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Abstract
This paper presents a scheduling model for a class of interac-
tive services in which requests are time bounded and lower
result quality can be traded for shorter execution time. These
applications include web search engines, finance servers,
and other interactive, on-line services. We develop an ef-
ficient scheduling algorithm, Zeta, that allocates processor
time among service requests to maximize the quality and
minimize the variance of the response.

Zeta exploits the concavity of the request quality profile
to distribute processing time among outstanding requests.
By executing some requests partially (and obtaining much
or most benefit of a full execution), Zeta frees resources for
other requests, which might have timed out and produced
no results. Compared to scheduling algorithms that con-
sider only deadline or quality profile information, Zeta im-
proves overall response quality and reduces response qual-
ity variance, yielding significant improvement in the high-
percentile response quality.

We implemented and deployed Zeta in the Microsoft
Bing web search engine and evaluated its performance in
a production environment with realistic workloads. Mea-
surements show that at the same response quality and la-
tency as the production system, Zeta increases system ca-
pacity by 29% by improving both average and high per-
centile response quality. We also implemented Zeta in a
finance server that computes option prices. In this appli-
cation, Zeta improves average response quality by 28% and
the 99-percentile quality by 80%. Using a simulation, we
also compared Zeta to the offline optimal schedule and other
scheduling algorithms. Although Zeta is only close to op-
timal, it provides better performance than prior algorithms
under a wide variety of operating conditions.
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1. Introduction
This paper shows how to improve the quality of an interac-
tive web service’s response by more effectively allocating
processing time among competing service requests. We pro-
pose a new scheduling model for these services and describe
and evaluate an efficient scheduling algorithm based on this
model that increases overall result quality and reduces re-
sult quality variance. We implement the algorithm in two
systems—the Microsoft Bing web search engine and a fi-
nance server—to demonstrate its benefits. We also use sim-
ulation to evaluate the scheduling algorithm under a wide
range of operating conditions.

Many online services repeatedly execute tasks with three
properties: (1) A request can be partially executed and will
produce partial results. Given additional resources, such as
processing time, the results will improve in quality. (2) Re-
sponse quality improves with increasing resources but with
diminishing returns, resulting in a concave quality profile.
(3) The processing for a request is limited by time or re-
source constraints, e.g., it has a deadline.

We introduce a new scheduling model — Zeta to ex-
ploit these properties, which characterize important appli-
cations such as: (1) Web search: A web search engine re-
ceives queries from clients and returns the matched docu-
ments within a short deadline. A search query has multiple
acceptable answers. With more processing time, the search
engine will match and rank more web pages, producing a
progressively better response. (2) Finance servers: Traders
interactively submit requests to obtain an estimate of the
price of financial derivatives. A finance server executes a
computation, such as a Monte Carlo pricing algorithm. In-
creased processing time reduces the expected error of the
calculation.



For interactive services with these properties, the objec-
tive of our scheduler is to improve both the average response
quality and the high-percentile (e.g., 95%) response qual-
ity. Response quality is an application-specific metric that
compares the result of partially executing a request against
the results from full execution. Improved average quality al-
lows an operator to: (1) target a given level of quality with
fewer resources or (2) obtain better quality with the same re-
sources. The high-percentile quality guarantees help ensure
consistently high-quality results, even at the extremes of a
service distribution. Many commercial services specify their
Service Level Agreement (SLA) using both the average and
high-percentile response quality [13]. For example, a web
search engine may target a quality of 0.99 for at least 95%
requests, which we call 95-percentile quality.

The Zeta scheduling model takes into account partial ex-
ecution, request quality profile, and deadlines. Previously
published algorithms do not consider all three properties.
For example, several resource management models [14, 20,
23–25] do not consider partial execution. They either ser-
vice a request in full or reject a request completely. Among
resource management models that allow partial execution,
QoS-adaptive systems [2, 19, 28] do not consider deadlines
and soft real-time schedulers [7, 9, 10, 22] do not exploit
concave quality profiles. Our experimental results show the
importance of considering both deadline and quality profiles
for web search and other interactive services.

From the optimization model, we derive the optimal of-
fline schedule and a practical online algorithm. The online
algorithm combines two techniques: (1) Equi-partitioning to
allocate resources more equally among requests while re-
specting their deadlines. Equi-partitioning prevents long re-
quests from starving short ones, which enhances overall re-
sponse quality and reduces response quality variance. (2)
Reservations, which execute long tasks completely when
they will not affect short requests. Zeta combines these two
algorithms based on load to maximize the execution time of
each request subject to the constraint that other waiting re-
quests should not miss their deadline.

Zeta scheduling is practical—we implement and deploy it
in the Microsoft Bing search engine and evaluate it under a
realistic workload in a production environment. Our experi-
mental results show a significant improvement over the prior
scheduler in both average response and 95-percentile qual-
ity. In particular, to meet the desired response quality and
latency SLA, Zeta increases system capacity by 29%, or po-
tentially reduces the number of servers by 22%. We also ap-
ply Zeta scheduling in a finance server that uses Monte Carlo
methods to evaluate option prices. Each request is a task that
estimates the price of a financial option and response qual-
ity is measured by the estimation error. Zeta improves aver-
age response quality by 28% and improves the 99-percentile
quality by 80%.
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Figure 1. Measured quality profile in the search engine.

In addition, we use simulation to evaluate Zeta in scenar-
ios that cannot be easily implemented. We assess the bene-
fits of the Zeta online scheduling algorithm by comparing it
against the offline optimal and two online algorithms. We
also evaluate Zeta using different shaped quality profiles.
Our results show that the Zeta online scheduler performs
near optimal and produces better quality results than other
algorithms under a variety of concave-like profiles.

The remainder of the paper is organized as follows. Sec-
tion 2 and Section 3 describe Zeta scheduling model and al-
gorithms. Section 4, Section 5 and Section 6 present Zeta
implementation results in Bing, in a finance server, and our
simulation results. Section 7 presents the related work and
Section 8 concludes the paper.

2. Zeta Scheduling Model
This section defines and motivates the three characteristics
of the Zeta scheduling model. It also presents a formal model
of the scheduling problem.

2.1 Model Characteristics
(1) Partial execution. Partial execution exploits the possi-
bility of trading fewer resources for degraded results. With-
out partial execution, a scheduler can either execute a request
fully or reject it. By contrast, partial execution opens the pos-
sibility that some requests are processed partially, returning
an approximate result, which is a favorable trade-off in many
situations in which resources are in short supply. For many
computations, better estimates are obtained with more pro-
cessing, but inexact results are acceptable, even if slightly
less desirable. For example, in web search, if a request does
not hit in the query cache, the search engine scans its in-
verted index looking for web pages that match the requested
keywords and ranks the matching webpages. The more time
the server spends matching and ranking the web pages, the
better the results. If the search engine does not finish pro-
cessing all matched web pages, it can still return the best
results found so far.

