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ABSTRACT

Resource allocation is an integral, evolving part of many data
center management problems such as virtual machine place-
ment in data centers, network virtualization, and multi-path
network routing. Since the problems are inherently NP-Hard,
most existing systems use custom-designed heuristics to find
a suitable solution. However, such heuristics are often rigid,
making it difficult to extend them as requirements change.

In this paper, we present a novel approach to resource al-
location that permits the problem specification to evolve with
ease. We have built Wrasse, a generic and extensible tool that
cloud environments can use to solve their specific allocation
problem. Wrasse provides a simple yet expressive specifica-
tion language that captures a wide range of resource allocation
problems. At the back-end, it leverages the power of GPUs
to provide solutions to the allocation problems in a fast and
timely manner. We show the extensibility of Wrasse by ex-
pressing several allocation problems in its specification lan-
guage. Our experiments show that Wrasse’s solution quality
is as good as with heuristics, and sometimes even better, while
maintaining good performance. In one case, Wrasse packed
71% more instances than a custom heuristic.

Categories and Subject Descriptors

K.6.2 [Management of Computing and Information Sys-

tems]: Installation Management—Resource Allocation

General Terms

Performance, Management

Keywords

resource allocation, constraint satisfaction, GPU

1. INTRODUCTION
Resource allocation is an integral and continuously evolv-

ing feature of many cloud computing and data center manage-
ment problems. Consider the following hypothetical scenario.
A cloud service provider currently allocates servers to tenant
VMs based on CPU, memory and disk requirements of the
VMs. At a later date, the service provider enhances the model
and allocates network bandwidth resources as well to tenant
VMs. Even later, the provider introduces a new fault-tolerant
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replication strategy, placing VM and data replicas intelligently
across fault domains. At this point, the VM allocation strategy
depends on constraints that involve individual server capac-
ity, network bandwidth capacity in the data center, as well as
fault-domain definitions.

Such varied and evolving resource allocation requirements
are inherent not just to multi-tenant data centers. Capacity
planning for cloud services [20], VM placement in private
data centers [21, 17], network virtualization and virtual net-
work embedding [6, 29, 13], multi-path routing [22, 3], and
data replica management [14], all utilize significant resource
allocation components. Broadly, they involve dividing and al-
locating resources subject to certain constraints such as guar-
anteed server performance, network performance, and fault-
tolerance requirements. Most of these allocation problems are
NP-hard variants of the proverbial bin-packing problem, the
goal of which is to fit a set of balls into a given set of bins,
while satisfying constraints defined upon the different proper-
ties of the balls and bins.

State-of-the-art data center management tools use custom-
built heuristics to arrive at suitable resource allocations for
each individual problem. For example, recent research on net-
work virtualization [13, 6] has used greedy heuristics to al-
locate VMs in the data center so that network bandwidth re-
quirements between VM pairs are met. But as allocation re-
quirements evolve with time, a greedy heuristic designed just
for capacity requirements may not suffice. For instance, a data
placement strategy that is optimized for performance may not
necessarily meet fault-tolerance requirements: in fact, perfor-
mance and fault-tolerance requirements often present conflict-
ing constraints. Placing all data on the same hardware resource
such as a rack closest to the data’s consumers may provide the
best performance, but a single hardware failure may render
all the data inaccessible simultaneously. Designing algorithms
and heuristics that provide good (close-to-optimal) solutions
while respecting a multitude of such constraints has proved to
be a challenging task [18, 11]. Moreover, heuristics often re-
quire careful tuning and a significant amount of evaluation to
ensure they work well.

In this paper, first, we introduce a novel abstraction that
combines both declarative and imperative constructs specif-
ically targeted at such resource allocation problems. Sec-
ond, we propose an approach that performs massively parallel
search to find a solution that meets all the specified objectives.
We have designed and implemented Wrasse, an allocation tool
(also accessible as a web-service) that takes a specification in
this abstraction as input and provides an allocation that satis-
fies all the stated objectives.

Three key contributions of this paper are as follows.
Specification Language for Resource Allocation: Wrasse
supports a novel specification language, that combines both
declarative and imperative constructs, for resource allocation



problems. The constructs of the language are simple yet
generic, and extensible enough to specify a range of resource
allocation problems with potentially conflicting constraints.
The design of the language has been heavily driven by the
requirement to perform fast, GPU-based massively parallel
search for solutions to a given specification. We show that a
number of data center related allocation problems can be stated
using this language. Also, we show through examples how
users can extend their specification thereby supporting various
evolutions to the problem.
Fast GPU-based solver: We have built a memory- and
performance-optimized GPU-based solver customized to the
Wrasse specification language. It runs a massively parallel
search for a generalized version of the decision version of the
bin-packing problem [12].
Web-Service: We have implemented Wrasse and deployed a
proof-of-concept web-service with the GPU-based back-end.
Administrators or management systems can therefore choose
to use Wrasse locally if a GPU is present, or outsource their
resource allocation functionalities to the Wrasse web-service.
Our experiments with two such problems – VM placement and
network virtualization – show that Wrasse provides solutions
that are either as good or better than state-of-the-art heuris-
tics: a direct benefit of performing massively parallel search
through the solution space. Also, for each problem, Wrasse
runs in a matter of hundreds of milliseconds to a few seconds,
which is about two orders of magnitude faster than a generic
constraint solver-based approach.

2. RELATED WORK
Past work and existing products fall into three distinct cate-

gories: 1) constraint-based approaches, 2) heuristic-based ap-
proaches, and 3) GPU-based acceleration.

2.1 Constraint-based Approaches
Previous work has proposed declarative approaches for sys-

tems management problems using generic constraint solvers

and LP solvers. Solvers are extremely powerful in terms of
functionality and can support many problems, one of which
is generic resource allocation. However for even small-sized
problems with a few hundred variables, the performance of
solvers is prohibitively slow and severely hinders how effec-
tively they can be used as part of a management tool suite. We
provide some examples:

ConfigAssure [23] is a tool that uses the Kodkod SAT
solver [27] to perform network configuration synthesis and
error diagnosis. The authors specify that the scalability
and performance of the solver remains a fundamental prob-
lem to the tool. Rhizoma [28] performs resource alloca-
tion in environments like multi-tenant data centers and dis-
tributed testbeds using Constraint Logic Programming with
the ECLiPSe solver [5]. The authors mention that performance
of the constraint solver is a serious problem even for small in-
creases in problem size. Cologne [19] is a platform designed
for solving distributed constraint optimization problems using
the Gecode constraint solver. The authors mention that due
to the exponentially high runtimes of the solver, it is hard to
obtain optimized solutions in reasonable time, and they use a
cutoff time for the constraint solver.

Earlier versions of the Wrasse tool did indeed use generic
solvers Z3 [10] and ECLiPSe, but we faced serious perfor-

mance issues, similar to these projects. Other work [25, 18]
has also explored LP solvers as an alternative with similar per-
formance issues. Consequently, we decided to implement a
GPU-based solver for Wrasse to achieve good performance.

AMPL [1] is a mathematical modeling language that
can model allocation problems in the style of bin-packing.
Some of Wrasse’s constructs are similar to AMPL. However,
Wrasse’s specifications include additional constructs very spe-
cific to data center resource allocation that make it easier for
the GPU-based solver to find solutions efficiently.

Wrasse concepts, and how our custom solver leverages them
will be explained in Sections 3 and 4.

