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Abstract—Sparse matrix-vector multiplication (SMVM) is a 
crucial primitive used in a variety of scientific and commercial 
applications. Despite having significant parallelism, SMVM is 
a challenging kernel to optimize due to its irregular memory 
access characteristics. Numerous studies have proposed the use 
of FPGAs to accelerate SMVM implementations. However, 
most prior approaches focus on parallelizing multiply-
accumulate operations within a single row of the matrix (which 
limits parallelism if rows are small) and/or make inefficient 
uses of the memory system when fetching matrix and vector 
elements. In this paper, we introduce an FPGA-optimized 
SMVM architecture and a novel sparse matrix encoding that 
explicitly exposes parallelism across rows, while keeping the 
hardware complexity and on-chip memory usage low.  This 
system compares favorably with prior FPGA SMVM 
implementations. For the over 700 University of Florida sparse 
matrices we evaluated, it also performs within about two thirds 
of CPU SMVM performance on average, even though it has 
2.4x lower DRAM memory bandwidth, and within almost one 
third of GPU SVMV performance on average, even at 9x lower 
memory bandwidth. Additionally, it consumes only 25W, for 
power efficiencies 2.6x and 2.3x higher than CPU and GPU, 
respectively, based on maximum device power.  

Keywords-sparse matrix vector multiplication, FPGA,  
accelerator, SPMV, SMVM, reconfigurable computing, HPC 

I. INTRODUCTION 

Sparse matrix-vector multiplication (SMVM) has 
received significant attention due to its increasingly 
important application in scientific and commercial 
applications (e.g., computational fluid dynamics, computer 
vision, robotics, and structural engineering, among others). 
Although SMVM is a highly parallelizable algorithm, the 
irregular memory access patterns of real-world sparse 
matrices often restrict realizable parallelism. To address this 
problem, numerous studies have introduced specialized 
SMVM implementations for parallel microprocessors [19] 
and graphics-processing units (GPUs) [1][2]. 

Field-programmable gate arrays (FPGAs) are a 
compelling substrate for SMVM due to the availability of 
massive parallel resources (i.e., logic gates, on-chip 
memories) and a flexible interconnect to support fine-grained 
communication. Prior work has shown that FPGAs can 
perform similarly to GPUs [16], even with much lower peak 

memory bandwidth, and can exceed GPU performance with 
equivalent bandwidth [20]. Furthermore, for comparable or 
better performance, FPGAs consume a very small fraction of 
the GPU’s power (e.g., 25W vs. 200W), which is a critical 
factor for supercomputers where energy costs can approach 
millions of dollars per month [6][9]. FPGA performance and 
efficiency has been typically obtained by efficiently 
parallelizing multiply-accumulate operations within a single 
row of the matrix [21], while also leveraging FPGA-
specialized matrix encodings [11] and accumulator 
architectures [17][18]. In this paper, we introduce a novel 
FPGA accelerator for SMVM that addresses two key 
bottlenecks of previous approaches: 1) restrictions on 
exploitable parallelism, and 2) limited on-chip block RAM. 

While prior approaches have shown promising 
performance, they can be difficult to scale due to limits on 
exploitable parallelism.  Specifically, early works on 
accelerating SMVM focused mostly on exploiting 
parallelism within a single matrix row. For example, for an 
accelerator with 32 multipliers, if a given row of the matrix 
has less than 32 unprocessed nonzero values, the remaining 
multipliers will be wasted due to zero padding [21]. It is 
possible to begin processing the next row instead of using 
zero padding, but supporting an arbitrary number of rows 
with an arbitrary number of elements increases complexity 
significantly, limiting the clock rate. Ideally, an accelerator 
should be capable of processing elements from multiple rows 
of the matrix to maximize parallelism. Prior works implement 
support for dynamic scheduling across rows but have not 
demonstrated scalable performance or efficient utilization of 
memory bandwidth [13]. Furthermore, most prior works 
assumed Compressed Sparse Row (CSR) matrix encodings 
that are cumbersome to fetch across multiple rows for parallel 
processing because the matrix is encoded in a sequential, 
row-major fashion. This requires an entire row to be read 
from memory and buffered on-chip before the first element 
of the subsequent row can be fetched. 

