
Brief Announcement: Deadline-Aware Scheduling of
Big-Data Processing Jobs

Peter Bodík
Microsoft Research

Redmond, WA
peterb@microsoft.com

Ishai Menache
Microsoft Research

Redmond, WA
ishai@microsoft.com

Joseph (Seffi) Naor
∗

CS Department, Technion
Haifa, Israel

naor@cs.technion.ac.il
Jonathan Yaniv

CS Department, Technion
Haifa, Israel

jyaniv@cs.technion.ac.il

ABSTRACT
This paper presents a novel algorithm for scheduling big data jobs
on large compute clusters. In our model, each job is represented
by a DAG consisting of several stages linked by precedence con-
straints. The resource allocation per stage is malleable, in the sense
that the processing time of a stage depends on the resources al-
located to it (the dependency can be arbitrary in general). The
goal of the scheduler is to maximize the total value of completed
jobs, where the value for each job depends on its completion time.
We design an algorithm for the problem which guarantees an ex-
pected constant approximation factor when the cluster capacity is
sufficiently high. To the best of our knowledge, this is the first
constant-factor approximation algorithm for the problem. The al-
gorithm is based on formulating the problem as a linear program
and then rounding an optimal (fractional) solution into a feasible
(integral) schedule using randomized rounding.

Keywords
Scheduling algorithms; big data; deadline-aware scheduling

1. INTRODUCTION
Background and Motivation. Big data processing is increasingly
receiving more attention today, as many companies process huge
amounts of data to gain valuable insight into data patterns and be-
havior that previously were not observable. Frameworks such as
MapReduce [3] or Cosmos [2] run on tens of thousands of ma-
chines and schedule jobs that process terabytes or even petabytes
of data. These jobs are often used for business critical decisions
and have strict deadlines associated with them. For example, out-
puts of some jobs are used by business analysts; delaying job com-
pletion would significantly lower their productivity. In other cases,

∗Work supported in part by the Technion-Microsoft Electronic
Commerce Research Center, and by ISF grant 954/11.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

a job computes the charges to customers in cloud computing set-
tings, and delays in sending the bill might have serious business
consequences. If the output of a job is used by external customers,
missing a deadline often results in actual financial penalty.

In practice, production jobs vary significantly in many aspects.
First, they vary in urgency: some jobs cannot suffer delays, whereas
other jobs have looser time constraints and can be pushed back.
Second, they vary in utility: some jobs are more important than
others, and as a result users have higher value assessments for
their jobs meeting predefined deadlines. Finally, they vary in struc-
ture. Big data jobs typically have complex internal structure which
makes their scheduling challenging. Jobs are composed of com-
putation stages, where each stage represents a logical operation on
the data, such as extraction of raw data, filtering of data, or aggrega-
tion of certain columns. The number of stages varies between jobs;
for example, MapReduce jobs have only two stages, while several
large production jobs in Cosmos can have up to hundreds of stages.
Stages are linked by input-output dependencies that induce prece-
dence constraints between stages. These constraints form a di-
rected acyclic graph (DAG) structure that must be preserved when
scheduling the job.

However, currently used schedulers in production typically do
not support hard or soft deadlines. In most cases, a user simply
submits a job with a certain resource requirement which is not nec-
essarily matched with a concrete desired completion time. The
purpose of this paper is to design a deadline-aware scheduler with
provable performance guarantees for executing complex job struc-
tures on large computation clusters.

The question is, up to what level of granularity should jobs be
broken into? Stages themselves typically consist of numerous ver-
tices (also known as subtasks or worker nodes) that also induce a
DAG structure. In principle, one can think of a scheduler that by-
passes the stage hierarchy, treating each job as a large DAG of ver-
tices and assigning vertices to compute slots. While a vertex-level
scheduler could lead in principle to efficient allocations, it might
not scale to multiple big-data jobs having millions of vertices each,
which are fairly common. Consequently, allocating resources at
stage-level becomes an appealing scalable alternative. On the other
extreme, allocating resources at the job level would significantly
reduce the scale of the problem, but might lead to very inefficient
schedules. For example, different stages in a job require different
level of parallelism and process different amounts of data (up to five
or more orders of magnitude) and should thus be treated differently
by the scheduler. Rather than allocating a fixed amount of resources

to the entire job, a stage-level scheduler can assign a different num-
ber of resources for each stage, based on the number of vertices,
the amount of data to be processed within the stage, etc. Towards
this end, stages are treated as malleable tasks, i.e., tasks that can be
allocated different amounts of resources, such that increasing the
number of allocated slots can reduce the stage processing time.