2.2 Heuristics-based Approaches
System Center Virtual Machine Manager [21] is a manage-

ment tool that performs the job of VM placement: it places
VMs in a data center subject to CPU, memory, I/O and net-
work bandwidth requirements of VMs, ensuring that the place-
ment it achieves always keeps the aggregate resource usage on
each server below the server’s capacity. The Microsoft As-
sessment and Planning toolkit [20] is a data center capacity
planning toolkit that determines how much compute resources
(servers or Azure [2] instances) a business requires to run its
application or service. It also solves the VM placement prob-
lem to achieve this.

Tools such as Oktopus [6], SecondNet [13] and Cloud-
Naas [7] provide abstractions to perform network virtualiza-

tion: in addition to solving the vanilla VM placement problem
above, they ensure that the data center network is sufficiently
provisioned to guarantee VM bandwidth demands. VMs are
placed on servers such that the network links between the
servers have enough capacity to support all inter-VM traffic.

Hadoop’s rack-aware replica placement [14] allocates data
replicas to servers across fault-domains assuming certain fail-
ure patterns. SPAIN [22] uses an allocation of paths to VLANs
to implement a multi-path routing algorithm in data centers.
The Fat Tree [3] network architecture allocates flows to differ-
ent ports on a switch for better load balancing.

Amazon Web Services introduced the “Virtual Private
Cloud” model in late 2009. In late 2011, they enhanced the
model to include the feature of “Elastic Load Balancing”, that
allows tenants to specify replication requirements across mul-
tiple availability zones. This shows how resource allocation
needs can change and evolve over time, thereby making a case
for an extensible framework such as Wrasse.

Through conversations with data center administrators, we
determined that there are several other allocation problems,
such as physical server placement (constrained by power and
cooling demands), IP address allocation (to avoid excessive
wastage of address space), and firewall rule and ACL place-
ment (where and how to place rules given a limit on the num-
ber of rules a network component can accept). The Wrasse
abstraction can capture all these allocation problems.

2.3 GPU-based Accleration
Recent work has leveraged GPUs for accelerating specific

aspects of network performance. For example, SSLshader [16]
uses GPUs to speed up RSA operations, and therefore, SSL
performance. PacketShader [15] uses GPUs for accelerat-
ing packet lookup and forwarding operations in routers. We
take inspiration from this work since performance is one of
Wrasse’s goals.



3. SPECIFICATION LANGUAGE
Our primary goal in designing the Wrasse specification lan-

guage was for it to be expressive enough to encode a multitude
of allocation problems without using any domain-specific ab-

stractions. Avoiding domain-specific abstractions is essential
for generality. This ultimately lead us to design a language
that is simple and concise, and an instantiation of the tool that
lacks any heuristics, tuning knobs, or magic numbers.

3.1 Abstractions
Balls and Bins: In any resource allocation problem there

are: 1) objects that need to be assigned, and 2) objects the first
kind are assigned to (subject to resource constraints). In VM
placement, VMs are assigned to servers. In server selection,
users are assigned to servers. In job scheduling, jobs are as-
signed to time-slices. In line with our domain agnosticism, we
term these objects balls and bins respectively.

Any ball can be assigned to any bin (subject to constraints
defined below). For simplicity, we explicitly chose not to have
different types of balls or bins; domains that require different
types can encode them using the constraints below. For exam-
ple, Section 6.3 shows how we encoded two types of balls to
represent the objectives of the job scheduling problem.

A ball cannot be assigned to more than one bin (or sub-
divided). A domain where sub-division is permissible may
map the smallest indivisible fragment to a Wrasse ball, and
use the constraints below to keep the fragments together.

Wrasse is agnostic to what balls and bins map to in the prob-
lem domain; it is the task of the user to map domain-specific
things into Wrasse balls and bins so that balls-to-bins assign-
ment computed can be mapped back to a meaningful allocation
in the problem domain.

Resources: Balls consume resources provided by bins. Re-
sources could, for example, be CPU, memory, and disk ca-
pacity (in VM placement); bandwidth and latency (in server
selection and network virtualization); worker cycles (in job
scheduling) etc.

It is tempting to associate a set of resources to each bin; balls
assigned to a bin consume that bin’s resources. The problem
with this approach is that there is no way to model a shared

resource, such as a network link’s capacity. Link capacities in
a data center cannot be associated with individual server (bin)
since no single server is responsible for all traffic on a link
deep in the network.

Instead, Wrasse’s abstraction for resources is a single multi-
dimensional resource vector; each dimension in the vector
maps to one resource. Each bin’s resources are mapped to dif-
ferent dimensions in that vector. Shared resources are mapped
to yet other dimensions in that vector. Thus, for example, if
there are n bins with k resources each (such as a server with
CPU, memory, disk and network interface capacity), and m

shared resources (such as network links and switches connect-
ing the servers), the Wrasse resource vector has kn + m di-
mensions. As with balls and bins, the user defines the mapping
from real-world resources to dimensions. Wrasse is agnos-
tic to which resource dimensions are associated with bins and
which are shared.

Each dimension has a capacity; different dimensions may
have different capacities. Heterogeneous bins are therefore
easily modeled using this abstraction. Capacities are fixed in
the problem specification.

3.2 Mechanisms
Utilization: Assigning a ball to a bin must increment the re-

source utilization along the appropriate resource dimensions.
There are a few subtleties to how this is realized while be-
ing domain-agnostic. At first blush one might have the prob-
lem specification statically list the resource utilization of each
ball, as in a traditional vector bin-packing specification [9],
and have the Wrasse tool increment the appropriate dimen-
sions when a ball is assigned to a bin. However, static resource
utilization cannot model resource utilization that arises from
the dynamic assignment of balls to bins (e.g., network use by
communicating VMs). In the network-virtualization scenario,
two communicating VMs placed on the same server impose no
network utilization, while placed on different servers, they im-
pose network utilization on the network links between the two
specific servers they are assigned to. Thus resource utiliza-
tion, in this case, is fundamentally a function of the (dynamic)
assignment and cannot be specified statically.

Wrasse therefore requires a user-defined imperative func-
tion that returns the ball’s resource utilization. The input to the
function specifies 1) the ball Wrasse is attempting to assign, 2)
the bin the tool is attempting to assign the ball to, and 3) the
current partial assignment of (other) balls to bins. The func-
tion is expected to return the resource dimensions that must be
incremented, and by how much, if the ball were to be placed
in that bin, given the partial assignment. Wrasse assigns the
ball only if utilization stays below the dimension capacity for
all dimensions affected. Note that this user-defined function,
while being imperative, is not a heuristic — it does not suggest
which bin to assign a ball to; it simply answers the question
“what would happen if this ball were to be assigned to this bin
given the current partial assignment”. Wrasse’s GPU solver
uses this user-defined function as a black-box, which it calls
repeatedly as it explores the search space.

While complexity of the user-defined utilization function
depends, in general, on the problem-domain, we find they are
quite simple for a large class of resource-allocation problems.
Section 6 lists functions for VM placement, network virtual-
ization, and job-scheduling.

Friends and Foes: It is often desirable to assign related
balls to the same bin. In VM Placement/network virtualiza-
tion, for example, placing the same tenant’s VMs on the same
server reduces network resources utilized. While the user-
defined utilization function can encourage such placement by
returning a smaller utilization vector in such cases (if Wrasse,
by chance, assigns a ball to the same bin it assigned a related
ball), the user-defined function cannot direct Wrasse’s search
algorithm to explore such assignments.

We explicitly support such requirements to improve search
efficiency. Wrasse allows groups of balls to be marked as
“friends” in the problem specification. All balls in a friend
group will be assigned to the same bin.

“Foes” captures the dual scenario where a ball must be as-
signed to a different bin than another ball. At least one ball
in a foe group will be assigned to a different bin. A scenario
when all balls in a set must be assigned to different bins can
be encoded using pair-wise foe groups between the balls.

