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Abstract
Probabilistic programs use familiar notation of programming lan-
guages to specify probabilistic models. Suppose we are interested
in estimating the distribution of the return expression r of a prob-
abilistic program P . We are interested in slicing the probabilistic
program P and obtaining a simpler program SLI(P ) which retains
only those parts of P that are relevant to estimating r, and elides
those parts of P that are not relevant to estimating r. We desire that
the SLI transformation be both correct and efficient. By correct, we
mean that P and SLI(P ) have identical estimates on r. By efficient,
we mean that estimation over SLI(P ) be as fast as possible.

We show that the usual notion of program slicing, which tra-
verses control and data dependencies backward from the return ex-
pression r, is unsatisfactory for probabilistic programs, since it pro-
duces incorrect slices on some programs and sub-optimal ones on
others. Our key insight is that in addition to the usual notions of
control dependence and data dependence that are used to slice non-
probabilistic programs, a new kind of dependence called observe
dependence arises naturally due to observe statements in proba-
bilistic programs.

We propose a new definition of SLI(P ) which is both correct
and efficient for probabilistic programs, by including observe de-
pendence in addition to control and data dependences for comput-
ing slices. We prove correctness mathematically, and we demon-
strate efficiency empirically. We show that by applying the SLI
transformation as a pre-pass, we can improve the efficiency of prob-
abilistic inference, not only in our own inference tool R2, but also
in other systems for performing inference such as Church and In-
fer.NET.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Probabilistic Programming, Program Slicing, Bayesian
Reasoning
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1. Introduction
Probabilistic programs are “usual” programs (written in languages
like C or Java or LISP or ML) with two added constructs: (1)
the ability to draw values at random from distributions, and (2)
the ability to condition values of variables in a program through
observe statements (which allow data from real world observa-
tions to be incorporated into a probabilistic program). A variety of
probabilistic programming languages and systems have been pro-
posed [2, 10–12, 18, 20, 23, 26]. However, unlike “usual” programs
which are written for the purpose of being executed, the purpose of
a probabilistic program is to implicitly specify a probability dis-
tribution. Probabilistic programs can be used to represent proba-
bilistic graphical models [19], which use graphs to denote condi-
tional dependences between random variables. Probabilistic graph-
ical models are widely used in statistics and machine learning, with
diverse application areas including information extraction, speech
recognition, computer vision, coding theory, biology and reliability
analysis.

Probabilistic inference is the problem of computing an explicit
representation of the probability distribution implicitly specified
by a probabilistic program: depending on the application, we may
want to compute the expected value of some function f with respect
to the distribution, or the mode of the distribution, or simply a set
of samples drawn from the distribution.

Program slicing, as originally defined by Weiser [29], computes
a subset of statements in program P that can influence a variable
v at a given program point. Slicing is well understood for non-
probabilistic programs (i.e., deterministic or non-deterministic pro-
grams without probability), and has been used for various purposes
such as model checking [13], program understanding [16] and de-
bugging [29].

In this paper, we investigate slicing for probabilistic programs.
Specifically, we define a SLI transformation that constructs a slice
of a probabilistic program with respect to a fixed set of output
variables, and a set of observed variables, which is both correct
and efficient.

Usual notions of program dependences do not produce cor-
rect slices for probabilistic programs (we illustrate this using ex-
amples in Section 2). Our key insight is that in addition to the
usual notions of control dependence and data dependence that are
used to slice non-probabilistic programs, a new kind of depen-
dence called observe dependence arises naturally due to observe
statements in probabilistic programs. Observe dependence is a new
kind of dependence that has not been studied before in the pro-
gram slicing literature, even though observe statements are equiv-
alent to non-terminating while loops (which are present in non-
probabilistic programs), and variants of program slicing have been
proposed to preserve terminating and non-terminating behaviors of
non-probabilistic programs before (see for instance, [13]).

Although observe statements can be encoded as non-terminating
while loops, a key difference is that the semantics of probabilistic



1: bool c1, c2;
2: int count = 0;
3: c1 = Bernoulli(0.5);
4: if (c1) then
5: count = count + 1;
6: c2 = Bernoulli(0.5);
7: if (c2) then
8: count = count + 1;
9: return(count);

1: bool c1, c2;
2: int count = 0;
3: c1 = Bernoulli(0.5);
4: if (c1) then
5: count = count + 1;
6: c2 = Bernoulli(0.5);
7: if (c2) then
8: count = count + 1;
9: observe(c1 || c2);
10:return(count);

Example 1. Example 2.

Figure 1. Two probabilistic programs.

programs is concerned only with the (normalized) probability dis-
tribution of outputs over terminating runs (see Section 3 for a for-
mal definition of semantics of probabilistic programs). The seman-
tics does not require preservation of non-terminating runs as long as
the normalized probability distribution of outputs over terminating
runs is preserved during slicing (in order that slicing be semantics
preserving). As a result, a more aggressive notion of observe de-
pendence, which does not preserve non-termination but propagates
dependence from observed variables (in a specific manner defined
more precisely later) turns out to be sufficient. We define the SLI
transformation using this new notion of observe dependence com-
bined with the usual notion of control and data dependences. We
establish correctness by expressing the SLI transformation as a
composition of four sub-transformations and proving that each of
these sub-transformations is semantics preserving (see Section 4
and 5). Interestingly, normalization of probabilities from terminat-
ing executions is a core issue that we needed to handle carefully
in the proofs (unlike correctness proofs of slicing algorithms for
non-probabilistic programs).

The notion of observe dependences is related to the concept of
active trails [19] in Bayesian networks. We make this connection
more precise in Section 2.

We have implemented the slicing algorithm as a source-to-
source program transformation in the R2 probabilistic program-
ming system [25]. We show using several benchmarks (in Sec-
tion 6) that the SLI transformation greatly improves the efficiency
of performing probabilistic inference by removing irrelevant state-
ments, while providing provably equivalent answers. Our empiri-
cal results show that the sliced programs are not only smaller, but
also result in faster convergence during inference. These efficiency
gains are not just limited to R2. We apply the SLI transformation
as a pre-processing tool and show efficiency improvements on two
other tools that perform probabilistic inference—Church and In-
fer.NET.

2. Overview
In this section, we present some examples to familiarize the reader
with probabilistic programs, and also informally explain the main
ideas behind slicing probabilistic programs. We describe the formal
details in later sections of the paper.

Examples of probabilistic programs. We introduce the syntax
and semantics of probabilistic programs using two simple proba-
bilistic programs from Figure 1. The program to the left, Exam-
ple 1, tosses two fair coins (simulated by draws from a Bernoulli
distribution with mean 0.5), and assigns the outcomes of these
coin tosses to the Boolean variables c1 and c2 respectively. It also
counts the number of coin tosses that result in the value true,
and stores this count in the variable count. The semantics of
the program is the probability distribution over its return values,
which is Pr(c1=false, c2=false) = Pr(c1=false, c2=true) =

1: bool d, i, s, l, g;
2: d = Bernoulli(0.6);
3: i = Bernoulli(0.7);

4: if (!i && !d)
5: g = Bernoulli(0.3);
6: else if (!i && d)
7: g = Bernoulli(0.05);
8: else if (i && !d)
9: g = Bernoulli(0.9);
10: else
11: g = Bernoulli(0.5);

12: if (!i)
13: s = Bernoulli(0.2);
14: else
15: s = Bernoulli(0.95);

16: if (!g)
17: l = Bernoulli(0.1);
18: else
19: l = Bernoulli(0.4);

20: return s;

1: bool d, i, s, l, g;
2: d = Bernoulli(0.6);
3: i = Bernoulli(0.7);

4: if (!i && !d)
5: g = Bernoulli(0.3);
6: else if (!i && d)
7: g = Bernoulli(0.05);
8: else if (i && !d)
9: g = Bernoulli(0.9);
10: else
11: g = Bernoulli(0.5);

12: if (!i)
13: s = Bernoulli(0.2);
14: else
15: s = Bernoulli(0.95);

16: if (!g)
17: l = Bernoulli(0.1);
18: else
19: l = Bernoulli(0.4);

20: observe(l = true);
21: return s;

(a) Example 3. (b) Example 4.

