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ABSTRACT
The disconnect between the resource-centric interface ex-
posed by today’s cloud providers and tenant goals hurts both
entities. Tenants are encumbered by having to translate their
performance and cost goals into the corresponding resource
requirements, while providers suffer revenue loss due to un-
informed resource selection by tenants. Instead, we argue for
a “job-centric” cloud whereby tenants only specify high-level
goals regarding their jobs and applications. To illustrate our
ideas, we present Bazaar, a cloud framework offering a job-
centric interface for data analytics applications.

Bazaar allows tenants to express high-level goals and pre-
dicts the resources needed to achieve them. Since multiple
resource combinations may achieve the same goal, Bazaar
chooses the combination most suitable for the provider. Us-
ing large-scale simulations and deployment on a Hadoop
cluster, we demonstrate that Bazaar enables a symbiotic
tenant-provider relationship. Tenants achieve their perfor-
mance goals. At the same time, holistic resource selection
benefits providers in the form of increased goodput.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Algorithms, Design, Performance

Keywords: Cloud, Provider Interface, Resource Malleabil-
ity, Job-centric, Resource selection, Cloud pricing

1. INTRODUCTION
The resource elasticity offered by today’s cloud providers

is often touted as a key driver for cloud adoption. Providers
expose a minimal interface– users or tenants simply ask for
the compute instances they require and are charged on a
pay-as-you-go basis. Such resource elasticity enables elastic
application performance; tenants can demand more or less
compute instances to match performance needs.

While simple and elegant, there is a disconnect between
this resource-centric interface exposed by providers and what
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tenants actually require. Tenants are primarily interested in
predictable performance and costs for their applications [2,
28]; for instance, tenants want to satisfy constraints regard-
ing their application completion time [9,14,20,35,39]. With
today’s setup, tenants bear the burden of translating these
high-level goals into the corresponding resource requirements.
Motivated by this disconnect, we argue for refactoring the
tenant-provider relationship to improve cloud usability. In-
stead of today’s resource-centric interface, providers should
offer a job-centric interface whereby tenants only specify
performance and cost goals for their jobs and applications.

Such a job-centric interface requires the provider to map
tenant goals into resource requirements. While burdening
the provider, a job-centric interface also opens up opportuni-
ties for them. Providers now have flexibility regarding which
and how many resources to dedicate to a job and when to do
so. As an example, many cloud applications are malleable in
their resource requirements with multiple resource combina-
tions yielding the same performance; for instance, to achieve
a completion time goal, a MapReduce job can be run on a
few virtual machines (VMs) with a lot of network bandwidth
between them, a lot of VMs with a little network bandwidth,
or somewhere in between these extremes. Similarly, a job to
be completed in x hours could be finished much sooner us-
ing idle resources, thus allowing the provider to better serve
subsequent tenants. The rigidity of today’s resource-centric
interface does not permit such provider flexibility.

In this paper, we take a first stab at a job-centric inter-
face for cloud datacenters. Our examination of typical cloud
applications from three different domains (data analytics,
web-facing and HPC) shows that they exhibit resource mal-
leability. This, along with performance predictability, is a key
condition that our target applications must satisfy. For such
applications, we devise mechanisms to automatically choose
the resource combination, among those that can achieve ten-
ant performance goals, that is most suitable for the provider.
Thus, the impetus of this paper is on satisfying tenant goals
while capitalizing on the flexibility offered by a job-centric
setup.

We illustrate our mechanisms in the context of data analyt-
ics by focusing on MapReduce as an example cloud applica-
tion. We design Bazaar, a cloud framework that takes tenant
constraints regarding the completion time of their MapRe-
duce job, and determines the resource combination most
amenable to the provider that satisfies the constraints. Our
choice of MapReduce was motivated by the fact that data
analytics represent a significant workload for cloud infras-



tructures [41,44], with some multi-tenant datacenters having
entire clusters dedicated to running them [5,41]. Further, the
malleability and predictability conditions mentioned above
hold very well for MapReduce.

A key challenge in enabling a job-centric interface is shared
datacenter resources. While tenants get dedicated compute
instances with today’s cloud offerings, other resources like
the internal network and the cloud storage are shared and
their performance can vary significantly [26,30,45]. This can
lead to unpredictable application performance [15, 30, 36].
The problem of unpredictable performance has prompted
efforts to provide guaranteed performance atop shared dat-
acenter resources like the internal network [2, 13] and cloud
storage [12, 21, 32]. These proposals allow tenants to explic-
itly request for resources beyond compute instances. Such
multi-resource elasticity makes a job-centric interface fea-
sible. Hence, we build upon these efforts to ensure tenant
goals are met.

Though our core ideas apply to general multi-resource set-
tings, we begin by focusing on two specific resources, com-
pute instances (N) and the network bandwidth (B) between
them. Bazaar uses a performance prediction component to
determine the resource tuples < N,B > that can achieve
the completion time desired by the tenant. Since multiple
resource tuples may achieve the same completion time, they
are ranked in terms of the provider’s cost to accommodate
the tuple. Bazaar selects the resource tuple with the least
cost to the provider, thus improving provider efficiency.

While a lot of recent work looks at performance prediction
for analytics jobs [9, 10, 14, 29, 35, 37, 39, 46], the prediction
problem for Bazaar is both simpler and harder. Avoiding
shared resources by explicitly dedicating network bandwidth
to jobs makes prediction simpler. However, exploring multi-
ple resource combinations requires fast prediction. We adopt
a hybrid approach (simple model + profiling) to predict how
the performance of a MapReduce job scales in terms of mul-
tiple resources. Experiments show that the prediction is fast
and has good accuracy (<12% average error). To counter
outliers and failures that hinder perfect prediction, Bazaar
relies on “slack” by finishing jobs earlier than desired. Such
slack allows Bazaar to satisfy tenant goals in spite of imper-
fect prediction.

To demonstrate the feasibility of our approach, we built a
Bazaar prototype and evaluate it on Emulab running Hadoop
MapReduce jobs. To study the performance at scale, we
complement these experiments with large-scale simulations.
The results show that smart resource selection to satisfy
tenant goals can yield significant gains for the provider. The
provider can accept 3-14% more requests. Further, bigger
(resource intensive) requests can be accepted which improves
the datacenter goodput by 7-87%. Overall, Bazaar’s higher-
level tenant-provider interface benefits both entities. Ten-
ants achieve their goals, while the resource selection flexi-
bility improves datacenter goodput and hence, provider rev-
enue.

In summary, this paper makes the following contributions:

• We propose a job-centric cloud interface that decouples
the performance and cost goals of tenants from the under-
lying resource allocation. This better aligns the interests
of tenants and the cloud provider.

• We measure the malleability of representative cloud ap-
plications, and show that different combinations of com-

pute and network resources can achieve the same appli-
cation performance.

• We devise a metric for the cost of accommodating multi-
resource requests from the provider’s perspective. This
allows one resource tuple to be compared against another.

• We extend our metric to exploit malleability along the
time domain, i.e., finishing jobs earlier than required by
dedicating them idle resources. We find this can further
reduce median job completion time by more than 50%.

• We present the design, implementation and evaluation of
Bazaar, and illustrate how tenant performance goals can
be met in a multi-resource setting.

While this paper intentionally focuses on completion time
goals, a job-centric interface can also accommodate cost goals.
In Section 6, we briefly discuss a novel job-centric pricing
model that, when coupled with Bazaar, can allow tenants to
achieve their cost goals too.

2. BACKGROUND AND MOTIVATION
Cloud providers today allow tenants to ask for virtual

machines or VMs on demand. The VMs can vary in size;
small, medium or large VMs are typically offered reflecting
the available processing power, memory and local storage.
For ease of exposition, the discussion here assumes a single
VM class. A tenant request can thus be characterized by N ,
the number of VMs requested. Tenants pay a fixed amount
per hour per VM; thus, renting N VMs for T hours costs
$kv ∗ NT , where kv is the hourly VM price. For Amazon
EC2, kv = $0.08 for small VMs.

