mσ
+

γ

m

)
E[‖y(t+1) − y⋆‖22|Ft] +

E[‖y(t+1) − y(t)‖22|Ft]

2mσ

+ E

[〈
u(t) − u⋆ +

1

m

∑

k∈K
(y

(t+1)
k − y

(t)
k)ak, x

⋆ − x(t)
〉∣∣∣Ft

]
,

(34)

where u⋆ = 1
n

∑n
i=1 y

⋆
i ai is a shorthand notation, and u(t) = 1

n

∑n
i=1 y

(t)
i ai is defined in Algorithm 2.

We used the fact that
∑n

i=1(y
(t+1)
i − y

(t)
i)ai =

∑
k∈K(y

(t+1)
k − y

(t)
k)ak, since only the coordinates

in K are updated.

We still need an inequality characterizing the relation between x(t+1) and x(t). Following the
same steps for deriving inequality (32), and using the λ-strong convexity of function g, it is not
difficult to show that

‖x(t) − x⋆‖22
2τ

≥
(

1

2τ
+ λ

)
‖x(t+1) − x⋆‖22 +

‖x(t+1) − x(t)‖22
2τ

+
〈
u(t) − u⋆ +

1

m

∑

k∈K
(y

(t+1)
k − y

(t)
k)ak, x

(t+1) − x⋆
〉
. (35)

Taking expectation over both side of inequality (35), then adding it to inequality (34), we have

‖x(t) − x⋆‖22
2τ

+

(
1

2σ
+

(n−m)γ

n

) ‖y(t) − y⋆‖22
m

≥
(

1

2τ
+ λ

)
E[‖x(t+1) − x⋆‖22|Ft]

+

(
1

2σ
+ γ

)
E[‖y(t+1) − y⋆‖22|Ft]

m
+

E[‖x(t+1) − x(t)‖22|Ft]

2τ
+

E[‖y(t+1) − y(t)‖22|Ft]

2mσ

+ E



(
y(t) − y⋆

n
+

y(t+1) − y(t)

m

)T

A(x(t+1) − x(t) − θ(x(t) − x(t−1)))
∣∣∣Ft


 . (36)

For the last term of inequality (36), we have plugged in the definitions of u(t+1), u⋆ and x(t), and

used the relation that (y(t+1)− y(t))TA =
∑

k∈K(y
(t+1)
k − y

(t)
k)aTk . The matrix A is a n-by-d matrix,

whose i-th row is equal to the vector aTi .

For the rest of the proof, we lower bound the last term on the right-hand-side of inequality (36).
In particular, we have

(
y(t) − y⋆

n
+

y(t+1) − y(t)

m

)T

A(x(t+1) − x(t) − θ(x(t) − x(t−1))) =
(y(t+1) − y⋆)TA(x(t+1) − x(t))

n

− θ(y(t) − y⋆)TA(x(t) − x(t−1))

n
+

n−m

mn
(y(t+1) − y(t))TA(x(t+1) − x(t))

− θ

m
(y(t+1) − y(t))TA(x(t) − x(t−1)). (37)

21

Recall that ‖ak‖2 ≤ R and 1/τ = 4σR2 according to (10). We have

|(y(t+1) − y(t))TA(x(t+1) − x(t))| ≤ ‖x(t+1) − x(t)‖22
4τ/m

+
‖(y(t+1) − y(t))TA‖22

m/τ

=
‖x(t+1) − x(t)‖22

4τ/m
+

(
∑

k∈K |y(t+1)
k − y

(t)
k | · ‖ak‖2)2

4mσR2

≤ m‖x(t+1) − x(t)‖22
4τ

+
‖y(t+1) − y(t)‖22

4σ
,

Similarly, we have

|(y(t+1) − y(t))TA(x(t) − x(t−1))| ≤ m‖x(t) − x(t−1)‖22
4τ

+
‖y(t+1) − y(t)‖22

4σ
.

The above upper bounds on the absolute values imply

(y(t+1) − y(t))TA(x(t+1) − x(t)) ≥ −m‖x(t+1) − x(t)‖22
4τ

− ‖y(t+1) − y(t)‖22
4σ

,

(y(t+1) − y(t))TA(x(t) − x(t−1)) ≥ −m‖x(t) − x(t−1)‖22
4τ

− ‖y(t+1) − y(t)‖22
4σ

.