(2) Concave quality profile. With partial execution, the
relationship between the quality of the result and the amount



of computational resources has a concave shape. The con-
cavity of the quality profile is the result of diminishing re-
turns and the iterative nature of approximation algorithms.

We measured the response quality profile in Bing. Fig-
ure 1 shows a concave quality profile produced from 200K
queries in a production trace. The response quality compares
the set of documents returned in the test against a golden
set of base results obtained with full execution (as explained
in Section 4). The x-axis of Figure 1 is request completion
ratio, which is calculated as the actual processing time di-
vided by its full processing time. The y-axis is the average
response quality. The figure demonstrates that the quality
profile is monotonically increasing and concave. The con-
cavity comes from the design of the server, in which the in-
verted index lists important (e.g., popular) webpages first;
therefore webpages matched earlier are more likely to rank
higher and contribute more to response quality.

Diminishing returns are common in many domains. An-
other example is finance computations, where increasing
the number of samples in Monte-Carlo computations re-
duces the result uncertainty. However, the incremental gain
of an additional sample becomes smaller when the number
of samples becomes larger.

(3) Deadline. Users expect timely responses from most
interactive services. Long response times are unacceptable
because they cause user dissatisfaction and revenue loss
[16]. Timing constraints are typically expressed as deadlines.

2.2 Problem Formulation
We define the scheduling problem as follows. There is a
set J = {J1, J2, . . . , Jn} of n jobs. Each job Ji ∈ J is
characterized by an arrival time ri, deadline di, and service
demand (aka total work) wi. The deadline interval is the
difference between the deadline and arrival time (di − ri).
Let pi denote the processing time job Ji receives during
[ri, di]. It may not be processed to its full service demand,
that is, partial execution is allowed with pi ≤ wi. A job can
be preempted; it can be suspended and resumed later.

A quality function fi : R → R maps the job completion
ratio (processing time / service demand) to a quality value
gained by executing the job. The objective of the scheduler
is to maximize the total quality gained by executing all jobs
in the job set, i.e.,

∑n
i=1 fi(pi/wi).

3. Zeta Scheduling Algorithms
This section presents an optimal offline model and an online
algorithm for Zeta scheduling.

3.1 Optimal Offline Model
We derive an offline optimization model to maximize re-
quest quality, exploiting complete request information in-
cluding future arrivals. Although some of this information
is unknown in practice, the offline optimal often inspires the

Algorithm 1 - OPTIMAL
Inputs:
J = {Ji|i = 1, . . . , n}: set of jobs
S = {Sk|k = 1, . . . , 2n− 1}: set of segments
wi, fi: service demand and quality function of job Ji

Variables:
pik: processing time of job Ji at segment Sk.
pi: total processing time of Ji.

Optimization model:

max
∑n

i=1 fi(pi/wi)

subject to:
Resource availability:

∑
i∈J pik ≤ |Sk| for all Sk ∈ S

Total processing time:
∑

k∈S pik = pi for all Ji ∈ J
Service demand: pi ≤ wi for all Ji ∈ J
Validity: pik = 0 if Ji is not valid at Sk

design of online algorithms and serves as a performance ref-
erence.

The main challenge in producing an optimization model
for this scheduling problem is that a job can be preempted
and resumed an unbounded number of times. Thus, the job
needs an unbounded number of variables to represent the
processed intervals.

We solve the problem by limiting the number of preemp-
tions each job may incur without affecting the optimal qual-
ity. Define an interval in which there is no job arrival or expi-
ration as a segment. In any segment, a job only needs to run
at most once. If a job runs multiple times in a schedule F ,
we can produce an equivalent schedule F ′ that combines the
job processing time within the segment in schedule F into
one continuous processing period in schedule F ′. This will
not violate the deadline of any job because there is no job ar-
rival or expiration within the segment. With this observation,
givenn jobs, their arrival time and deadline divides the avail-
able time interval into 2n− 1 consecutive segments denoted
as {Sk|k = 1...2n− 1}. Each segment Sk is a time interval
Sk = [ak, bk], where the starting time ak and ending time bk
of Sk correspond to arrival time or deadline of jobs. There
is no job arrival or job expiration within a segment and each
job is processed at most once within a segment. This leads
to the following optimization model.

OPTIMAL (Algorithm 1) presents an offline optimal so-
lution for the problem. There are n jobs and 2n − 1 seg-
ments. For each segment Sk, a job Ji is defined as valid iff
Sk = [ak, bk] ⊆ [ri, di], i.e., ri ≤ ak and bk ≤ di; other-
wise, the job is invalid. Within each segment Sk, the status
of any job does not change: a job is either valid at any time
within the segment or not valid through the entire segment.
The optimization model captures four sets of constraints:



• Resource availability: Total processing time of jobs
within a segment is bounded by the segment length, i.e.,
|Sk| = bk − ak for Sk = [ak, bk].

• Total processing time: Total processing time of a job is
the sum of its processing time over different segments.

• Service demand: Total processing time of each job is no
more than its service demand.

• Validity: A job can only be processed in its valid seg-
ments.
In this optimization model, all constraints are linear, and

the objective is to maximize the summation of the quality
functions. If the request quality functions are arbitrary non-
linear functions, the model becomes a general optimization
problem with no efficient optimization method. However,
if all quality functions fi are concave, this is a convex op-
timization problem, which has nice properties. An optimal
solution exists and can be obtained by standard convex op-
timization packages. As we discuss in Section 2, in many
practical problems the quality profile is concave.

3.2 Online Algorithm
The offline optimal produces schedules with the highest pos-
sible quality, however, it is not usable online because it re-
quires complete information of requests including future ar-
rivals. This section presents an efficient online algorithm for
servers. The server environment is an instance of the general
Zeta scheduling model with the following requirements and
assumptions: (1) The exact service demand and quality pro-
file of requests are unknown. (2) Preemption of a request in-
curs a relatively large context switch overhead as request ser-
vice demand is often only tens of milliseconds. (3) Requests
are not differentiated, thus they all have the same deadline.
(4) The online scheduler should be computationally efficient
with a small overhead.