Another bottleneck of previous SMVM approaches is the 
need for replicated storage of the input vector using on-chip 
FPGA block RAM. Previous approaches parallelize 
multiplications by streaming matrix values from external 
memory, while reading a vector value, with one vector replica 
implemented in FPGA block RAM per multiplier. Although 
a replicated memory architecture is well-suited for small 
vectors, it becomes a bottleneck for highly parallelized 
implementations using large vectors, if they are to be stored *Work performed while employed by Microsoft Research. 



 

 

entirely on-chip. For example, for an FPGA board with ~10 
GB/s of external memory bandwidth and a clock of 100 MHz, 
an SMVM accelerator can potentially fetch 100 bytes and 
execute ~25 32-bit floating-point multiplications every cycle. 
For a vector of 100,000 elements, previous approaches would 
require 10 MB of block RAM, which exceeds even the largest 
FPGAs. Furthermore, this bottleneck is rapidly becoming 
more significant due to the exponential growth of SMVM 
problem sizes [3]. Even for smaller vectors, replicating the 
vector limits usage of block RAM for other common 
purposes (e.g., external transfer buffers, buffers between 
pipelined tasks).  

In this paper, we introduce a new Compressed Interleaved 
Sparse Row (CISR) matrix encoding that enables 
simultaneous multiply-accumulate operations on multiple 
rows of the matrix without the need for complex schedulers 
or load-balancers. We also introduce a Banked Vector Buffer 
(BVB) that supplies vector data at high bandwidth without 
requiring expensive replication of data, i.e., a single buffer 
services multiple computations simultaneously.  

We evaluate our accelerator using over 700 matrices from 
the widely used University of Florida Sparse Matrix 
Collection [3] and compare our results with other platforms. 
We show that the FPGA performs within about two thirds 
of CPU SMVM performance, even though it has 2.4x 
lower DRAM memory bandwidth, and within almost one 
third of GPU SVMV performance, even at 9x lower 
memory bandwidth. Additionally, it consumes only 25W, 
with power efficiencies 2.6x and 2.3x higher than the CPU 
and GPU, respectively, based on maximum device power. 

The remainder of this paper is organized as follows: 
Section II provides an overview of the proposed architecture, 
and Sections III and IV provide more details on its key 
components; Section V evaluates the proposal, Section VI 
discusses related work, and Section VII concludes. 

II. OVERALL ARCHITECTURE 

The goal of our proposed design is to accelerate sparse 
matrix-vector multiplications of large matrices—millions of 
elements or more—by vectors as large as tens of thousands 
of elements. Our design choices are guided by two principles: 
(1) to enable as much parallelism as possible while keeping 
hardware complexity low, and (2) to eliminate the replication 
of vector inputs, so that larger vectors can fit on chip.  

A. Limitations of Compressed Sparse Row (CSR) 

Matrix-vector multiplications consist of multiple dot 
product operations, one for each row in the matrix. Each dot 
product operation requires the addition of pair-wise 
multiplications between elements of a matrix row and vector 
elements. All rows in a densely represented matrix are the 
same size, so the effort of parallelizing the operation across 
or within dot products is roughly equivalent. However, 
sparsely encoded matrices using the popular Compressed 
Sparse Row (CSR) format encode only the non-zero values 
of the matrix, resulting in variable-sized rows. CSR creates a 
trade-off in parallelization: parallelizing within dot products 
introduces the complexity of controlling variably-sized 
addition reduction operations. Conversely, parallelizing 

across dot products requires either a potentially large amount 
of buffering to store entire rows, or that multiple memory 
fetching points are managed and coordinated, which also 
introduces complexity.  

B. Proposed Architecture and CISR Encoding 

The proposed architecture avoids this trade-off by 
introducing a specialized sparse matrix encoding that 
explicitly exposes parallelization across rows, which 
eliminates the need for additional buffering or convoluted 
memory access and arbitration mechanisms.  

