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ABSTRACT
Despite the widespread use of BM25, there have been few
studies examining its effectiveness on a document descrip-
tion over single and multiple field combinations. We deter-
mine the effectiveness of BM25 on various document fields.
We find that BM25 models relevance on popularity fields
such as anchor text and query click information no better
than a linear function of the field attributes. We also find
query click information to be the single most important field
for retrieval. In response, we develop a machine learning
approach to BM25-style retrieval that learns, using Lamb-
daRank, from the input attributes of BM25. Our model
significantly improves retrieval effectiveness over BM25 and
BM25F. Our data-driven approach is fast, effective, avoids
the problem of parameter tuning, and can directly opti-
mize for several common information retrieval measures. We
demonstrate the advantages of our model on a very large
real-world Web data collection.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval I.2.6 [Artifical Intelligence]: Learning

General Terms: Algorithms, Experimentation, Theory.

Keywords: Web Search, Retrieval Models, Learning to
Rank, BM25.

1. INTRODUCTION
BM25 [15] is arguably one of the most important and

widely used information retrieval functions. BM25F [16] is
an extension of BM25 that prescribes how to compute BM25
across a document description over several fields. A chal-
lenge to using BM25 and BM25F is the necessity of tuning
2K +1 parameters for a document description over K fields.
Tuning can be accomplished using grid-search or gradient
descent [21]. Each method has its drawbacks; grid-search
can be prohibitively slow when the data collection is large,
while gradient descent [21] is much faster but does not op-
timize parameters directly for a target measure.
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Recently, it has been shown that LambdaRank [2] is em-
pirically optimal [7, 25] for NDCG and other IR measures.
We could extend the approach in [21] to use LambdaRank to
optimize the BM25 parameters for a chosen IR measure, but
the function is still restricted to the BM25 model. Instead,
we build upon LambdaRank to develop a machine learning
approach to BM25-style retrieval. Our model can be used
as a framework for learning other functions and offers value
in the design of future information retreival systems. Our
primary contributions are threefold (see [20] for details): (1)
We empirically determine the effectiveness of BM25 for dif-
ferent fields. Although BM25 is effective on the title and
URL fields, we find that on popularity fields it does not per-
form as well as a linear model. (2) We develop a data-driven
machine learning model called LambdaBM25 that is based
on the attributes of BM25 [15] and the training method of
LambdaRank [2]. Our model is both fast and simple; it does
not require parameter tuning and is an extension of a state-
of-the-art ranking approach. It also directly optimizes for
several IR measures [7, 25]. (3) We extend our empirical
analysis to a document description over various field combi-
nations. We confirm that BM25F [16] is better than a linear
function of BM25 scores. We extend our model to document
descriptions over field combinations and find it consistently
outperforms BM25F with statistical significance.

2. RELATED WORK
There have been a number of approaches to document re-

trieval ranging from simple to complex models [12, 13, 22].
BM25 [15] is based on a probabilistic information retrieval
model [19] which incorporates attributes of documents, such
as term frequencies, document frequencies, and document
length. BM25F is a simple extension of BM25 for combining
attributes across multiple fields [16]. A drawback of BM25
and BM25F is the difficulty in optimizing the function pa-
rameters for a given information retrieval measure. There
have been extensive studies on how to set term frequency
saturation and length normalization parameters [17, 9, 21].

Recent studies demonstrate the effectiveness of query click
data for ranking [1, 6, 8, 24]. However, to our knowledge,
there is no detailed study of the effectiveness of BM25 on
single document fields or on subsets of document fields, in-
cluding anchor text and query click logs. In addition, we
are unaware of efforts to develop a directly analagous re-
trieval model based on the same attributes as BM25. Our
work provides both an extensive study of the contributions
of different document fields to information retrieval and a
framework for improving BM25-style retrieval.



3. DOCUMENT FIELDS
A Web document description is composed of several fields

of information. Field information is preprocessed by remov-
ing punctuation, converting to lowercase, and removing html
markup. We consider a query q to be composed of at most
10 terms. The document frequency for term t is the number
of documents in the collection that contain term t in their
document descriptions. Term frequency is calculated per
term and per field by counting the number of occurrences
of term t in field F of the document. Field length is the
number of terms in the field.