Combining the above two inequalities with lower bounds (36) and (37), we obtain

‖x(t) − x⋆‖22
2τ

+

(
1

2σ
+

(n−m)γ

n

) ‖y(t) − y⋆‖22
m

≥
(

1

2τ
+ λ

)
E[‖x(t+1) − x⋆‖22|Ft]

+

(
1

2σ
+ γ

)
E[‖y(t+1) − y⋆‖22|Ft]

m
+

E[‖x(t+1) − x(t)‖22|Ft]− θ‖x(t) − x(t−1)‖22
4τ

+
E[(y(t+1) − y⋆)TA(x(t+1) − x(t))|Ft]− θ(y(t) − y⋆)TA(x(t) − x(t−1))

n
. (38)

Recall that the parameters τ , σ, and θ are chosen to be

τ =
1

2R

√
mγ

nλ
, σ =

1

2R

√
nλ

mγ
, and θ = 1− 1

(n/m) +R
√

(n/m)/(λγ)
.

Plugging in these assignments, we find that

1/(2τ)

1/(2τ) + λ
= 1− 1

1 + 1/(2τλ)
≤ θ and

1/(2σ) + (n−m)γ/n

1/(2σ) + γ
= 1− 1

n/m+ n/(2mσγ)
= θ

Therefore, if we define a sequence ∆(t) such that

∆(t) =

(
1

2τ
+ λ

)
E[‖x(t) − x⋆‖22] +

(
1

2σ
+ γ

)
E[‖y(t) − y⋆‖22]

m

+
E[‖x(t) − x(t−1)‖22]

4τ
+

E[(y(t) − y⋆)TA(x(t) − x(t−1))]

n
,

22

then inequality (38) implies the recursive relation ∆(t+1) ≤ θ ·∆(t), which implies

(
1

2τ
+ λ

)
E[‖x(t) − x⋆‖22] +

(
1

2σ
+ γ

)
E[‖y(t) − y⋆‖22]

m

+
E[‖x(t) − x(t−1)‖22]

4τ
+

E[(y(t) − y⋆)TA(x(t) − x(t−1))]

n
≤ θ t ·∆(0), (39)

where

∆(0) =

(
1

2τ
+ λ

)
‖x(0) − x⋆‖22 +

(
1

2σ
+ γ

) ‖y(0) − y⋆‖22
m

.

To eliminate the last two terms on the left-hand side of inequality (39), we notice that

∣∣(y(t) − y⋆)TA(x(t) − x(t−1))
∣∣

n
≤ ‖x(t) − x(t−1)‖22

4τ
+

‖A‖22 ‖y(t) − y⋆‖22
n2/τ

≤ ‖x(t) − x(t−1)‖22
4τ

+
nR2‖y(t) − y⋆‖22

n2/τ

=
‖x(t) − x(t−1)‖22

4τ
+

‖y(t) − y⋆‖22
4nσ

≤ ‖x(t) − x(t−1)‖22
4τ

+
‖y(t) − y⋆‖22

4mσ
,

where in the second inequality we used ‖A‖22 ≤ ‖A‖2F ≤ nR2, in the equality we used τσ = 1/(4R2),
and in the last inequality we used m ≤ n. The above upper bound on absolute value implies

(y(t) − y⋆)TA(x(t) − x(t−1))

n
≥ − ‖x(t) − x(t−1)‖22

4τ
− ‖y(t) − y⋆‖22

4mσ
.

The theorem is established by combining the above inequality with inequality (39).