Figure 1 illustrates the proposed architecture running on 
a single FPGA connected to two dedicated DRAM chips 
delivering up to 21.3GB/s of aggregate bandwidth. The 
design maximizes bandwidth utilization by organizing the 
data coming from memory into parallel channels, where all 
elements in a matrix row are processed by the same channel. 
When a channel exhausts a row, it fetches a new row, which 
is typically already pre-fetched from memory.  

Each channel requests the vector elements corresponding 
to the newly fetched matrix elements. These vector requests 
are steered to the Banked Vector Buffer (BVB), a multi-
ported, high bandwidth structure used to store and supply 
vector elements. Vector elements returned by the BVB are 
paired with their matrix counterparts at their channel FIFOs. 
Finally, a multiplier pulls each pair out of their respective 
FIFOs, multiplies them and feeds the results into a fused 
accumulator, which is responsible for performing additions 
for a group of channels. Each fused accumulator is fully 
pipelined and takes turns processing the multiplier outputs of 
each channel in its group, performing several additions for a 
channel at once. When the dot product of a row completes, 
the accumulator places the result in the output buffer.  

The first step in obtaining a highly parallelized design 
with low hardware complexity is to minimize communication 
and dependencies between channels. Figure 1 shows that 
there is no communication across channels. A factor that may 
limit parallelism is how data are retrieved from memory. This 
is the inspiration for the newly proposed Condensed 
Interleaved Sparse Representation, or CISR encoding. 

The principle in CISR encoding is to divide the total bit 
width received from memory in a single cycle into slots, each 
corresponding to a channel. Data to be used by a channel 
should only be placed in its corresponding slot. This results 
in a directly connected design where no crossbar is required 
to route data from the DRAM interface into their respective 
channels. In other words, when data is brought from memory, 
each data slot lines up with a corresponding channel. This 
greatly simplifies the design.  

The CISR encoding, like the CSR encoding, consists of 
three arrays, where the first encodes non-zero values, the 
second encodes their corresponding columns, and the third 
encodes information about where rows start and end. Unlike 
CSR, which encodes values in row-major order, CISR 
encodes the first and second arrays in a modified column-
major order. The third array in CISR stores the length of each 
row, which breaks data dependencies between rows and 
simplifies parallelization. Section III explains the CISR 
encoding in detail. 



 

 

C. De-replicating Vectors and Dynamic Fetch 

Conventional strategies for sustaining high vector access 
bandwidth often involve replicating input vectors across 
multiple sets of block RAMs. Although this strategy is simple 
to implement, it is difficult to scale due to limited on-chip 
FPGA storage.  An important goal of our proposed design is 
to avoid the overhead and redundancy of replicated vector 
buffers while achieving high throughput. To meet this goal, 
the Banked Vector Buffer (BVB) implements a shared pool 
of on-chip memories connected to a highly optimized 
crossbar switch that services up to 32 requests every clock 
cycle.  Section IV provides more detail on the BVB design. 

III. CISR FORMAT, ENCODING AND DECODING 

This section compares the CISR and CSR encodings and 
explains why CISR leads to simpler parallel designs. 

A. CSR Encoding 

The CSR encoding uses three arrays to represent a sparse 
matrix. Figure 2a shows an original densely-represented 
sparse matrix. Letters indicate non-zero values; blanks 
indicate zero values. Figure 2b shows its corresponding CSR 
encoding. The first array (values) lists all non-zero elements 
in row-major order (i.e., A, B, then C, and so on). The second 
array (indices) lists the column index of each non-zero 
element and thus also follows row-major order. The ith 
element in the third array (row pointers) contains pointers to 
the position in the first array where the ith row begins. If the 
ith element in the third array contains the same pointer as the 
(i+1)th element, then the ith row contains no non-zero 

elements. The last element in the third array represents the 
number of elements in each of the first and second arrays. 

It is possible, but complex, to parallelize multiplications 
across rows with CSR. First, enough buffer space must be 
provided to store a memory line’s worth of non-zero values 
and column indices. Alternatively, multiple DRAM read 
streams must be managed and distributed across multiple 
buffers. Finally, inter-row parallelization requires sequential 
decoding steps to determine the boundaries between rows. 

