
SOFTWARE: BARRIER OR FRONTIER?

C. A. R. Hoare,

Oxford University Computing Laboratory, 11 Keble Road,

Oxford OX1 3QD.

Tel: +44 865 273841

November 23, 1999

In recent times, the capabilities of computers and of communica-

tion systems have improved by many orders of magnitude. Every

year the frontiers are being pushed forward at an increasing rate by

the amazing skill of researchers, inventors, designers and produc-

tion engineers; and yet further advances are con�dently predicted

for the years to come.

But everyone knows that an exponential rate of progress cannot

be maintained forever. Frontiers can be advanced only until they

meet absolute barriers imposed by physics | the speed of light

and the imprecision of quantum mechanics. It may be ten or it

may be �fty years hence | that I do not wish to argue about. The

purpose of my talk is to share with you a more immediate fear.

I am afraid that the full potential for advance of the frontiers of

communication technology is already inhibited by the problems of

complexity of computer programs and software; that these prob-

lems are increasing; and that they threaten to build up an impen-

etrable barrier to the full exploitation of hardware improvements,

preventing or seriously delaying their penetration into the market

place. I will suggest that this barrier can be shifted only by wider

appreciation and application of current understanding in software

1



engineering; and that this understanding needs development by

continuing research, and propagation by continuing education in

the necessary skills for successful application. I shall describe some

of the goals and ideals of software engineering, and explain why

I think that the telecommunications industries will be among the

�rst to achieve these ideals and realise the bene�ts of doing so.

The main reason for this is the growing convergence of computing

and communications, together with the widening realisation that

it is software that provides the essential link between them. With

a certain element of exaggeration, you could say that everything

that the communications industry regards as its own preserve, all

that vast network of hardware | handsets, displays, wires, �bres,

switches, links, antennae, satellites | everything except the phys-

ical holes in the ground and the towers in the air | is controlled

by software or soon will be; they are just peripheral equipment,

as it were, to the computers which run the programs. Software is

the magic ingredient which realises the growing potential of recent

and predicted advances in the hardware. It is software that adds

value, that assembles the components into saleable systems, prod-

ucts and services. Hardware components will be manufactured in

increasing volumes and supplied at reducing cost to all the play-

ers in the communications marketplace opened up by deregulation.

It is the software that will determine competitive advantage, and

distinguish the winners from the losers.

So what is this discipline of Software Engineering? How does it

compare and di�er from other Engineering disciplines? And how

far can it be regarded as mature?

The most strikingly visible di�erence between software and other

engineering products is the almost total invisibility of software.

2



There is absolutely nothing photogenic about software, and abso-

lutely no joy in building scale models of its operation. And even

less can it be touched, felt, heard, smelled or tasted. It seems to

be nothing more than the abstract disembodiment of pure com-

plexity. As a corollary, software is a product where the cost and

time required for manufacture and distribution are close to abso-

lute zero. All the expense and delay is in design and development

| and later in marketing and sales. Historically, this has made

software a very di�cult area in which to gain recognition for sound

research in Universities, or in which to exercise sound planning,

management, and control in Industry.

But of course the cruder parameters of software can readily be

measured. Over the last ten years, such measurements often show

that the length of computer programs embodied in a typical prod-

uct have grown, perhaps by a factor of ten; that they have cost

ten times as much to develop, that they are proportionately more

likely to contain errors detected in service, and each error could po-

tentially be ten times more damaging in its e�ect. Hardware has in

the same time made equally rapid progress but fortunately in the

opposite direction. It is now ten times smaller, faster, cheaper, and

more reliable. I really shouldn't have embarked on this comparison,

so dreadfully unfavourable and unfair to software engineers.

Let's change the subject quickly, and concentrate on the much

more important similarities between software and other branches

of engineering. Firstly we share the same goals; they were nicely

de�ned for Civil Engineering by Thomas Tredgold in 1828 - \the

art of directing the great sources of power in Nature for the use

and convenience of man". Secondly, the success of any engineer-

ing project requires full attention to the implications of marketing,

3



commerce, accountancy, management, and even politics. But the

single most important feature, the one that di�erentiates all of en-

gineering and science from all these other important practical con-

cerns, is the explicit, crucial and pervasive use of the techniques and

notations of mathematics. Each branch of science seeks mathemat-

ical theories, or models of selected aspects of physical reality. The

scientist uses mathematics to predict from the theory its observ-

able consequences, which are then checked by careful experiment.