In this paper, we consider the problem of scheduling a set of big-
data jobs on a cluster with C identical computing resources (e.g.,
a server or a core within a server). We summarize below the main
aspects of our model.

1. Jobs consist of stages that are DAG-structured: A directed de-
pendency edge between two stages symbolizes a precedence con-
straint, that is, a stage cannot be processed before its dependencies
have been completed.

2. Allocations are malleable, assuming arbitrary speedups: Each
stage can be allocated different amounts of resources. For example,
the user may specify per stage low and high thresholds on the re-
quired amount of resources. The number of resources per stage is
fixed during the execution of the stage. As mentioned, we assume
that speedups can be arbitrary, i.e., the relation between the num-
ber of allocated resources and stage processing time can arbitrary.
Our allocation model also enables the processing time to depend
not only on the number of resources dedicated to processing the
stage, but also on the specific time during which the stage started
its processing. For example, the processing time can increase dur-
ing times when the cluster is known to be congested.

3. Value gained by job completion depends on completion time:
Each job j is associated with a value function vj(t) which repre-
sents the value gained by completing job j at a time t. The value
functions can be arbitrary. Note that our model generalizes the
single deadline scenario1, as it allows for several “soft" deadlines
when delayed completion time is still somewhat valuable to the
user. The objective of the scheduler is to find a feasible assignment
maximizing the total value extracted from fully completed jobs.

4. Jobs are known in advance (offline allocation model): In prac-
tice, deadline-bound jobs tend to be recurring, i.e., they are sched-
uled periodically, e.g., on an hourly or daily basis. One can thus use
the execution statistics from past instances of these jobs to produce
per-stage response curves which can serve as input to the scheduler.
For example, [4] describes a method for estimating the duration of
a stage with n vertices, by forming empirical distributions for each
vertex which rely on past executions of the stage, and then estimat-
ing the stage duration via Monte Carlo simulations, where vertex
latencies are drawn from the per vertex distributions.

Related Work. Scheduling problems of DAG-structured jobs have
been widely studied in the parallel processing literature (see [9] for
a survey). More related to our work, papers on scheduling DAG
jobs with malleable tasks focus mainly on global system objectives
such as makespan minimization (see [5, 8] and references therein).
Recently, a deadline-aware scheduler for malleable tasks has been
proposed [4], however the paper only proposed heuristics for the
single job case. To the best of our knowledge, the objective of
maximizing aggregate (completion-time) values has not been con-
sidered in the literature.

The value maximization objective has been previously consid-
ered by [6, 7, 10, 11, 1]; however, these papers treated each job
as a single entity, while abstracting away inner stage dependencies
and stage malleability. Such simplifications might result in inef-
ficient resource allocation, especially for jobs with heterogenous
stage profiles.
1 A single strict deadline dj can be modeled by setting vj(t) to
some constant for t ≤ dj and 0 otherwise.

2. PROBLEM STATEMENT
System. The system consists of a computing cluster containing C
identical compute units (we use the terms compute units, resources,
servers interchangeably). We assume that the timeline is divided
into a discrete set of slots 1, 2, . . . , T and that all of the servers are
available throughout each time slot. The cluster receives a set of
job processing requests. We consider the offline allocation model,
in which all jobs are fully known in advance, and the goal is to
schedule the jobs on theC servers during the time slots 1, 2, . . . , T .