B. CISR Encoding 

CISR encoding stores rows in a format that enables more 
straightforward parallelization and hardware design. One can 
think of CISR as a static scheduling of rows to channels using 
channel slots (referred to simply as slots), which are 
illustrated in the bottom row of Figure 2c. Figure 2c makes 
use of a hypothetical memory width of four elements, which 
results in enough per-cycle bandwidth to feed 4 channels. 
Therefore, four slots (numbered 1 to 4) are used to statically 
schedule the input to each channel. The first step for encoding 
a matrix into a 4-slot CISR format is to allocate each of the 
first four rows to one of the slots. Next, the first element in 
each of these rows is placed in its respective slot (A, C, D, F), 
then the second element, and so on. The corresponding 
column indices are placed in the same order in the indices 
array. Once one of the rows runs out of elements, a new row 
is assigned to that slot. For example, row 1 contains only one 
element (C), so on the second round of allocations, row 4 is 
assigned to slot 1, and I is placed in this slot of the values 
array, right next to B (second element in row currently 
allocated to slot 1). The process repeats until it exhausts the 
rows in the original matrix and all row elements have been 

 
Figure 1. Overview of hardware blocks in proposed design. Data flows from left to right.     



 

 

placed in the sparse encoding. At the end of this process, 
certain slots will be empty while other slots will still have row 
elements to be assigned. Special-symbol padding (e.g., zero 
padding, not shown) is used to fill completed slots such that 
all slots have the same number of values. The number of 
elements in each row is placed in its corresponding slot in the 
row length array as rows are completely placed in the values 
and indices arrays. Note that this effectively reorders row 
element counts so that the counts are placed in the same slots 
as their non-zero elements and indices counterparts. For 
example, element 4 in the row length array corresponds to 
row number 5, the second row to be allocated in slot 1.  

This static row scheduling is beneficial because it shifts 
the complexity of assigning rows to hardware resources from 
hardware to software, which is much more flexible. Given the 
simplicity of the CISR encoding format, we do not expect a 
significant increase in the encoding time relative to CSR. On 
the hardware side, static scheduling allows elements, indices 
and row lengths of different rows to be directly passed to the 
hardware resources responsible for processing them, thanks 
to the direct correlation of memory slots to hardware 
channels. This obviates the need to implement dynamic row 
scheduling in hardware and to provide a full, difficult to 
manage and area-intensive crossbar between the memory 
buffer segments and hardware resources.  

C. CISR Decoding 

The CISR encoding process was designed to statically 
perform as much of the work of preparing the matrix for 
processing as possible, so the CISR decoding process can be 
very simple. Matrix values and column indices are forwarded 
directly from slots to the channels processing them. The only 
on-chip decoding required is transforming row lengths into 
row IDs, which inform the accumulator to which row each 
matrix-vector value pair belongs. First, the CISR decoder 
initializes sequential row IDs (i.e., each channel gets its own 
index minus one as the initial ID). Next, for each channel, the 
CISR decoder reads a value from the row length FIFO and 
sets a counter equal to that value. The CISR decoder 
decrements each counter every cycle and places a copy of 
each channel’s row ID in that channel’s row ID FIFO. When 
a channel’s counter value reaches zero, it indicates that all of 

the row IDs for that row have been produced and that a new 
row ID must be assigned. If multiple channels need new row 
IDs in the same cycle, the encoding guarantees that lower-
indexed channels correspond to lower-indexed row IDs. This 
process continues until the matrix’s row length array has been 
exhausted, indicating that the matrix has been fully decoded.  

IV. BANKED VECTOR BUFFER 

The purpose of the BVB is to supply vector elements at 
high bandwidths to a set of channels (32 or more). To 
mitigate the need for replicated storage while simultaneously 
providing high bandwidth, the BVB is internally built out of 
two 32x32 input-queued crossbars connected to 32 
independently accessible block RAMs. The address-request 
crossbar accepts a column index from each channel and 
routes it to one of 32 banks using a simple bank hashing 
function (in our design, the log2(# banks) lower-order bits of 
the column index). When a given column index is routed to 
a block RAM, the index (excluding the banking bits) is used 
to read the vector element from the RAM in a single clock 
cycle.  The resulting value is then issued to one of 32 input 
ports in the data-response crossbar, which is used to forward 
results back to the requesting channel. On a bank conflict, 
requests are back-pressured into the crossbars’ input queues, 
and eventually back to the channel.  