Figure 2. Examples to illustrate slicing of probabilistic programs.

Figure 3. Dependency graph of Example 3.

Pr(c1=true, c2=false) = Pr(c1=true, c2=true) = 1/4. The pro-
gram to the right of the figure, Example 2, is slightly different from
Example 1—it executes the observe statement observe(c1||c2)
before returning the value of count. The semantics of the observe
statement blocks runs which do not satisfy the boolean expression
c1||c2 and does not permit those executions to happen. Executions
that satisfy c1||c2 are permitted to happen. The semantics of the
program is the distribution of the return values, conditioned by
permitted executions, which amounts to Pr(c1=false,c2=false)
= 0, and Pr(c1=false,c2=true) = Pr(c1=true,c2=false) =
Pr(c1=true,c2=true) = 1/3.

We note that the statement observe(x) is very related to the
statement assume(x) used in program verification literature [1, 8,
24]. Also, we note that observe(x) is equivalent to the while-loop
while(!x) skip since the semantics of probabilistic programs is
concerned about the normalized distribution of outputs over ter-
minating runs of the program, and ignores non-terminating runs.
However, we use the terminology observe(x) because of its com-
mon use in probabilistic programming systems [2, 12].

Slicing. We are interested in slicing a probabilistic program P and
obtaining a simpler program SLI(P ), which retains only those parts
of P that are relevant to estimating the distribution over its return
expression r, and elides those parts of P that are not relevant to
estimating r. We desire that the SLI transformation be both correct



and efficient. By correctness, we mean that P and SLI(P ) have
identical estimates for the distribution of r. By efficient, we mean
that estimation over SLI(P ) be as fast as possible. We illustrate
the intricacies in slicing probabilistic programs using a series of
examples below.

Example where the usual definition of slicing works. We start
with an example where the usual notion of slicing with depen-
dences works for probabilistic programs as well. We consider the
program Example 3 in the left side of Figure 2, with boolean vari-
ables variables d, i, s, l, g. This is adapted from [19], where
the program represents a model for a reference letter (the variable
l) for a student and this variable depends on the variables d (course
difficulty), i (student intelligence), g (course grade), and s (SAT
score). The dependency graph of this example is shown in Figure 3,
where edges denote control or data dependences. Since the program
returns the variable s, the dependences of s include only the vari-
able i. Intuitively, the variables d,g and l and the statements that
update these variables (lines 2, 4–11 and 16–19) are irrelevant, and
can be sliced away from the program. This intuition is very sim-
ilar to the usual notion of slicing in ordinary programs, where we
collect relevant variables by tracing transitively control and data de-
pendences for output variables, and slice away other variables that
are irrelevant. Thus, the slice of this program is given by:

1: bool i, s;
3: i = Bernoulli(0.7);
12: if (!i)
13: s = Bernoulli(0.2);
14: else
15: s = Bernoulli(0.95);
20: return s;

Example where the usual definition of slicing is incorrect. Next,
consider the program Example 4, in the right side of Figure 2.
This program has the same structure as Example 3, and the only
difference is the observe statement in line 20, which constrains
the value of the variable l to be true. As before, the value of
s is returned in line 21. The usual definition of slicing computes
the same slice as before (with lines 1,3,12,13,14,15 and 20) as
before, but this computation is incorrect, since the sliced program
and the original program are not equivalent.

The observe statement introduces new kinds of influences that
are not present in usual programs. Specifically, the observation of
the value of l influences the value of g, which indirectly influences
i, and ultimately influences s. In addition, this flow of influence
from i to g also “opens up” a path for influence to flow from d to
i, and ultimately to s as well. We explain these flow of influences
more using a new notion called observe dependence below.

Thus, it turns out that all the variables d, i, g, l and s are
relevant in this program, and the only slice that is semantically
equivalent to Example 4 is the entire program!

Example where the usual definition of slicing is not efficient.
Next, we show another example probabilistic program, where the
usual definition of slicing produces a larger slice than what is
necessary. Consider the program Example 5 in Figure 4. This is
a variant of our previous example, with the variable l returned
in line 21, and the observe statement in line 12 constraining the
value of g to false. Since the program returns the variable l, the
transitive dependences include g, i and d. Intuitively the variable
s and the computations sliced away from the program, and such a
slicing results in the program (b) in Figure 4.

However, due to the observe statement observe(g = false)
at line 12, it turns out that we can stop traversing dependences at
g, even though g depends on i and d. This can result in a smaller
slice given below, which can be shown to be correct:

1: bool d, i, s, l, g;
2: d = Bernoulli(0.6);
3: i = Bernoulli(0.7);

4: if (!i && !d)
5: g = Bernoulli(0.3);
6: else if (!i && d)
7: g = Bernoulli(0.05);
8: else if (i && !d)
9: g = Bernoulli(0.9);
10: else
11: g = Bernoulli(0.5);

12: observe(g = false);

13: if (!i)
14: s = Bernoulli(0.2);
15: else
16: s = Bernoulli(0.95);

17: if (!g)
18: l = Bernoulli(0.1);
19: else
20: l = Bernoulli(0.4);

21: return l;

1: bool d, i, l, g;
2: d = Bernoulli(0.6);
3: i = Bernoulli(0.7);

4: if (!i && !d)
5: g = Bernoulli(0.3);
6: else if (!i && d)
7: g = Bernoulli(0.05);
8: else if (i && !d)
9: g = Bernoulli(0.9);
10: else
11: g = Bernoulli(0.5);

12: observe(g = false);

17: if (!g)
18: l = Bernoulli(0.1);
19: else
20: l = Bernoulli(0.4);

21: return l;

(a) Example 5. (b) Sliced Example 5
using usual dependencies.

Figure 4. Examples to illustrate slicing of probabilistic programs.

bool x b c;
0: x = Bernoulli(0.5);
1: b = x;
2: c = Bernoulli(0.5);
3: while (c) do {
4: b = !b; //toggle b
5: c = Bernoulli(0.5);

}
6: observe (b = false);
7: return x;

(a) Example 6 (b) Dependency graph

Figure 5. Loopy example.

1: bool l, g;
12: g = false;
17: if (!g)
18: l = Bernoulli(0.1);
19: else
20: l = Bernoulli(0.4);
21: return l;

After constant propagation, this program can be further optimized
to produce the simpler slice, equivalent to Example 5:

1: bool l;
18: l = Bernoulli(0.1);
21: return l;

In Section 4, we define a transformation OBS which blocks
spurious dependencies in observe statements, and produces the
more efficient slice shown above.

Slicing programs with loops. Figure 5 shows Example 6, a proba-
bilistic program with a while-do loop. In this example, the variable
c is repeatedly sampled inside a loop, b is toggled until c becomes
false. On exiting the loop, the program observes the value of b
and returns x. In the right side of Figure 5, we show a simplified



Figure 6. Observe dependences.

dependency graph, where we have labeled each vertex with a line
number, so that it is clear what version of the variable (in static sin-
gle assignment or SSA form [7]) we are referring to. We observe
b after exiting the loop (which is the node 6:b in the dependence
graph), and return the value of x. Intuitively, the slice for this pro-
gram needs to include the whole program, since the final value of b
depends on all the iterations of the loop, and dependences from all
these variables flow back and influence the probability of x, condi-
tioned by the observation on b.

Observe dependences. Motivated by all the subtleties illustrated
in the above examples, we have designed a slicing transformation
SLI for probabilistic programs. In Section 4, we formally define the
SLI transformation as a composition of 4 transformations: (1) OBS
transformation, (2) SVF transformation, (3) SSA transformation,
and (4) actual slicing transformation using an appropriate depen-
dence relation called influencers, which is denoted INF.

We give the intuition behind the influencers relation INF (which
captures dependences in probabilistic programs), deferring full de-
tails and formal proofs to Section 4. Usual notions of control and
data dependences are captured by the relation DINF.