B Proof of Theorem 2

The proof of Theorem 2 mimics the steps for proving Theorem 1. We start by establishing relation
between (y(t), y(t+1)) and between (x(t), x(t+1)). Suppose that the quantity ỹi minimizes the function

φ∗
i (y)−y〈ai, x(t)〉+ pin

2σ (y−y
(t)
i)2. Then, following the same argument for establishing inequality (32),

we obtain

pin

2σ
(y

(t)
i − y⋆i)

2 ≥
(pin
2σ

+ γ
)
(ỹi − y⋆i)

2 +
pin(ỹi − y

(t)
i)2

2σ
+ 〈ai, x⋆ − x(t)〉(ỹi − y⋆i). (40)

Note that i = k with probability pi. Therefore, we have

(ỹi − y⋆i)
2 =

1

pi
E[(y

(t+1)
i − y⋆i)

2|Ft]−
1− pi
pi

(y
(t)
i − y⋆i)

2,

(ỹi − y
(t)
i)2 =

1

pi
E[(y

(t+1)
i − y

(t)
i)2|Ft],

ỹi =
1

pi
E[y

(t+1)
i |Ft]−

1− pi
pi

y
(t)
i ,

23

where Ft represents the sigma field generated by all random variables defined before iteration t.
Substituting the above equations into inequality (40), and averaging over i = 1, 2, . . . , n, we have

n∑

i=1

(
1

2σ
+

(1− pi)γ

pin

)
(y

(t)
i − y⋆i)

2 ≥
n∑

i=1

(
1

2σ
+

γ

pin

)
E[(y

(t+1)
i − y⋆i)

2|Ft] +
E[(y

(t+1)
k − y

(t)
k)2|Ft]

2σ

+ E[〈(u(t) − u⋆) + (y
(t+1)
k − y

(t)
k)ak/(pkn), x

⋆ − x(t)〉|Ft],
(41)

where u⋆ = 1
n

∑n
i=1 y

⋆
i ai and u(t) = 1

n

∑n
i=1 y

(t)
i ai have the same definition as in the proof of

Theorem 1. For the relation between x(t) and x(t+1), we follow the steps in the proof of Theorem 1
to obtain

‖x(t) − x⋆‖22
2τ

≥
(

1

2τ
+ λ

)
‖x(t+1) − x⋆‖22 +

‖x(t+1) − x(t)‖22
2τ

+ 〈(u(t) − u⋆) + (y
(t+1)
k − y

(t)
k)ak/(pkn), x

(t+1) − x⋆〉. (42)

Taking expectation over both sides of inequality (42) and adding it to inequality (41) yields

‖x(t) − x⋆‖22
2τ

+

n∑

i=1

(
1

2σ
+

(1− pi)γ

pin

)
(y

(t)
i − y⋆i)

2 ≥
(

1

2τ
+ λ

)
E[‖x(t+1) − x⋆‖22|Ft]

+
n∑

i=1

(
1

2σ
+

γ

pin

)
E[(y

(t+1)
i − y⋆i)

2|Ft] +
‖x(t+1) − x(t)‖22

2τ
+

E[(y
(t+1)
k − y

(t)
k)2|Ft]

2σ

+ E

[((y(t) − y⋆)TA

n
+

(y
(t+1)
k − y

(t)
k)aTk

pkn

)
((x(t+1) − x(t))− θ(x(t) − x(t−1)))

︸ ︷︷ ︸
v

∣∣∣Ft

]
, (43)

where the matrix A is a n-by-d matrix, whose i-th row is equal to the vector aTi .

Next, we lower bound the last term on the right-hand side of inequality (43). Indeed, it can be
expanded as

v =
(y(t+1) − y⋆)TA(x(t+1) − x(t))

n
− θ(y(t) − y⋆)TA(x(t) − x(t−1))

n

+
1− pk
pkn

(y
(t+1)
k − y

(t)
k)aTk (x

(t+1) − x(t))− θ

pkn
(y

(t+1)
k − y

(t)
k)aTk (x

(t) − x(t−1)). (44)

Note that the probability pk given in (17) satisfies

pk ≥ ‖ak‖2
2
∑n

i=1 ‖ai‖2
=

‖ak‖2
2nR̄

, k = 1, . . . , n.

Since the parameters τ and σ satisfies στR̄2 = 1/16, we have p2kn
2/τ ≥ 4σ‖ak‖22 and consequently

|(y(t+1)
k − y

(t)
k)aTk (x

(t+1) − x(t))|
pkn

≤ ‖x(t+1) − x(t)‖22
4τ

+
‖(y(t+1)

k − y
(t)
k)ak‖22

p2kn
2/τ

≤ ‖x(t+1) − x(t)‖22
4τ

+
(y

(t+1)
k − y

(t)
k)2

4σ
.