The BVB crossbars are highly pipelined and can operate 
at up to 150 MHz after place-and-route.  Each of the 32 output 
ports of the crossbar selects among 32 input candidates on 
each clock cycle using a single-cycle priority encoder. The 
match decision is then fed along with the input channel’s data 
into a 6-cycle pipelined multiplexer. The BVB has enough 
on-chip bandwidth to sustain 32 channels simultaneously.   

Although we do not discuss in detail in this paper, scaling 
beyond supporting 32 channels in the BVB could be achieved 
by increasing the degree of banking further and by using a 
more scalable network-on-chip instead of a high-radix 
crossbar that scales quadratically in area with inputs (O(n2)).  
Alternative strategies could include more scalable topologies 
such as a 2-D mesh (O(n)). We leave this investigation to 
future work. 
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Figure 2. (a) Original densely represented matrix, (b) its representation in CSR and (c) its representation in CISR. 



 

 

V. EVALUATION 

A. Methodology 

We implemented and benchmarked the proposed SMVM 
accelerator on a custom FPGA PCIe card with an Altera 
Stratix V D5 FPGA. The selected FPGA has 172K ALMs and 
39 MBits of on-chip memory. The card supports up to 8 GB 
of DRAM, with two dual-rank DDR3-1333 SO-DIMMs 
clocked at 667 MHz supporting an aggregate peak off-chip 
bandwidth of 21.3 GB/s.  The FPGA is clocked at 150 MHz, 
which translates to over 1024 bits/cycle DRAM bandwidth 
and supplies 32 32-bit processing channels. The FPGA 
communicates with the host system using PCIe Gen 2x8, 
which supports up to 4 GB/s of bandwidth to the host 
memory. 

We evaluate the SMVM FPGA prototype’s performance 
using over 700 sparse matrices from the University of Florida 
Sparse Matrix Collection [3] with matrix dimensions that can 
fit into the aggregate on-chip vector buffer — currently, up to 
16K elements. The number of vector elements is not a 
fundamental limitation of the architecture and it would be 
straightforward to modify the design to accommodate sizes 
of up to 100k on the targeted FPGA. This architecture could 
support even larger configurations via tiling/blocking 
software strategies. We leave these extensions to future work.   

To demonstrate the absolute benefits of the proposed 
design, we compare our results to highly-optimized CPU and 
GPU SMVM implementations. Our CPU measurements are 
carried out on a quad-core Xeon E5-1620 @ 3.6 GHz running 
a highly tuned multithreaded CSR-format SMVM 
implementation from Intel’s MKL library [10]. Our GPU 
measurements are carried out on a high-end NVidia GTX 580 
running the latest version of NVidia CUSP [14]. It is worth 
noting that compared to the FPGA’s bandwidth of 21.3 GB/s, 
the CPU supports up to 51.2 GB/s of DRAM bandwidth, 
while the GTX 580 GPU supports up to 192.2 GB/s. 

In our hardware measurements, the CISR-encoded matrix 
is first preloaded and stored in the FPGA’s DRAM. This 
scenario is based on the assumption that the SMVM kernel is 
executed iteratively on the FPGA (as is common in many use 

cases of SMVM, e.g., Conjugate Gradient Solver). Our 
performance measurements of the FPGA implementation 
include the time needed to stream the inputs from DRAM. 

For the GPU, we measure CUSP using all supported 
matrix formats (e.g., CSR, ELL, HYB) and select the best 
performance. Our GPU results optimistically exclude the 
time it takes to encode sparse matrices in GPU-optimized 
formats (e.g., HYB or ELL), and also excludes the time it 
takes to load the input matrix and vector into GPU DRAM.   

Our measurements include both “warm” and “cold” runs.  
The warm measurements involve running the GPU kernel 
repeatedly to include the impact of last-level caching in the 
GTX 580.  The cold measurements ensure that all matrix and 
input vector data is resident only in GPU DRAM. For the 
CPU, we also exclude any matrix encoding time and measure 
performance with both warm and cold caches. The “cold” 
results allow us to understand the impact of off-chip memory 
bandwidth on the CPU and GPU, while the “warm” results 
give us an upper bound on CPU and GPU performance under 
ideal circumstances (i.e., vectors and matrix elements are 
cached on-chip).  