The relation INF captures the additional dependences we call
as observe dependences in addition to the usual control and data
dependences. Note that INF ⊇ DINF. The main intuition behind
observe dependence is as follows: suppose we have an observe
statement observe(z). Furthermore, suppose that we have two
variables x and y such that z depends on both x and y using usual
notions of control or data dependence (i.e., x, y ∈ DINF(z)). Let
r be the return variable that is returned by the program. Suppose
r depends on y, i.e., y ∈ INF(r). Figure 6 shows the dependences
DINF between x, y, z and the INF dependence between y and r.
Then, there is a path for influence to flow from x through z to y,
and then from y to r, i.e., x ∈ INF(r). Intuitively, once we know
what the value of z is (due to observing it), then knowledge about
x influences our knowledge about the possible distribution of y
and vice versa. These extra flows of influence are due to observe
dependences.

Observe dependences are related to the notion of active trails
in Bayesian networks [19]. In the parlance of Bayesian networks,
there is a “v-structure” x → z ← y, where the influences from x
and y converge into z in a “v” shape. If z is observed, then the flow
of influence between x and z gets “activated”. On the other hand, if
z is not observed, then the flow between x and z is blocked. As we
show in Section 4, we combine this notion of observe dependences,
together with control and data dependences to produce a correct
and efficient slicing operator for probabilistic programs.

Comparison with non-termination preserving slicing. As dis-
cussed earlier, observe(x) has the same semantics as while(!x)
skip. Thus, it makes sense to compare observe dependences with
other notions of dependences and slicing operators that preserve
non-terminating behaviors of non-probabilistic programs.

As a specific example, consider the program P given below:

x = Bernoulli(0.5);
while (!x) skip; //equivalent to: observe(x)
y = Bernoulli(0.6);
return y;

x ∈ Vars
uop ::= · · · C unary operators
bop ::= · · · C binary operators
ϕ,ψ ::= · · · logical formula

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E unary operation

S ::= statements
| skip skip
| x = E deterministic assignment
| x ∼ Dist(θ̄) probabilistic assignment
| observe (ϕ) observe

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E doS while−do loop

P ::= S return E program

Figure 7. Syntax of PROB.

In this case, our SLI operator (which uses control, data and
observe dependences) produces the slice P ′ given below, which
slices away the variable x:

y = Bernoulli(0.6);
return y;

As discussed in [13],

“to preserve semantics of non-terminating executions, one
needs to make sure that the slice includes any program
points lying along paths to relevant nodes that could cause
non-termination.”

Thus, if we consider the assignment to x in the first line of program
P as non-deterministic, then a non-termination preserving slice
will have to include the while loop in the second line in the slice. In
contrast, the SLI operator we define in this paper is able to produce
the smaller slice P ′ which slices away the while loop.

Note that P ′ does not preserve non-terminating behaviors of
P . However, if we consider the normalized probability distribution
of the output over the terminating behaviors, then the distributions
produced by P and P ′ coincide. This example illustrates the crux
of the difference between slicing for probabilistic programs and
non-termination preserving slicing for non-probabilistic programs.

3. Probabilistic Programs
The probabilistic programming language PROB that we consider
is a C-like imperative programming language with two additional
statements:

1. The probabilistic assignment “x ∼ Dist(θ̄)” draws a sam-
ple from a distribution Dist with a vector of parameters θ̄,
and assigns it to the variable x. For instance, the statement
“x ∼ Gaussian(µ, σ2)” draws a value from a Gaussian dis-
tribution with mean µ and variance σ2, and assigns it to the
variable x.

2. The observe statement “observe(ϕ)” conditions a distribution
with respect to a predicate or conditionϕ that is defined over the
variables in the program. In particular, every valid execution of
the program must satisfy all conditions in observe statements
that occur along the execution.



• Unnormalized Semantics for Statements
JSK ∈ (Σ→ [0, 1])→ Σ→ [0, 1]

JskipK(f)(σ) := f(σ)
Jx = EK(f)(σ) := f(σ[x← σ(E)])

Jx ∼ Dist(θ̄)K(f)(σ) :=
∫
v∈Val Dist(σ(θ̄))(v)× f(σ[x← v]) dv

Jobserve(ϕ)K(f)(σ) :=

{
f(σ) if σ(ϕ) = true
0 otherwise

JS1;S2K(f)(σ) := JS1K(JS2K(f))(σ)

Jif E thenS1 elseS2K(f)(σ) :=

{
JS1K(f)(σ) if σ(E) = true
JS2K(f)(σ) otherwise

Jwhile E doSK(f)(σ) := supn≥0 Jwhile E don SK(f)(σ)
where
while E do0 S = observe(false)
while E don+1 S = if E then (S; while E don S) else (skip)

• Normalized Semantics for Programs
JS return EK ∈ (R→ [0, 1])→ [0, 1]

JS return EK(f) :=
JSK(λσ. f(σ(E)))(⊥)

JSK(λσ. 1)(⊥)

where ⊥ denotes the empty state

Figure 8. Denotational Semantics of PROB.

The syntax of PROB is formally described in Figure 7. A pro-
gram consists of statements and a return expression. Variables have
base types such as int, bool, float and double. Expressions include
variables, constants, binary and unary operations.

Statements include primitive statements (skip, deterministic as-
signment, probabilistic assignment, observe) and composite state-
ments (sequential composition, conditionals and loops). Features
such as arrays, pointers, structures and function calls can be in-
cluded in the language, and their treatment does not introduce any
additional challenges due to probabilistic semantics. Therefore, we
omit these features, and focus on a core language.

The semantics of PROB is described in Figure 8. A state σ of
a program is a (partial) valuation to all its variables. The set of all
states (which can be infinite) is denoted by Σ. We also consider the
natural lifting of σ : Vars ⇀ Val to expressions σ : Exprs→ Val.
We make this lifting a total function by assuming default values for
uninitialized variables. The definition of the lifting σ for constants,
unary and binary operations is standard.

The meaning of a probabilistic statement S is the probability
distribution over all possible output states of S for any given initial
state σ.1 The semantics is completely specified using the rules in
Figure 8. The skip statement merely applies the return function f
to the input state σ, since the statement does not change the input
state. The deterministic assignment statement first transforms the
state σ by executing the assignment and then applies f . The mean-
ing of the probabilistic assignment is the expected value obtained
by sampling v from the distribution Dist, executing the assignment
with v as the RHS value, and applying f on the resulting state (the
expectation is the integral over all possible values v). The observe
statement functions like a skip statement if the expression ϕ evalu-
ates to true in the initial state σ, and returns the value 0 otherwise.
The sequential and conditional statements behave as expected and
the while-do loop has a standard fixpoint semantics.

Due to the presence of non-termination and observe statements,
the semantics of statements shown in Figure 8 is unnormalized. The

1 It is standard to represent a probability distribution on a set X as a
function calculating the expected value of f w.r.t. the distribution on X
for any given return function f ∈ X → [0, 1], where [0, 1] is the unit
interval (i.e., the set of real numbers between 0 and 1, inclusive). Thus,
the denotational semantics JSK(f)(σ) gives the expected value of return
function f ∈ Σ→ [0, 1] when S is executed with initial state σ.

• OVAR(S) ∈ P(Vars)

OVAR(observe(x)) := {x}
OVAR(S1;S2) := OVAR(S1) ∪ OVAR(S2)

OVAR(ifx thenS1 elseS2) := OVAR(S1) ∪ OVAR(S2)
OVAR(whilex doS) := {x} ∪ OVAR(S)

OVAR(S) := ∅ otherwise

• DEP(S) ∈ P(Vars)→ P(Vars×Vars)

DEP(skip)(C) := ∅
DEP(x = E)(C) := { (y, x) | y ∈ C ∪ FV(E) }

DEP(x ∼ Dist(θ̄))(C) := { (y, x) | y ∈ C ∪ FV(θ̄) }
DEP(observe(x))(C) := { (y, x) | y ∈ C }

DEP(S1;S2)(C) := DEP(S1)(C) ∪ DEP(S2)(C)

DEP(ifx thenS1 elseS2)(C) :=
DEP(S1)(C ∪ {x}) ∪ DEP(S2)(C ∪ {x})

DEP(whilex doS)(C) :={ (y, x) | y ∈ C } ∪ DEP(S)(C ∪ {x})

Figure 9. Observed Variables and Dependency Graph Calculation.