We develop an efficient online algorithm Zeta-Online in
four steps. First, we introduce the challenges that the online
algorithm must address. Second, we present two techniques
to improve response quality and reduce response quality
variance. Third, we show how to combine these two tech-
niques and derive the Zeta-Online algorithm. Finally, we
present a brief performance comparison of Zeta-Online with
alternative algorithms.

3.2.1 Challenges
To provide an efficient online scheduler in interactive server
systems, we address the following challenges:

Challenge 1: Future service demand and the quality pro-
file for each request are typically unavailable online. Solu-
tion: Zeta-Online uses the expected (or average) quality pro-
file and service demand. For example, Figure 1 shows the
average quality profile for a web search request in Bing.

Challenge 2: Interactive requests must be answered in
bounded time. Solution: To incorporate a deadline con-
straint, Zeta-Online processes requests in an earliest-deadline-

first order. When requests are not differentiated and have the
same deadline interval, then Earliest Deadline First (EDF) is
equivalent to serving requests in FIFO order.

Challenge 3: Context switches can be expensive for in-
teractive requests. In practice when a job’s working set is
large, a context switch is costly because of cache warm-up.
It may take a few hundred microseconds to more than a mil-
lisecond to bring data into the cache[21]. Since the service
demand may only be a few tens of milliseconds, frequent
context switching is expensive. Solution: To reduce context
switch overhead, Zeta-Online processes each request once.

In our server environment in which all requests have the
same deadline, as we show in Lemma 1, any feasible sched-
ule that can arbitrarily preempt and resume a job’s execution
can be transformed into an equivalent FIFO schedule that
runs each job once without context switching while achiev-
ing the same total quality. This is an important result: Serv-
ing requests in FIFO order reduces context switching over-
head without compromising response quality.

LEMMA 1. Suppose that requests have the same deadline
interval. For any feasible schedule with arbitrary preemp-
tion and resume of a job, there exists a feasible schedule
that executes all jobs in the FIFO order with the same over-
all quality.

Proof. Given any feasible preemptive schedule, consider
any two jobs Ji and Jj that do not follow the FIFO order.
Without loss of generality, we assume that Ji arrives first,
and thus has the earlier deadline. Without affecting the exe-
cution of other jobs, we can execute Ji before Jj , both for
the same amount of processing time as the original schedule,
hence the overall quality gained is the same. The new sched-
ule is also feasible since the deadlines of both jobs are not
violated. Applying the same argument to all pair of jobs in
the original schedule gives us a FIFO schedule that processes
each job once only and gives the same response quality.

3.2.2 Two Techniques to Improve Response Quality
and Reduce Variance

In additional to these challenges, the online algorithm should
increase total response quality and to reduce response qual-
ity variance. Both improvements are needed to increase the
high-percentile quality, which is part of the SLA of many
commercial services. To this end, we introduce two tech-
niques: EQ and RESV.

(1) Equi-Partitioning (EQ) applies the following intu-
ition: When requests are competing for resources, it is de-
sirable to run the portion of each request that produces a
large gain. Under an expected concave quality profile, this
means giving each request equal processing time. EQ par-
titions the available resources among requests by assigning
the same processing time to each request so long as they
meet their deadlines. This strategy also prevents long re-
quests from starving short requests. Moreover, since EQ tries



to give all requests the same amount of processing time, it re-
duces the processing time variance among different requests,
and therefore reduces variance in response quality.

(2) Reservation (RESV) reserves the expected process-
ing time for waiting requests in the queue and assigns the
remaining processing time to execute the current request.
RESV prevents a long request from starving subsequent
short ones, while allowing the current long request to obtain
more resources, up to the point at which it affects subsequent
requests.

The following example shows that, in online environment
with unknown service demand and without preemption, both
techniques are required to achieve high response quality.

Example. Assume that two jobs arrive at the same time,
with 120ms deadline, and we process each job only once.
After we run the first job for 60ms, should we continue the
first job or move to the second? EQ assigns each request
60ms, and therefore stops the first job to process the second.
It is possible, however, that the second job only needs 30ms
and we will waste 30ms that could have been used for the
first job. A better decision is to look at the expected service
demand of requests. If the demand is large (above 60ms), we
should perform EQ. Otherwise, we use RESV to reserve the
expected processing time for the second job. For example,
if expected service demand is 30, we let the first job run till
completion or 120 − 30 = 90ms, whichever is earlier, and
reserve 30ms for the second. This example motivates why
both EQ and RESV are necessary.

3.2.3 Zeta-Online Algorithm
This section describes how to combine EQ and RESV in the
Zeta-Online algorithm.

Intuitively, the selection of EQ and RESV should de-
pend on the system load. Under heavy load, EQ performs
well because each job should get an equal amount of ex-
ecution time to improve quality. On the other hand under
light load, RESV performs well because it gives long re-
quests the chance to finish when they do not affect short
ones. One approach is to select an arrival rate threshold to
switch between EQ or RESV. This approach is undesirable
because it cannot capture the transient underload and over-
load situation, which occurs often due to stochastic nature of
the request inter-arrival and service processes. The instanta-
neous load oscillates even if the average arrival rate and ser-
vice demand do not change, and as queuing theory shows,
the length of the request waiting queue changes due to the
transient load changes. Coarse-grain switching between EQ
and RESV cannot capture those changes.

Zeta-Online does not use a threshold to select between
EQ and RESV. When system is lightly loaded, we want to
estimate processing time using RESV; at this point, its pro-
cessing time produced is larger than the one produced by
EQ. When system is heavily loaded, we want to use EQ;
at this point, its processing time value is larger than the one
produced by RESV. Therefore, Zeta-Online selects the larger

Algorithm 2 - Zeta-Online (Jobs[] queue, Job active, dou-
ble curtime, double meanDemand)
Inputs:
active: current running job;
queue: list of ready jobs (including active job at queue[0] if
active is not null);
curtime: current time stamp;
meanDemand: mean service demand of jobs;

Pseudo code:
1: lastJob = queue[queue.size()− 1]
2: queueLen = queue.size()
3: if(active �= null)
4: then timeBase = active.startProcessingT ime
5: else timeBase = curtime
6: timeAvail = lastJob.deadline− timeBase

// Equi-partitioning
7: EQ = timeAvail/queueLen

// Reservation
8: RESV = timeAvail − (queueLen − 1) ×

meanDemand
9: queue[0].processingT ime= max(EQ,RESV )

value produced by the two policies. Zeta-Online makes a
fine-grain selection between the two techniques, which inco-
porate the queue length and average service demand, good
indicators of instantaneous system load. We show in Sec-
tion 3.2.4 that Zeta-Online achieves higher quality than EQ
alone or RESV alone across all loads, as it responds to the
instantaneous load.