Content fields include the body text (the html content
of the page), the document’s title (indicated through html
<TITLE> tags), and the word-broken URL text. Popular-

ity fields include anchor text and query click information.
Unlike content fields, popularity fields are not written or
controlled by the document’s owner, but rather are an ag-
gregation over information about the page from many au-
thors. The anchor text field is composed of the text of all
incoming links to the page. We denote the field as a set
of unique anchor text strings and the corresponding num-
bers of incoming links with that string. The query click
field is built from query session data [1, 8, 11] (see [8] for
details) extracted from one year of a commercial search en-
gine’s query log files and is represented by a set of query-
score pairs (q, Score(d, q)), where q is a unique query string
and Score(d, q) is derived from raw session click data as

Score(d, q) =
C(d, q, click) + β ∗ C(d, q, last click)

C(d, q)
, (1)

where C(d, q) is the number of times d is shown to the user
when q is issued, C(d, q, click) is the number of times d is
clicked for q, and C(d, q, last click) is the number of times
d is the temporally last click of q. β is a scaling factor and
can be tuned. The term frequency of term t for the query
click field is calculated as

P

p|t∈p
Score(d, q), where p is the

set of query-score pairs.

4. BM25
BM25 [15, 19] is a function of term frequencies, document

frequencies, and the field length for a single field. BM25F
[16] is an extension of BM25 to a document description over
multiple fields and reduces to BM25 when calculated over
a single field; we refer to both functions as BM25F , where
F is a specification of the fields contained in the document
description.

BM25F is computed for document d with description over
fields F and query q as: S =

P

t∈q
TFt ∗It. The sum is over

all terms t in query q. It is the Robertson-Sparck-Jones
inverse document frequency of term t:

It = log
N − df + 0.5

df + 0.5
, (2)

where N is the number of documents in the collection, df is
the document frequency of term t. We calculate document
frequency over the body field for all document frequency
attributes1. TFt is a term frequency saturation formula:

1We also used the whole document description, but found
little difference in accuracy over using only the body field.

TFt = f

k+f
, where f is calculated as

f =
X

F

wF ∗ tfF

βF

. (3)

tfF is the term frequency attribute of term t in field F ,
k is the saturation parameter, and wF is a field weight
parameter. βF accounts for varying field lengths: βF =
(1 − bF ) + bF (ℓF /avgℓF ), where bF is a parameter between
0 and 1, ℓF is the length of the field, and avgℓF is the average
length of the field in the document collection.

BM25F requires the tuning of 2K + 1 parameters, when
calculated across K fields, namely k, bF , and wF . Tuning
can be done using grid-search or gradient descent [21]. In
our experiments, we tuned the parameters of BM25F using
grid search over 10K queries and for K > 3, it took over 2
weeks to complete on an Intel Xeon 2.93GHz processor with
127GB of RAM.

5. LEARNING A BM25-STYLE FUNCTION
We now describe our simple machine learning ranking

model that uses the input attributes of BM25F and the
training method of LambdaRank. LambdaRank [2] is a
state-of-the-art ranking algorithm that optimizes for IR mea-
sures. For complete details, see [2]. LambdaRank is both
a list-based and a pair-based neural network learning algo-
rithm and is an extension of RankNet [3]; it is trained on
pairs of documents per query, where documents in a pair
have different relevance labels. In most machine learning
tasks, a target evaluation measure is used for evaluation
and an optimization measure, generally a smooth approx-
imation to the target measure, is used to train the system.
Typical IR target costs are either flat or non-differentiable
everywhere, thus direct optimization of the target measure
is quite challenging. LambdaRank [2] leverages the fact that
neural net training only needs the gradients of the measure
with respect to the model scores, and not the function itself,
thus avoiding the problem of direct optimization. The gra-
dients are defined by specifying rules about how swapping
two documents, after sorting them by score for a given query,
changes the measure. The gradient definition is general and
can work with any target evaluation measure.

There are several challenges to using BM25 despite its
strong retrieval capacity, including the requirement of pa-
rameter tuning, the inability to directly optimize for an IR
measure, and the restrictions of the underlying probabilistic
model. We directly address these challenges by introducing a
new machine learning approach to BM25-like retrieval called
LambdaBM25, which is trained over a large data collection
using LambdaRank due to its flexibility, ease of training,
and state-of-the-art ranking accuracy. BM25 can be pro-
hibitively expensive when trained on a document descrip-
tion over many fields, especially with the growing use of
anchor text, click information, and other metadata. Lambd-
aBM25 does not require parameter tuning since the function
is learned directly from the train collection and can optimize
for several IR measures [7, 25].