The engineer on the other hand uses a validated scienti�c theory to

check the performance parameters of a design before it is put into

production. That for example, is why our buildings and bridges

no longer blow down, | at least not very often.

In a mature engineering discipline the direction of the mathe-

matical calculations is reversed. Start with a mathematical model

of the customer's requirements. Decide the general strategy and

structure of the solution; and then with the aid of calculation de-

rive the content and detail of the design, including optimisation of

relevant parameters. The design now needs no further test or check

- it is correct by construction. This reversal from bottom-up pre-

dictive mathematics to top-down design calculations is the goal of

all research into engineering method, in all branches of engineering,

and especially software engineering.

But this simple story has ignored the incredible complexity of the

symbolic and numerical calculations required by modern science

and engineering. To limit this complexity, science presents not just

a single model of reality, but rather a whole hierarchy of models,

dealing with phenomena at di�ering scales, at di�ering degrees of

granularity, and at di�ering levels of abstraction. For example,

starting at the level of chemistry, physics o�ers the hierarchy

4



� molecular dynamics,

� atomic theory,

� elementary particles,

� chromodynamics.

Each level has its own autonomous concepts and its own model,

which can be understood and used independently of the others. It

is the general goal of the pure scientist to secure the links between

the levels, de�ning the concepts at each level in terms of the previ-

ous one, and then proving its axioms as theorems in the previous

theory.

A similar hierarchy of levels of abstraction is equally necessary

in engineering. For example in design of computer hardware we

separate

� instruction set

� register path

� microcode and control

� combinational design

� switch level design

� circuit electronics.

Here again, at each level there is a di�erent conceptual framework,

a di�erent notation, and a di�erent calculus of design. A complete

design at each level of abstraction serves as a speci�cation for the

design at the next lower level. It is the particular goal of the

practising engineer to ensure that a speci�cation at each level is

correctly and e�ciently implemented by the selected design at the

next lower level.

5



Communications engineers engaged in the design of protocols are

familiar with the famous seven levels of the international standard

� Application

� Presentation

� Session

� Network

� Transport

� Data link

� Physical level.

The general principle of the hierarchy has been very successful. At

the higher levels, there has been some delay in �nding and agreeing

on the appropriate abstract concepts for formulating the standard;

but this kind of conceptual engineering is the necessary condition

for breakthrough in any branch of science, or indeed any kind of

intellectual endeavour. Just saying that is never going to make the

discovery easy to make, however simple it may seem afterwards. At

the lower levels of the protocol hierarchy, maintenance of the design

structure throughout the implementation can cause problems of ef-

�ciency; but these are solved with the aid of correctness-preserving

transformations, which combine the bene�ts of structured speci�-

cation and design with highly optimised implementation. Software

engineers can learn a lot from this transformational approach to

speci�cation and design.

Software engineers also have a hierarchy based on scale and gran-

ularity. They talk of

� systems

� modules

6



� classes

� objects or processes

� functions and subroutines

� straight line code

� individual instructions.

The mathematical theories which are useful for design calculations

at each level have been to a large extent developed by software

engineering research, and the transitions at the lower levels have

been successfully formalised and even automated. The results of

this research are being gradually assimilated into industrial prac-

tice. Progress is slowed by a general antipathy to mathematics

among software engineers | but this feeling is yet another char-

acteristic which is shared with other branches of engineering, and

indeed with most of management, and with the general population.

Mathematics itself provides an outstanding example of the con-

trol of complexity by structure and abstraction. Its branches can be

arranged in a hierarchy like those of physics | topology abstracts

from analysis; analysis provides the basis for calculus; and calculus

can be used by engineers who understand nothing of the more ab-

stract foundations. Even within a single branch of mathematics, a

lemma can be safely used without studying the complexity of its

proof, a theorem abstracts from the complexity of its lemmas, and

a theory from the collection of its separate theorems.

Similar structures are observable in good programming practice,

where larger programs use smaller ones as subroutines, or subob-

jects, or subprocesses. But this analogy is good only if the formal

statement of the function and purpose of each subroutine is as

simple and complete as that of a mathematical theorem, and an

7



order of magnitude simpler than the code which implements it.