Data analytics in the cloud. Analysis of big data sets
underlies many web businesses [41, 43, 44] migrating to the
cloud. Parallel frameworks like MapReduce [6], Scope [5],
Dryad [16] cater to such data analytics, and form a key com-
ponent of cloud workloads. Despite a few differences, these
frameworks are broadly similar and operate as follows. Each
job typically consists of three phases, (i). reading input data
and applying a grouping function, (ii). shuffling intermediate
data among the compute instances across the network, (iii).
applying an aggregation function to generate the final out-
put. For example, in the case of MapReduce, these phases
are known as map, shuffle, and reduce phases. Computation
may involve a series of such jobs.

Predictable performance. The parallelism provided by
data parallel frameworks is an ideal match for the resource
elasticity offered by cloud computing since the completion
time of a job can be tuned by varying the resources devoted
to it. Tenants often have high-level performance or cost re-
quirements for their data-analytics. Such requirements may
dictate, for example, that a job needs to finish by a certain
time. However, with today’s setup, tenants are responsible
for mapping such high-level completion time goals down to
specific resources needed for their jobs. While several recent
efforts tackle this problem [9,14,35,39], most of them focus
only on the number and kind of VMs (or slots) required, and
none account for the shared network.

Yet, the performance of most data analytic jobs depends
on factors well-beyond the number of VMs devoted to them.
For instance, apart from the actual processing of data, a job
running in the cloud also involves reading input data off the
cloud storage service and shuffling data between VMs over



the internal network. Since the storage service and the inter-
nal network are shared resources, their performance can vary
significantly [26,30]. This, in turn, impacts application per-
formance. For instance, Schad et al. [30] found that the com-
pletion time of the same job executing on the same number
of VMs on Amazon EC2 can vary considerably, with the un-
derlying network contributing significantly to the variation.
Thus, without accounting for resources beyond simply the
compute units, the goal of determining the number of VMs
needed to achieve a desired completion time is intractable.

Multi-resource elasticity. Performance issues with sha-
red resources, such as the ones described above, prompted
a slew of proposals that offer guaranteed performance atop
such resources [2,12,13]. With these, tenants can request re-
sources beyond just VMs; for instance, tenants can specify
the network bandwidth between their VMs [2, 13]. We note
that providing tenants with a guaranteed amount of indi-
vidual resources makes the problem of achieving high-level
performance goals tractable.

Our approach leverages such multi-resource elasticity and
builds upon efforts that provide guaranteed resources. We
consider a two-resource setting whereby the provider can
dedicate VMs and a network slice to tenant jobs. As pro-
posed in [2], a tenant’s resources are characterized by a two
tuple <N,B> which gives the tenant N VMs, each with an
aggregate network bandwidth of B Mbps to other VMs of
the same tenant. However, before discussing how such re-
source elasticity can be exploited in a job-centric setup, we
first quantify its impact on typical cloud applications.

2.1 Malleability of data-analytics applications
We first focus on data analytic frameworks, and use MapRe-

duce as a running example. Our goal is to study how its
performance is affected when varying different resources.

Hadoop Job Input Data Set

Sort 200GB using Hadoop’s RandomWriter
WordCount 68GB of Wikipedia articles
Gridmix 200GB using Hadoop’s RandomTextWriter
TF-IDF 68GB of Wikipedia articles

LinkGraph 10GB of Wikipedia articles

Table 1: MapReduce jobs and the size of their input
data.

We experimented with the small yet representative set of
MapReduce jobs listed in Table 1. These jobs capture the
use of data analytics in different domains and the varying
complexity of such workloads (through multi-stage jobs).
Sort and WordCount are popular for MapReduce perfor-
mance benchmarking, not to mention their use in business
data processing and text analysis respectively [38]. Gridmix
is a synthetic benchmark modeling production workloads,
Term Frequency-Inverse Document Frequency or TF-IDF is
used in information retrieval, and LinkGraph is used to cre-
ate large hyperlink graphs. Of these, Gridmix, LinkGraph,
and TF-IDF are multi-stage jobs.

We used Hadoop MapReduce on Emulab to execute the
jobs while varying the number of nodes devoted to them
(N). We also used rate-limiting on the nodes to control the
network bandwidth between them (B). For each <N,B>
tuple, we executed a job fives times to measure the comple-
tion time for the job and its individual phases. While the
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Figure 1: Completion time for jobs with varying net-
work bandwidth. Error bars represent Min–Max val-
ues.

experiment setup is further detailed in §4.1, here we just
focus on the performance trends.

Figure 1(a) shows the completion time for LinkGraph on
a cluster with 10 and 20 nodes and varying network band-
width. As the bandwidth between the nodes increases, the
time to shuffle the intermediate data between map and re-
duce tasks shrinks, and thus, the completion time reduces.
However, the total completion time stagnates beyond 250
Mbps. This is because the local disk on each node provides
an aggregate bandwidth of 250 Mbps. Hence, increasing the
network bandwidth beyond this value does not help since
the job completion time is dictated by the disk performance.
This is an artifact of the disks on the testbed nodes. If the
disks were to offer higher bandwidth, increasing the net-
work bandwidth beyond 250 would still shrink the comple-
tion time.

The same trend holds for the other jobs we tested. For in-
stance, Figure 1(b) shows that the completion time for Sort
reduces as the number of nodes and the network bandwidth
between the nodes is increased. Note however that the pre-
cise impact of either resource is job-specific. For instance,
we found that the relative drop in completion time with
increasing network bandwidth is greater for Sort than for
WordCount. This is because Sort is I/O intensive with a lot
of data shuffled which means that its performance is heavily
influenced by the network bandwidth between the nodes.

Apart from varying network bandwidth, we also executed
the jobs with varying number of nodes. The results are de-
tailed in §4.1 (Figures 6(a) and 6(b)) and show that the
completion time for a job is inversely proportional to the
number of nodes devoted to it. This is a direct consequence
of the data-parallel nature of MapReduce.

2.2 Malleability of other cloud applications
The findings in the previous section extend to other cloud

applications as well. We briefly discuss two examples here.
Three-tier, web application. We used a simple, unopti-

mized ASP.net web application with a SQL backend as a rep-
resentative of web-facing workloads migrating to the cloud.
We varied the number of nodes (N) running the middle ap-
plication tier and the bandwidth (B) between the applica-
tion tier (middle nodes) and the database-storage tier (back-
end nodes). We used the Apache benchmarking tool (ab) to
generate web requests and determine the peak throughput
for any given resource combination. Figure 2(a) shows that
the application throughput improves in an expected fashion
as either resource is increased.
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Figure 2: Performance for cloud applications varies
with both N and B.

MPI application. We used an MPI application generat-
ing the Crout-LU decomposition of an input matrix as an
example of cloud HPC and scientific workloads. Figure 2(b)
shows the completion time for a 8000x8000 matrix with vary-
ingN and B. Given the CPU-intensive nature of the applica-
tion, increasing the number of nodes improves performance
significantly. As a contrast, the impact of the network is
limited. For instance, improving the bandwidth from 10 to
100 Mbps improves completion time only by 15-25%.

Overall, the experiments above lead to two expected yet key
findings.
(1). The performance of typical cloud applications depends
on resources beyond just the number of compute instances.
(2). They confirm the resource malleability of such applica-
tions; an application can achieve the same performance with
different resource combinations, thus allowing one resource
to be traded-off for the other. For instance, the throughput
for the web application above with two nodes and 250 Mbps
of network bandwidth is very similar to that with four nodes
and 125 Mbps of network. Table 2 further emphasizes this
for data analytic applications by showing examples where
a number of different compute-node and bandwidth com-
binations achieve almost the same completion time for the
LinkGraph and WordCount jobs. This flexibility is important
in a job-centric cloud; it allows for improved cloud efficiency
and hence, greater provider revenue.