3.3 Practical Considerations
Soft Constraints: Constraints in many practical resource-

allocation problems are fuzzy. The user may prefer to gen-



erally keep friend balls together (or foe balls apart), but in
over-constrained scenarios may accept solutions where a small
fraction of constraints are violated. To this end the user can as-
sociate with a friend (or foe) group a probability with which
the constraint must hold; the default is 1.

Similarly for capacity constraints, the user may define
groups of dimensions such that most dimensions in the group
meet their capacity constraint, but a small (user-specified)
fraction may exceed their capacity by some (fixed; user-
specified) amount. This mechanism allows us to model the
“95% rule” used in many practical resource allocation scenar-
ios [20] as shown in Section 6.1.

Pinning: In many practical scenarios, resource-allocation
is an ongoing process where new balls are added, and old balls
evicted, over time. Solving a resource allocation problem from
scratch each time (with a slightly different set of balls) may
give a radically different assignment of balls from the previ-
ous assignment including for balls common to the two runs.
Wrasse allows the problem specification to “pin” some balls
to bins so as to not perturb already assigned balls in the sys-
tem. It will then solve only for the unpinned balls.

Number of bins: If the number of bins is unknown, Wrasse
calculates a lower-bound on the number of bins as follows:
for each bin-specific resource1 such as CPU capacity, the tool
calculates the total usage by all balls, and divides it by the
total capacity across all bins. Taking the maximum of this
across all bin-specific resources gives us a lower-bound. Start-
ing from the lower-bound, Wrasse attempts to find a solution,
incrementing the number of bins if it fails to. This process
is proved to terminate quickly as a satisfiable solution exists
within 1 + ǫ of the lower-bound where ǫ is small [9].

3.4 Example: VM Placement
We illustrate a real-world problem-specification using the

Wrasse language through a simple VM placement example.
We use a small dataset for ease of explanation; in reality, the
same specification can be used for much larger sets of VMs
and servers. Section 8.1 uses exactly this specification to eval-
uate Wrasse’s VM placement using data gathered from real
applications.

A tenant wants to run an application using 4 VMs on a cloud
infrastructure. Each VM has a fixed CPU and memory require-
ment which the tenant specifies (Table 2a). Say the cloud ad-
ministrator provides only two servers to run these VMs. Each
server has a fixed CPU and total memory capacity (Table 2b).
The administrator needs to find a placement of the VMs on
servers, ensuring the following requirements:

1. CPU and memory requirements of VMs placed on a
server should not exceed that server’s capacity.

2. VM2 and VM3 are replicas that the user wants to place
on different servers to ensure fault-tolerance.

We begin by mapping our problem onto balls, bins, resource
dimensions, and capacity constraints (Specification 1, lines 1–
4). The BALLS list comprises the VMs, and the BINS list con-
tains the servers. RESOURCES defines 4 dimensions: the first
two capture the CPU and memory of server S0. The next two
capture the CPU and memory on server S1. Each dimension
is specified with the corresponding capacity value.

1There must be at least one bin-specific resource; otherwise,
all balls will be assigned to one bin and the solution is trivial.

Table 1: VM Placement Example

VM CPU Mem
Req Req

VM0 100 2

VM1 50 3

VM2 40 4

VM3 40 4

(a) VM Requirements

Server CPU Mem

Cap Cap

S0 100 5

S1 200 10

(b) Server Capacities

1: BALLS: {0⇒VM0; 1⇒VM1; 2⇒VM2; 3⇒VM3}
2: BINS: {0⇒S0; 1⇒S1}
3: RESOURCES: {0⇒ (S0CPU, 100); 1⇒ (S0MEM, 5);
4: 2⇒ (S1CPU, 200); 3⇒ (S1MEM, 10)}
5:
6: procedure UTILFN(BALL, BIN, ALLOC)
7: UTILDATA: {0⇒ 100; 1⇒ 2; /* VM0 REQ */
8: 2⇒ 50; 3⇒ 3; /* VM1 REQ */
9: 4⇒ 40; 5⇒ 4; /* VM2 REQ */
10: 6⇒ 40; 7⇒ 4} /* VM3 REQ */
11: UTIL← {0, 0, 0, 0}
12: UTIL[BIN× 2]← UTILDATA[BALL× 2]
13: UTIL[BIN× 2 + 1]← UTILDATA[BALL× 2 + 1]
14: return UTIL

15:
16: FOES: [{VM2,VM3}]

Specification 1: VM Placement Example

Next, we capture requirement 1 of this example by defining
a suitable resource utilization function. Lines 7–10 capture
the resource utilization data in the UTILDATA array. The first
two elements list VM0’s CPU and memory requirements re-
spectively (line 7). The next two elements list VM1’s require-
ments, and so on. Note that UTILDATA exists only within the
user-defined function, and is not part of the abstraction.

Line 11 initializes the utilization vector, which has the same
number of elements as RESOURCES. Lines 12 and 13 read the
CPU and memory requirement of the given BALL from UTIL-
DATA, and store them in the CPU and memory dimension for
the given BIN in the vector.

Now, we capture requirement 2. Since VM2 and VM3 need
to run on different servers, we define a foe set containing them
(line 16). This completes the specification of the problem us-
ing Wrasse’s abstraction. A satisfying solution for this prob-
lem is to place VM0, VM1, and VM2 on S1 and VM3 on
S0.

4. Wrasse SOLVER
Wrasse uses massive parallelism by orchestrating hundreds

to thousands of light-weight GPU threads to explore the search
space in parallel. Our goals in designing the solver were:

Generic search: A key challenge in designing the Wrasse
solver was to avoid the use of any tuning knobs, parameters,
or magic numbers that may make it less generic.

Speed: At the same time, by exploiting design features of
our language, Wrasse should find solutions quickly, taking at
most a few seconds. One may ask if this is fast enough. Previ-
ous analysis (though unconfirmed) has conjectured that Ama-
zon Web Services place roughly 50,000 instances per day [4]
on their infrastructure. Assuming the number has since dou-
bled, this amounts to placing roughly 1.15 instances per sec-
ond. It turns out that we can achieve such speeds using Wrasse
with only one GPU, and can enhance it further using a cluster
of GPUs.



At a high-level the solver operates as follows: for each bin
it considers all unallocated balls (in parallel). It invokes the
user-defined utilization function with the partial assignment;
checks that capacity constraints are met; assigns friend balls
(if any) by repeating the same steps; and checks to ensure that
no foe group is fully assigned to the same bin. If any constraint
is violated, the ball is left as unallocated. When no more balls
can fit, the solver moves on to the next bin, until all balls are
allocated, or all bins are exhausted. The following sections
describe various design decisions and implementation details
of the Wrasse solver.

4.1 Speed
Exploiting Language Features. Consider our balls and

bins abstraction — a ball can be put in only one bin. Our
Wrasse solver has a straight-forward implementation: one in-
teger variable for each ball (bi). This variable is set to a
value that represents its bin (j). A generic constraint solver
does not have the concept of balls and bins. We have imple-
mented Wrasse’s abstractions on two different solvers (Z3 and
ECLiPSe) and found that to get the best performance from
these solvers, we needed to encode the constraints using a
boolean variable for each ball-bin combination (bij). We en-
sure a ball can be put in only one bin through an additional
constraint of the form ∃j′∀j 6=j′¬bij , which implicitly encodes
a quadratic loop. Cologne [19] uses a similar formulation with
the Gecode solver. Thus where generic constraint solvers
require a quadratic number of variables and a constraint in-
volving both an existential and a nested universal quantifier to
encode the simple balls and bins abstraction, theWrasse solver
requires only a linear number of variables and no additional
constraints.