Furthermore, the reliability of the code must also approach that

of a mathematical theorem. A large system constructed from even

slightly unreliable components can rapidly collapse, either before

or after delivery. Reliability is the very essence of engineering, and

it is achieved by explicit appeal to the concepts, methods, abstrac-

tions and structures of mathematics.

But, ironically, it is not to the traditional applied branches of con-

tinuous mathematics that the software engineer turns for guidance,

but rather to the traditionally pure branches of discrete mathemat-

ics, | set theory, algebra, and even category theory. The reason

is that software engineering deals very largely with discrete phe-

nomena, transitions, events, values and structures. At the lowest

level we have just the two discrete Boolean values, zero and one.

In a large program, if just one of these digits is changed, even only

for just one millisecond, the consequences for the whole program,

indeed the whole system, are in practice quite unpredictable, and

in principle potentially disastrous.

This means that the software engineer cannot rely on smooth-

ness or continuity in the control of tolerances or error. Numerical

approximation is simply not available as a technique to simplify

calculations. Since there is no appropriate metric, worst case anal-

ysis and worst case testing are just not available. For the same

reason there is no freedom to get it nearly right; even if there

were, there is no way that this would simplify the task of design

and implementation. Approximation, even to the extent of order-

of-magnitude calculation, is the stock-in-trade of the engineer, the

most important way of maintaining intellectual control at the early

stages of design and throughout the later implementation. In the

8



discrete branches of engineering, for these purposes we have to rely

almost wholly on structure and on abstraction.

The gap between continuous and discrete engineering is one that

puts nearly all modern telecommunications and electronic hard-

ware design on the same side as software engineering | certainly

all of network design down to the individual switch, and all of

VLSI design, down to the individual logic gate. To cover this

range of disciplines perhaps I should use a more neutral term like

Discrete Systems Engineering, or a more fashionable one like Infor-

mation Engineering. Under whatever title, I believe that we will

see a strong convergence in the practice of engineering of software,

hardware and communications.

This convergence is simply and elegantly illustrated in mathe-

matical theories known as process algebras, developed over the last

twenty years by basic research in Universities. Such a theory com-

bines the concepts of conventional sequential programming with

the kind of concurrency which is embodied automatically in every

combination of hardware components, and the kind of communica-

tion which occurs almost naturally whenever hardware components

are connected by wires. The theory has already served as the ba-

sis of a draft international standard (LOTOS) for the de�nition of

protocols, for the design of a programming language (occam), and

a microprocessor (the transputer), and the design of several silicon

compilation languages. But the mathematical theory is much more

general; with slight variations, it can be applied on every scale and

at every level of abstraction and every level of granularity, from

the customer's view of the services required of the system as a

whole, through the design of the major components of the network

and the interfaces between them, down to their implementation on

9



a collection of processors and special-purpose application-speci�c

hardware, interacting with each other at any distance. It is this ap-

peal to abstraction that permits theories tested in the laboratory to

be cautiously scaled up for industrial application. The uniformity

of the mathematical foundation permits all stages of the design

and implementation to be related by calculation and proof. Many

of the stages of adaptation and optimisation can be codi�ed and

carried out (or at least checked) by automatic transformation sys-

tems. It is this that promises not only an increase in the quality

and reliability of the product, but also a reduction in the time to

market.

Experience with this kind of practically applicable theory leads

me to predict that discrete systems engineering is making rapid

progress towards the status of a mature engineering discipline. A

fully mature discipline will have the following characteristics:

� It puts the customer �rst.

� It codi�es corporate strategy.

� It puts management in control.

� It magni�es human intellect.

� It builds its own tools.

� It is the language for professionals.

� It is transmitted by education.

A mature engineering discipline puts the customer �rst. It starts

with a scienti�c investigation of the actual characteristics and be-

haviour of the customer population, not just as individuals but as

members of their societies; in the workplace, school or home. It

10



takes full advantage of the methods and results of the human sci-

ences, - physiology, psychology, linguistics, sociology. It analyses

stated requirements and stated assumptions until a clear picture

emerges of some desirable future product or development that will

satisfy the true requirements, which have often been left unstated.