Hadoop Job – <Nodes, Bandwidth (Mbps)>
Completion Time (sec) alternatives

LinkGraph – <34, 75>, <20, 100>
300 (±5%) <10, 150>, <8, 250>
LinkGraph – <30, 60>, <10, 75>
400 (± 5%) <8, 150>, <6, 200>
WordCount – <30, 45>, <20, 50>
900 (± 3%) <10, 100>, <8, 300>
WordCount – <32, 50>, <20, 75>
630 (± 3%) <14, 100>, <12, 300>

Table 2: Examples of WordCount and LinkGraph jobs
achieving similar completion times with different re-
source combinations.

2.3 Scope and assumptions
In this paper, we aim to build a job-centric cloud interface.

We identify two conditions that our target applications must
satisfy:

Tenant
Job details

Completion 
time goal

Performance
Prediction

Resource
Selection

Cloud

Candidate
Resource Tuples

<N1, B1>, 
<N2, B2>,

…. 

Bazaar

Datacenter

State

Chosen Resource 
Tuple <N, B> and 
(estimated) cost

Figure 3: Bazaar offers a job-centric interface.

(1). Performance predictability. It should be feasible to pre-
dict the performance of the application when running on a
given set of resources.

(2). Resource malleability. The application performance
should vary with the resources dedicated to it. Further, it
should be possible to trade-off one resource for the other
without impacting performance.

To help ground our arguments, we hereon focus on MapRe-
duce as an example cloud application. Based on this, we
design Bazaar, a cloud framework that offers a job-centric
interface to data analytics workloads. We note that MapRe-
duce is a very suitable candidate for this exercise since– (i).
it is popular as a data analytic framework and has significant
presence in cloud workloads [41,44] and (ii). it satisfies both
our conditions very well. Its performance scales with the two
resources we consider (condition 2) and as we show later, the
well-defined architecture of MapReduce lends itself well for
automatic analysis and low-overhead profiling (condition 1).
However, the core ideas in this paper can be extended both
to applications beyond two resources, as shown in §4.4, and
beyond MapReduce [27,33].

3. Bazaar DESIGN
Figure 3 shows Bazaar’s design model. Tenants submit the

specifications of their job, and high-level goals such as the
job completion time and/or desired cost to Bazaar. In the
context of MapReduce, the job specification includes the
MapReduce program, input data size and a representative
sample of the input data. Bazaar translates tenant goals to
multiple resource tuples <N,B>, each comprising the num-
ber of VMs and the network bandwidth between the VMs.
Since each of these resource tuples will finish the tenant’s
request on time, Bazaar’s objective is to choose the one that
allows the cloud provider to accept more requests in the fu-
ture, thus maximizing its revenue. This selection is based on
the current state of the datacenter. As shown in the figure,
the translation of tenant goals into resource tuples uses two
components–

(1). A performance prediction component that uses job de-
tails to predict the set of resource tuples that can achieve
the desired completion time.

(2). A resource selection component that selects which re-
source tuple should be allocated. This choice is made so as to
minimize the impact of the request on the provider’s ability
to accommodate future tenant requests.

3.1 Performance prediction
Translating tenant goals requires Bazaar to predict the

completion time of a MapReduce job executing on a spe-
cific set of resources. Performance prediction has been ex-
tensively studied in a variety of domains such as operating
systems [18], user software [4], and databases [22]. In the
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context of MapReduce, efforts like Mumak [46] and MR-
Perf [37] have built detailed MapReduce simulators that can
be used for prediction. However, this results in non-trivial
prediction times. To allow for an exploration of different
resource combinations, Bazaar requires fast prediction. In
designing Bazaar, we explicitly chose to simplify our predic-
tion model, thereby favoring fast prediction over accuracy.
This choice is also motivated by the observation that even
the most accurate model will not be able to accurately ac-
count for all outliers. Instead, to compensate for any model
inaccuracies, we introduce “slack” into our prediction. This
helps us deal with common sources of prediction errors such
as hardware heterogeneity and workload imbalance.

Inspired by profiling-based approaches for fast database
query optimization [22], we capitalize on the well-defined
nature of the MapReduce framework to predict the perfor-
mance of MapReduce jobs. To this end, we design a predic-
tion tool called MRCute or MapReduce Completion Time
Estimator. MRCute adopts a hybrid approach for perfor-
mance prediction by complementing an analytical model
with job profiling. We first developed a high-level model of
the operation of MapReduce jobs which yields a closed-form
analytical expression for a job’s completion time. This ex-
pression consists of job-specific and infrastructure-specific
parameters. We determine these parameters by profiling the
tenant job with a sample dataset on the provider’s infras-
tructure.

At a high-level, the operation of MRCute can be summa-
rized as follows. Given the program P for a MapReduce job,
size of the input data |I|, a sample of the input data Is,
and a resource tuple <N,B>, MRCute estimates the job
completion time:

MRCute(P, |I|, Is, N,B)→ Testimate. (1)

3.1.1 Job modeling
As shown in Figure 4(a), the execution of MapReduce jobs

consists of three phases, each comprising multiple tasks. All
tasks in a phase may not run simultaneously. Instead, the
tasks execute in waves. For instance, the map phase in Fig-
ure 4(a) has N waves.

Typically, the three phases in a job execute sequentially.
Hence, the completion time for a job is the sum of the
time to complete individual phases, i.e., Testimate = Tmap +
Tshuffle + Treduce. The completion time for each phase de-
pends on the number of waves in the phase, the amount of
data consumed or generated by each task in the phase and
the phase bandwidth. The phase bandwidth is the rate at
which a given phase processes data. For instance, the com-

pletion time for the map phase is given by

Tmap = Wmap ∗ Imap

Bmap
,

where Wmap is the number of waves in the phase, Imap is the
data consumed by each map task and Bmap is the map phase
bandwidth. Of these, it is particularly challenging to deter-
mine the phase bandwidth. Since each phase uses multiple
resources (CPU, disk, network), the slowest or the bottle-
neck resource governs the phase bandwidth. To determine
the bandwidth for individual phases, and hence, the com-
pletion time of a job, we develop an analytical model by
applying bottleneck analysis [24] to the MapReduce frame-
work.

For example, during the map phase (Figure 4(b)), each
map task reads its input off the local disk (assuming the
input is locally available), applies the map function and
writes the intermediate data to local disk. Thus, a map
task involves the disk and CPU, and the map phase band-
width is governed by the slowest of the two resources. Hence,
Bmap = Min{BD, BPmap}, where BD is the disk I/O band-

width per map task and BPmap is the rate at which data can
be processed by the map function of the program P (assum-
ing no other bottlenecks). Similarly, we derive expressions
for the bandwidth for the shuffle and the reduce phase, and
consequently, a closed-form expression for the job’s comple-
tion time. To simplify exposition, the complete description
of the analytical model is provided in the Appendix.

3.1.2 Job Profiling
Besides the input parameters specified in eq. 1, our closed-

form expression for a job’s completion time involves two
other types of parameters: i). Parameters specific to the
MapReduce configuration, such as the map slots per VM,
which are known to the provider. ii). Parameters that de-
pend on the infrastructure and the actual tenant job. These
include the data selectivity of map and reduce tasks (Smap
and Sreduce), the map and reduce phase bandwidths (Bmap
and Breduce), and the physical disk bandwidth (BD).

To determine the latter set of parameters, we profile the
MapReduce program P by executing it on a single machine
using a sample of the input data Is. The profiler determines
the execution time for each task and each phase, the amount
of data consumed and generated by each task, etc. All this
information is gathered from the log files generated during
execution, and is used to determine the data selectivity and
bandwidth for each phase. Concretely,

Profiler(P, Is)→ {Smap, Sreduce, Bmap, Breduce, BD}.

For instance, the ratio of the data consumed by individual
map tasks to the map task completion time yields the band-
width for the job’s map phase (Bmap). The reduce phase
bandwidth is determined similarly. Since the profiling in-
volves only a single VM with no network transfers, the ob-
served bandwidth for the shuffle phase is not useful for the
model. Instead, we measure the disk I/O bandwidth (BD)
under MapReduce-like access patterns, and use it to deter-
mine the shuffle phase bandwidth.

3.1.3 Candidate resource tuples
Bazaar uses MRCute to determine the resource tuples that

can achieve the completion time desired by the tenant. This
involves two steps. First, the tenant job is profiled to de-
termine infrastructure-specific and job-specific parameters.