Zeta-Online is presented in Algorithm 2. Zeta-Online as-
signs processing time to a request based on the number of
ready requests in the queue (queueLen) and the available
processing time of all requests in the queue (timeAvail).
It computes the assigned processing time of the current re-
quest based on EQ (in Line 7) and RESV (in Line 8). Rather
than using a load threshold to choose the result from EQ or
from RESV, Zeta-Online combines the two techniques seam-
lessly by selecting the larger processing time they calculate
(in Line 9).

3.2.4 Overview of Algorithm Performance
This section presents simulations that compare the perfor-
mance of Zeta-Online against its constituent algorithms EQ
and RESV and against a classic server scheduling algorithm.

Figure 2 compares the response quality and variance of
Zeta-Online against other three algorithms: (1) FifoP (First-
In-First-Out with Partial results) represents a classic server
scheduler that processes requests in first-in-first-out order.
A request runs until its completion or its deadline. At the
deadline, processing is terminated, returning a partial re-
sult. It is equivalent to Earliest-Deadline-First (EDF) in
our environment. FifoP is our baseline algorithm. (2) EQ
(Equi-Partitioning) assigns available processing time equally
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Figure 2. Overview of algorithm performance using simulation results.

among ready requests in the queue. It is equivalent to Zeta-
Online without the RESV technique. (3) RESV (Reserva-
tion) reserves the expected processing time for waiting re-
quests in the queue, granting current request the remaining
time. It is equivalent to Zeta-Online without the EQ tech-
nique. The algorithms are compared by simulation, using
requests with the Bing quality profile (Figure 1). We defer
details of the simulation setup to Section 6.2.

Figure 2(a) and Figure 2(b) compare the quality loss and
quality variance of the four algorithms at different arrival
rates. There are three observations from the results:

(1) Zeta-Online incurs lower quality loss (achieves higher
quality) than FifoP. The reason is that FifoP is only deadline
aware, but it does not exploit the concavity of the quality
profile. Consider an example: two requests with 100ms ser-
vice demand, 120ms deadline, and the quality profile in Fig-
ure 1. FifoP gets total quality of 1.56 by executing the first
job for 100ms and the second job for 20ms. Zeta-Online can
do better by assigning the first job 60ms, and allocating the
remaining time to the second one, resulting in total quality
of 0.88+0.88 = 1.76. This improvement comes from using
the concavity of the quality profile.

(2) Figure 2(b) shows that Zeta-Online not only improves
response quality but also reduces the quality variance com-
pared to FifoP. The low variance of Zeta-Online comes from
EQ, which assigns the same processing time to requests, re-
ducing the processing time variance among requests. The
variance of FifoP is significantly larger as a long request
may starve the execution of later requests, producing a larger
variance in response quality.

(3) Using EQ or RESV alone is not enough. As illustrated
at Section 3.2.2, EQ prevents long requests from starving
short ones by giving all requests the same amount of process-
ing time. This works well during heavy loads, but under light
load, it may truncate long requests unnecessarily even when
the long requests have a chance to finish. Therefore, EQ does

not perform well under light and moderate load as shown in
Figure 2(a). By contrast, RESV gives long requests a chance
to finish under light load by reserving their expected ser-
vice demand for later requests. When load is heavy, RESV
over-reserves for these requests since they should receive
less than the expected service demand. The figure shows that
RESV does not perform well under heavy load. Comparing
Zeta-Online to EQ and RESV, Zeta-Online has lower aver-
age quality loss than any of them for all loads.

Moreover, as discussed in 3.2.3, if we apply a coarse-
grain switch that selects EQ or RESV based on the ar-
rival rate, the quality loss curve would be the minimum of
EQ and RESV. This coarse-grain switch underperforms the
fine-grained selection used in Zeta-Online, especially in the
moderate-high load from 20 to 30 QPS. The improvement of
Zeta-Online comes from appropriate selection of techniques
at transient load changes.

In summary, Zeta-Online considers partial execution,
concave quality profile, and deadlines by seamlessly com-
bining two techniques EQ and RESV to improve response
quality and reduce response variance. Moreover, it possesses
three desirable properties. It does not require precise infor-
mation on the service demand and quality profile of requests.
It does not incur preemption overhead. And, it is computa-
tionally efficient with the computational complexity O(1),
independent of the number of ready jobs. We further evalu-
ate Zeta’s performance in two actual systems in Sections 4
and 5. To simplify the presentation, we refer Zeta-Online as
Zeta for the remainder of the paper.

4. Web Search Engine
In this section we implement and evaluate Zeta in Microsoft
Bing, which is the second largest commercial web search
engine, to show the benefits of Zeta in a production environ-
ment.



4.1 Bing Search Engine
We focus on the index serving part that processes user web
search queries (interactive processing), rather than on the
web crawler and indexer (batch processing). When Bing re-
ceives a request, if the request hits in the cache, the results
are returned, otherwise, the request is forwarded to the in-
dex serving system. The index serving system accepts user
queries, searches its index for web pages that match the
query, and ranks matched documents to return the top N
matches. Web search is a best-effort application where the
result quality improves with the increased number of docu-
ments retrieved and ranked. It is also interactive because the
results need to be returned within a given time budget; oth-
erwise, it significantly affects user experiences. These two
properties of web search make it a suitable candidate for
Zeta.

Architecture of the Index Serving System. The index
serving system is a distributed service consisting of aggrega-
tors and index servers. When a request arrives and its results
do not exist in cache, it is assigned to an aggregator. The ag-
gregator sends the request to the index servers. Because the
web index contains billions of documents, the index is par-
titioned and processed by hundreds of index servers. Each
index server returns its matched results to the aggregator
within 150ms; the aggregator drops late responses. The ag-
gregator receives the results from each index server and re-
turns the top N documents. Due to the large number of index
servers, several levels of aggregators are used. The dominant
component is the index server and it consumes the majority
(over 90%) of hardware resources. Bing search infrastruc-
ture uses acceleration techniques, including caching. How-
ever, such techniques are orthogonal to our work.

4.2 Implementation in Index Servers
When an index server receives a search query, it searches its
index to produce a list of documents matching the keywords
in the query. It then ranks the matching documents one
by one in a loop, which we call ranking loop. It is the
most time consuming part of the index search because the
ranking function extracts and computes many features of
the documents. Without Zeta, the index server uses a FifoP
scheduler: requests are processed in first-in-first-out order;
a request is processed until its completes or the deadline
expires. In the latter case, it returns a partial result.