The mismatch between perceived and actual requirement is one

which must be overcome by good marketing. Meanwhile, the en-

gineer must attempt, as soon as and as far as possible, to con-

struct a faithful mathematical model of both the numerical and

discrete properties of the projected and desired interactions be-

tween the community of customers and the projected product or

service. This is the �rst and most important interface to de�ne;

it is the basis of all subsequent engineering design, and any lapse

of judgment here could lead to a product that is undeliverable or

unusable. The pace of change is no longer driven solely by technol-

ogy: in software especially, the technology must be driven by the

customer.

A mature engineering discipline formulates strategic policy. No

large enterprise can a�ord to design and deliver a single product

at a time, no matter how advanced the technology or how timely

its introduction to the market. The real challenge is to design

an architecture for a family of products, covering not one but a

range of markets, with not just one product in each market but a

series of complementary, supplementary, enhanced and eventually

replacement products, stretching into the foreseeable future. The

strategy must be presentable in abstract terms at Board level, so

that it can be correlated with �nancial management, marketing, re-

source planning, and ultimately with the image that the enterprise

wishes to have of itself. An engineering discipline must provide

11



the appropriate abstractions and theories to de�ne the structure

and interfaces of the entire family, long before any of the detailed

design begins; and this must be backed by enterprise-wide engi-

neering standards which give assurance that the strategy can be

implemented as planned. The days of innovation as adventure are

over. In the framework of strategic policy, innovation is routine.

A mature engineering puts management in control. Each level

and branch of management can understand, within a self-contained

intellectual framework, all the objectives and activities of subordi-

nate levels, so that it can take con�dent responsibility for the way

in which these activities contribute to the goals of superior levels.

The con�dence is based upon abstract but precise formalisation

both of the vertical and of the horizontal interfaces throughout

the management hierarchy. The con�dence is justi�ed by mathe-

matical calculations, which establish in advance of implementation

that if each subordinate goal is met, the superior goal is guaranteed.

Complexity is controlled by correlating levels of management with

levels of abstraction, so that problems and delays can no longer be

hidden under a morass of technical detail. In spite of the intangi-

bility of software, signs of trouble are immediately visible, and if

change is required in the design or in the interfaces, the manager

can explore and report all the wider consequences of the change

before authorising it. As a result, there are few last-minute sur-

prises. When the components are delivered, they slot together

without prolonged integration testing, and they can be delivered

immediately with minimal risk of feature interactions discovered

in service. \Design right �rst time" is no longer a slogan but has

become a habit.

A mature engineering discipline releases the full potential of the

12



human intellect. Because speci�cations are expressed at the highest

possible level of abstraction, they give the widest possible scope

for exercise of the design skill, ingenuity and inventiveness of the

human engineer. The mathematical theory de�nes the boundaries

of the design space, and provides the method by which it may be

thoroughly explored. As new ideas emerge, they can be crystallised

with the aid of mathematical formulae, which can be objectively

discussed, evaluated, justi�ed or even admired. Finally when the

design is frozen, it can be made su�ciently precise for reliable

implementation by teams of less experienced or inventive engineers

or technicians.

A mature engineering discipline constructs its own design tools.

The validity of the methods which transform speci�cation to design

and design to implementation is assured by their basis on the well-

established scienti�c theories which underlie the discipline. Only

parts of the tool are fully automatic; at all crucial stages, guidance

is needed from the skilled and experienced engineer, who has the

understanding and inventive talents to direct the design towards a

cost-e�ective solution. The only contribution of the tool will be to

calculate a few parameters, and to organise the mass of associated

detail in a manner which ensures correctness by construction. In

future, the programming of individual lines of C-code will seem

as archaic as laying out individual transistors and wires on a sil-

icon chip. But even when a tool is really successful, the general

impression should be that it only does the easy bits.

A mature engineering discipline provides a language for commu-

nication among professionals specialising in its various branches.

The underlying mathematical theory not only explains the common

foundations of all the branches, but explains why and for what pur-

13



poses it is necessary to di�erentiate between each of them. There

is no longer any need for clamorous con
ict between the various

branches of software engineering, each claiming exclusive merit for

a single computational paradigm: the functional programmers, the

logic programmers, the object-oriented programmers, and the no-

nonsense hewers of hardware or hackers of C. Any large system will

have components constructed from a variety of technologies; and

the interfaces between the technologies, which is where most of the

problems of engineering arise, are controlled by the abstractions of

the underlying general theory.