Finally, we report aggregate GFlops numbers by using a 
time-weighted average to emphasize GFlops rates obtained 
for large matrices that take longer to execute.  

B. Results 

We first compare overall performance of the FPGA, CPU, 
and GPU, then turn our attention to a normalized memory 
bandwidth comparison, as well as a power efficiency 
comparison. Finally, we provide additional characterization 
of bottlenecks of our current implementation and compare to 
a prior FPGA implementation. 

1) Overall Performance 
Figure 3 shows the relative performance of our FPGA 

implementation against the warm CPU and GPU 
implementations, as the number of non-zero values increases. 
These results show that the FPGA has equivalent 
performance up to a certain size, and then it saturates at 
around 3.9GFlops. This is lower than the ideal ~5.3GFlops 
because of inefficiencies in the BVB further characterized in 
Section V.B.4. As expected, CPU and GPU performance 

 
Figure 3. Overall performance comparison between FPGA, CPU, and GPU implementations of SMVM, with growing number of 

non-zero values. The CPU and GPU results are based on warmed (repeated) measurement runs. Axis are in logarithmic scale. 
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saturate at higher non-zero value quantities, since they have 
higher available memory bandwidths. Overall, the FPGA 
implementation achieves 65% of CPU performance and 29% 
of the GPU performance on average. If we only consider 
speedup after saturation, the FPGA implementation achieves 
about 32% of CPU performance and 11% of GPU 
performance. However, there is no reason the FPGA cannot 
be augmented with additional memory bandwidth. In the next 
section, we estimate the FPGA performance at a memory 
bandwidth equivalent to the CPU and GPU. 

 
Figure 4. Overall performance for different matrix sizes. 

Figure 4 reports average GFlops for matrices with small 
(up to 103), medium (103 to 105), and large number of non-
zero values (more than 105), as well as the aggregate over all 
matrices. Small matrices perform poorly on the GPU due to 
startup overheads and an insufficient amount of available 
work to keep the GPU busy and to amortize memory access 
latency. Small matrices running on the CPU perform better 
than the GPU since less parallelism is needed for efficient 
execution on the CPU. In experiments with warm cache 
(warm CPU and warm GPU), the difference stems from the 
software that makes the call to the SMVM subroutine. Cold 
caches add to this overhead because they insert additional 
cache subsystem latencies. As sizes grow, the overheads in 
the former category are amortized over the SMVM 
execution time and CPU/GPU look more attractive. In 
medium matrices, sufficiently large to amortize software 
overheads, we can clearly see the effect of caches: matrices 
are cache-resident, so the effective available memory 
bandwidth is higher than that offered by main memory. 
Large matrices do not fit in caches, so the difference between 
cold and warm cache results do not differ much. 

2) Normalized Performance 
The next question we want to answer is how the FPGA 

implementation would compare if it had memory bandwidth 
equivalent to what is available to the CPU and the GPU. The 
FPGA we are using has unused transceivers that can be used 
to connect additional DIMMs, which would increase memory 
bandwidth proportionally. To take advantage of the increased 
memory bandwidth, it would be necessary to increase the 
number of supported channels. Based on our current FPGA 

capacity and area results, we optimistically estimate that with 
additional area optimizations applied to our current design, it 
would be possible to support 3x as many channels. A 
balanced design with 3x as much memory bandwidth 
(63.9GB/s) would be almost as fast as a GPU (0.9x) on 
average. A larger FPGA with enough resources to match the 
GPU’s peak memory bandwidth would be 2.6x as fast as the 
GPU on average. At the same bandwidth as the CPU, the 
proposed FPGA design would achieve 1.6x of the CPU 
performance on average. Table 1 summarizes these results. 
 

Table 1.  Scaled memory bandwidth comparison. 