• Direct Influencer
x ∈ R

x ∈ DINF(G)(R)

(x, y) ∈ G y ∈ DINF(G)(R)

x ∈ DINF(G)(R)

• Influencer

x ∈ DINF(G)(R)

x ∈ INF(O,G)(R)

x, y ∈ DINF(G)({z})
z ∈ O y ∈ INF(O,G)(R)

x ∈ INF(O,G)(R)

Figure 10. Influencer Calculation.

• SLI(S) ∈ P(Vars)→ Statement

SLI(skip)(X) := skip

SLI(x = E)(X) :=

{
x = E if x ∈ X
skip otherwise

SLI(x ∼ Dist(θ̄))(X) :=

{
x ∼ Dist(θ̄) if x ∈ X
skip otherwise

SLI(observe(x))(X) :=

{
observe(x) if x ∈ X
skip otherwise

SLI(S1;S2)(X) := SLI(S1)(X); SLI(S2)(X)

SLI(ifx thenS1 elseS2)(X) :={
skip if SLI(S1)(X) = SLI(S2)(X) = skip
ifx then SLI(S1)(X) else SLI(S2)(X) otherwise

SLI(whilex doS)(X) :=

{
whilex do SLI(S)(X) if x ∈ X
skip otherwise

• SLI(S return E) := SLI(S)(INF(O,G)(R)) return E
where
O = OVAR(S), G = DEP(S)(∅), R = FV(E)

Figure 11. Slicing Transformation.

normalized semantics for programs is obtained by appropriately
performing the normalization operation as shown in the second part
of Figure 8.

4. The Slice Transformation
We describe a transformation SLI such that given a program P , the
program SLI(P ) is semantically equivalent to P , and contains only
statements that are “relevant” to the variables present in the return
expression of P .

To simplify our presentation, we assume that the given program
P is in SSA form [7] (i.e., each variable is assigned only once
in the program), and that all predicates in observe statements as



OBS(observe(E)) := observe(E); OBSERVESET(E)
OBS(while E doS) := (while E do OBS(S)); WHILESET(E)

OBS(S1;S2) := OBS(S1); OBS(S2)
OBS(if E thenS1 elseS2) := if E then OBS(S1) else OBS(S2)

OBS(S) := S, otherwise

OBSERVESET(E) :=

 x = E ′ if E is (x = E ′) or (E ′ = x)
for E ′ with no variables

skip otherwise

WHILESET(E) :=

 x = E ′ if E is (x 6= E ′) or (E ′ 6= x)
for E ′ with no variables

skip otherwise

• OBS(S return E) := OBS(S) return E

Figure 12. Observation Transformation.

SVF(observe(E)) := let x′ ∈ freshvar() in
x′ = E; observe(x′)

SVF(while E doS) := let x′ ∈ freshvar() in
x′ = E; whilex′ do (S;x′ = E)

SVF(S1;S2) := SVF(S1); SVF(S2)
SVF(if E thenS1 elseS2) := let x′ ∈ freshvar() in

x′ = E; ifx′ then SVF(S1) else SVF(S2)

SVF(S) := S, otherwise

• SVF(S return E) := SVF(S) return E

Figure 13. Single Variable Form Transformation.

well as while loops are single boolean variables (i.e., each observe
statement is of the form observe(x) and each while loop is of the
form while (y) do S, where x and y are boolean variables). We
ensure that these conditions hold on P by performing a pre-pass
which performs the following steps: (1) convert the program to SSA
form, (2) introduce a fresh boolean variable that holds the value of
the predicate or conditional expression for every observe and while
statement. We discuss the pre-pass in more detail in Section 4.2.

4.1 Main Transformation
In order to slice a program P , we first build its dependency graph,
and calculate all variables that influence the variables returned
by P . Recall from Section 2 that the notion of influences we
need include control and data dependences from traditional slicing
literature, as well as the new observe dependences (see Figure 6 in
Section 2). In this section, we formally define the transformation
SLI.

Dependency graph. We first calculate the set of observed vari-
ables and dependency graph by making passes over the program,
as shown in Figure 9. The calculation of the set of observed vari-
ables OVAR is done by structural induction over the statements of
the program and accumulating the arguments of observe statements
as well as conditional expressions of while-do statements. The de-
pendency graph DEP is a binary relation over the variables. It is
also calculated by collecting both the control and data dependences
during structural induction over the statements of the program. The
function DEP takes the control dependences for executing the cur-
rent statement as an argument. This argument (C in Figure 9) ac-
cumulates the variables which are conditions of if-then-else and
while-do statements. During processing of deterministic and prob-
abilistic assignments, in addition to data flow dependences from the
right-hand side of the assignment, the control dependences are also
added from C. The observe statement merely accumulates control
dependences.

Influencers. The core step of the slicing algorithm is the calcula-
tion of the variables in the program that influence the return values

• SSA(S) ∈ P(Vars)× Ren→ P(Vars)× Ren× Statement
for Ren = Vars ⇀ Vars

SSA(skip)(X, ρ) := (X, ρ, skip)
SSA(observe(E))(X, ρ) := (X, ρ, observe(ρ(E)))
SSA(x = E)(X, ρ) :=

let x′ 6∈ X in
(X ∪ {x′}, ρ[x 7→ x′], x′ = ρ(E))

SSA(x ∼ Dist(θ̄))(X, ρ) :=
let x′ 6∈ X in
(X ∪ {x′}, ρ[x 7→ x′], x′ ∼ Dist(ρ(θ̄)))

SSA(S1;S2)(X, ρ) :=
let (X′, ρ′,S′1) = SSA(S1)(X, ρ) and
let (X′′, ρ′′,S′2) = SSA(S2)(X′, ρ′) in
(X′′, ρ′′,S′1;S′2)

SSA(if E thenS1 elseS2)(X, ρ) :=
let (X′, ρ′,S′1) = SSA(S1)(X, ρ) and
let (X′′, ρ′′,S′2) = SSA(S2)(X′, ρ) and
let S′′2 = MERGE(ρ′, ρ′′) in
(X′′, ρ′, if ρ(E) thenS′1 else (S′2;S′′2 ))

SSA(while E doS)(X, ρ) :=
let (X′, ρ′,S′) = SSA(S)(X, ρ) and
let S′′ = MERGE(ρ, ρ′) in
(X′, ρ, while ρ(E) do (S′;S′′))

MERGE(ρ, ρ′) := MERGErec(ρ, ρ′, dom(ρ))
MERGErec(ρ, ρ′, ∅) := skip
MERGErec(ρ, ρ′, {x} ]X) :={

(ρ(x) = ρ′(x); MERGErec(ρ, ρ′, X)) if ρ(x) 6= ρ′(x)
MERGErec(ρ, ρ′, X) otherwise

• SSA(S return E) :=
letX = FV(S) ∪ FV(E) and
let ( , ρ′,S′) = SSA(S)(X, IDX) in
S′ return ρ′(E)

Figure 14. SSA Transformation.

of the program using the dependency graph. We call these variables
as influencers. Recall from Section 3 that probabilistic programs
have a return expression of the form return(E). R is the set of
free variables in E , and our goal is to calculate all the variables in
program P that influence R. Let G be the dependency graph of P
calculated using the rules in Figure 9. The direct influencers of R
denoted by DINF(G)(R) is the set of variables obtained by travers-
ing the edges in the dependency graph backwards starting with the
return variables (this is done by the top two rules in Figure 10).
Since the dependency graph includes control and data dependences,
the set DINF(G)(R) contains all the variables that influence the re-
turn variables through control and data dependences.