For resource constraints, Wrasse maintains a single variable
(per dimension) for the current resource utilization. When
attempting to allocate a ball to a bin, Wrasse checks the
variables corresponding to the dimensions affected (and up-
dates them with the ball’s incremental contribution). In a
generic constraint solver, the capacity constraint is specified
as

P

i
bijr

d
i ≤ cd

j where rd
i and cd

j are ball i’s utilization and
bin j’s capacity along dimension d respectively. Depending
on the implementation, every time a generic constraint solver
attempts to allocate a ball to a bin it must, for each dimension
affected, either evaluate this constraint (linear in the number
of balls), or devote quadratic storage (number of balls times
bins) if it caches sub-terms and uses them for incremental up-
dates. Our Wrasse solver achieves this incremental update
with a constant storage and constant computational cost per
dimension affected.

Similar gains are to be had for the friends-and-foes mech-
anism, and soft-constraints. The Wrasse solver is orders of
magnitude faster than generic constraint solvers because it ex-
ploits our language features.

GPU.GPUs expose a large number of hardware threads, but
each thread is less capable than a conventional CPU thread.
Specifically, on-chip memory is highly constrained (few kilo-
bytes), groups of threads (thread-groups) share a single in-
struction pointer (stalling as needed for correctness), and inter-
thread communication is limited to (slow) memory barriers.
To make best use of hardware, our implementation abides by
three rules: 1) threads should ideally execute the same code-
path (on different data), 2) they should collaborate to increase
sharing of the limited on-chip memory, yet 3) avoid expen-

sive synchronization and data-dependence across threads. Our
language design was heavily influenced by these constraints.

One example is our design of the interface for the user-
provided utilization function where we explicitly pass in the
(read-only) partial allocation. Each thread in a thread-group
allocates a randomly-selected ball to a bin. The problem is
in picking the partial allocation for each thread. Note that if
two threads are assigning two different balls to the same bin
simultaneously, one thread cannot delay its execution until the
other is done to accurately reflect some serialized order (vio-
lates Rule 3, no cross-thread data-dependence). Letting both
allocate in parallel based on the current allocation is wasteful
since even if they individually succeed in allocating their re-
spective balls, it may not be possible to allocate both balls on
this bin. To get around this problem, we pass different partial
allocations to each thread. To the first thread we pass the cur-
rent allocation, but to the second thread we pass a speculative
allocation where we assume the first thread’s allocation suc-
ceeded. To the third thread we speculate that both the first two
threads succeeded. We execute a single memory-barrier after
the actual allocation result is available. Based on the actual
results, we identify threads where we speculated correctly and
reconcile their outputs.

Other GPU-specific optimizations which we leveraged in-
clude caching the problem specification and data in special
off-chip GPU memory that is highly optimized for read-only
access. This requires our specification language to be concise,
as reflected in high-level abstractions like balls and bins rather
than generic variables and equations.

4.2 Generic Search
Picking balls and bins. An interesting design question

arises in how balls and bins are picked. Different choices op-
timize for different outcomes.

To optimize for an allocation that uses the fewest number of
bins, we mentioned we pick one bin and attempt to assign each
ball to that bin. Once the bin is full, we move on to the next
bin. Thus each bin is packed to capacity and, although we do
not guarantee it, in practice comes quite close to the optimal
(see Section 8).

To optimize for an allocation that balances utilization across
a fixed set of bins, each thread-group allocates balls to a set of
bins, or a bin-group. Parallel threads attempt to assign each
ball to a random bin in that group, resulting in a more even
distribution.

An interesting design point is considering power-of-two
sized bin-groups. This can exploit real-world spatial coher-
ence in bins (if any exists) while being domain agnostic. Con-
sider, for instance, servers (bins) connected to a tree-like net-
work topology. Communicating VMs (balls) placed in the
same sub-tree result in lower resource utilization (i.e., easier
to find a satisfiable solution) than when placed in different
sub-trees since in the latter scenario traffic needs to be routed
through links outside the sub-trees. Power-of-two bin-groups
effectively allow us to pack sub-trees before moving on to the
next sub-tree.

Instead of requiring the user to specify the bin-group size,
the Wrasse solver tries several in parallel. We devote some
GPU thread-groups to size one, some GPU thread-groups to
the maximum number of bins, and one each to size two, four,
eight and so on. Our GPU supports running thirteen thread-
groups in parallel. Thus we maximize our chances of finding a



Figure 1: Solution space potentially explored depending on search
strategy. Filled circles indicate “best” solution after bink .

satisfiable solution without burdening the user with additional
tuning knobs.

Explore vs. Exploit. The next interesting design point is
balancing exploration vs. exploitation when moving on to the
next bin-group. By exploitation we mean identifying one or
more “good” partial solutions and promoting them to other
thread-groups so multiple groups can build upon the good as-
signment(s). By exploration we mean each thread-group inde-
pendently exploring its own partial solution as deep as possi-
ble. Figure 1 illustrates this choice. Both cases initially exe-
cute four thread-groups using a bin-group size of one, resulting
in four different sets of balls being assigned to bin 0. In the ex-
ploit scenario, the best of the four partial solutions is picked,
and the four threads assign balls to bin 1; all four have the
same assignment for bin 0 but different assignments for bin 1.
Again the best solution moves forward and balls are assigned
to bin 2, and so on. Thus at step k, the assignment for bins
0. . .k − 1 is the same and the threads randomly assign to bin
k. In the explore scenario, each thread autonomously assigns
balls to each bin in succession, and the solution after k steps is
completely different for each bin.

We chose to explore rather than exploit in the Wrasse solver.
This is primarily because defining the notion of a “good” par-
tial solution in a domain-agnostic manner is problematic. Even
if we were to ask the user for a heuristic (we do not), we found
that in practice writing such heuristics is hard. In many cases
we found the best solution (at the end of tens of steps) was be-
cause of a random lucky assignment in the very early steps.
Writing a heuristic that has a lookahead of tens of steps is
nearly infeasible. Exploration has three advantages: 1) we re-
tain early lucky decisions, 2) after k steps we end up with a
larger diversity of assignments (making it more likely that one
of them is a near-solution), and most importantly, 3) we do not
need heuristics.

The GPU threads exit after exhaustively attempting to as-
sign balls to bins. If any of the thread-groups manages to fin-
ish assigning all balls, a solution has been found; the solver
returns the assignment to the user and terminates. Otherwise
our Wrasse solver terminates on user-interrupt or after a user-
specified time interval (typically a minute or two).

5. LIMITATIONS
The Wrasse service has a number of limitations, some fun-

damental, and some implementation-defined. In this section

we discuss the key fundamental limitations of the Wrasse ab-
straction. We discuss limitations of our implementation in
Section 7.

Cannot determine non-existence. The Wrasse service
cannot determine when a solution does not exist. The solution
search space is simply too large to explore in any reasonable
time despite parallelism. Even when the problem size is ex-
tremely small, the use of randomness in exploring solutions
(which is indispensable for large search spaces) means the
service cannot guarantee exhaustive search for small search
spaces. Overall, Wrasse is sound (i.e., any solution it finds
is a valid solution), but not complete (i.e., it may not find a
solution in reasonable time even if one exists).

Minimization. The Wrasse service does not guarantee a
“minimal” solution; it merely returns a solution that satisfies
the constraints. However, we can iteratively tighten the con-
straints to get close to the minimal solution. For example, the
user cannot ask the service for the minimum number of bins
that will fit the given balls. However, the service can run the
same problem iteratively while reducing the number of bins
until no solution is found in reasonable time, thereby finding a
close-to-minimal solution.