These parameters are then plugged into the analytical ex-
pression to estimate the job’s completion time when exe-
cuted on a given resource tuple <N,B>. The latter oper-
ation is low overhead and is repeated to explore the entire
space for the two resources. In practice, we envision the pro-
vider will offer a few classes (in the order of five-ten) of
internal network bandwidth which reduces the search space
significantly. For each possible bandwidth class, Bazaar de-
termines the number of compute instances needed to satisfy
the tenant goal. These < N,B > combinations are the can-
didate resource tuples for the tenant request.

3.1.4 Dealing with prediction errors
As with any profiling-based approach, MRCute assumes

that the behavior observed during profiling is representa-
tive of actual job operation. For example, the sample data
used for profiling should be representative and of sufficient
size.1 Similarly, the machine used for profiling should offer
the same performance as any other machine in the datacen-
ter. While physical machines in a datacenter often have the
same hardware configuration, their performance can vary,
especially disk performance [23]. Overall, these assumptions
do not always hold and can result in prediction errors.

Further, tasks of a job can fail or can lag behind (outliers),
causing the actual job execution to deviate from “ideal”
behavior and hence, prediction errors. Mantri’s analysis of
outliers in production settings identified three main root
causes [1]– (i) network contention, (ii) bad machines, and
(iii) workload imbalance. We address the first two causes
and mask the last one as follows:

Network contention. Bazaar dedicates both VMs and
a network slice to each job. The latter guarantees the net-
work bandwidth for VMs. This avoids inter-job network con-
tention, thus avoiding outliers due to poor network perfor-
mance.

Bad machines. Even on our small testbed, we found
significant variability in the completion time of the same
task on different machines. We tracked this to variable disk
performance which is observed in production datacenters
too [1]. To account for such variability, MRCute maintains
statistics regarding the disk bandwidth of individual ma-
chines. In practice, this can be obtained by profiling the
machines periodically, for instance, when they are not allo-
cated to tenants. Our evaluation shows that this improves
the prediction accuracy significantly.

Workload imbalance. The amount of data processed by
tasks belonging to the same phase can vary significantly
which, in turn, leads to outliers. It is difficult to quantify
such imbalance during prediction.

Broadly speaking, it is very hard to account for all possible
causes that can result in inaccurate prediction. Hence, we
use slack to mask such inaccuracies. A slack of 10% means
we actually estimate the resources required to complete the
job in 90% of the desired time, thus allowing 10% slack for
misprediction. In §4.2.3, we study how the provider can set
the slack to ensure tenant goals are met even in the presence
of outliers.

1If sample is too small, external factors such as the OS
page cache can influence the measurements and the observed
bandwidth will be different from that seen by the actual job.
We use MapReduce configuration parameters regarding the
memory dedicated to each task to determine the minimum
size of the sample data.

3.2 Resource selection
A job-centric interface offers flexibility to the provider.

Since all the candidate tuples for a job achieve similar com-
pletion times, the provider can select which resource tuple
to allocate. Bazaar takes advantage of this flexibility by se-
lecting the resource tuple most amenable to the provider’s
ability to accommodate subsequent tenants, thus maximiz-
ing the provider revenue. This comprises the two following
sub-problems.

The feasibility problem involves determining the set of
candidate resource tuples that can actually be allocated in
the datacenter, given its current utilization. For our two di-
mensional resource tuples, this requires ensuring that there
are both enough unoccupied VM slots on physical machines
and enough bandwidth on the network links connecting these
machines. Oktopus [2] presents a greedy allocation algorithm
for such tuples which ensures that if a feasible allocation ex-
ists, it is found. We use this algorithm to determine feasible
resource tuples.

The resource selection problem requires selecting the
feasible resource tuple that maximizes the provider’s abil-
ity to accept future requests. However, in our setting, the
resources required for a given tuple depend not just on the
tuple itself, but also on the specific allocation. As an exam-
ple, consider a tuple <4, 200> requiring 4 VMs each with
200 Mbps of network bandwidth to other VMs. If all these
VMs are allocated on a single physical machine, no band-
width is required on the network link for the machine. On the
other hand, if two of the VMs are allocated on one machine
and two on another machine, the bandwidth required on the
network links between them is 400 Mbps (2*200 Mbps).

To address this, we use the above allocation algorithm to
convert each feasible resource tuple to a utilization vector
capturing the utilization of physical resources in the data-
center after the tuple has been allocated. Specifically,

Allocation(< N,B >)→ U =< u1, . . . , ud >,

where U is a vector with the utilization of all datacenter
resources, i.e., all physical machines and links. The vector
cardinality d is the total number of machines and links in
the datacenter. For a machine k, uk is the fraction of the VM
slots on the machine that are occupied while for a link k, uk
is the fraction of the link’s capacity that has been reserved
for the allocated VMs.

Overall, given the set of utilization vectors corresponding
to the feasible tuples, the objective is to select the resource
tuple that will minimize the number of rejected requests in
the future. This problem has been studied in various con-
texts, such as online ad allocation [8] and online routing and
admission control in virtual circuit networks [19]. Depending
on the context, one can show that different cost functions
(that measure the cost for accepting a request) yield optimal
scheduling for different request allocation models [3]. We ex-
perimented with a number of such cost functions and found
that a cost function that captures the resource imbalance
caused by the allocation of a resource tuple performs very
well in terms of minimizing rejected requests. In our set-
ting, minimizing resource imbalance translates to choosing
the utilization vector that balances the capacity left across
all resources after the request has been allocated. Precisely,



our selection heuristic aims to minimize the following

minimize

d∑
j=1

(1− uj)2.

Hence, the resource imbalance is defined as the square of the
fractional under-utilization for each resource. The lower this
value, the better the residual capacity across resources is
balanced. In literature, this is referred to as the Norm-based
Greedy heuristic [25]. An extra complication in our setting
is the hierarchical nature of typical datacenters. This leads
to a hierarchical set of resources corresponding to datacenter
hosts, racks and pods. Below we detail how this heuristic is
extended to such a setting.

3.2.1 Resource imbalance heuristic
The resource imbalance heuristic applies trivially to a sin-

gle machine scenario. Consider a single machine with a net-
work link. Say the machine has Nmax VM slots of which
N left are unallocated. Further, the outbound link of the
machine has a capacity Bmax of which Bleft is unallocated.
The utilization vector for this machine is

< u1, u2 >=< 1− N left

Nmax
, 1− Bleft

Bmax
> .

Thus, the resource imbalance for the machine is

2∑
j=1

(1− uj)2 =

{
N left

Nmax

}2

+

{
Bleft

Bmax

}2

.

Since physical machines in a datacenter are arranged in
racks which, in turn, are arranged in pods, there is a hierar-
chy of resources in the datacenter. To capture the resource
imbalance at each level of the datacenter, we extend the set
of datacenter resources to include racks and pods. Hence, the
datacenter utilization is given by the vector < u1, . . . , um >,
where m is the sum of physical machines, racks, pods and
links in the datacenter. For a rack k, uk is the fraction of VM
slots in the rack that are occupied and the same for pods.
Hence, for a resource tuple being considered, the overall re-
source imbalance is the sum of the imbalance at individual
resources, represented by set C, whose utilization changes
because of the tuple being accepted, i.e.,

∑
j∈C(1− uj)2.

A lower resource imbalance indicates a better positioned
provider. Hence, Bazaar chooses the utilization vector and
the corresponding resource tuple that minimizes this imbal-
ance. Since the allocation algorithm is fast (median alloca-
tion time is less than 1ms), we simply try to allocate all
feasible tuples to determine the resulting utilization vector
and the imbalance it causes.

3.2.2 Resource selection example
We now use a simple example to illustrate how Bazaar’s

imbalance-based resource selection works. Consider a rack
of physical machines, each with 2 VM slots and a Giga-
bit link. Also, imagine a tenant request with two feasible
tuples <N,B> (B in Mbps): <3, 500> and <6, 200>. Fig-
ure 5 shows allocations for these two resource tuples. Net-
work links in the figure are annotated with the (unreserved)
residual bandwidth on the link after the allocation. The fig-
ure also shows the imbalance values for the resulting data-
center states. The former tuple has a lower imbalance and
is chosen by Bazaar.