As mentioned in Section 2, a new set of dependences called
observe dependences arise naturally in probabilistic programs.
Let O be the set of observed variables of P calculated using
the rules in Figure 9. The set of influencers of R is denoted by
INF(O,G)(R) and contains the set of all variables that influence
the return variables through control, data and observe dependences.
INF(O,G)(R) is calculated inductively using the two rules in the
bottom portion of Figure 10. The first rule (bottom left) merely in-
cludes every element from DINF(G)(R) into INF(O,G)(R). The
second rule (bottom right) captures observe dependences. In partic-
ular, if y is in INF(O,G)(R), and z is any observed variable, and y
and another variable x are in DINF(G)(z), then there is an indirect
influence from x through the observed variable z to the set of return
variables R. Thus, we add x to INF(O,G)(R). This rule captures
the essence of influence due to observe statements. This rule is
inspired by the notion of active trails in Bayesian networks [19].

Slicing Transformation. Once the set of influencers have been
calculated, the slicing transformation SLI is easy to define, and is



stated in Figure 11. This transformation takes as input the set of
influencers INF(O,G)(R) calculated as shown above. It performs
structural induction over the statements of the program and retains
only the assignment and observe statements over variables that are
in the input set of influencers. All other statements (which have
variables that are not in the influencer set) are replaced by skip
statements. In Section 5, we state and prove a theorem establishing
that the SLI transformation is semantics preserving.

4.2 Pre-pass Transformations
The description of the slicing transformation above assumed that
the program P is in SSA form and that all predicates in observe
statements and while loops are boolean variables. Here, we de-
scribe a set of pre-pass transformations, which ensure that these
assumptions are valid. In addition to ensuring the validity of these
assumptions, we use a transformation called OBS in the pre-pass
to add an assignment statement after every observe statement and
reduce certain kind of dependencies (ultimately reducing the size
of the slice).

More precisely, the steps in the pre-pass are as follows:

• Removing spurious dependences using the OBS transformation.
• Ensuring that boolean expressions in observe statements, as

well as conditions of if-then-else and while-do statements are
boolean variables (and not general boolean expressions) using
the SVF (Single Variable Form) transformation.
• Translating into the SSA form.

The OBS transformation, given in Figure 12 prunes spurious
dependences in the presence of observe statements of the form
observe(x = E). Recall that we saw such spurious dependences in
Example 5 of Section 2, where even though variable g depends on
variables d and i, these dependencies can be pruned due to the ob-
serve statement observe(g = false) in line 12. The transforma-
tion is very simple. Informally, it adds an assignment x = E imme-
diately after every observe statement of the form observe(x = E),
and every while-do loop whose condition is of the form x 6= E . A
precise description of the OBS transformation is given in Figure 12.
Intuitively, the introduced assignment statement blocks dependen-
cies that do not need to be traversed. For every probabilistic pro-
gram P , we can show that P and OBS(P ) are semantically equiv-
alent by a simple induction on the structure of the program.

The SVF transformation shown in Figure 13 ensures that ev-
ery condition in observe, if-then-else and while-do statements are
replaced by a single boolean variable. In particular, for every con-
dition in the above statements, the transformation creates a fresh
variable (call to freshvar () in Figure 13) and stores the condition
in that variable. As a result, it is safe to replace the condition with
the new variable.

The SSA transformation we use is shown in Figure 14. It is
a variant of the standard SSA transformation that avoids the use
of phi-nodes by relaxing the SSA condition that there should be
only one assignment for each variable. This relaxation, however,
does not cause any inefficiency in slicing but allows us to have a
simple compositional semantics for our probabilistic programming
language.

4.3 Worked Out Examples
We present two worked out examples in Figures 15 and 16. In

each example, we transform a given original program using the
three pre-pass transformations OBS, SVF and SSA. Note that we
do not include the return statement in the pre-pass transformations
as they are independent of the return statement. After the pre-
pass transformations, we consider two different return statements
and slice the transformed program with respect to each return

AUX(skip) := skip

AUX(x = E) :=

{
x = E if DINF(G)(x) ∩ X = ∅
skip otherwise

AUX(x ∼ Dist(θ̄)) :=

{
x ∼ Dist(θ̄) if DINF(G)(x) ∩ X = ∅
skip otherwise

AUX(observe(x)) :=

{
observe(x) if DINF(G)(x) ∩ X = ∅
skip otherwise

AUX(S1;S2) := AUX(S1); AUX(S2)

AUX(ifx thenS1 elseS2) :={
skip if AUX(S1) = AUX(S2) = skip
ifx then AUX(S1) else AUX(S2) otherwise

AUX(whilex doS) :={
whilex do AUX(S) if DINF(G)(x) ∩ X = ∅
skip otherwise

Figure 17. AUX Transformation.

statement using the SLI transformation. In Figure 15 and 16, we
also include dependence graph and influencer calculations used by
the SLI transformation.

5. Correctness of the Slice Transformation
In this section, we prove that the SLI transformation is semantics
preserving. It is important to note that this correctness proof only
relies on the single variable form (SVF) assumption. If an input
program is not in SSA form, then the SLI transformation could be
inefficient, but still correct.

Let X = INF(O,G)(R) for any given O, G and R. We will
simply write SLI(S) for SLI(S)(X ). We also define AUX(S) in
Figure 17.

LEMMA 1. INF(O,G)(X ) ⊆ X .

Proof: We prove the goal by an induction on INF(O,G)(X ). The
step case holds obviously by definition of X . For the base case, we
need to show DINF(G)(X ) ⊆ X , which in turn can be shown by
an easy induction on DINF(G)(X ).

LEMMA 2. For S, C with OVAR(S) ⊆ O ∧ DEP(S)(C) ⊆ G, if
DINF(G)(C) 6⊆ X , then SLI(S) = skip.

Proof: One can easily prove the goal by an induction on S using
the fact that ∀x. (∀y ∈ C. (y, x) ∈ DEP(S)(C)) =⇒ x 6∈ X ,
which follows from DINF(G)(C) 6⊆ X by Lemma 1.

LEMMA 3. For S, C with OVAR(S) ⊆ O ∧ DEP(S)(C) ⊆ G, if
DINF(G)(C) ∩ X 6= ∅, then AUX(S) = skip.

Proof: One can easily prove the goal by an induction on S us-
ing the fact that ∀x. (∀y ∈ C. (y, x) ∈ DEP(S)(C)) =⇒
DINF(G)(x)∩X 6= ∅, which follows from DINF(G)(C)∩X 6= ∅
by Lemma 1.

We define σ|X as follows:

σ|X(x) =

{
σ(x) if x ∈ X
undefined otherwise

We say f : Σ→ [0, 1] decomposes into f1 and f2 w.r.t. Y if:

1. DINF(G)(Y ) ∩ X = ∅;
2. ∀σ. f2(σ) = f2(σ|Y ); and
3. ∀σ. f(σ) = f1(σ|X )× f2(σ|Y ).

We also say H : (Σ → [0, 1]) → (Σ → [0, 1]) decomposes into



1 d = Bernoulli(0.6);

2 i = Bernoulli(0.7);

3 if (!i && !d)

4 g = Bernoulli(0.3);

else {

5 if (!i && d)

6 g = Bernoulli(0.05);

else {

7 if (i && !d)

8 g = Bernoulli(0.9);

else {

9 g = Bernoulli(0.5);

}

}

}

10 observe(g = false);

11 if (!i)

12 s = Bernoulli(0.2);

else {

13 s = Bernoulli(0.95);

}

14 if (!g)

15 l = Bernoulli(0.1);

else {

16 l = Bernoulli(0.4);

}

1 d = Bernoulli(0.6);

2 i = Bernoulli(0.7);

3 if (!i && !d)

4 g = Bernoulli(0.3);

else {

5 if (!i && d)

6 g = Bernoulli(0.05);

else {

7 if (i && !d)

8 g = Bernoulli(0.9);

else {

9 g = Bernoulli(0.5);

}

}

}

10 observe(g = false);

10a g = false;

11 if (!i)

12 s = Bernoulli(0.2);

else {

13 s = Bernoulli(0.95);

}

14 if (!g)

15 l = Bernoulli(0.1);

else {

16 l = Bernoulli(0.4);

}

1 d = Bernoulli(0.6);

2 i = Bernoulli(0.7);

3b q1 = !i && !d;

3 if (q1)

4 g = Bernoulli(0.3);

else {

5b q2 = !i && d;

5 if (q2)