Non-trivial transformations. The decision bin-packing
problem, which is the abstraction offered by Wrasse, is NP-
complete [9]. Thus, at least in theory, Wrasse is feature-
complete, and any other problem in NP can be transformed
into it. This includes all resource allocation problems that
we have encountered in the cloud computing space. In
practice, however, doing so efficiently can be quite non-
trivial. The transformation complexity shows up in the
imperatively-defined utilization function. One example is
the job-scheduling problem discussed in Section 6.3. Effi-
ciently encoding it requires two types of balls (a notionWrasse
doesn’t natively support). For problems that are a closer fit
to bin-packing, however, the utilization function tends to be
much simpler.

6. USING THE ABSTRACTION
In this section, we show that Wrasse is general and extensi-

ble by specifying various extensions to the simple VM place-
ment problem described in Section 3.4. We first concentrate
on extending the VM placement specification to include time-
varying requirements. We next show how Wrasse can cap-
ture network bandwidth constraints, which is an example of a
shared resource. Finally, extend our specification to perform
simultaneous scheduling of multiple jobs.

6.1 Time-varying Resource Utilization
The Microsoft Assessment and Planning Tool (MAP) [20]

uses a VM placement algorithm to help businesses deter-
mine how much it would cost to run their applications on an
Azure [2] instance. MAP takes as input VM requirements as
a function of time, i.e., for different time slots during the day
(say per-hour), to capture the non-stationary behavior of cer-
tain VCs. For example, user-facing VMs may require more re-
sources in the day than at night, while batch-processing VMs
may do more work at night. Using non-stationary input al-
lows for better VM placement since VMs with temporally
anti-correlated resource utilizations can be placed on the same
server, which we could not otherwise do taking only peak uti-
lization into account.



To capture this scenario, for each original resource (e.g.,
S0CPU in Specification 1) we create one resource dimen-
sion per time-slot (i.e., S0CPUT0, S0CPUT1, S0CPUT2, . . .
each with the same capacity as for S0CPU originally). Simi-
larly, the scalar resource utilization in UTILDATA (line 1.7) is
replaced with the time-varying utilization (e.g. 100 is changed
to [20, 30, 100, . . .] corresponding to each time-slot) and the
utilization function is changed to add the resource utilization
corresponding to each resource and time-slot to the appropri-
ate resource dimension. Temporally anti-correlated VMs will
sum to lower combined utilization (along each individual time-
slot dimension) than they would have if peak utilization was
used; as long as the lower combined utilization does not ex-
ceed the capacity along any dimension, Wrasse may then as-
sign them to the same bin.

A further relaxation commonly requested in real-world set-
tings is the 95% rule, where server utilization may temporar-

ily (say, for only 5% of time-slots) exceed capacity by at most
10%. Using the soft constraints mechanism in Section 3.3, the
user can add the line:
[{S0CPUT0, S0CPUT1, . . . }p=0.95,o=10%;. . .
Wrasse will then effectively allow assignments where a par-

ticular resource capacity is exceeded in only 5% of time-slots
by requiring that p = 95% of the time-slot dimensions for
each group specified meet their capacity constraint (and the
rest don’t exceed by more than o = 10%).

6.2 Network Virtualization
The network virtualization problem as addressed by Sec-

ondNet [13] and Oktopus [6] extends the simple VM place-
ment problem expressed in Section 3.4 with network band-
width requirements. The two systems have very different ab-
stractions and placement heuristics. Wrasse can model both.

6.2.1 SecondNet

SecondNet uses the abstraction of a virtual data center

(VDC) for tenants to specify their requirements. Along
with CPU, memory and disk requirements of VMs in a VDC,
the specification includes pair-wise bandwidth requirements to
one or more other VMs. Network links have associated band-
width capacities. The added constraint is that communicating
VMs be placed on servers so that they do not exceed the ca-
pacities of network links connecting those servers.

We extend the VM placement problem formulation in Sec-
tion 3.4 to include the network bandwidth requirement as fol-
lows (all additions are shown in Specification 2). Each net-
work link in the data center is represented as a resource dimen-
sion with the link capacity as the resource capacity. Say, in our
example in Section 3.4, the two servers are in the same rack
connected through a TOR switch. Therefore there are two net-
work links between the servers. We augment the RESOURCES

vector in Specification 1 with these two network links and their
capacities as shown in Line 1 of Specification 2.

We capture the pair-wise bandwidth in the resource utiliza-
tion function as follows.
Step 1: We store the traffic matrix and routing information as
data within the UTILFN (lines 2.3–2.8 in Specification 2). The
PATH value [4, 5] (in line 2.7) is the route to get from server
S0 to server S1: 4 and 5 are resource dimensions for LINK0
and LINK1 respectively2. As with UTILDATA, BW and PATH

2We assume that the routes are already known to the user, say

. . .
1: RESOURCES: {. . . , 4 ⇒ (LINK0, 150), 5 ⇒ (LINK1,

100)}

2: procedure UTILFN(BALL, BIN, ALLOC)
. . .

3: BW: {0⇒ {0, 10, 0, 0}; /* VM0 TRAFFIC */
4: 1⇒ {20, 0, 0, 0}; /* VM1 TRAFFIC */
5: 2⇒ {0, 0, 0, 50}; /* VM2 TRAFFIC */
6: 3⇒ {0, 0, 50, 0}} /* VM3 traffic */
7: PATH: {0⇒ {1⇒ [4, 5]}; /* S0→ S1 PATH */
8: 1⇒ {0⇒ [5, 4]}} /* S1→ S0 path */
9: for all OBALL in 0. . . 3 except BALL do
10: OBIN← ALLOC[OBALL]
11: if OBIN 6= NULL and OBIN 6= BIN then
12: for all LINK in PATHTOLCA[BIN][OBIN]

do

13: UTIL[LINK]
+
← BW[BALL][OBALL] +

BW[OBALL][BALL]
14: if OBIN == NULL then
15: for all LINK in PATHTOROOT[BIN] do

16: UTIL[LINK]
+
← BW[BALL][OBALL] +

BW[OBALL][BALL]
17: if OBIN 6= NULL and OBIN == BIN then
18: for all LINK in PATHTOROOT[BIN] do

19: UTIL[LINK]
−
← BW[BALL][OBALL] +

BW[OBALL][BALL]
. . .

Specification 2: Network Virtualization (extends Spec. 1)

data is opaque to Wrasse.
Step 2: When a VM is to be placed on a server, then for every
other VM that has already been placed on a different server
(line 2.11), add the bandwidth requirement between this VM
and the other VM on the path only up to the lowest common

ancestor (half the path) of the VMs (lines 2.12, 2.13). We
allocate bandwidth only on this VM’s half of the path because
the other VM has already allocated bandwidth on its side as
explained below.
Step 3: For every other VM that has not been placed
(line 2.14), add the bandwidth requirement between this VM
and the other VM on the path from this server to the root of

the tree (line 2.15, 2.16). We make this addition to provision
for the worst-case that all unallocated VMs might be placed
on servers farthest from the current VM’s server, and thus all
communication from this VM to the unallocated VMs may go
up to the root of the tree.
Step 4: For every VM that is placed on the same server
(line 2.17), subtract the bandwidth between the VMs (by stat-
ing a negative allocation) for all links from this server to the
root (line 2.18, 2.19). This is because when the other VM was
placed, it had provisioned for the worst-case and added the
bandwidth requirement to links from this server to the root.
Since both VMs ended up on the same server, we can take
back this allocation. We repeat this subtraction for every pair
of VMs that has a lowest common ancestor that is lower than
the root (and is therefore not the worst-case), but leave out the
pseudocode for simplicity.