LambdaBM25 has the flexibility to learn complex relation-
ships between attributes directly from the data, for example
if documents tend to be verbose or elaborative, while BM25
is limited to a predefined probabilistic model. Our model
has the additional advantage that it does not require that
the attributes be statistically independent, as in [19].



We recognize that in learning our model directly from a
large data collection, we lose the probabilistic interpretation
inherent to BM25. However, our model has an additional
advantage in that it is very flexible, and can be extended
to include other fields in the document description as new
fields become available.

We develop our model as follows. We train our model us-
ing LambdaRank and the same input attributes as BM25,
namely term frequency, document frequency, and field length,
for each field included in the document description. Al-
though we could include additional attributes, we would like
to maintain a fair comparison to the BM25 retrieval function
because it is so widely used. We train single- and two-layer
LambdaRank neural nets to optimize for NDCG with vary-
ing numbers of hidden nodes chosen using the validation set.

6. DATA AND EVALUATION
We evaluate our method on a real-world Web-scale data

collection containing English queries sampled from query
log files of a commercial search engine and corresponding
URLs. We perform stopword removal and some stemming
on queries. Our train/validation/test data contains 67683
/11911/12185 queries, respectively. Each query is associated
with on average 150-200 documents (URLs) together with
a vector of feature attributes extracted for the query-URL
pair. Each query-URL pair has a human-generated label
between 0, meaning d is not relevant to q, and 4, meaning
document d is the most relevant to query q and 0.

We evaluate using Normalized Discounted Cumulative Gain
(NDCG) [10] at truncation levels 1, 3, and 10. Mean NDCG
is defined for query q as

Mean NDCG@L =
100

N ∗ Z

N
X

q=1

L
X

r=1

2l(r) − 1

log(1 + r)
(4)

where N is the number of queries, l(r) ∈ {0, . . . , 4} is the rel-
evance label of the document at rank position r and L is the
truncation level to which NDCG is computed. Z is chosen
such that the perfect ranking would result in NDCG@Lq =
100. A significant difference should be read as significant at
the 95% level using a t-test.

7. EXPERIMENTS AND RESULTS
In all experiments, the parameters of BM25F are tuned

to optimize NDCG@1 on our validation set (it was pro-
hibitively slow to tune on the train set) using a 2K-D grid
search as in [21]; we consider 1000 epochs or convergence of
NDCG@1 as the stopping criterion. Parameters found are
listed in the extended technical report [20]. We also tried
an approach similar to the gradient-based approach in [21]
and found results to be almost identical.

We first determine which single field is the most effective
in terms of ranking using BM25F . In the upper first three
columns of Table 1, we report results for BM25F on a doc-
ument description restricted to a single field. We find Title
(T), URL (U), and Body (B) are equally effective and pop-
ularity fields achieve higher NDCG. In particular, the query
click field achieves the highest NDCG accuracy.

We next compare BM25F to single-layer LambdaBM25F

on a single field F . Since BM25F is highly nonlinear, we
expect it to outperform a simple linear combination of in-
put attributes. Our linear model cannot, for example, divide

term frequency by document frequency or field length; these
two operations have been shown to give improved retrieval
accuracy [19]. In all experiments, we choose the best train-
ing epoch and learning rate based on the validation data
which is a learning rate of 10−5 and 500 epochs.

Table 1 contains results for single-layer LambdaBM25F .
For content fields, we find that BM25F is significantly better
than a linear combination of input attributes since BM25F

was designed for improved accuracy over a linear term fre-
quency function when using content fields. For popularity
fields, on the other hand, our single-layer LambdaBM25F

model performs similar to or better than BM25F . Such re-
sults were hypothesized in [21]; since popularity fields draw
content from authors other than the document’s owner, it
seems reasonable that the BM25 function, which was built
for content fields, may not model the data much better than
a linear function of input attributes.