6 g = Bernoulli(0.05);

else {

7b q3 = i && !d;

7 if (q3)

8 g = Bernoulli(0.9);

else {

9 g = Bernoulli(0.5);

}

}

}

10b q4 = (g = false);

10 observe(q4);

10a g = false;

11b q5 = !i;

11 if (q5)

12 s = Bernoulli(0.2);

else {

13 s = Bernoulli(0.95);

}

14b q6 = !g;

14 if (q6)

15 l = Bernoulli(0.1);

else {

16 l = Bernoulli(0.4);

}

1 d = Bernoulli(0.6);

2 i = Bernoulli(0.7);

3b q1 = !i && !d;

3 if (q1)

4 g = Bernoulli(0.3);

else {

5b q2 = !i && d;

5 if (q2)

6 g1 = Bernoulli(0.05);

else {

7b q3 = i && !d;

7 if (q3)

8 g2 = Bernoulli(0.9);

else {

9 g3 = Bernoulli(0.5);

7c g2 = g3;

}

5c g1 = g2;

}

3c g = g1;

}

10b q4 = (g = false);

10 observe(q4);

10a g4 = false;

11b q5 = !i;

11 if (q5)

12 s = Bernoulli(0.2);

else {

13 s1 = Bernoulli(0.95);

11c s = s1;

}

14b q6 = !g4;

14 if (q6)

15 l = Bernoulli(0.1);

else {

16 l1 = Bernoulli(0.4);

14c l = l1;

}

1 d = Bernoulli(0.6);

2 i = Bernoulli(0.7);

3b q1 = !i && !d;

3 if (q1)

4 g = Bernoulli(0.3);

else {

5b q2 = !i && d;

5 if (q2)

6 g1 = Bernoulli(0.05);

else {

7b q3 = i && !d;

7 if (q3)

8 g2 = Bernoulli(0.9);

else {

9 g3 = Bernoulli(0.5);

7c g2 = g3;

}

5c g1 = g2;

}

3c g = g1;

}

10b q4 = (g = false);

10 observe(q4);

11b q5 = !i;

11 if (q5)

12 s = Bernoulli(0.2);

else {

13 s1 = Bernoulli(0.95);

11c s = s1;

}

17 return s;

10a g4 = false;

14b q6 = !g4;

14 if (q6)

15 l = Bernoulli(0.1);

else {

16 l1 = Bernoulli(0.4);

14c l = l1;

}

17 return l;

(a) Original (b) After OBS (c) After SVF (d) After SSA (e) After SLI: when return s (f) After SLI: when return l

Observed Variables O = {q4}
Data Dependence Graph Gd = {(i, q1), (d, q1), (i, q2), (d, q2), (i, q3), (d, q3), (g3, g2),

(g2, g1), (g1, g), (g, q4), (i, q5), (s1, s), (g4, q6), (l1, l)}
Control Dependence Graph Gc = {(q1, q2), (q1, q3), (q1, g), (q1, g1), (q1, g2), (q1, g3), (q2, q3), (q2, g1),

(q2, g2), (q2, g3), (q3, g2), (q3, g3), (q5, s), (q5, s1), (q6, l), (q6, l1)}
Dependence Graph G = Gd ∪ Gc

Direct Influencers ofO DINF(G)({q4}) = {g, g1, g2, g3, q1, q2, q3, q4, i, d}
Direct Influencers of s DINF(G)({s}) = {s, s1, q5, i}

Influencers of s INF(O,G)({s}) = {s, s1, g, g1, g2, g3, q1, q2, q3, q4,
q5, i, d}

Direct Influencers of l DINF(G)({l}) = {l, l1, q6, g4}
Influencers of l INF(O,G)({l}) = {l, l1, q6, g4}

Figure 15. Worked out Example 1.

0 x = Bernoulli(0.5);

1 b = x;

2 c = Bernoulli(0.5);

3 while (c) do {

4 b = !b; //toggle b

5 c = Bernoulli(0.5);

}

6 observe (b = false);

0 x = Bernoulli(0.5);

1 b = x;

2 c = Bernoulli(0.5);

3 while (c) do {

4 b = !b; //toggle b

5 c = Bernoulli(0.5);

}

6 observe (b = false);

6a b = false;

0 x = Bernoulli(0.5);

1 b = x;

2 c = Bernoulli(0.5);

3b q1 = c;

3 while (q1) do {

4 b = !b; //toggle b

5 c = Bernoulli(0.5);

3b q1 = c;

}

6b q2 = (b = false);

6 observe (q2);

6a b = false;

0 x = Bernoulli(0.5);

1 b = x;

2 c = Bernoulli(0.5);

3b q1 = c;

3 while (q1) do {

4 b1 = !b; //toggle b

5 c1 = Bernoulli(0.5);

3b q3 = c1;

3c b = b1;

3c c = c1;

3c q1 = q3;

}

6b q2 = (b = false);

6 observe (q2);

6a b2 = false;

0 x = Bernoulli(0.5);

1 b = x;

2 c = Bernoulli(0.5);

3b q1 = c;

3 while (q1) do {

4 b1 = !b; //toggle b

5 c1 = Bernoulli(0.5);

3b q3 = c1;

3c b = b1;

3c c = c1;

3c q1 = q3;

}

6b q2 = (b = false);

6 observe (q2);

7 return x;

6a b2 = false;

7 return b2;

(a) Original (b) After OBS (c) After SVF (d) After SSA (e) After SLI: when return x (f) After SLI: when return b

Observed Variables O = {q2}
Data Dependence Graph Gd = {(x, b), (c, q1), (b, b1), (c1, q3), (b1, b), (q3, q1), (b, q2)}

Control Dependence Graph Gc = {(q1, b1), (q1, c1), (q1, q3), (q1, b), (q1, c)}
Dependence Graph G = Gd ∪ Gc

Direct Influencers ofO DINF(G)({q2}) = {x, q2, b, b1, q1, q3, c, c1}
Direct Influencers of x DINF(G)({x}) = {x}

Influencers of x INF(O,G)({x}) = {x, q2, b, b1, q1, q3, c, c1}
Direct Influencers of b2 DINF(G)({b2}) = {b2}

Influencers of b2 INF(O,G)({b2}) = {b2}

Figure 16. Worked out Example 2.

H1 and H2 w.r.t. Z if for any f that decomposes into f1 and f2
w.r.t. Y , H(f) decomposes into H1(f1) and H2(f2) w.r.t. Y ∪ Z.
Note that if f decomposes into f1 and f2 w.r.t. Y , then f also
decomposes into f1 and f2 w.r.t. Y ′, for any Y ′ ⊇ Y such that
DINF(G)(Y ′) ∩ X = ∅.

LEMMA 4. For S, C with OVAR(S) ⊆ O ∧ DEP(S)(C) ⊆ G,
there exists some Z such that JSK decomposes into JSLI(S)K and
JAUX(S)K w.r.t. Z.

Proof: We prove the goal by structural induction on S. Let f be
any function that decomposes into f1 and f2 w.r.t. Y .



•When S is skip.
The goal holds trivially with Z = ∅.

•When S is observe(x).
If x ∈ X , one can easily show the goal with Z = ∅. If x 6∈ X , we
have DINF(G)(x) ∩ X = ∅ by Lemma 1 because x ∈ O. Thus we
can set Z = {x} and the goal can be easily shown.

•When S is x = E .
Suppose DINF(G)(x) ∩ X 6= ∅ and set Z = ∅. Then we have
x 6∈ Y . We can show the goal as follows:

Jx = EK(f)(σ)

= f(σ[x← σ(E)])

= f1(σ[x← σ(E)]|X )× f2(σ[x← σ(E)]|Y )

= f1(σ[x← σ(E)]|X )× f2(σ|Y ) (because x 6∈ Y )

= JSLI(x = E)K(f1)(σ|X )× JAUX(x = E)K(f2)(σ|Y )

Here JSLI(x = E)K(f1)(σ|X ) = f1(σ[x← σ(E)]|X ) can be
shown easily when x 6∈ X . It can also be shown when x ∈ X
because DINF(G)(E) ⊆ DINF(G)(x) ⊆ X by Lemma 1.