600

600

1000 Mbps

600500

500

1000

1000 Mbps

State 1

Allocation involves two physical machines
Resource Imbalance = Imbalance on machine1 + 
link1 + machine2 + link2
= (0)2 slots + (500/1000)2 Mbps + (½)2 slots + 
(500/1000)2 Mbps

Total resource imbalance = ¼ + ½ = ¾ 

VMs 
allocated 
to tenant

Empty VM 
slots

Top of Rack
(ToR) Switch

Top of Rack
(ToR) Switch

(a). Request <3 VMs, 500 Mbps> (b). Request <6 VMs, 200 Mbps>

State 2
Allocation involves three machines
Imbalance on machine1 + link1 + 
machine2 + link2 + machine3 + link3
 =  3 * {(0)2 slots + (600/1000)2 Mbps}

Total resource imbalance 
        = 3 * (600/1000)2 = 1.08

Figure 5: Selecting amongst two feasible resource
tuples. Each physical machine has 2 VM slots and
an outbound link of capacity 1000 Mbps. Each link
is annotated with its residual bandwidth.

To understand this choice, we focus on the resources left in
the datacenter after the allocations. After the allocation of
the <3, 500> tuple, the provider is left with five empty VM
slots, each with an average network bandwidth of 500 Mbps
(state-1). As a contrast, the allocation of <6, 200> results in
two empty VM slots, again with an average network band-
width of 500 Mbps (state-2). We note that any subsequent
tenant request that can be accommodated by the provider in
state-2 can also be accommodated in state-1. However, the
reverse is not true. For instance, a future tenant requiring
the tuple <3, 400> can be allocated in state-1 but not state-
2. Hence, the first tuple is more desirable for the provider
and is the one chosen by the resource imbalance metric.

4. EVALUATION
In this section, we evaluate Bazaar, focusing on its two main
components, namely MRCute and resource selection. Our
evaluation combines MapReduce experiments, simulations
and a testbed deployment. Specifically:

(1). We quantify the prediction accuracy of MRCute. Re-
sults indicate that MRCute accurately determines the re-
sources required to achieve tenant goals with low overhead
and an average prediction error of less than 12% (§4.1).

(2). We use large scale simulations to evaluate the benefits
of Bazaar. Capitalizing on resource malleability significantly
improves datacenter goodput (§4.2).

(3). We deploy and benchmark our prototype on a 26-node
Hadoop cluster. We further use this deployment to cross-
validate our simulation results (§4.3).

4.1 Performance prediction
We use MRCute to predict the job completion of the five

MapReduce jobs described in §2.1 (Table 1). For each job,
MRCute predicts the completion time for varying number of
nodes (N) and the network bandwidth between them (B).
The prediction involves profiling the job with sample data
on a single node, and using the resulting job parameters to
drive the analytical model.

To determine actual completion times, we executed each
job on a 35-node Emulab cluster with Cloudera’s distribu-
tion of Hadoop MapReduce (version 0.20.2). Each node has
a quad-core Intel Xeon 2.4 GHz processor, 12 GB RAM and
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Figure 6: Predicted completion time for Sort (an I/O
intensive job) and WordCount (a CPU intensive job)
matches the observed time.
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Figure 7: Per-phase breakdown of the observed
(Obs) and predicted (Pred) completion time for Sort

with bandwidth = 300 Mbps. Hom represents the
predicted time assuming homogeneous disk perfor-
mance.

a 1 Gbps network interface. The unoptimized jobs were run
with default Hadoop configuration parameters. The number
of mappers and reducers per node is 8 and 2 respectively,
HDFS block size is 128 MB, and the total number of re-
ducers is twice the number of nodes used. While parameter
tuning can improve job performance significantly [14], our
focus here is not improving individual jobs, but rather pre-
dicting the performance for a given configuration. Hence, the
results presented here apply as long as the same parameters
are used for job profiling and for the actual execution.

We first focus on the results for Sort and WordCount, two
jobs at extreme ends of the spectrum. Sort is an I/O inten-
sive job while WordCount is processor intensive. Figures 6(a)
and 6(b) plot the observed and predicted completion time
for five runs of these jobs when varying N and B. The fig-
ures show that the predicted and observed completion times
are close throughout, with 8.9% prediction error on average
for Sort and 20.5% at the 95th percentile.

To understand the root cause of the prediction errors, we
look at the per-phase completion time. Figure 7 presents this
breakdown for Sort with varying number of nodes. The bars
labeled Obs and Pred represent the observed and predicted
completion time respectively. The figure shows that the pre-
dicted time for the map phase is very accurate; most of the
prediction error results from the shuffle and reduce phases.

The reason for this difference in the prediction accuracy is
that the map phase typically consists of a number of waves.
Consequently, any outlier map tasks that are straggling in
the earlier waves get masked by the latter waves and they
do not influence the observed phase completion time signifi-
cantly. In contrast, the shuffle and reduce phases execute in

a single wave since the number of reduce tasks is the same
as the number of reduce slots on the nodes. As a result, any
outlier reduce tasks inflate the phase and in turn, the job
completion time. Overall, such outliers introduce errors in
the predicted completion time.

Beyond Sort and WordCount, the predicted estimates for
the other jobs show similar trends. For brevity, we sum-
marize the prediction errors in Figure 8. Overall, we find a
maximum average error of 11.5% and a 95th percentile of
20.5%.

4.1.1 Accounting for outliers
The basic MRCute model predicts job completion time as-

suming “ideal” operation. However, data analytics in pro-
duction settings is far from ideal; nodes and tasks fail, and
many tasks are outliers. While guaranteed network band-
width avoids outliers due to network contention, here we
describe how MRCute deals with outliers due to bad ma-
chines and quantify the impact of workload imbalance.

Bad machines. To account for disk performance variabil-
ity, MRCute maintains statistics regarding the disk band-
width of individual machines. To highlight the benefits of
such benchmarking, the bars in figure 7 labeled Hom (Ho-
mogeneous) show the predicted times when MRCute does
not account for disk performance heterogeneity, and instead,
uses a constant value for the disk bandwidth in the analyti-
cal model. Since the performance of the disks on individual
nodes varies, such an approach underestimates the reduce
phase time which leads to a high prediction error.

Workload imbalance. The amount of data processed by
tasks belonging to the same phase can vary significantly
which, in turn, leads to outliers. To quantify the impact of
such outliers on MRCute, we artificially introduced skew for
the Sort job by choosing input keys from a skewed distribu-
tion. Here skew is the coefficient of variation ( stdev

mean
) for in-

put across tasks belonging to the same phase. Figure 9 shows
that the prediction error increases almost linearly with in-
creasing skew. This is expected given that MRCute profiles
the job only on sample data and does not explicitly account
for input data skew. Mantri reported a median data skew
of 0.34 which leads to 26% prediction error for MRCute. To
account for such outliers resulting from workload imbalance
and other factors, we use slack when determining resources
for a job. As we show later, this allows us to satisfy tenant
goals in the presence of outliers.

4.1.2 Prediction overhead
MRCute profiles a job on sample input data to determine

the job parameters. This imposes two kinds of overhead.
(1). Sample data. We use information about the MapRe-

duce configuration parameters, such as when data is spilled
to the disk, to calculate the size of the sample data needed
for the job. This is shown in Figure 8. Other than Gridmix,
the jobs require <3 GB of sample data, a non-negligible
yet small value compared to typical datasets used in data
intensive workloads [7]. Gridmix is a multi-stage job with
high selectivity. Hence, we need more sample data to ensure
enough data for the last stage when profiling as data gets ag-
gregated across stages. This overhead could be reduced by
profiling individual stages separately but requires detailed
knowledge about the input required by each stage.