Finally, a mature engineering discipline is transmitted to future

generations of engineers by further education. Its theoretical foun-

dations, their abstraction and elegance, can be taught as a free-

standing mathematical discipline at University or even at school.

Its methods and principles can be illustrated on a small scale by

student demonstrations, experiments and exercises. By repeated

exposure at many di�erent levels to the transition between ab-

straction of speci�cation and details of implementation, the student

comes to understand how the techniques generalise to an industrial

scale of application. When this education has been complemented

by a period of industrial experience, the educated engineer is in-

tellectually equipped to rise through the management hierarchy to

the very highest levels.

This brief and idealised account of engineering education con-

trasts strongly with the training on the job, which was the only

training available when I entered the profession in 1960, and is still

the norm today. We learnt programming in a wholly operational

fashion, by trying to understand the behaviour of the computer

which is executing the program. Execution traces were the only

14



means we had of understanding and removing errors. Errors were

regarded as inevitable, because we had no technology to avoid

them, even in principle. We hardly recognised the possibility that

a complex program might have a simple speci�cation, of far greater

bene�t to the customer than the implementor. Lengthy and total

immersion in operational detail actually inhibited progress towards

understanding of the necessary simplifying abstractions.

When it became necessary to learn a new programming language

or use a new operating system, training was based on the volumi-

nous manuals which accompany the software. Because there was

no common culture or education in the understanding of abstrac-

tion, these manuals too have to be based on the lowest level of

operational detail. Their volume, complexity, and structural de�-

ciencies absorb all the intellectual energy of the student; and yet

they were so incomplete or even inconsistent in detail that, when

used in earnest, the only way of �nding out what the software will

actually do is by experimental trial and error. The tool which

should be helping has become part of the problem.

The absence or even conscious avoidance of mathematical ab-

straction in programming education explains why many program-

mers have often been regarded more like craftsmen or technicians

than engineers. They are wonderful people, with experience and

skills greatly to be admired and valued. But they work best in iso-

lation on self-contained tasks. They have no language to discuss,

explain and justify their work to their colleagues and superiors.

Documentation is their bane. They do not read the technical lit-

erature to keep abreast of their �eld. On promotion, they �nd it

di�cult to establish or maintain intellectual control of the work of

their teams. That is why it is rare for the best programmers to rise

15



to the higher levels of management. Yet it is not conducive to the

health of the enterprise when the worse ones are highly promoted.

The transition between a craft and a mature engineering dis-

cipline is always fraught with confusion, di�culty, animosity and

charlatanism; and the intangibility of software has certainly pro-

longed the agony. But the more far-sighted enterprises can see the

competitive advantage to be obtained by rapid transition to an

engineering attitude towards software. Among them, the telecom-

munications industries are playing a leading role. It is essential

to them to raise the educational level of their software engineers,

by in-service courses for experienced programmers and their man-

agers, by promoting the quality and relevance of the subject in

higher education, by promoting research at the interfaces between

technologies; and by attracting the very best of the graduate popu-

lation into their teams and eventually into their management. Di-

vergence of culture between traditional communications engineers

and the new software engineers educated at leading Universities

must not be allowed to hinder the 
ow.

I have painted for you an idealised picture of the potential ben-

e�ts to be obtained from a rigorous approach to the discipline of

software engineering. I have suggested a useful contribution can

be made by education and research at Universities. But there are

many familiar and even unavoidable di�culties and dangers that

can delay achievement of the ideal. They include

� short term commercial goals

� false analogies

� premature standardisation

� late standardisation

16



� inadequate tools

� misguided research

� shallow education

� failure in planning.

To counteract all these widely prevalent di�culties and dangers,

all I can o�er is my picture of an ideal of software engineering.

I hope to inspire you with a vision of what might be possible if

the di�culties can be overcome. But that will depend on the de-

termination of political operators, commercial managers, as well

as working engineers and programmers, perhaps some among my

audience today. It is not for me to predict whether my ideal will

be approached or achieved in this century or in the next; whether

software remains a barrier which inhibits the spectacular march of

progress in all other branches of telecommunications technology,

or whether the frontiers of software can be moved forward in step

with other advances, to ensure rapid delivery of new products and

services, to the bene�t of customer and supplier alike.

17