Now suppose DINF(G)(x)∩X = ∅ and set Z = DINF(G)(x).
Using the fact that DINF(G)(E) ⊆ DINF(G)(x)⊆ Y ∪Z, one can
easily show that
– ∀σ. JAUX(S)K(f2)(σ) = JAUX(S)K(f2)(σ|Y ∪Z); and
– ∀σ. JSK(f)(σ) = JSLI(S)K(f1)(σ|X )×JAUX(S)K(f2)(σ|Y ∪Z).

•When S is x ∼ Dist(θ̄).
Suppose DINF(G)(x) ∩ X 6= ∅ and set Z = ∅. Then we have
x 6∈ Y . We can show the goal as follows:

Jx ∼ Dist(θ̄)K(f)(σ)
=
∫
v∈Val

Dist(σ(θ̄))(v)× f(σ[x← v]) dv

=
∫
v∈Val

Dist(σ(θ̄))(v)× f1(σ[x← v]|X )× f2(σ[x← v]|Y ) dv

=
∫
v∈Val

Dist(σ(θ̄))(v)× f1(σ[x← v]|X )× f2(σ|Y ) dv
(because x 6∈ Y )

=(
∫
v∈Val

Dist(σ(θ̄))(v)× f1(σ[x← v]|X ) dv)× f2(σ|Y )

=JSLI(x∼Dist(θ̄))K(f1)(σ|X )× JAUX(x∼Dist(θ̄))K(f2)(σ|Y )

Here

JSLI(x ∼ Dist(θ̄))K(f1)(σ|X )

=
∫
v∈Val

Dist(σ(θ̄))(v)× f1(σ[x← v]|X ) dv

can be shown easily when x 6∈ X because∫
v∈Val

Dist(σ(θ̄))(v) dv = 1 .

It can also be shown when x ∈ X because DINF(G)(θ̄) ⊆
DINF(G)(x) ⊆ X by Lemma 1.

Now suppose DINF(G)(x)∩X = ∅ and set Z = DINF(G)(x).
Using the fact that DINF(G)(θ̄) ⊆ DINF(G)(x) ⊆ Y ∪Z, one can
easily show that
– ∀σ. JAUX(S)K(f2)(σ) = JAUX(S)K(f2)(σ|Y ∪Z); and
– ∀σ. JSK(f)(σ) = JSLI(S)K(f1)(σ|X )×JAUX(S)K(f2)(σ|Y ∪Z).

•When S is S1;S2.
By the induction hypothesis, we have some Z1 for S1 and some Z2

for S2 that satisfy the decomposition property. Now we set Z =
Z1 ∪ Z2. Then for any f that decomposes into f1 and f2 w.r.t. Y ,
by the induction hypothesis, we have that JS2K(f) decomposes into
JSLI(S2)K(f1) and JAUX(S2)K(f2) w.r.t. Y ∪ Z2. Thus again by
the induction hypothesis, we have that JS1K(JS2K(f)) decomposes
into JSLI(S1)K(JSLI(S2)K(f1)) and JAUX(S1)K(JAUX(S2)K(f2))
w.r.t. Y ∪ Z1 ∪ Z2. We are done because
– JSLI(S1;S2)K(f1) = JSLI(S1)K(JSLI(S2)K(f1)); and
– JAUX(S1;S2)K(f2) = JAUX(S1)K(JAUX(S2)K(f2)).

•When S is ifx thenS1 elseS2.
By the induction hypothesis, we have Z1 for S1 and Z2 for S2 with
the decomposition property. Now we set Z = Z1 ∪ Z2. Then for
any f that decomposes into f1 and f2 w.r.t. Y , by the induction
hypothesis we have that JS1K(f) decomposes into JSLI(S1)K(f1)
and JAUX(S1)K(f2) w.r.t. Y ∪ Z1 and JS2K(f) decomposes into
JSLI(S2)K(f1) and JAUX(S2)K(f2) w.r.t. Y ∪ Z2. One can easily
show that for any σ

JAUX(ifx thenS1 elseS2)K(f2)(σ)

= JAUX(ifx thenS1 elseS2)K(f2)(σ|Y ∪Z) .

Now we show that for any σ

Jifx thenS1 elseS2K(f)(σ)

= JSLI(ifx thenS1 elseS2)K(f1)(σ|X )
×JAUX(ifx thenS1 elseS2)K(f2)(σ|Y ∪Z) .

If x ∈ X , then we have AUX(S1) = AUX(S2) = skip by
Lemma 3 because DEP(S1)(C ∪ {x})∪DEP(S2)(C ∪ {x}) ⊆ G.
By case analysis on σ(x) = true or not, we can easily show the
goal. If x 6∈ X , then we have SLI(S1) = SLI(S2) = skip by
Lemma 2. By case analysis on whether σ(x) = true or not, we
can easily show the goal.

•When S is whilex doS0.
By the induction hypothesis, we have Z0 for S0 with the decom-
position property. We set Z = Z0 if x ∈ X ; Z = Z0 ∪ {x} oth-
erwise. We have DINF(G)(Z) ∩ X = ∅ because when x 6∈X we
have DINF(G)(x) ∩ X = ∅ by Lemma 1 since x ∈ O.

Then for any f that decomposes into f1 and f2 w.r.t. Y , we show
Jwhilex doS0K(f) decomposes into JSLI(whilex doS0)K(f1)
and JAUX(whilex doS0)K(f2) w.r.t. Y ∪ Z. For this, we need to
show, for any σ,
(1)JAUX(whilex doS0)K(f2)(σ) = JAUX(whilex doS0)K(f2)(σ|Y ∪Z)

(2)Jwhilex doS0K(f)(σ) =

JSLI(whilex doS0)K(f1)(σ|X )×JAUX(whilex doS0)K(f2)(σ|Y ∪Z)

Suppose x ∈ X . Then we have AUX(S0) = skip by Lemma 3.
(1) holds clearly and for (2) it suffices to show for all n and σ

Jwhilex don S0K(f)(σ)

= Jwhilex don SLI(S0)K(f1)(σ|X )× f2(σ|Y ∪Z)

We prove this by induction on n. It holds obviously for the base
case. For the step case, we need to show

Jifx thenS0; whilex don S0 else skipK(f)(σ)

= Jifx then SLI(S0); whilex don SLI(S0) else skipK(f1)(σ|X )
×f2(σ|Y ∪Z)

By the induction hypothesis, we have that Jwhilex don S0K(f)
decomposes into Jwhilex don SLI(S0)K(f1) and f2 w.r.t. Y ∪Z.
Since JS0K decomposes into JSLI(S0)K and JskipK w.r.t. Z0, we
have that JS0; whilex don S0K(f) decomposes into

JSLI(S0); whilex don SLI(S0)K(f1) and f2

w.r.t. Y ∪ Z. From this one can easily show that

Jifx thenS0; whilex don S0 else skipK(f)

decomposes into

Jifx then SLI(S0); whilex don SLI(S0) else skipK(f1) and f2

w.r.t. Y ∪ Z because x ∈ X . Thus we are done.
Now suppose x 6∈ X . Then we have DINF(G)(x) ∩ X = ∅

by Lemma 1 since x ∈ O. We also have SLI(S0) = skip by



Lemma 2. (1) and (2) follows from showing, for all n and σ,

Jwhilex don AUX(S0)K(f2)(σ)

= Jwhilex don AUX(S0)K(f2)(σ|Y ∪Z)
and

Jwhilex don S0K(f)(σ)

= f1(σ|X )× Jwhilex don AUX(S0)K(f2)(σ|Y ∪Z) .

We prove this by induction on n. It holds obviously for the base
case. For the step case, we need to show
Jifx then AUX(S0); whilex don AUX(S0) else skipK(f2)(σ) =

Jifx then AUX(S0); whilex don AUX(S0) else skipK(f2)(σ|Y ∪Z)

and
Jifx thenS0; whilex don S0 else skipK(f)(σ) = f1(σ|X )×
Jifx then AUX(S0); whilex don AUX(S0) else skipK(f2)(σ|Y ∪Z).