Finally, we train our two-layer LambdaBM25F model and
determine if it can outperform BM25F . Results are shown in
Table 1. We find the following numbers of hidden nodes to
be best: Title (10), URL (15), Body (15), Anchor (15), Click
(5). We find that for the Body, Anchor, and Click fields,
LambdaBM25F outperforms significantly BM25F ; BM25F

appears to model short, succinct, non-repeatable fields well,
but fails to model longer fields with similar accuracy. As
the length of the field grows, it is beneficial to learn richer
relationships between term frequency, document frequency,
and field length, which LambdaBM25F is able to do.

We next seek to determine the most effective combination
of fields to include in the document description for BM25F .
The first three lower columns of Table 1 list the results of
BM25F on various field combinations. We find that using
multiple fields in the document description is superior to us-
ing a single field, unless that single field is the query click
field; the only combination of fields to outperform BM25C

are combinations that include the query click field. Note
that the addition of anchor text to the C,U,T,B combina-
tion yields an insignificant improvement in accuracy, but
when query click information is not available, the anchor
field yields significant accuracy improvement between the
U,T,B and A,U,T,B field combinations.

To determine if BM25F is better that a linear function of
input attributes, we learn single-layer LambdaBM25F mod-
els for each combination of fields. As shown in the lower
middle columns of Table 1, we find that BM25F performs as
well or better than single-layer LambdaBM25F for all field
combinations; our results confirm that a linear combination
of fields is insufficient for good retrieval accuracy [16].

Finally, we train our two-layer LambdaBM25F models us-
ing 15 hidden nodes. For every field combination, as shown
in Table 1, LambdaBM25F achieves gains with statistical
significance over the corresponding BM25F model. For com-
binations that include popularity fields, we see even more
substantial gains over BM25F .

8. CONCLUSIONS AND FUTURE WORK
Our main contribution is a new information retrieval model

trained using LambdaRank and the input attributes of BM25
called LambdaBM25F , which significantly improves retrieval
effectiveness over BM25F for most single-field, in particu-
lar popularity fields, and all multiple-field document de-

scriptions. LambdaBM25F optimizes directly for the cho-
sen target IR evaluation measure and avoids the necessity



Table 1: Mean NDCG accuracy results on the test set for BM25F , 1-layer LambdaBM25F , and 2-layer
LambdaBM25F for single fields and multiple field combinations. Statistical significance is determined at the
95% confidence level using a t-test. Bold indicates statistical significance over the corresponding BM25F

model. Italic indicates statistical significance of the corresponding BM25F model over the LambdaBM25F

model. Parentheses indicate no statistically significant difference.
Field(s) BM25F LambdaBM25F , 1-Layer LambdaBM25F , 2-Layer

@1 @3 @10 @1 @3 @10 @1 @3 @10
T 24.50 27.23 33.32 20.79 24.93 32.51 (24.31) (27.38) 33.86

U 24.96 27.24 32.77 22.96 26.38 33.17 23.69 26.70 33.21

B 24.35 27.92 35.07 18.03 21.93 30.60 27.53 30.49 37.03

A 33.50 32.53 33.37 (33.83) 33.11 34.73 36.33 34.68 35.33

C 40.07 36.62 35.89 39.34 (36.50) (35.96) 41.61 38.01 37.19

T, B 27.84 30.81 36.98 25.42 28.81 35.80 29.61 32.49 38.93

U, T, B 30.81 33.30 39.53 29.28 32.08 38.75 34.26 37.03 43.05

A, U, T, B 38.66 38.83 43.42 (38.91) (38.84) 42.81 43.70 42.58 46.21

C, U, T, B 45.29 43.37 46.83 43.34 41.70 45.04 49.70 46.58 49.14

C, A, U, T, B 45.41 43.53 46.88 44.60 42.33 45.44 50.33 47.14 49.47

of parameter tuning, yielding a significantly faster approach.
Our model is general and can potentially act as a framework
for modelling other retrieval functions.

In the future we would like to perform more extensive
studies to determine the relative importance of attributes in
our model. We would also like to determine the effectiveness
of LambdaBM25 as a scoring function, where the scores can
be used as inputs to a more complex ranking system, for
example as a single feature in recent TREC retrieval sys-
tems [5, 4]. Finally, we plan to expand our model to learn
proximity relationships and determine if incorporating such
features can learn a better function than, for example, the
proximity models given in [14, 18].
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