Memory Bw
GB/s 

FPGA/CPU 
GFlops/GFlops 

FPGA/GPU
GFlops/GFlops 

51.2 1.6x --
63.9 -- 0.9x
192.2 -- 2.7x

  
3) Power Efficiency Comparison 

While performance is an important metric to compare, 
power efficiency should not be left out. Unfortunately, we do 
not currently have a setup that we could use to measure actual 
power, so we use maximum power rating as a proxy. The 
CPU we used for our measurements is specified at 100W 
maximum power (with the unfair advantage that we are not 
counting DRAM power for it), while the GPU board is rated 
at 195W and the FPGA board at 25W, including the two 
DIMMs used for this evaluation. The FPGA, if augmented to 
have 3x as much memory bandwidth, would consume 45W, 
including additional memory controllers and DIMMs.  

Table 2 shows measured and scaled MFlops/W numbers. 
When comparing measured performance numbers, the FPGA 
implementation performs 2.6x as well as the CPU and 2.3x 
as well as the GPU. When comparing the scaled FPGA, these 
numbers grow to 4.4x and 3.8x, respectively. 

 
TABLE 2. POWER EFFICIENCY COMPARISON: FPGA, CPU AND GPU. 

Absolute FPGA CPU GPU 
Measured 132.9MFlops/W 50.8MFlops/W 58.3MFlops/W 
Scaled 3x 221.5MFlops/W -- -- 

Ratios -- FPGA/CPU FPGA/GPU 
Measured -- 2.6 2.3 
Scaled 3x -- 4.4 3.8 

 
4) Characterization 
We characterize the main sources of FPGA inefficiency to 

explain why our implementation does not reach its ideal 
performance and to identify improvement opportunities. 
Figure 5 plots the percentage of clock cycles spent stalling 
on DRAM fetches, ordered by increasing number of non-
zero elements. Unsurprisingly, small matrices offer an 
insufficient amount of work to overlap computation and 
DRAM accesses.   

Increasing the total number of non-zeros reduces this 
effect, although some large matrices still experience 
significant stall times (shown on the right of Figure 5). These 
underperforming matrices are limited by inefficiencies in 
our current memory controller IP block. Nevertheless, even 
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with current limitations, the FPGA still offers competitive 
performance relative to CPUs and GPUs.  

Figure 6 similarly plots the percentage of clock cycles 
spent stalling on the Banked Vector Buffer. The BVB stalls 
when column addresses of a sparse matrix are skewed non-
uniformly in banks. These bank conflicts contribute as much 
as 30% of the total stalls in the worst-case. Nevertheless, 
excluding a few outliers, the vast majority of matrices 
experience 15% or less time spent stalling on the BVB.  

 

 
Figure 5. Percentage of cycles stalled due to DRAM. Smaller matrices 
have insufficient work to overlap DRAM access time and computation.  

 
 

 
Figure 6. Percentage of cycles stalled due to the Banked Vector Buffer. 

Stalls occur when there are bank conflicts in the BVB, due to non-uniform 
column addresses in a given sparse matrix.  

 
5) Comparison to Previous Work on Convey HC-1 

   We briefly compare the proposed design against previous 
work on accelerating SMVM on Convey HC-1 [13]. The 
Convey design employs four FPGAs and offers an aggregate 
off-chip memory bandwidth of 80 GB/s. Our comparison is 
at best an approximation because the Convey design 
operates on double-precision operands, while our current 
design only supports single-precision. We optimistically 
double the reported throughput of the Convey system for a 
fair comparison. Table 3 reports on two input matrices 
measured on both systems. The Convey system achieves 
better absolute performance, but our per-FPGA performance 
is significantly higher, by a factor of 1.9X to 2.6X. 

6) FPGA Area 
Table 4 reports the overall FPGA area consumption of 

various components of the proposed design, including the 
processing array responsible for 32 channels, the BVB, and 
the matrix fetcher. Without significant optimization effort, 
our design consumes a modest 38% area of a mid-end FPGA.  

 
Table 3. ESTIMATE OF RELATIVE PERFORMANCE TO SMVM ON 

CONVEY HC-1 [13]. 