As before, Wrasse proceeds with the assignment only if the
added resource utilization returned by the UTILFN to the ex-
isting partial assignment does not exceed capacity constraints
along any dimension, which in this case translates to respect-

from configuration, router FIBs, or by running traceroutes be-
tween all server pairs.



ing network link capacities for pair-wise bandwidth require-
ments. We have used this implementation of the SecondNet
abstraction in our comparison in Section 8.2.1.

6.2.2 Oktopus

We briefly describe how we specify the Oktopus virtual net-
work abstraction inWrasse. The Oktopus Virtual Cluster (VC)
abstraction specifies a virtual star topology with N VMs: a
single virtual switch connects all VMs. Associated with each
virtual link in the topology is a bandwidth requirement B.
When this VC is placed on the network, on any physical link
that VMs for this VC span, the VC requires a capacity reser-
vation of min(m, N −m) ∗ B, where a total of m VMs are
placed on the sub-tree connected to the said link.3

The authors also describe a Virtual Oversubscribed Cluster

abstraction that uses a two-level virtual tree topology. We can
specify both abstractions using Wrasse though for brevity and
ease of explanation, we concentrate on the VC abstraction.

As with Secondnet, each network link in the data center is
represented as a resource dimension with the link capacity as
the resource capacity. Assume the simplest network topol-
ogy for this example as well – two servers linked through one
switch. Therefore there are two network links between the
servers. We proceed as follows:
Step 1: We store the number of VMs N in the V C and the
bandwidth value B within the UTILFN. The paths between
every pair of servers can be computed and stored in UTILFN.
Step 2: Say k VMs of this VC are already placed on a server.
When a new VM VM1 is to be placed on this server, Then
the number of VMs potentially placed outside this server is
N − k − 1 (including unallocated VMs). Using the minimum
bandwidth calculation of Oktopus, we say that if (k + 1 <

N − k − 1), the bandwidth usage on the link is (k + 1)×B.
else the bandwidth usage on the link is N − (k + 1)×B. We
write the Wrasse specification with the appropriate increments
in bandwidth allocation to reflect this logic. Interestingly, this
single step completely captures the Oktopus VC abstraction.

Section 8.2.2 evaluates our Oktopus implementation.
More complex topologies: We capture more complex net-
work topologies such as Fat Trees and VL2 with appropriate
additions to the PATH data structure and the UTILFN logic. In
a Fat Tree, there are multiple paths between any two servers
in the data center network, and therefore a flow between two
VMs on these servers can take any one of these paths. We
briefly explain one way to capture this, though by no means is
it the only way. When a VM is to be placed on a server, then
for every other VM that has already been placed on a different
server, add the bandwidth requirement from this VM to the
other VM, divided by the number of forward paths between
the servers, on all the forward paths from this server to the
other VM’s server.
Adding path length constraints: In addition to bandwidth
constraints, we can also extend the network virtualization
specification to enforce a maximum path length constraint as
in Rhizoma [28] between any two VMs.

6.3 Tenant Job Scheduling
In certain cloud-computing scenarios [6], there is some flex-

ibility in scheduling multiple VCs simultaneously to better
manage resources. We now introduce a notion of a tenant job

3Please see the Oktopus paper for the reasoning.

(similar to a VC), which consists of a set of VM requirements
that enters the system at a particular time, waits until resources
are available, runs for some duration, and exits the system. We
now have definitions of a batch of jobs simultaneously, and
want to schedule both the job start time, and assign the job
VMs to servers while satisfying capacity constraints.

Logically, we now need to have two types of balls — one
type for jobs (J), and one type for VMs (V). We also need two
types of bins — one type for job start time-slots (T), and one
type for servers (S). Once Wrasse assigns a job to a start time-
slot, the job runs for the number of contiguous time-slots spec-
ified in the job request. We define a resource dimension for
each time-slot for each server resource (CPU, memory, etc.) as
in Section 6.1. We could similarly define a resource dimension
for each time-slot for each network-link, but we omit band-
width requirements for brevity. We also define a dimension
for total CPU (and memory) for each time-slot with the capac-
ity set to the aggregate CPU capacity (and aggregate memory
capacity) across all servers.

Job balls can only be placed in time-slot bins, and VM balls
can only be placed in server bins, however, Wrasse does not
differentiate between different types of balls. Nevertheless,
we can enforce different ball and bin types using the existing
Wrasse abstraction. We do this by adding a conflict dimen-
sion C with capacity 1, which is just like any other resource
dimension. If there is a mismatch in the type of ball and bin
(i.e., the solver randomly picks a job ball for server bin, or
a VM ball for time-slot bin), the resource utilization function
sets the conflict dimension utilization to 2, which clearly ex-
ceeds the capacity of C, resulting in the solver aborting that
assignment and moving on to a different ball.

When placing job ball Ji into time-slot bin Tx, the resource
utilization function computes the aggregate CPU and mem-
ory requirements for the job and increments the dimensions
corresponding to the total CPU and memory resource for that
time-slot, and k subsequent time-slots where k is the dura-
tion of the job. Thus if job Ji lasts 2 time-slots, resource di-
mensions TOALCPUTx, TOALCPUTx+1 and TOALMEMTx,
TOALMEMTx+1 are incremented. This weeds out assign-
ments of jobs to time-slots that would be impossible to sat-
isfy, thereby reducing the search space for assigning VMs to
servers. When placing a VM ball VMp into server Sm, the
resource utilization function first checks the current partial as-
signment for the job Ji this VM is associated with. If that job
has not been assigned, the function aborts the assignment by
setting the conflict dimension utilization to 2. If that job has
been assigned to time-slot bin Tx, say, the utilization function
increments the resource dimensions corresponding to server
and time-slot(s).

The above specification encodes a joint resource alloca-
tion problem into the existing Wrasse abstraction, which the
Wrasse service finds a simultaneously satisfying assignment
for.

6.4 Other Solvable Problems
We use a combination foe groups to capture the second re-

quirement.
Hadoop’s rack-aware replica placement [14] places three

data replicas: two on separate servers on the same rack, and
one on a server on a different rack. We require two ball types
and two bin types to represent this. We represent each replica
with two balls: one that places on a “rack" bin (we call this



a rack ball), and one that is allocated to a “server" bin (server
ball). There are a total of 6 balls per data item.

To enforce placement objectives of replicas to racks, we use
the “friend" and “foe" abstractions: rack-balls 1 and 2 are
friends, rack-balls 1 and 3 are foes. This mapping captures
replica-to-rack requirements. To place same-rack replicas on
different servers, we state that server-ball 1 and server-ball 2
are foes. We order the placement of rack-balls first, and then
the server-balls using the same techniques as with job schedul-
ing.

CDN data Placement: We are working with the CDN ad-
ministrators of a cloud computing provider to build a data
placement engine usingWrasse. The requirements of the CDN
are currently threefold. First, place data such that the network
load is evenly split across all servers in the CDN PoP. Second,
place replicas of data such that they are evenly split across ma-
chines served by two different sources of power, such that if
one source of power fails, half the replicas will still be avail-
able. Third, each server has a restriction on the number of
SSL-encrypted data-items it can serve.

We have encoded the first and the third constraints using
the utilization function. To ensure that network load is evenly
split across all servers, we configure the solver to run with a
step size equal to the number of servers (bins), as explained in
Section 4. We use the “foe" abstraction to catpure the second
constraint.