We implemented Zeta-Online and use it to assign pro-
cessing time for each request. To do so, we add a new termi-
nation condition to the index server. This termination con-
dition compares, at the start of each iteration of the rank-
ing loop, the elapsed processing time of a request with its
assigned processing time. If the elapsed processing time is
greater than or equal to the assigned processing time, the
Zeta-enabled index server terminates the ranking process
and returns the top N ranked results.

Zeta-Online can be extended to multicore servers by
changing the queue length value (queueLen) to reflect
the expected queue length for each core. The mean ser-
vice demand meanDemand is computed online in a re-
cursive manner as a moving average: meanDemand =
(1−α)×meanDemand+α× pi, where pi is the process-
ing time of the last processed request i and α is a constant
multiplier. We use α = 0.05 in our implementation. Zeta
only required a small change to the existing server, suggest-
ing that Zeta is practical and can be applied in large-scale
interactive services.

4.3 Experimental Evaluation
We evaluate the performance of Zeta in Bing by comparing
it to Traditional (the system before Zeta) using production
workloads. Zeta and Traditional are identical software and
hardware, except for the request scheduling. Traditional uses
FifoP scheduling as in the production servers and Zeta uses
Zeta-Online. We perform both standalone (single machine)
and cluster experiments but report only cluster results here.

The cluster experiments are conducted on 800 index
servers, each hosting a portion of the web index. In the clus-
ter experiments, each index server returns its top 5 results,
and top-level aggregator sorts and returns the top 10 results
aggregated from all index servers. The deadline of the re-
quests is 150ms; a late response from an index server is
dropped by the aggregators. We play requests from a pro-
duction trace of user queries of Bing. Each data point (per
QPS) in the experiment runs for 30 minutes, and the number
of requests depends on the query rate (QPS). The requests
follow a Poisson arrival and their average service demand is
10.5ms. To protect commercial business interests, we do not
disclose the hardware configuration of the index servers.

Performance Metrics
Response Quality. To score the quality of a response to a
search request, we compare returned documents in the re-
sponse to the documents in the base results of the query
when it is processed completely. We use proportional qual-
ity, which gives each of the top N = 10 documents the
same weight. For example, when there are 8 matches with
the base, the quality is 8/10. Proportional quality is one way
to measure response quality, and we also discuss other qual-
ity metrics in Section 4.4.4. We present quality loss values
in the figures. Given average quality of requests ρ, the corre-
sponding quality loss value is 1− ρ.

Response Latency. We measure query latency from the
time that the top-level aggregator receives the query to the
time the aggregator responds to the client.

CPU Utilization. We report average CPU utilization of all
the index servers in the cluster.

4.4 Cluster Experiments
This section presents four sets of experiments with their
results highlighted as follows:
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Figure 3. Web search evaluation results.

• Average response quality. Zeta improves average re-
sponse quality over Traditional and effectively increases
the system capacity. Under SLA quality target of 99%,
Zeta achieves a 29% capacity improvement, a potential
savings of 22% of servers.

• High-percentile response time. Zeta achieves much
higher 95-percentile quality as a result of improved aver-
age quality and reduced quality variance.

• Response time. The response time of Zeta is similar
to Traditional at any given load. Zeta does not trade
response time for quality.

• Sensitivity study on quality metrics. Zeta consistently
outperforms Traditional regardless of the quality metric.

4.4.1 Average Quality Results
Figure 3(a) shows that Zeta offers better quality than Tradi-
tional. The x-axis is the load from 400 and 700 QPS, and
the y-axis is the quality loss. At 600 QPS, Traditional has
quality loss of 1.8% and Zeta reduces it to 0.9%. By cut-
ting quality loss in half, Zeta reduces the number of un-
satisfied requests by half as well, improving customer sat-
isfaction. Without Zeta, to achieve the same quality loss at
0.9%, Traditional can only sustain 450 QPS so it requires
(1/450− 1/600)/(1/600) = 33% more servers, a large ex-
pense at this scale.

One may wonder why it is so costly to improve quality
by only 0.9% (or equivalently reduce quality loss by 0.9%)
when the existing quality is already high. Since both request
arrival and service demand are stochastically distributed,

transient overload periods exist although with small prob-
ability. In order to achieve very high quality, the system has
to be provisioned to handle the transient overload instead
of the average load, which requires many more additional
servers. Therefore, at a high quality range, the number of
servers needed to improve quality increases much faster than
the improvement in quality: a small improvement in quality
requires a large number of servers.

To explain the reasons for quality improvement, we start
from the quality profile. Figure 1 shows that the measured
quality profile is concave. Traditional uses FifoP to serve
requests one by one. Here, long requests may starve short
requests even though the quality gain during the late stages
of long requests is small. Zeta prevents these long requests
from starving short ones by terminating them earlier. Fig-
ure 3(c) shows Zeta activation rate, which indicates the fre-
quency of requests terminated early due to expiration of the
processing time assigned by Zeta. At 600 QPS, 3.5% re-
quests terminated early. Terminating long requests early, at
a small loss in quality, frees processing time for other re-
quests with potentially higher quality gain. This is the prin-
cipal contribution of Zeta.

At the same quality, Zeta produces higher throughput
and higher CPU utilization (CPU utilization is shown in
Figure 3(b)). For example, at a 1% quality loss Tradi-
tional supports 475 QPS with 64% CPU utilization, and
Zeta sustains 613 QPS with 80% utilization, showing a
(613− 475)/475 = 29% capacity improvement.



4.4.2 High-Percentile Quality Results
A service attempts to produce high-quality responses to ev-
ery query. We continuously monitor the performance of our
search service using both the average and 95% percentile of
response quality.

Figure 3(d) shows the average and 95-percentile quality
loss1. At load QPS=600, Zeta reduces average quality loss
from 1.8% to 0.9%, and reduces the 95-percentile quality
loss from 10% to 0%. Zeta exhibits significant improvement
on the 95-percentile quality because it reduces quality vari-
ance.

Even when Zeta and Traditional produce similar average
quality, Zeta has better 95%-percentile quality because of
smaller variance. Figure 3(e) shows that Zeta has smaller
variance than Traditional. Smaller variance improves the
high-percentile quality because, intuitively, if a set of values
has a smaller variance, then the data are more concentrated
near the mean, reducing the frequency of outliers. Zeta pre-
vents long requests from starving short ones, which tends
to equalize the assigned processing time of requests and to
reduce response quality variance on each server.