 Convey HC-1 [13] This work 

 
DP 

GFLOPS 
SP (projected 

GFLOPS) 
SP per FPGA 

(GFLOPS) 
SP per FPGA 

(GFLOPs) 
dw8192 1.71 3.42 0.855 2.27 

epb1 2.56 5.12 1.28 2.45 

 
Table 4. SMVM AREA CONSUMPTION ON STRATIX V D5 

 Resources % Area (Stratix V D5) 
 ALM M20K DSP ALM M20K DSP  

Total Area 65506 540 32 38 27 2 
    Proc. Array 26438 160 32 15.3 7.9 2 
        Mul-Accum 20705 64 32 12 3.2 2 
    Matrix Fetcher 11225 156 0 6.5 7.7 0 
        CISR Decoder 3813 32 0 2.2 1.6 0 
    BVB 25713 128 0 14.9 6.4 0 
        Address Xbar 9015 0 0 5.2 0 0 
        Vector Xbar 16242 0 0 9.4 0 0 

VI. RELATED WORK 

Most previous FPGA accelerators [11][20][21] for 
SMVM maintain a separate replicated copy of the input 
vector for every multiplier, resulting in the block RAM 
bottleneck described in the previous section. Shan et al. [16] 
addressed this bottleneck by storing the vector in external 
SRAM, which saved block RAM at the expense of increased 
latency, reduced access bandwidth and reduced exploitable 
parallelism. Nagar and Bakos [13] extended this approach by 
using block RAMs as vector caches to improve memory 
bandwidth utilization. In this paper, we also avoid replicated 
copies of the input vector while enabling a much larger input 
vector to be resident on chip by implementing a highly 
banked vector buffer.  

Multiple sparse matrix encodings have been proposed and 
used over the years. Compressed Sparse Row (CSR) is a 
commonly used encoding for CPUs [19], GPUs [1][2], and 
FPGA implementations [4][11][21]. Prior work introduced 
FPGA-optimized sparse matrix encodings to improve 
SMVM performance. Kestur et al. recently proposed an 
FPGA-specialized encoding called Compressed Variable-
Length Bit Vector (CVBV) that reduced matrix storage and 
bandwidth requirements of CSR by an average of 25% [11]. 
The CISR encoding proposed in this paper is complementary 
to CVBV and could potentially be combined to further 
improve bandwidth, while reducing block RAM 
requirements. Dickov et al. introduced a row-interleaved 
compressed row storage encoding that multiplexes dot 
products from different matrix rows onto a single floating-
point adder in order to save resources [4]. In contrast, the 
presented CISR encoding adopts a different optimization 
goal of maximizing parallelism while reducing block RAM 
requirements, which is appropriate for the common situation 



 

 

of memory bandwidth becoming a bottleneck before 
exhausting FPGA resources.   

Several previous approaches have also addressed the 
limitation of restricting parallelism to a single matrix row. 
Sun et al. [17] introduced an Input Pattern Vector along with 
a specialized SMVM architecture that enables flexible 
parallelization of operations across multiple matrix rows. 
Our approach also parallelizes operations across rows, while 
additionally reducing block RAM requirements to enable 
sparse matrices significantly larger than those evaluated by 
Sun et al [17]. Dickov’s SMVM implementation [4] also 
processed multiple rows, but with the goal of minimizing 
resources as opposed to maximizing parallelism. 

VII. CONCLUSION 

In this paper, we introduce an FPGA-optimized SMVM 
architecture that uses a specialized CISR encoding to 
efficiently process multiple rows of a matrix in parallel, 
coupled with a highly banked buffer design that eliminates 
replication of buffered vectors, enabling larger vectors to be 
stored on-chip. We show that the presented architecture 
performs within about two thirds of CPU SMVM 
performance, even though it has 2.4x lower DRAM memory 
bandwidth, and within almost one third of GPU SMVM 
performance, even at 9x lower memory bandwidth. 
Additionally, our FPGA design consumes a maximum of 
25W, for power efficiencies 2.6x and 2.3x higher than CPU 
and GPU, respectively. When supplied with the same 
memory bandwidth, we predict this FPGA architecture is 
1.6x faster than the CPU and 2.7x faster than the GPU, and 
even more power-efficient (4.4x and 3.8x, respectively).  
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