Spain [22] requires a mapping of network paths to a min-
imal number of VLAN IDs as part of its multi-path routing
protocol, subject to the constraint that the network paths as-
signed to a VLAN ID should not create a loop. We have
used Wrasse’s abstractions to model this as well. Several
other problems are amenable to being expressed in Wrasse’s
abstractions, such as multicast in wireless networks in the
DirCast system [8], VLAN assignments in enterprise net-
works [26], and server selection in wide-area content distri-
bution networks [24].

7. IMPLEMENTATION
We have built Wrasse as a web service. The front-end sim-

ply accepts requests in the Wrasse specification language. At
the back-end, worker tasks running on commodity workstation
hardware equipped with either ATI/AMDor Nvidia GPUs pro-
cess submitted jobs and upload the result back. We have eval-
uated Wrasse on three different GPUs – a common desktop
Nvidia Quadro, the AMD Radeon 6990: a high-end gaming
GPU, and the Nvidia Tesla C2075: a GPU specifically de-
signed for high-performance computing. We chose the Tesla
for our evaluations since it provided the best memory perfor-
mance.

Problem Wrasse LoC Heuristic LoC

VM Placement 5 80 (FFDProd)

SecondNet 48 1396

Oktopus 24 613

SecondNet+Job Scheduling 103 -

Table 2: Wrasse specification size for different applications.

Wrasse is written in a combination of C (for the CPU parts),
and OpenCL (for the GPU parts). It consists of 1079 source
lines of code including 347 lines for parsing the input specifi-
cation, and 453 lines that run inside the GPU. In addition, ta-
ble 2 shows the lines of code of the utilization function for dif-

ferent problem specifications. The number of lines is typically
very small, ranging from 5 lines for the simple VM placement
problem, to 103 lines to encode VM placement with Second-
Net’s network virtualization abstraction and job scheduling.
We have encoded SecondNet assuming a Fat Tree topology,
and Oktopus using a simple tree topology.

We have obtained the implementations of the heuristics
from the authors of SecondNet and Oktopus for comparison.
The SecondNet heuristic consists of 1396 lines of C++ code,
and Oktopus has 613 lines of C# code. The corresponding
lines of code in Wrasse are 48 and 24. We have also encoded
various well-known VM placement heuristics for comparison:
the FFDProd heuristic [18] uses 80 lines of code.

Limitations. Our Wrasse solver accepts arbitrary OpenCL
code in the user-defined utilization function. Since this func-
tion is called many times, the performance of our solver de-
pends, in part, on the performance of this code. Thus user
code that is inefficient or makes suboptimal use of the GPU
memory hierarchy will directly impact performance. Given
the memory budget, one approach we found useful (and per-
formant) was to trade off data storage for computation. For
example, instead of passing pre-computed Fat Tree routes, we
compute the route in the utilization function saving several kBs
of memory.

8. EVALUATION
In this section, first, we compare Wrasse’s specification of

VM placement with that of well-known heuristics as well as
a generic constraint solver-based approach. We evaluate the
simplest specification first to show the basic benefits of using
Wrasse. Next, we present a comparison of Wrasse’s solution
quality and performance for the network virtualization prob-
lem using both SecondNet and Oktopus. Finally, we investi-
gate the benefits of using a GPU-based solver over a traditional
CPU-based approach.

8.1 VM Placement
We use the VM placement specification from Section 3.4

to compare Wrasse’s solution quality and performance with
state-of-the-art heuristics, and a specification of the same
problem using the Z3 constraint solver [10]. The objective
of this experiment was to determine whether Wrasse provides
solutions as good as heuristics designed carefully and specif-
ically for the VM placement problem, and to determine how
Wrasse’s performance compares with those of the heuristics,
and the generic constraint solver.

All experiments were run on a machine with an Intel pro-
cessor running at 3.0GHz with 4GB memory. Wrasse used the
same setup with an Nvidia Tesla C2075 GPU which can run
2048 threads in parallel configured into 256 groups.We used
Nvidia’s GPU computing SDK in all our experiments.

We ran three heuristics [18] that are used by Microsoft’s
System Center Virtual Machine Manager: FFDProd, Dot-
Product, and Norm-based Greedy (NBG). Each heuristic takes
five resource requirements from each VM – CPU, memory,
disk, outbound network bandwidth, and inbound network
bandwidth. The FFDProd heuristic is based on the first-fit de-
creasing paradigm [9]. It combines all five dimensions into
one scalar quantity, calculates a similar scalar quantity for
each server, and place VMs on servers based on a function
of the two scalar quantities. Dot-Product and Norm-based



Application VMs Avg. CPU Avg. Memory Avg. Disk Av. Network out Avg. Network in
(Fraction of Total CPU) (GB) (MBps) (MBps) (MBps)

PgRank 474 0.16 2.94 7.67 1.95 2.03
ClkBot 885 0.14 1.07 19.69 0.78 1.22
ImgProc 2942 0.37 0.35 1.41 0.92 0.04

Table 3: Resource requirements of applications.

Application FFDProd DotProd NBG Z3 Wrasse

PgRank 90 100 97 90 89
ClkBot 420 420 420 424 420
ImgProc 1406 1403 1406 1417 1403

Table 4: Solution quality, comparing three production-level heuris-
tics, the Z3 solver, and Wrasse. Smaller is better.

Application FFDProd DotProd NBG Z3 Wrasse

PgRank 7 16.2 19.2 30864 51
ClkBot 15.6 69.2 82.6 146149 7645
ImgProc 92.6 744.2 923.6 139876 370

Table 5: Runtime of heuristics, the Z3 solver, and Wrasse in ms.

Greedy (NBG) are dimension-aware heuristics that use multi-
dimensional vectors to do the placement. Note that the net-
work bandwidth resource here is used purely to determine if
the server’s NIC is capable of providing that bandwidth. It
does not involve the data center network in any way.

We used the Z3 Satisfiability-Modulo-Theory (SMT) solver
to evaluate the constraint-solver based approach. The input
to Z3 were a set of five constraints - one for each dimension
– stating that the total resources used on each server should
be less than the capacity of the server. Also, we input the
maximum number of servers available for the placement.

The servers in the data center are considered homogeneous
with 8 CPU cores, 16GB memory, 128MBps network band-
width, and 50MBps disk bandwidth. Our evaluation used data
collected from three cluster-based applications as shown in
Table 3: a pagerank algorithm (PgRank), a machine-learning
based click-bot detection algorithm (ClkBot), and a parallel
image processing algorithm (ImgProc). For each dataset, we
ran every experiment 5 times and present the average of the
runs in the results.

Z3 did not scale with any of the three datasets, running be-
yond 12 hours with each dataset. Therefore, when running
with Z3, we partitioned each dataset into smaller sub-problems
– 5 for PgRank, 9 for ClkBot, and 30 for ImgProc – and ran
the partitions in parallel.

Table 4 summarizes, for the three applications, the num-
ber of servers that each approach used to place the VMs. The
fewer the number of servers used, the better since a tighter
placement makes more economical use of the data center’s re-
sources. With PgRank, Wrasse found a placement with 89
servers, whereas the best heuristic (FFDProd) found a solu-
tion only with 90 servers. We calculated the lower-bound for
PgRank as explained in Section 3.3 as 88 servers. Therefore
Wrasse found a solution within 1 bin of the lower bound. A
savings of one server for one set of VMs may not account for
much, but with thousands of tenants being housed in a sin-
gle data center, even a saving of one server per placement can
cause significant cost savings.

For both ClkBot and ImgProc, Wrasse found a solution that
was as good as the best heuristic. Hence we find that Wrasse
provides as good, if not better, solutions than the heuristics
for all three applications. The constraint solver was unable

to match up with either the heuristics or Wrasse. This is a
consequence of partitioning the problem – smaller partitions
appear to significantly curtail the search space for the solver to
explore and find better solutions.