The aggregated response from all index servers has lower
variance as well. Assume each request is processed on a
set G of index servers, where each server hosts a partition
of web index. For simplicity, assume that the top N results
come from different servers: this is likely true since it takes
thousands of servers to host the entire web index. Let S rep-
resent the set of these servers with the top N results, and
|S| = N . The quality of the aggregated result depends on the
quality of these N servers. Using proportional quality, each
server contributes to 1/N of the total quality. Denoting Xi

as the quality of a single server, the aggregated quality Y =∑
i∈S Xi/N . Assuming index servers are identical and in-

dependent, var(Y ) =
∑

i∈S var(Xi)/N
2 = var(Xi)/N .

The variance of the aggregated result is a function of the
variance of single servers.

4.4.3 Response Time
As shown in Figure 3(f), average and 99-percentile response
time of Zeta and Traditional are similar. Zeta does not trade
worse response time to improve response quality, instead
it allocates computational resources more efficiently among
the requests.

4.4.4 Sensitivity to Quality Metrics
Measuring the quality of a web query response is an active
area of research with various performance and relevance
metrics [12]. Besides proportional quality, we consider two
alternatives, strict and weighted quality.
• Strict quality: if the query test results are an exact match

of its base results, the strict quality is equal to 1; oth-

1 The 95-percentile response quality is discrete because the proportional
quality measurement of the top 10 results can only be multiples of 1/10
from 0 to 1.
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Figure 4. Cluster test quality comparison with different
quality metrics.

erwise it is 0. In our experiments, the query response
includes its top 10 results, therefore, the response must
match the exact 10 results and in the original order.

• Weighted quality: higher ranking results carry more
weight than lower ranking results and therefore order
of results is important. We assign weights using an ex-
ponential scale, giving the top ranking result 1/2 of total
weight, the second result 1/4 of the weight and so on.

Strict quality demands exact match and no partial response
is accepted. Proportional quality and weighted quality ac-
cepts partial results. Since for web search, every matching
document carries certain value to the users, weighted and
proportional quality are more appropriate metrics. For com-
pleteness, however, we present the results for all these met-
rics.

Figure 4 shows that Zeta produces better quality than Tra-
ditional for all three quality metrics. Using weighted or pro-
portional quality, Zeta supports a 29% capacity improvement
over Traditional.

For the strict quality, Traditional supports 475 QPS with
quality loss 3.5%. Zeta offers this quality at 570 QPS, which
indicates a 20% capacity improvement. Zeta also reduces
quality loss to 1.8% at the same load, a 48% reduction in
quality loss. Zeta’s improvement in strict quality is slightly
less than weighted and proportional quality because Zeta
embraces adaptive execution. Zeta still outperforms Tradi-
tional because Zeta cuts long requests so more short requests
get a chance to run, which improves the total quality. The re-
sults show that Zeta’s quality improvement is consistent, not
depending on specific ways of measuring response quality.

5. Finance Server
Banks and fund management companies evaluate thou-
sands of financial derivatives every day. Traders and an-
alysts submit requests to value the derivatives, and they
make trading decisions online based on the returned re-
sults. At the backend, there are many servers that perform
quantitative analysis on various financial products. These
computations involve three main techniques: Monte Carlo
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Figure 5. Finance server evaluation results.

methods, Black-Scholes, lattice-based computation. Among
them, Monte Carlo methods are widely used for analyzing
complex derivatives that are difficult to value using other
techniques. The calculations are computationally intensive
and rely on repeated random sampling to compute results.

This section applies Zeta to improve the performance
of an option pricing server that uses Monte Carlo methods
to price complex path-dependent options. The Monte Carlo
tasks are time-bounded. Traders often wait for no more than
a few seconds to get the results and perform online trad-
ing. Moreover, they support partial results: with more sam-
ples, the processing time is longer and the estimated price
gets closer to the real price. These characteristics make it a
suitable candidate for Zeta. Our experimental results show
that Zeta improves average response quality by 28% and im-
proves the 99-percentile quality by 80%.

5.1 Quality Metric
The result quality is often measured by a statistical metric
called standard error of mean (SEM). We use a standard way
to compute it which we explain here in three steps: (1) define
SEM, (2) show its value (which we do not know), and (3) de-
scribe how to estimate it. (1) SEM by definition is the stan-
dard deviation of the sample mean to the population mean.
It indicates how well the sample mean estimates the popu-
lation mean. (2) The real SEM value is equal to the popula-
tion standard deviation (denoted as σ) divided by the square
root of the sample size (denote sample size as n), i.e., real
SEM = σ/

√
n, however, the population standard deviation

is often unknown in practice. (3) To estimate SEM we esti-
mate σ using the sample standard deviation (denoted as s).
Then we have estimated SEM using sample standard devia-
tion divided by the square root of the sample size, i.e., SEM
= s/

√
n, which we use to compute SEM in our experiments.

The smaller SEM is, the closer the estimated price to with
the real price. Although the real price is usually unknown
in practice, SEM can be used to calculate a good approxi-
mation to a confidence interval. The goal of the server is to
minimize the average and high-percentile SEM value for all
requests so the estimated prices are closer to the real prices.

Notice that when the sample size is very small, the SEM
estimator is statistically unreliable because s/

√
n is subject

to estimation error and can be far from the real SEM σ/
√
n.

Therefore, we consider a request to be unprocessed if it
does not get any processing time or if the processing time
is too small to produce any statistically meaningful solution
(we use 200 samples in the experiments). We report two
numbers, the mean SEM for completed requests and the
number of unprocessed requests.

5.2 Experimental setup
Our pricing server in experiments uses Monte Carlo methods
to price Asian options [6, 11]. For Asian options the pay-
off is determined by the average underlying price over some
pre-set period of time, therefore, the price is path-dependent.
Closed form expressions for the option price are not avail-
able for this model. Although our experiments price Asian



options, Monte Carlo methods to evaluate other financial
derivatives are similar.

We implement and compare two schedulers FifoP and
Zeta-Online; all other software and hardware are same. The
hardware is a dual-core Intel machine with CPU speed 3.17
GHz and memory 4 GB. Each request executes a classic
Monte Carlo Asian option pricing algorithm [6] to estimate
the option price. The input parameters of a request include
interest rate r, strike price K , dividend yield δ, volatility
σy , total duration T and period m. In our test, all requests
share the same total duration and period value; we use some
typical Asian option value T = 1 representing 1 year as
the duration and m = 1/12 representing 1-month period.
Requests are evaluated under various economic scenarios so
they have different interest rate, strike price, dividend yield
and volatility; an example of these inputs is as shown in [6]:
r = 0.1, K = 100, δ = 0.03, σy = 0.25.