(2). Profiling time. Figure 8 also shows the time to profile
individual jobs. For Sort and WordCount, the profiling takes



Hadoop Job Stages Sample Profiling Time Prediction error (all runs)
Data Size Average 95%ile

Sort 1 1GB 100.8s 8.9% 20.5%
WordCount 1 450MB 67.5s 8.4% 19.7%
Gridmix 3 16GB 546s 11.5% 17.8%
TF-IDF 3 3GB 335s 5.6% 9.7%

LinkGraph 4 3GB 554.8s 8.2% 12.3%

Figure 8: Prediction overhead and error of MRCute for Hadoop jobs.
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Figure 9: Impact of skew.

around 100 seconds. For the multi-stage jobs, profiling time
is higher since more data needs to be processed. However, a
job needs to be profiled only once to predict the completion
time for all resource tuples, and we can also use information
from past runs.

To summarize, these experiments indicate that MRCute can
indeed generate good completion time estimates for MapRe-
duce jobs.

4.2 Resource selection
Performance prediction allows Bazaar to determine the

candidate resource tuples that can satisfy a tenant’s com-
pletion time goals. Here, we evaluate the potential gains re-
sulting from smart selection of the resource tuple to use.

4.2.1 Simulation setup
Given the small size of our testbed, we developed a sim-

ulator to evaluate Bazaar at scale. The simulator coarsely
models a multi-tenant datacenter. It uses a three-level tree
topology with no path diversity. Racks of 40 machines with
one 1 Gbps link each and a Top-of-Rack switch are con-
nected to an aggregation switch. The aggregation switches,
in turn, are connected to the datacenter core switch. The
results in the following sections involve a datacenter with
16,000 physical machines and 4 VMs per machine, resulting
in a total of 64,000 VMs. The network has an oversubscrip-
tion of 1:10 and we vary this later. Each VM has a local
disk. While high-end SSDs can offer bandwidth in excess of
200 MB/s for even random access patterns [47], we conser-
vatively use a disk I/O bandwidth of 125 MB/s = 1 Gbps
such that it can saturate the network interface.
MapReduce jobs. We use a simple model for MapReduce
jobs. The program P associated with a job is characterized
by four parameters– the rate at which data can be processed
by the map and reduce function when there are no I/O bot-
tlenecks (BPmap, B

P
reduce) and the selectivity of these func-

tions (Smap, Sreduce). Given the input size, the selectivity
parameters are used to determine the size of the intermedi-
ate and output data generated by the job. Note that an I/O
intensive job like Sort can process data fast and has high
values for BPmap and BPreduce. To capture the entire spec-
trum of MapReduce jobs, we choose these parameters from
an exponential distribution with a mean of 500 Mbps. We
also experiment with other mean values.
Tenant Requests. Each tenant request consists of a MapRe-
duce job, input size and a completion time goal. This in-
formation is fed to the analytical model to determine the
candidate resource tuples for the job. From these candidate
tuples, one tuple <N,B> is chosen based on the selection
strategies described below. The corresponding resources, N
VMs with B Mbps of network bandwidth, are allocated us-

ing the allocation algorithm in [2]. If the request cannot be
allocated because of insufficient resources, it is rejected.

We simulate all three phases of MapReduce jobs. We do not
model the disk and CPU operations. Instead, the duration of
the map and the reduce phase is simply calculated a priori
by invoking the MRCute analytical model. As part of the
shuffle phase, we simulate all-to-all traffic matrix with N2

network flows between the N VMs allocated to the tenant.
Given the bandwidth between VMs, we use max-min fairness
to calculate the rate achieved by each flow. The shuffle phase
completes when all flows complete.
Resource selection strategies. We evaluate three strate-
gies to select a resource tuple.

(1). Baseline. This strategy does not take advantage of
a job’s resource malleability. Instead, one of the candidate
tuples is designated as the baseline tuple <Nbase, Bbase>.
The job is executed using this baseline resource tuple.

(2). Bazaar-R (random selection). A tuple is randomly se-
lected from the list of candidates, and if it can be allocated
in the datacenter, it is chosen. Otherwise the process is re-
peated. This strategy takes advantage of resource malleabil-
ity to accommodate requests that otherwise would have been
rejected. However, it does not account for the impact that a
tuple bears on the provider.

(3). Bazaar-I (imbalance-based selection). For each tuple,
we determine how it would be allocated and calculate the re-
sulting utilization vector and resource imbalance. The tuple
with the lowest resource imbalance is chosen.
Workload. To model the operation of cloud datacenters,
we simulate tenant requests arriving over time. By varying
the tenant arrival rate, we vary the target VM occupancy
for the datacenter. Assuming Poisson tenant arrivals with a
mean arrival rate of λ, the target occupancy on a datacenter
with M total VMs is λNT

M
, where T is the mean completion

time for the requests and N is the mean number of requested
VMs in the Baseline scenario.

4.2.2 Selection benefits
We simulate the arrival and execution of 15,000 tenant

requests. The desired completion time for each request is
chosen such that the number of compute nodes (Nbase) and
network bandwidth (Bbase) required in the Baseline scenario
is exponentially distributed. The mean value for Nbase is
50, which is consistent with the mean number of VMs that
tenants request in cloud datacenters [31].

Workloads and metrics. Two primary variables are used
in the following experiments to capture different workloads.
First, we vary the mean bandwidth required by tenants (Bbase).
This reflects tenants having varying completion time require-
ments. Second, we vary the target occupancy to control the
tenant request arrival rate.

From a provider’s perspective, we look at two metrics to
quantify the potential benefits of resource selection. First
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Figure 10: Percentage of rejected requests, varying
mean bandwidth and target occupancy.
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Figure 11: Datacenter goodput with varying mean
bandwidth and varying target occupancy.

is the fraction of requests that are rejected. However, this,
by itself, does not represent the full picture since individual
requests are of different sizes, i.e., each request processes a
different amount of data. To capture this, we also look at
the sum of input data consumed across all requests. This
represents the total useful work in the datacenter and is,
thus, termed as the datacenter goodput.

Impact of varying mean bandwidth and target oc-
cupancy. Figure 10(a) plots the percentage of rejected re-
quests with varying target occupancy. For all selection strate-
gies, the rejection ratio increases with increasing target oc-
cupancy. This is because requests start arriving faster and,
hence, a greater fraction have to be rejected. The figure
shows that, depending on the occupancy, Bazaar-I results
in 3-14% fewer requests being rejected. Bazaar-R rejects
around 2-5% more requests than Bazaar-I. However, as we
explain below, the actual benefit of the imbalance-based se-
lection is larger.

To put this in perspective, operators like Amazon EC2 tar-
get an average occupancy of 70-80% [42]. Figure 10(b) plots
the rejected requests for a target occupancy of 75%. The fig-
ure shows that the difference between the fraction of requests
rejected by both Bazaar strategies as compared to Baseline
increases with increasing mean bandwidth. Increasing the
bandwidth required by the job implies tighter completion
time requirements which, in turn, means there are greater
gains to be had from selecting the appropriate resource com-
bination. At mean bandwidth of 900 Mbps, Bazaar-I rejects
19.9% fewer requests than Baseline.

Figure 11 shows the datacenter goodput for the Bazaar
selection strategies relative to Baseline. Depending on the
occupancy and bandwidth, Bazaar-I improves the goodput by
7-87% over Baseline, while Bazaar-R provides improvements

of 0-66%. As an example, at typical occupancy of 75% and a
mean bandwidth of 500 Mbps, Bazaar-I and Bazaar-R offer
56% and 39% benefits relative to Baseline respectively. Note
that the gains with Bazaar-R show how resource malleability
can be used to accommodate tenant requests that would
otherwise have been rejected. The further gains with Bazaar-
I represent the benefits to be had by smartly selecting the
resources to use.

In figure 11(a), the relative improvement in goodput with
Bazaar strategies first increases with target occupancy and
then declines. This is because, at both low and high occu-
pancy, there is not as much room for improvement. At low
occupancy, requests arrive far apart in time and most can
also be accepted by Baseline. At high occupancy, the arrival
rate is high and the datacenter is heavily utilized. In fig-
ure 11(b), the gains increase with increasing bandwidth. As
explained above, this results from shrinking completion time
requirements which allow Bazaar strategies to accept more
requests as compared to Baseline. Further, Bazaar is able
to accept bigger requests resulting in even higher relative
gains.