A conclusion we draw from this experiment is that, for the
VM placement problem, in spite of using a more generic ab-
straction, Wrasse is able to match (if not improve) the perfor-
mance of the carefully-tuned, production-level VM Placement
heuristics. The explanation for this lies in the “explore” ap-
proach that Wrasse employs as explained in Section 4.2. Each
GPU thread uses a completely different, randomized place-
ment of balls to bins as it starts exploring the search space,
thereby searching in parallel through different regions in the
solution space. Each heuristic on the other hand uses a single
(greedy) deterministic strategy to find a placement.

We now compare the performance of the heuristics, the con-
straint solver, and Wrasse. Table 5 summarizes the results.
Wrasse takes 51 ms to find a solution for PgRank, and it took
7.6 seconds to produce the solution for ClkBot. On the other
hand, all the heuristics take less than 20 ms to run. While
Wrasse run-times can be much higher than that of heuristics,
we believe that a run-time of a few seconds or less is accept-
able for the problems that involve placement of VMs, since the
algorithm is run the first time a request is scheduled onto the
data center infrastructure. In spite of partitioning the problem,
and providing worse solutions, Z3’s performance is roughly
two orders of magnitude worse than that of Wrasse.

8.2 Network Virtualization Heuristics
We now compare Wrasse’s specification of SecondNet and

Oktopus with their respective heuristics. Broadly, both heuris-
tics, proposed by the authors of the respective systems, find
the smallest sub-tree in the network that can fit a Virtual Clus-
ter, and then use different algorithms to allocate it within the
sub-tree.

8.2.1 SecondNet

We have obtained code for both the heuristic placement and
generating input from the authors of SecondNet to perform
this comparison. We assume a data center network consisting
of 1024 servers connected through a 2-level Fat Tree topology.
Each switch in the tree has 16 ports. Each server has 16 cores
(we assume we can place at most 1 VM on a core), 8G mem-
ory, and 1 Terabyte disk. Every link in the Fat Tree had 1 Gbps
link capacity.

We generated two datasets for this evaluation. Dataset 1
(DS1) consists of a 300 VDCs each consisting of 100 VMs.
Each VM used 256M memory, and 10 GB disk. Each VDC’s
total bandwidth usage is randomly chosen to be between 50
and 150 Mbps, and this aggregate is used to generate the traffic
matrix for each VDC randomly. Dataset 2 (DS2) also had 300
VDCs, but with VM numbers per VDC ranging from 64 to
128. All other parameters remain the same. Our choice of
parameters was driven by the numbers quoted by the authors
in the SecondNet paper.
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Figure 2: VDC placement times for Wrasse and SecondNet.

Dataset SecondNet Heuristic Wrasse

DS1(100 VMs per VDC) 94 150

DS1(64-128 VMs per VDC) 129 221

Table 6: Solution quality comparison between Wrasse and the Sec-
ondNet heuristic.

Solution quality: Table 6 summarizes our results for this
comparison. For DS1, SecondNet placed 94 VDCs before hit-
ting one that it could not place. On the same physical infras-
tructure and with identical input, Wrasse placed 150 VDCs
before it could not allocate a VDC: a 56% increase. For DS2,
SecondNet placed 129 before declining its first VDC, while
Wrasse placed 221, an increase of 71%. We communicated
our findings with SecondNet’s system designers to understand
the large discrepancies. They informed us that their heuristic
did not work well for VDCs larger than their “cluster size": a
parameter that is hard-coded in the heuristic. This again re-
veals the benefit of a massive parallel search as opposed to
parametrized heuristics.
Performance: We now analyze the run-time of the two ap-
proaches. The objective is not to compare the two run-
times (we expect targeted heuristics to work much faster than
Wrasse) but to show that Wrasse’s parallel search for alloca-
tions provides high-quality solutions within a few seconds at
most, a goal we had aimed for.

SecondNet ran on a machine with a 3GHz Intel P2 proces-
sor with 4GB memory. Figure 2 shows the time to place each
VDC for DS1. Interestingly, in the initial part of the place-
ment, Wrasse performs better than the heuristic. Once finding
solutions becomes difficult, the heuristic gives up, but Wrasse
finds many more solutions albeit taking much longer – 5.8 sec-
onds for the 150th VDC – to find a solution. Results are simi-
lar for DS2. On average, Wrasse took 525 ms to place a VDC,
SecondNet took 925 ms.

Given that many data-center management allocation prob-
lems – almost all we have mentioned in this paper – do not
require millisecond-level turnaround time on generating solu-
tions, these run-times show that it is entirely feasible to use
Wrasse to find high-quality allocations thereby leading to po-
tential cost savings.

8.2.2 Oktopus

We have obtained code for the Oktopus heuristic from the
authors for this comparison. In this experiment, the input to
both Wrasse and the Oktopus heuristic consists of a set of 300
VCs, with VM numbers (N ) ranging from 10 to 340. Band-
width requirements (B) varied from 10 to 100 Mbps per VC.
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Figure 3: Individual VC placement times for Wrasse and Oktopus.

The network we consider here is the same as in the Ok-
topus [6] evaluation: a 3-level tree topology with one aggre-
gation switch connected to 10 pods, each pod connects to 40
TOR switches, and each TOR switch connects to 40 servers.
Therefore the network has 16,000 servers, and 16,410 links.
Each server can hold 4 VMs, and each network link has 1 Gbps
capacity.

Both Wrasse and Oktopus placed all 300 VCs successfully.
Figure 3 compares the placement time for each VC. Wrasse
ran slower than the Oktopus heuristic here. Also, Wrasse
took significantly longer (up to 2.6 seconds) to place certain
VCs, the reason being that these VCs are particularly large in
size with high bandwidth requirements, and the random search
took that much time to find a feasible solution. The heuristic
on the other hand has the benefit of knowing the smallest sub-
tree in the network that fits this VC. The average time Wrasse
took to place a VC for this dataset is 183 ms, whereas the
Oktopus heuristic took 35.61 ms. Because of a (fixable) ineffi-
ciency in the utilization function, we could not run this exper-
iment for larger sets of VCs. As we have mentioned, writing a
good GPU-optimized utilization function is key to the imple-
mentation of Wrasse working well.

8.3 GPUs vs. CPU
Finally, we evaluate the benefits and trade-offs of imple-

menting the Wrasse service on a GPU-based architecture vs. a
CPU-based architecture. For this purpose we implemented a
multi-core optimized version of the Wrasse solver for CPUs.
We ran the CPU-based version on a dual-core 3.0GHz Intel
Core 2 Duo processor. We compare the throughput that the
CPU and GPU implementations yielded.

We evaluated this with VM placement example using the
PgRank data. Our GPU implementation on the Nvidia card has
a throughput of 8127 solutions checked per second, while our
CPU implementation checks only 966 solutions per second.
This represents a 8.5x performance gain. We believe that by
extending Wrasse to use a cluster of commodity GPUs, we
will be able to drive these throughput numbers even higher.

9. CONCLUSION
We have presented Wrasse, a tool that provides a generic

and extensible interface to solve resource allocation problems.
At the front-end, the service supports a simple abstraction that
we show is able to capture several data center resource al-
location problems. At the back-end, Wrasse harnesses the
power of GPUs to implement a massively parallel solver for



the decision-version of the bin-packing problem. Our evalua-
tion shows that Wrasse performs well, running to completion
within a few seconds, while providing solutions that are as
good as those provided by heuristics specifically designed for
these problems.
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