The requests follow Poisson arrival and the deadline is
1 second. We set SEM target 0.05: when a request’s SEM
reaches 0.05 or lower, we consider it fully evaluated and
terminate the request. Otherwise, the request is partially
evaluated. Request service demand is decided by the number
of samples that is closely related to SEM target, and path
length of each sample that is decided by T/m. The requests
in our test have the same SEM target and T/m = 12, so
their service demands are the same about 320ms.

5.3 Request Error Profile
Figure 5(a) shows the request error profile with increasing
sample size. When the number of samples increases along
with the processing time, SEM decreases, which indicates
the increase of the result quality. Moreover, the error pro-
file is convex; when we compute more samples, the addi-
tional reduction on error for adding a sample gets smaller.
The intuition behind the convex error profile is that SEM is
measured as sample standard deviation divided by the square
root of the sample size, i.e., SEM = s/

√
n. When the sample

size is fairly large, the change of sample standard deviation
is small and the square root of the sample size is the domi-
nating term. The convexity of 1/

√
n leads to the convexity of

SEM. Moreover, minimizing SEM with a convex error pro-
file is equivalent to maximize quality with a concave quality
profile, so Zeta is still applicable.

5.4 Performance evaluation
We compare Zeta with FifoP with respect to mean, variance,
and high percentile SEM values of all requests. Our exper-
imental results suggest that Zeta outperforms FifoP over all
of these metrics. In particular, Zeta significantly reduces the
variance (by over 5 times at high load), which leads to a big
reduction at the high-percentile error.

5.4.1 Mean SEM
Figure 5(b) compares Zeta with FifoP with respect to mean
SEM values. The results show that Zeta reduces mean SEM

under moderate and heavy load, and with the increase of
load, the gap between Zeta and FifoP becomes larger. This
is consistent with what we observed at Search server: Zeta
takes advantage of the concave quality profile (convex er-
ror profile) to improves quality (reduce error) through better
scheduling. Since the error profile is convex, Zeta assigning
similar processing to requests through equal-partitioning and
reservation helps to minimize the mean SEM. It is demon-
strated at Figure 5(c), which presents the processing time
distribution of Zeta and FifoP at arrival rate 6 RPS. We can
see that there are more requests with very small process-
ing time (< 100ms) at FifoP than Zeta, which contributes
to larger mean SEM.

5.4.2 High-Percentile SEM
Zeta significantly reduces the SEM variance: the reduction
of variance is 5 times or more for most of the load (as shown
in Figure 5(e)). The reason behind reduction of variance is
that when requests are competing for resources Zeta tries
to assign each request an equal amount of processing time
while FifoP may complete some requests but leave other re-
quests unprocessed or processed with little time. Therefore,
requests scheduled by Zeta tend to have similar quality val-
ues and smaller variance than FifoP.

Smaller variance has important implications on reduc-
ing high-percentile error (or improving high-percentile qual-
ity), which are crucial for many commercial applications. To
look at the impact of variance on high-percentile SEM, we
can compare the error reduction of Zeta at mean SEM (Fig-
ure 5(b)) and 99%-SEM (Figure 5(d)). At load 5 requests
per second, which corresponds to about 80% CPU utiliza-
tion, Zeta’ reduces average SEM by 28% and 99%-SEM by
80%2. This additional reduction at 99%-SEM comes from
Zeta variance reduction.

5.4.3 Number of Unprocessed Requests
Another view that Zeta outperforms FifoP is the comparison
on the percentage of unprocessed requests. As discussed at
Section 5.1, a request is considered unprocessed if it does not
get any processing time or if the processing time is too small.
Figure 5(f) shows the percentage of unprocessed requests
at Zeta is smaller than that of FifoP. This demonstrates
the benefits of reservation: Zeta prevents earlier requests to
starve later requests by reserving processing time for the
later ones. Therefore, Zeta reduces the number of ”starved”
requests.

6. Extended Performance Study
We use simulation to further evaluate the performance of
Zeta-Online on aspects that cannot be conveniently evalu-

2 The reduction for average SEM and 99%-SEM is computed using the
target SEM value 0.05 as baseline. For example, the average SEM for FifoP
is 0.064 with distance to base value 0.014; the average SEM for Zeta is
0.060 with distance to base value 0.01. So the average SEM reduction is
(0.014 − 0.01)/0.014 = 28%.



ated through an implementation: (1) different quality pro-
files, and (2) a comparison of Zeta-Online to the offline op-
timal and to other online algorithms.

6.1 Sensitivity to Quality Profile
We evaluate Zeta-Online on concave quality profile and
three additional quality profiles shown in Figure 6(a):

(1) Setup profile. The setup profile mimics the effect of
a setup cost with non-productive processing equal to 20% of
the service demand. The setup phase could, for example, be
used to initialize data.

(2) Staircase profile. The staircase profile mimics a situ-
ation in which improvement in response quality is discrete.

(3) Linear profile. The linear profile mimics applications
that perform a linear scan or iterative processing of random
(unsorted) data that may not exhibit diminishing returns.

Simulation setup. Each request has a 100ms deadline in-
terval, with service demand following Exponential distribu-
tion with 30ms mean. Request arrivals follow a Poisson dis-
tribution, and we vary load by changing mean arrival rate.

Results. Figure 6(b) shows that Zeta-Online outperforms
FifoP for the setup and staircase profiles (which are not
concave), and for the concave and linear profile (which are
concave).

Next we discuss the quality loss of Zeta-Online under dif-
ferent quality profiles. Both the setup and staircase profiles
are concave at a coarse grain level. The improvement in
Zeta-Online is higher when the quality profile is more con-
cave. Intuitively, with a more concave quality profile at the
coarse grain level, the quality curve rises quickly at the be-
ginning, and then exhibits diminishing returns, which is the
property that Zeta-Online exploits: terminating a request that
has been executing for a long time results in little quality loss
for this request but saves processing time for other requests
with potentially higher quality gain. Both setup and staircase
are concave at a coarse grain, and therefore Zeta-Online pro-
vides better quality. The quality improvement for the linear
profile is lower because it is the least concave function. In
summary, Zeta-Online does not require the quality profile
to be concave in a strict sense and provides better response
quality under a variety of coarse-grain concave profiles.