24

Similarly, we have

|(y(t+1)
k − y

(t)
k)aTk (x

(t) − x(t−1))|
pkn

≤ ‖x(t) − x(t−1)‖22
4τ

+
(y

(t+1)
k − y

(t)
k)2

4σ
.

Combining the above two inequalities with lower bounds (43) and (44), we obtain

‖x(t) − x⋆‖22
2τ

+

n∑

i=1

(
1

2σ
+

(1− pi)γ

pin

)
(y

(t)
i − y⋆i)

2 ≥
(

1

2τ
+ λ

)
E[‖x(t+1) − x⋆‖22|Ft]

+
n∑

i=1

(
1

2σ
+

γ

pin

)
E[(y

(t+1)
i − y⋆i)

2|Ft] +
E[‖x(t+1) − x(t)‖22|Ft]− θ‖x(t) − x(t−1)‖22

4τ

+
E[(y(t+1) − y⋆)TA(x(t+1) − x(t))|Ft]− θ(y(t) − y⋆)A(x(t) − x(t−1))

n
. (45)

Recall that the parameters τ , σ, and θ are chosen to be

τ =
1

4R̄

√
γ

nλ
, σ =

1

4R̄

√
nλ

γ
, and θ = 1− 1

2n+ 2R̄
√
n/(λγ)

.

Plugging in these assignments and using the fact that pi ≥ 1/(2n), we find that

1/(2τ)

1/(2τ) + λ
≤ θ and

1/(2σ) + (1− pi)γ/(pin)

1/(2σ) + γ/(pin)
≤ θ for i = 1, 2, . . . , n.

Therefore, if we define a sequence ∆(t) such that

∆(t) =

(
1

2τ
+ λ

)
E[‖x(t) − x⋆‖22] +

n∑

i=1

(
1

2σ
+

γ

pin

)
E[(y

(t)
i − y⋆i)

2]

+
E[‖x(t) − x(t−1)‖22]

4τ
+

E[(y(t) − y⋆)TA(x(t) − x(t−1))]

n
,

then inequality (45) implies the recursive relation ∆(t+1) ≤ θ ·∆(t), which implies

(
1

2τ
+ λ

)
E[‖x(t) − x⋆‖22] +

(
1

2σ
+

2γ

n

)
E[‖y(t) − y⋆‖22]

+
E[‖x(t) − x(t−1)‖22]

4τ
+

E[(y(t) − y⋆)TA(x(t) − x(t−1))]

n
≤ θT∆(0), (46)

where

∆(0) =

(
1

2τ
+ λ

)
‖x(0) − x⋆‖22 +

n∑

i=1

(
1

2σ
+

γ

pin

)
(y

(0)
i − y⋆i)

2

≤
(

1

2τ
+ λ

)
‖x(0) − x⋆‖22 +

(
1

2σ
+ 2γ

)
‖y(0) − y⋆‖22.

25

To eliminate the last two terms on the left-hand side of inequality (46), we notice that

|(y(t) − y⋆)TA(x(t) − x(t−1))|
n

≤ ‖x(t) − x(t−1)‖22
4τ

+
‖y(t) − y⋆‖22 ‖A‖22

n2/τ

≤ ‖x(t) − x(t−1)‖22
4τ

+
‖y(t) − y⋆‖22 ‖A‖2F

n2/τ

=
‖x(t) − x(t−1)‖22

4τ
+

‖y(t) − y⋆‖22
∑n

i=1 ‖ai‖22
16σ(

∑n
i=1 ‖ai‖2)2

≤ ‖x(t) − x(t−1)‖22
4τ

+
‖y(t) − y⋆‖22

16σ
,

where in the equality we used n2/τ = n2 · 16σR̄2 = 16σ (
∑n

i=1 ‖ai‖2)
2. This implies

|(y(t) − y⋆)TA(x(t) − x(t−1))|
n

≥ − ‖x(t) − x(t−1)‖22
4τ

− ‖y(t) − y⋆‖22
16σ

.