Impact of simulation parameters. We also determined
the impact of other simulation parameters on Bazaar per-
formance and the results stay qualitatively the same. Due to
space constraints, we only show the results of varying over-
subscription and briefly discuss the impact of varying the
mean disk and other parameters.

Figure 12 shows the relative goodput with varying network
oversubscription. Even in a network with no oversubscrip-
tion, e.g., [11], Bazaar-I is able to accept 10% more requests
and improves the goodput by 27% relative to Baseline. Fur-
ther, the relative improvement with Bazaar increases with
increasing oversubscription before flattening out. This is be-
cause the physical network becomes more constrained and
Bazaar can benefit by reducing the network requirements of
tenants while increasing their VMs.

We also ran experiments using different values of the disk
bandwidth. As expected, low values of the disk bandwidth
reduce the benefits of Bazaar-I. When the disk bandwidth
is extremely low (250 Mbps), increasing the network band-
width beyond this value does not improve performance. Thus,
there are very few candidate resource tuples and the gains
with Bazaar are small (2% over Baseline). However, as the
disk bandwidth improves, there are more candidate tuples
to choose from and the performance improves.

Finally, we varied the mean task bandwidth (map and re-
duce) and also the datacenter size (up to a maximum of
32,000 servers and 128,000 VMs) and the results confirmed
the trends observed in Figure 10 and 11.

Comparison with today’s setup. Today, cloud pro-
viders do not offer any bandwidth guarantees to tenants.
VMs are allocated using a greedy locality-aware strategy and
bandwidth is fair-shared across tenants using TCP. In Fig-
ure 13(a), we compare the performance of Bazaar-I against
a setup representative of today’s scenario, which we de-
note as Fair-sharing. For low values of occupancy, Fair-
sharing achieves a slight better performance than Bazaar-
I. The reason is that Bazaar-I reserves the network band-
width throughout the entire duration of a tenant’s job. This
also includes the map and reduce phase, which are typically
characterized by little or no network activity. In contrast, in
Fair-sharing, the network bandwidth is not exclusively as-
signed to tenants and, hence, due to greater multiplexing, it
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scription (occupancy is 75%).
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Figure 13: Comparing against today’s setup (Mean BW is 500 Mbps).
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Figure 14: Using slack to offset impact of outliers.

achieves a higher network utilization. Yet, for high values of
occupancy, which are typical of today’s datacenters [42], re-
jected requests significantly increase. This is due to the high
congestion incurred in the core of the network, caused by
the sub-optimal placement of VMs and corresponding flows.

The main drawback of Fair-sharing, however, is highlighted
in Figure 13(b), which shows that the completion time is
extended for at least 50% of the jobs and for 12% of the
jobs the actual completion time is at least twice the desired
completion time. Since tenants pay based on the time they
occupy VMs, this also inflates tenant costs.

4.2.3 Mitigating outliers with slack
The results above assume perfect prediction. Since our pre-

diction does not account for all possible outliers, the pre-
dicted completion time for a job can be off which, in turn,
would cause the job to be late. To counter this, Bazaar relies
on slack. To evaluate how much slack is needed in practice,
we use the outlier distribution from Bing’s production clus-
ters (reported in [1]) to introduce outlier tasks in our experi-
ments. Such tasks extend jobs past the predicted completion
time. Given this, we measure the impact of varying slack on
rejected requests (relevant for the provider) and late jobs
(relevant for the tenants).

Figure 14(a) shows that more requests are rejected with
increasing slack. As slack increases, it is harder to accommo-
date requests since they need to be finished sooner and thus,
require more resources. For slack less than 50%, Bazaar-I
rejects fewer requests than an “Oracle” that can do perfect
prediction but does not capitalize on resource selection. In
effect, smart resource selection allows us to offset prediction
inaccuracies. The same trends hold for goodput too.

Figure 14(b) shows the percentage of jobs that finish be-
yond the goal completion time. With no slack, ∼90% of jobs
are late, a consequence of 90% of jobs having at least one

outlier. As slack increases, the late requests decrease almost
linearly, and with a slack of 50%, no requests are late. Over-
all, the slack parameter gives the provider a knob to satisfy
tenant goals even in the presence of outliers at the expense
of greater rejections. For instance, the provider may use his-
torical job information to determine the amount of slack to
provision so as to bound the probability of breached SLAs.

4.3 Deployment
We complement our simulation analysis with experiments

on a small-scale Hadoop cluster using a prototype implemen-
tation of Bazaar. We deployed Bazaar on 26 Emulab servers,
using the same hardware setup described in Section 4.1 and
the Cloudera distribution of Hadoop. We used the Linux
Traffic Control API on individual servers to enforce the rate
limits.

We configured one of the testbed servers as the cluster
head node and the rest of the servers as compute nodes. The
head node is responsible of generating tenant requests and
allocate them on the compute nodes. The workload consisted
of 100 Sort job requests with an exponentially generated
input data size (the mean value was 5.7 GB). Like in the
previous experiments, we used a target occupancy of 75%,
mean Bbase of 500 Mbps and mean Nbase equal to 9.

The goal of these experiments is threefold. First, we quan-
tify the benefits of Bazaar. Second, we cross-validate the
accuracy of our simulator. Finally, we verify the scalability
of our implementation to allocate requests in a much bigger
network.
Benefits. Figure 15 shows that Bazaar-I is able to accept
11.43% more Sort jobs than Baseline (i.e., 8 extra jobs)
and increases goodput by 15.47%. This is despite limited
opportunities– the deployment is small and the disk band-
width available is low. Also, with Bazaar-I, less than 2% of
the accepted requests completed later than expected. Note,
however, that in these experiments we did not add any slack,
which would have enabled all requests to complete on time.
Cross-validation. To validate the accuracy of our simula-
tor, we replicated the same workload in the simulator, i.e. the
same stream of jobs arrive in the simulator as on the testbed.
Across all cases, the maximum difference in the number of
accepted requests and goodput is approximately 5.12%, and
8.43% respectively. This cross-validation gives us confidence
in our simulation results.
Scalability analysis. To evaluate the performance of our
prototype at scale, we measured the time to allocate tenant
requests on a datacenter with 128,000 VMs. This includes
both the time to generate the set of candidate resource tu-
ples using the analytical model (Section 3.1.1) and to select
the resources (Section 3.2). This does not include the job
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Figure 16: Datacenter
goodput when exploit-
ing time malleability.

profiling time. Over 10,000 requests, the median allocation
time is 950.17 ms with a 99th percentile of 983.29 ms. Note
that this only needs to be run when a tenant is admitted,
and, hence, the overhead introduced is negligible.

4.4 Beyond two resources: time malleability
Our evaluation considered application malleability along

two dimensions, i.e., N and B. However, a job-centric cloud
allows the provider to exploit malleability across other re-
sources and across time. Here, we briefly explore this oppor-
tunity. The provider can devote additional (idle) resources
to tenant jobs, so that they complete before the desired
time. In this way, the resources used by the job can be re-
claimed earlier, and a larger number of requests can poten-
tially be accommodated in the future. Tenants would benefit
too since they would experience shorter than desired com-
pletion times.

We denote this further selection strategy as Bazaar-T. The
key difference between Bazaar-T and Bazaar-I is that the
latter only considers tuples < N,B > that yield a comple-
tion time T = Tdesired while Bazaar-T also consider tuples
where T < Tdesired. Among these, Bazaar-T selects the tuple
that minimizes the product of the tuple resource imbalance
and T . Figure 16 shows that, at high values of the target
occupancy, exploiting time flexibility significantly improves
the ability of the provider to accommodate more requests
and, hence, the goodput increases. Bazaar-T is also benefi-
cial for tenants as the median completion time is reduced by
more than 50%, and for 20% of the jobs the completion time
is reduced by 8̃0%. In Figure 16 we also consider a naive ap-
proach, Strawman, that always selects the tuple that yields
the lowest completion time, irrespective of the resource im-
balance. Such a strategy performs poorly as it tends to over-
provision the resources for the early requests, which reduces
the ability to accommodate future ones.