6.2 Algorithm Comparison
This experiment compares Zeta-Online to offline optimal
and to two well-known online algorithms from the prior
work (MIG and FifoP): (1) Optimal: The optimal offline
is an upper bound on the performance of any online algo-
rithm. (2) MIG: Maximum Instantaneous Gain (MIG) is a
well-known algorithm for QoS-adaptive system [2].3 MIG
optimizes for highest quality, running the ready request that
gives the maximum instantaneous quality gain based on re-
quest quality profiles. Instantaneous gain is the increase in
request quality given a unit increase in processing time. (3)

3 QoS-adaptive system is described at related work (Section 7)

FifoP: First-In-First-Out with partial results is the same al-
gorithm used in previous sections, and it is equivalent to
Earliest-Deadline-First (EDF) in our environment. It is well
known that EDF is optimal in terms of meeting request dead-
lines when requests do not have partial execution.

Simulation setup. This experiment uses the same arrival
and service distributions as the previous subsection along
with the concave quality profile shown as “concave profile“
in Figure 6(a). Figure 2 of Section 3.2.4 uses the same setup.

Results. Figure 6(c) compares the quality loss of the four
algorithms. As expected, offline optimal has the best perfor-
mance. Offline optimal performs better than Zeta-Online be-
cause it has exact information on request service demand and
quality profile as well as future arrivals. Such information
typically is unavailable to online schedulers. Zeta-Online has
the second best performance, giving quality loss lower than
the other online algorithms. The results show the importance
of considering both deadline and quality profiles:
• FifoP is deadline aware: since the requests have the same

deadline, FifoP executes the job with earliest deadline
first. However, FifoP does not exploit the concavity of
the quality profile so it underperforms compared to Zeta-
Online.

• MIG optimizes for quality profile but it does not consider
request deadline, resulting in suboptimal decisions. For
example, suppose two requests have the same service de-
mand of 60ms, arrival time at 0 and 50ms, and expira-
tion time at 100 and 150ms respectively. MIG preempts
the first job at 50ms to run the second job, which is a
bad decision because the second job has further dead-
line and can be executed after the first job. This draw-
back in MIG is more significant at light loads because
better scheduling is likely to complete all requests. This
explains why MIG has lower quality than FifoP at light
load. Zeta-Online is consistently better than MIG, which
demonstrates the importance of considering both dead-
lines and quality profiles.

7. Related Work
This paper presents Zeta scheduling framework for interac-
tive applications supporting partial execution. In contrast to
Zeta, most prior work on scheduling [14, 20, 23–27] does
not consider partial execution; they use admission control
and other scheduling techniques to manage server resources.
They are applicable to different application models and are
rather complementary to our work, and we do not discuss
them further in this section. We focus on systems supporting
partial execution.

7.1 Partial execution
Employing partial execution and approximated computation
is an active area of research. partial execution has been used
by anytime algorithms in AI [29]. Unlike most algorithms
that run to completion, anytime algorithms provide a sin-
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Figure 6. Simulation Results.

gle answer after performing some fixed amount of compu-
tation. Loop perforation [18] offers compiler and runtime
support for partial execution and has been applied to au-
dio/video codecs. Web content adaptation [8, 15] offers dif-
ferent versions of contents for the same request. Baek and
Chilimbi [3] presented a general framework to support ap-
proximated computation of different applications to tradeoff
between quality and energy consumption.

The above prior work [3, 8, 15, 18, 29] offers important
insights on how to adapt execution for different applications.
They focus on partial execution mechanism that enables
individual requests to produce partial results. They do not
consider server environments where multiple requests are
competing for resources and do not use the quality profile to
allocate resources among requests for higher server capacity.
They construct an important foundation for our work by
enabling individual requests to support partial execution. We
study how to schedule these adaptive requests in a server
environment for better overall quality.

7.2 Server Systems
Zeta makes scheduling decision based on request quality
profile and deadline. Among the prior work that considers
partial execution, QoS-adaptive systems [2, 19, 28] apply
utility profile, and soft real-time schedulers [7, 9, 10] per-
form deadline-oriented scheduling.

QoS-adaptive systems: These systems [2, 19, 28] map
services with utility profiles to a pool of resources to max-
imize the aggregated quality. To support partial execution,
each service can export multiple QoS levels of different
quality and utility. For example, a network-intensive service
can have its utility profile defined as its service qualities cor-
responding to different rates of allocated data bandwidth.
QoS-adaptive systems look similar with Zeta, however, they
are very different: QoS-adaptive system is stateless: at any
time, allocating to the service the same amount of resource
(such as data bandwidth) always gives the same quality gain
regardless of the prior execution of the service. However,
Zeta system is stateful: quality gain of a request is related to
its prior processing time. Utility-based systems do not con-

sider deadline either. Therefore, to optimize a utility-based
system, greedily optimizing quality gain at each time unit
gives a global optimal solution on the aggregated quality.
However, it is no longer true for Zeta because an optimal
local decision may result in suboptimal behavior for later
execution, as we see from the performance results of MIG in
Section 6.2. Adding time dimension into scheduling makes
it a harder problem to solve.

Soft real-time systems: There is a large body of work
on soft real-time scheduling [4, 5, 20, 23–25] to improve
total quality (or rewards) subject to request deadline. Some
of them [4] combine utility with deadlines. However, except
the work we discuss below, they do not consider partial exe-
cution and therefore not applicable in our environment. The
closest work to ours [7, 9, 10, 22] study adaptive (or par-
tial) execution for multimedia applications. They consider
weighted linear profile: executing a request with weight vi
for pi amount of time, where pi ≤ wi, gains quality pivi.
Another prior work [17] considers concave quality profiles;
however, none of them [7, 9, 10, 17, 22] measures the quality
profile of real-world applications to identify their concavity.
Moreover, they don’t report any implementation results.

Other systems: Partial execution is also used at web
servers to improve overload behavior [1]. In particular,
web server returns full contents at regular load and returns
degraded-quality contents during overloading. This work of-
fers an effective mechanism for overload handling but Zeta
is designed for quality improvement for both regular and
heavy load. Moreover, the work neither considers request
quality profile nor offers a deadline guarantee for responses.

8. Conclusions
This paper introduces the Zeta scheduling model to improve
scheduling for a common class of server workloads that
possess three characteristics — partial execution, concave
quality profile and time constraints. We propose an efficient
online scheduler Zeta-Online that exploits the concavity of
quality profile and deadline constraints to increase average
response quality and high percentile quality without incur-
ring preemption overhead and without needing exact job in-



formation on service demand. We implement and evaluate
Zeta in Bing, in a finance server and by simulation. The re-
sults show that Zeta provides substantial benefits improving
both average response quality and high-percentile quality.
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