Substituting the above inequality into inequality (46) completes the proof.

C Efficient update for (ℓ1 + ℓ2)-norm penalty

From Section 5.2, we have the following recursive formula for t ∈ [t0 + 1, t1],

x
(t+1)
j =





1
1+λ2τ

(x
(t)
j − τu(t0+1) − τλ1) if x

(t)
j − τu

(t0+1)
j > τλ1,

1
1+λ2τ

(x
(t)
j − τu(t0+1) + τλ1) if x

(t)
j − τu

(t0+1)
j < −τλ1,

0 otherwise.

(47)

Given x
(t0+1)
j at iteration t0, we present an efficient algorithm for calculating x

(t1)
j . We begin by

examining the sign of x
(t0+1)
j .

Case I (x
(t0+1)
j = 0): If −u

(t0+1)
j > λ1, then equation (47) implies x

(t)
j > 0 for all t > t0 + 1.

Consequently, we have a closed-form formula for x
(t1)
j :

x
(t1)
j =

1

(1 + λ2τ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j + λ1

λ2

)
−

u
(t0+1)
j + λ1

λ2
. (48)

If −u
(t0+1)
j < −λ1, then equation (47) implies x

(t)
j < 0 for all t > t0 + 1. Therefore, we have the

closed-form formula:

x
(t1)
j =

1

(1 + λ2τ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j − λ1

λ2

)
−

u
(t0+1)
j − λ1

λ2
. (49)

Finally, if −u
(t0+1)
j ∈ [−λ1, λ1], then equation (47) implies x

(t1)
j = 0.

26

Case II (x
(t0+1)
j > 0): If −u

(t0+1)
j ≥ λ1, then it is easy to verify that x

(t1)
j is obtained by

equation (48). Otherwise, We use the recursive formula (47) to derive the latest time t+ ∈ [t0+1, t1]

such that xt
+

j > 0 is true. Indeed, since x
(t)
j > 0 for all t ∈ [t0+1, t+], we have a closed-form formula

for xt
+

j :

xt
+

j =
1

(1 + λ2τ)t
+−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j + λ1

λ2

)
−

u
(t0+1)
j + λ1

λ2
. (50)

We look for the largest t+ such that the right-hand side of equation (50) is positive, which is
equivalent of

t+ − t0 − 1 < log
(
1 +

λ2x
(t0+1)
j

u
(t0+1)
j + λ1

)
/log(1 + λ2τ). (51)

Thus, t+ is the largest integer in [t0 + 1, t1] such that inequality (51) holds. If t+ = t1, then x
(t1)
j

is obtained by (50). Otherwise, we can calculate xt
++1
j by formula (47), then resort to Case I or

Case III, treating t+ as t0.

Case III (x
(t0+1)
j < 0): If −u

(t0+1)
j ≤ −λ1, then x

(t1)
j is obtained by equation (49). Otherwise,

we calculate the largest integer t− ∈ [t0+1, t1] such that xt
−

j < 0 is true. Using the same argument
as for Case II, we have the closed-form expression

xt
−

j =
1

(1 + λ2τ)t
−−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j − λ1

λ2

)
−

u
(t0+1)
j − λ1

λ2
. (52)

where t− is the largest integer in [t0 + 1, t1] such that the following inequality holds:

t− − t0 − 1 < log
(
1 +

λ2x
(t0+1)
j

u
(t0+1)
j − λ1

)
/log(1 + λ2τ). (53)

If t− = t1, then x
(t1)
j is obtained by (52). Otherwise, we can calculate xt

−+1
j by formula (47), then

resort to Case I or Case II, treating t− as t0.

Finally, we note that formula (47) implies the monotonicity of x
(t)
j (t = t0 + 1, t0 + 2, . . .). As

a consequence, the procedure of either Case I, Case II or Case III is executed for at most once.

Hence, the algorithm for calculating x
(t1)
j has O(1) time complexity.

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[2] D. P. Bertsekas. Incremental proximal methods for large scale convex optimization. Mathe-
matical Programming, Ser. B, 129:163–195, 2011.

27

[3] D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex opti-
mization: a survey. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine
Learning, chapter 4. The MIT Press, 2012.