Jobs. Each job j submitted to the system is described by a directed
acyclic graph Gj = (Vj , Ej). Nodes of the graph represent stages
of the job, while edges represent the dependencies between stages.
For clarity, we use the term “node" instead of “stage" to maintain
consistency with graph notation. Each job j consists of nj nodes,
denoted Vj = {1, 2, . . . , nj}. We assume that the nodes in Gj are
topologically ordered, such that (v, v′) ∈ Ej implies v < v′. An
edge (v, v′) ∈ Ej in the graph symbolizes a precedence constraint
between nodes, meaning, node v′ cannot begin its execution before
node v has been completed. We define the width ωj of a directed
acyclic graph Gj as the largest number of nodes in Gj that can be
simultaneously processed without violating precedence constraints.
Denote by n = maxj{nj} and ω = maxj{ωj} the largest graph
size and graph width of the input jobs.

Each job is associated with a value function vj(t) that specifies
the value gained by fully completing job j at any time t. The com-
pletion time of a job is defined as the latest completion time of all
its nodes. The value functions are given explicitly to the scheduler,
which attempts to maximize the total gained value.

Node Allocations. Allocations of resources to nodes are shaped as
rectangles. A rectangle A describes an allocation of resources to a
node during a time slot interval [s(A), e(A)], where s(A) and e(A)
are the processing start and end times, respectively. The height of
the rectangle k(A) represents the number of resources allocated to
the node. A tuple (k(A), s(A), e(A)) is termed a node allocation
and is denoted by A. For a time slot t, we shorten the notation of
t ∈ [s(A), e(A)] to simply t ∈ A.

Each job j specifies a set Aj,v of feasible node allocations per
node2 v ∈ Vj . To allocate node v, the system must choose ex-
actly one node allocation from Aj,v . We note that we make no
additional assumptions on the relation between the number of al-
located resources and the node processing time, though in practice
the processing time typically decreases in the number of allocated
resources. We denote by k = max {k(A) | j, v, A ∈ Aj,v} the
largest number of resources that may be allocated to a node.

3. DAG SCHEDULING
We present the first offline approximation algorithm for schedul-

ing DAG-structured jobs with malleable stages to maximize the to-
tal value of completed jobs. The algorithm guarantees an expected
constant approximation factor when C = Ω(ωk logn). The ap-
proximation algorithm is based on a randomized rounding tech-
nique, where a relaxed fractional formulation of the problem is op-
timally solved and then rounded to a feasible schedule of the DAG-
structured jobs via randomized methods. The algorithm consists of
four steps, each summarized next.

2 Each set Aj,v is specified by the job owner and is part of the
input to the problem. We note that the setAj,v need not necessarily
include all possible node allocations; in practice it may include only
a small subset of “attractive" allocation options as perceived by the
job owner.

Step 1: Linear Program. We first solve a relaxed formulating
of the DAG scheduling problem as a linear program. We define a
variable x(A) ∈ [0, 1] for each node allocation A ∈ Aj,v of job j
and node v ∈ Vj , denoting the fractional allocation of A.

max
∑
j

∑
A∈Aj,nj

vj(e(A)) · x(A)

s.t.
∑

A∈Aj,v

x(A) ≤ 1 ∀j, v

∑
j,v

∑
A∈Aj,v :
t∈A

k(A) · x(A) ≤ C ∀t

∑
A∈Aj,v :

e(A)<t

x(A) ≥
∑

A′∈A
j,v′ :

s(A′)≤t

x(A′) ∀j, (v, v′) ∈ Ej , t

x(A) ≥ 0 ∀j, v, A ∈ Aj,v
The first two set of constraints are standard demand and capacity
constraints, and the final set of constraints are the precedence con-
straints of the linear program. We define the value of a fractional
solution x as the value of the objective function obtained by x.

Rounding a fractional solution x can be very difficult due to the
inherit structure of x. Specifically, the support of x may contain
two node allocations that cannot coexist in a feasible schedule,
since their existence violates a dependency constraint; see Fig. 1
for an example. To overcome this difficulty, we first extract mean-
ingful job allocations from x (see step 3 for definition) and then
round the job allocations (step 4). Before decomposing x, we ap-
ply a preliminary correcting step called balancing (step 2).

Step 2: Balancing. The balancing step is a preliminary step used to
simplify the decomposition of a fractional solution x, as described
in step 3. For a fractional solution x, job j and node v ∈ Vj , we
define xj,v =

∑
A∈Nj,v x(A) as the total completed fraction of

node v according to x.