5. RELATED WORK
While we discussed a lot of relevant work in Section 2, we

briefly comment on other efforts here. The prominence of
data analytics has prompted a slew of proposals for improv-
ing analytics frameworks; for example, determining good
configuration parameters [14, 20], better scheduling [17, 40],
etc.

The observation that today’s provider interface is discon-
nected from tenant needs has also led to recent efforts to
tackle the problem [9, 14, 35, 39]. Elasticiser [14] and Con-
ductor [39] translate tenant goals into cloud resource require-
ments, while Aria [35] and Jockey [9] focus on private set-
tings. All these proposals involve a performance prediction

component; Conductor uses a model while Jockey uses a sim-
ulator. Like Bazaar, Aria and Elasticiser combine profiling
with modeling. Aria uses historical information for profiling
and has a model that estimates performance bounds. Elasti-
ciser profiles using instrumentation and relies on a statistical
model.

The key difference in Bazaar is our focus on enabling a
job-centric interface. Further, we account for multiple re-
sources. Specifically, we dedicate a network slice to tenant
jobs. The fact that the network is a shared yet distributed
resource makes this hard. However, as explained below, do-
ing so makes the translation of tenant goals simpler and
benefits the provider. First, guaranteed network resources
avoid inter-job contention and make model-based predic-
tion tractable. Second, a per-tenant network slice, combined
with the notion of slack, avoids the need for dynamic adap-
tation [9, 39]. Finally, by exploiting the trade-off between
resources (VMs, network) and between time, the provider
achieves greater flexibility and revenue.

There has also been a lot of progress towards data analyt-
ics performance prediction. For example, Mumak [46] and
MRPerf [37] are discrete-event simulators for MapReduce,
Ganapathi et al. [10] use statistical analysis to discover fea-
ture vectors and predict job performance, ParaTimer [29] is
a job progress estimator that relies on debug runs of the job.
Bazaar needs fast prediction, so it cannot use detailed sim-
ulators like MRPerf that take minutes per simulation [14];
exploring 100 resource tuples would take 100s of minutes.
Instead, we adopt a hybrid approach that trades off accu-
racy for prediction speed. Tian et al. [34] use a similar tact
involving profiling on sample data and then linear regression
for prediction. Finally, there has been work towards perfor-
mance prediction for other cloud applications (eg., web [27]
and ERP applications [33]). Coupling our resource selection
strategies with future prediction frameworks would allow
Bazaar to offer a job-centric interface to applications beyond
MapReduce.

6. PRICING DISCUSSION
Bazaar’s job-centric interface achieves a better alignment

of provider-tenant interests. This opens up interesting op-
portunities to investigate new pricing models.

Today, tenants pay based on the amount of time they use
compute resources. For instance, with today’s setup, the cost
for a tenant renting N VMs for T hours is $kv ·NT , where kv
is the hourly VM price. Such resource-based pricing can be
naively extended to multiple resources. A simple extension
to a two-resource setting would be to charge for the network
bandwidth too. So a tenant with N VMs and B Mbps of
network bandwidth would pay $kc · NBT , where kc is the
hourly combined price for VMs and bandwidth. However,
this results in a mismatch of tenant and provider interests.
The cheapest resource tuple to achieve the tenant’s goal may
not concur with the provider’s preferred resource combina-
tion. Further, resource based pricing entails tenants have to
pay based on a job’s actual completion time. Hence, from a
pricing perspective, there is a disincentive for the provider
to reduce the completion time.

By decoupling the tenants from the underlying resources,
Bazaar offers the opportunity of moving away from resource
based pricing. Instead, tenants could be charged based only
on the characteristics of their job, the input data size and
the desired completion time. Such job-based pricing can ben-



efit both entities. Tenants specify what they desire and are
charged accordingly; providers decide how to efficiently ac-
commodate the tenant request based on job characteristics
and current datacenter utilization. Further, since the final
price does not depend on the completion time, providers now
have an incentive to complete tenant jobs on time, possibly
even earlier than the desired time as in Bazaar-T.

A job-centric cloud, coupled with job-based pricing, can
thus enable a symbiotic tenant provider relationship where
tenants benefit due to fixed costs upfront and better-than-
desired performance while providers use the increased flexi-
bility to improve goodput and, consequently, total revenue.

7. CONCLUSIONS
Bazaar enables a job-centric cloud interface for data an-

alytics. It translates high-level tenant goals to datacenter
resources. This involves predicting application resource re-
quirements. Further, Bazaar exploits the resource malleabil-
ity of cloud applications to select the resource combination
that will achieve tenant goals while improving provider effi-
ciency. Our evaluation shows that, by serving as a conduit
for exchange of information between tenants and providers,
Bazaar provides benefits for both entities.
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APPENDIX
As described in Section 3.1.1, the completion time for each
phase of a map reduce job depends on the number of waves
in the phase, the amount of data consumed or generated by
each task in the phase and the phase bandwidth. Here we
analytically determine these values, and use them to derive
an expression for the job completion time.

1). Phase bandwidth. We described the modeling of the
map phase in §3.1.1. Following the same logic for the reduce
phase, Breduce = Min{BD, BPreduce}. During the shuffle
phase (Figure 17), reduce tasks complete two operations.
Each reduce task first reads its partition of the intermediate
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Figure 17: Detailed description of the resources in-
volved in the shuffle and reduce phase.

data across the network, and then merges and writes it to
disk. Hence, bandwidth = Min{BD, BN}, where BN is the
network bandwidth. Next, the data is read off the disk and
an external merge sort is performed before the data is con-
sumed by the reduce phase. This operation is bottlenecked
at the disk, i.e., bandwidth = BD. Note that the external
merge sort can proceed in multiple steps leading to a larger
amount of data being written to disk than that read from
the map phase. We account for this through a factor f that
captures the extra data written to disk relative to the data
read in. Thus, we model the shuffle phase as two steps with
bandwidths Min{BD, BN} and BD respectively.

2). Data consumed. For a MapReduce job with M map
tasks, R reduce tasks and input of size |I|, each map task

consumes |I|
M

bytes, while each reduce task consumes |I|
Smap∗R

bytes and generates |I|
Smap∗Sreduce∗R

bytes with Smap and

Sreduce being the data selectivity of map and reduce tasks
respectively.

3). Waves. For a job using N VMs with Mc map slots
per-VM, the maximum number of simultaneous mappers is
N ∗ Mc. Consequently, the map tasks execute in d M

N∗Mc
e

waves. Similarly, the reduce tasks execute in d R
N∗Rc

e waves,
where Rc is the number of reduce slots per-VM.

Since tasks belonging to a phase execute in waves, the com-
pletion time for a phase depends on the number of waves and
the completion time for the tasks within each wave. Hence,
for the map phase,

Tmap = Wavesmap ∗ Inputmap

Bmap
= d M

N∗Mc
e ∗
{ |I|/M
Bmap

}
.

Using similar logic for the shuffle and reduce phase com-
pletion time, the estimated job completion time is

Testimate = Tmap + Tshuffle + Treduce

= d M
N∗Mc

e ∗
{ |I|/M
Bmap

}
+

⌈
R

N∗Rc

⌉
∗ |I|
{Smap∗R} ∗

{
1

Min(BD,BN )
+ f

BD

}
+

⌈
R

N∗Rc

⌉
∗
{
|I|/{Smap∗Sreduce∗R}

Breduce

}
.

The discussion above assumes that the map tasks are sched-
uled so that their input is available locally and the output
generated by reducers is written locally with no further repli-
cation. Further, the reduce tasks are separated from the map
phase by a barrier and execute once all the map tasks are fin-
ished [1]. While these assumptions helped the presentation,
MRCute does not rely on them. For instance, to account for
non data-local maps, the network bandwidth is also consid-
ered when estimating Bmap.
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