[4] D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a
constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

[5] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Y. Lechevallier
and G. Saporta, editors, Proceedings of the 19th International Conference on Computational
Statistics (COMPSTAT’2010), pages 177–187, Paris, France, August 2010. Springer.

[6] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2:499–526, 2002.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1–122, 2010.

[8] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[9] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-loss
linear support vector machines. Journal of Machine Learning Research, 9:1369–1398, 2008.

[10] J. Dean and S. Ghemawat. MapReduce: Simplfied data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, 2008.

[11] J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting.
Journal of Machine Learning Research, 10:2873–2898, 2009.

[12] R.-E. Fan and C.-J. Lin. LIBSVM data: Classification, regression and multi-label. URL:
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets, 2011.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, New York, 2nd edition, 2009.

[14] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer, 2001.

[15] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear svm. In Proceedings of the 25th International Conference
on Machine Learning (ICML), pages 408–415, 2008.

[16] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26, pages 315–323. 2013.

[17] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. Journal of
Machine Learning Research, 10:777–801, 2009.

[18] Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method and its
application to regularized empirical risk minimization. Technical Report MSR-TR-2014-94,
Microsoft Research, 2014. arXiv:1407.1296.

28

[19] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964–979, December 1979.

[20] MPI Forum. MPI: a message-passing interface standard, Version 3.0. Document available at
http://www.mpi-forum.org, 2012.

[21] A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable opti-
mization. SIAM Journal on Optimization, 12(1):109–138, 2001.

[22] D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm. arXiv preprint arXiv:1310.5715, 2014.

[23] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation ap-
proach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[24] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

[25] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[26] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, Ser. B, 140:125–161, 2013.

[27] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.

[28] H. Ouyang, N. He, L. Tran, and A. Gray. Stochastic alternating direction method of multipliers.
In Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta,
GA, USA, 2013.

[29] J. Platt. Fast training of support vector machine using sequential minimal optimization. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support Vector
Learning, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[30] B. T. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30:838–855, 1992.

[31] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

[32] N. L. Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing Systems
25, pages 2672–2680. 2012.

[33] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.

[34] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. arXiv:1309.2375.

29

[35] S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual coordinate ascent.
In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances
in Neural Information Processing Systems 26, pages 378–385. 2013.

[36] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14:567–599, 2013.

[37] T. Suzuki. Dual averaging and proximal gradient descent for online alternating direction
multiplier method. In Proceedings of the 30th International Conference on Machine Learning
(ICML), pages 392–400, Atlanta, GA, USA, 2013.

[38] T. Suzuki. Stochastic dual coordinate ascent with alternating direction method of multipliers.
In Proceedings of the 31st International Conference on Machine Learning (ICML), pages 736–
744, Beijing, 2014.

[39] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro. Mini-batch primal and dual methods for
SVMs. In Proceedings of the 30th International Conference on Machine Learning (ICML),
2013.

[40] P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive
stepsiz rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

[41] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Un-
published manuscript, 2008.

[42] H. Wang and A. Banerjee. Online alternating direction method. In Proceedings of the 29th In-
ternational Conference on Machine Learning (ICML), pages 1119–1126, Edinburgh, Scotland,
UK, 2012.

[43] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11:2534–2596, 2010.

[44] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. Technical Report MSR-TR-2014-38, Microsoft Research, 2014. arXiv:1403.4699.

[45] T. Yang. Trading computation for communication: Distributed stochastic dual coordinate
ascent. In Advances in Neural Information Processing Systems 26, pages 629–637. 2013.

[46] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21st International Conference on Machine Learning (ICML),
pages 116–123, Banff, Alberta, Canada, 2004.

[47] X. Zhang, M. Burger, and S. Osher. A unifoed primal-dual algorithm framework based on
Bregman iteration. Journal of Scientific Computing, 46(1):20–46, January 2011.

[48] P. Zhao and T. Zhang. Stochastic optimization with importance sampling. arXiv:1401.2753,
2014.

[49] L. W. Zhong and J. T. Kwok. Fast stochastic alternating direction method of multipliers. In
Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta, GA,
USA, 2013.

30