DEFINITION 1. A fractional solution x is called balanced if
xj,v = xj,v′ for every job j and nodes v, v′ ∈ Vj .

LEMMA 3.1. Every fractional solution x can be balanced in
polynomial time without changing the value of x.

Step 3: Decomposing a Balanced Solution. We decompose x∗

into job allocations, which are eventually used to construct the
rounded solution. A decomposition can be viewed as an alternate
representation of a fractional solution in which node allocations in
x are grouped into job allocations; see Fig. 1 for an example.

DEFINITION 2. A job allocation of a job j is a set of node al-
locations J =

{
A1, A2, . . . , Anj

}
, one allocation Av ∈ Aj,v per

node v ∈ Vj , which satisfies allocation precedence constraints.
Formally, for every dependency edge (v, v′) ∈ Ej and correspond-
ing node allocations Av, Av′ ∈ J , we have e(Av) < s(Av′).

DEFINITION 3. A decomposition of a balanced fractional so-
lution x is a tuple (S, y). The decomposition consists of a set S
of job allocations and a mapping y : S → [0, 1] that satisfies for
every job j, node v ∈ Vj and node allocation A ∈ Aj,v:

x(A) =
∑

J∈S:A∈J

y(J). (1)

LEMMA 3.2. A decomposition (S, y) of a balanced fractional
solution x can be generated in polynomial time.

2 3

1

4

1

1
2 1

3

4
2 4

0.3 0.2 0.3 0.30.2 0.20.5

2

1 3 2 4

1 3 2 4

1 2 3 4

0.2

0.1

0.2

3

Figure 1: The figure shows an example of a job j and its frac-
tional allocation. (1) DAG structure of job j; (2) fractional so-
lution x (only job j shown); (3) weighted decomposition of x.

Step 4: Randomized Rounding. Our algorithm decomposes an
optimal fractional solution x∗ and randomly selects job allocations
from the decomposition. We note that randomly generating a feasi-
ble solution, while obtaining an expected high value, is non-trivial
and requires several algorithmic insights.

THEOREM 3.3. The DAG scheduling problem admits a random-
ized approximation algorithm that obtains an expected approxima-
tion ratio of α(λ) for every λ > 0, where:

α(λ) ,
1

λ
· e−

1
λ ·

[
1− e−

(1− 1
λ)C−k
2ωk

·ln(λ·(1− k
C))

]n
.

4. REFERENCES
[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and

B. Schieber. A unified approach to approximating resource
allocation and scheduling. Journal of the ACM (JACM),
48:1069–1090, 2001.

[2] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel
Processing of Massive Datasets. In VLDB, 2008.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, 2004.

[4] A. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: guaranteed job latency in data parallel
clusters. In ECCS, pages 99–112. ACM, 2012.

[5] E. Günther, F. G. König, and N. Megow. Scheduling and
packing malleable and parallel tasks with precedence
constraints of bounded width. J Combinatorial Optimization,
27:164–181, 2012.

[6] N. Jain, I. Menache, J. Naor, and J. Yaniv. A truthful
mechanism for value-based scheduling in cloud computing.
In SAGT, pages 178–189, 2011.

[7] N. Jain, I. Menache, J. Naor, and J. Yaniv. Near-optimal
scheduling mechanisms for deadline-sensitive jobs in large
computing clusters. In SPAA, pages 255–266, 2012.

[8] K. Jansen and H. Zhang. Scheduling malleable tasks with
precedence constraints. Journal of Computer and System
Sciences, 78(1):245–259, 2012.

[9] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for
allocating directed task graphs to multiprocessors. ACM
Computing Surveys (CSUR), 31(4):406–471, 1999.

[10] B. Lucier, I. Menache, J. Naor, and J. Yaniv. Efficient online
scheduling for deadline-sensitive jobs: extended abstract. In
SPAA, pages 305–314, 2013.

[11] C. A. Phillips, R. N. Uma, and J. Wein. Off-line admission
control for general scheduling problems. In SODA, pages
879–888, 2000.