By the induction hypothesis, we have that Jwhilex don S0K(f)
decomposes into f1 and Jwhilex don AUX(S0)K(f2) w.r.t. Y ∪Z.
Since JS0K decomposes into JskipK and JAUX(S0)K w.r.t. Z0,
we have that JS0; whilex don S0K(f) decomposes into f1 and
JAUX(S0); whilex don AUX(S0)K(f2) w.r.t. Y ∪ Z. From this
one can easily show Jifx thenS0; whilex don S0 else skipK(f)
decomposes into

f1 and Jifx then AUX(S0); whilex don AUX(S0) else skipK(f2)

w.r.t. Y ∪ Z because x ∈ Z. Thus we are done.

THEOREM 1. For a probabilistic program P = S return E with
JSK(λσ. 1)(⊥) 6= 0, we have that P and SLI(P) are semantically
equivalent, i.e.,

JS return EK = JSLI(S)(X ) return EK

for X = INF(OVAR(S),DEP(S)(∅))(FV(E)).

Proof: Let f be an arbitrary function of type R → [0, 1]. Since
λσ. f(σ(E)) decomposes into λσ. f(σ(E)) and λσ. 1 w.r.t. ∅,
and λσ. 1 decomposes into λσ. 1 and λσ. 1 w.r.t. ∅, we have, by
Lemma 4:
JSK(λσ. f(σ(E)))(⊥)=JSLI(S)K(λσ. f(σ(E)))(⊥)×JAUX(S)K(λσ. 1)(⊥)

JSK(λσ. 1)(⊥) = JSLI(S)K(λσ. 1)(⊥)× JAUX(S)K(λσ. 1)(⊥) .

Since JSK(λσ. 1)(⊥) 6= 0, we have JSLI(S)K(λσ. 1)(⊥) 6= 0 and
JAUX(S)K(λσ. 1)(⊥) 6= 0. Thus we have

JPK(f) =
JSK(λσ. f(σ(E)))(⊥)

JSK(λσ. 1)(⊥)

=
JSLI(S)K(λσ. f(σ(E)))(⊥)× JAUX(S)K(λσ. 1)(⊥)

JSLI(S)K(λσ. 1)(⊥)× JAUX(S)K(λσ. 1)(⊥)

=
JSLI(S)K(λσ. f(σ(E)))(⊥)

JSLI(S)K(λσ. 1)(⊥)

= JSLI(S)(X ) return (E)K(f)

6. Evaluation
We have implemented the SLI transformation as a source-to-source
transformation in the R2 probabilistic programming system [25].
The goal of our evaluation is to measure the improvement in in-
ference time due to the SLI transformation. All experiments were
performed on a 2.00 GHz Intel 3rd Gen Core i7 processor system
with 8 GB RAM running Microsoft Windows 8.

Benchmarks. Table 1 shows the benchmarks we used for the eval-
uation. The first two benchmarks are the two motivating examples

Name Description Slicing criterion
(R: Return, O: Observe)

Ex3 Example 3 in Figure 2 R: variable s, O: unchanged
Ex5 Example 5 in Figure 4(a) R: variable l, O: unchanged
Noisy OR Given a DAG, each node is a noisy-or of its parents [17] R: subset of nodes in the

DAG, O: unchanged
Burglar Alarm Burglary model, having observed an alarm, earthquake etc. [27] R: event corresponding to

whether a person wakes up,
O: unchanged

Bayesian Linear
Regression

Linear regression via Bayesian inference (on 1000 points) [23]. R: unchanged, O: subset of
data points (100 points)

HIV A multi-level linear model with interaction and varying slope and inter-
cept (for 369 measurements and 84 persons) [15]

R HIV levels for 10 persons,
O: unchanged

Chess Skill rating system for a Chess tournament consisting of 77 players and
2926 games [14]

R: skills of 3 particular play-
ers, O: unchanged

Halo Skill rating system for a tournament consisting of 31 teams, at most 4
players per team [14]

R: skills of 4 particular play-
ers, O: unchanged

Table 1. Benchmark programs and slicing criteria. “Unchanged”
in the slicing criteria means that the set of return variables or
observations for the respective benchmark is unchanged.

from Section 2. The third and fourth benchmarks are small ex-
amples taken from papers [17, 27]. The last four benchmarks—
Bayesian Linear Regression, HIV, Chess and Halo—are larger, and
are routinely used to test scalability of techniques in the Bayesian
inference community.

The return variables of the program and the set of observations
(columns 2 and 3 of Table 1) implicitly specify the slicing criterion.
For instance, for the HIV model, we arbitrarily picked and returned
the HIV levels of 10 persons (as opposed to all 84 persons) and the
SLI transformation is applied with respect to this criterion, and re-
tained all the observations from [15], which are measurements of
immunity levels for all the persons. Similarly, for the other exam-
ples, we picked arbitrarily a subset of variables as return variables
(and retained the observations present in these models). By chang-
ing the return variables and observed data, we can experiment with
other slicing criteria. Our results did not change significantly with
particular choices of return variables (we tried several sets at ran-
dom), so we just present our results for one choice.

Tools. We experimented with our own system [25], which uses
an imperative language for specifying probabilistic models and
performs inference using a combination of program analysis and
MCMC sampling [21]. We also experimented with two other sys-
tems whose implementations are available:

• Church [11]: A probabilistic programming system based on
Scheme that uses MCMC based inference.
• Infer.NET [23]: A .NET library for expressing graphical models

and performing inference using variants of the belief propaga-
tion algorithm.

Results. Figure 18 shows the improvement in performance of in-
ference on all the benchmarks. The y-axis shows the speedup in
inference time due to slicing (shown on a logarithmic scale). The
SLI transformation uniformly and significantly improves the per-
formance of all inference engines over all benchmarks. That the
improvement is seen not only in our own inference tool R2, but
also in other tools Church and Infer.NET (which use very different
techniques for inference) shows the robustness of the SLI transfor-
mation.

It is important to reiterate that the observe dependence is crucial
for this performance improvement—as illustrated in Section 2.
All the observe statements in the bigger benchmarks are control
dependent on the return statement. Thus, if we had to preserve
terminating behaviors, the constructed slices will have to include all
the observe statements. Instead, our notion of observe dependence
was able to slice away significantly a larger portion of the program.

In addition to measuring runtimes for inference, we also mea-
sured the rate at which the inference converges for these examples.
Since R2 uses sampling (the same is true for Church as well), we



Figure 18. Inference speedup due to the SLI transformation—the
y-axis shows the speedup in inference time (on a logarithmic scale)
due to slicing. Since Church does not support the Gamma distribu-
tion, the corresponding column for Bayesian Linear Regression is
not present. For the HIV and Halo benchmarks, Church does not
terminate on the original programs, but terminates on the sliced
programs.

Figure 19. Illustration of convergence rate of inference (for the R2
tool) over the sliced and original versions of Burglar Alarm.

can plot the KL divergence (a distance metric between two distribu-
tions [6]) between the estimated answer and actual answer, versus
the number of samples. Figure 19 shows such a plot for the Burglar
Alarm benchmark on R2. It can be seen from the figure that the
inference over the sliced program converges faster than inference
over the original program. We also observe similar behavior for the
other benchmarks as well.

7. Related work
Our work is inspired by the notion of influence characterized by
active trails [19] in Bayesian networks as well as traditional pro-
gram slicing [9]. In contrast to non-termination preserving slic-
ing techniques [13], the SLI transformation does not preserve non-
termination behaviors of the program. Instead, SLI preserves the
normalized probability distribution of the output over terminating
behaviors which is crucial for slicing probabilistic programs.

There has been a significant interest in the development of
probabilistic programming systems [2, 10–12, 18, 20, 23, 26].
Inference for programs in these systems can be done using static
analysis techniques [5, 22, 28] such as abstract interpretation and
data flow analysis, or dynamic analysis techniques [4, 11] such as

MCMC sampling algorithms [21]. Our slicing algorithm provides
value to both static and dynamic inference techniques. Our main
motivation for this paper is to define the SLI transformation so
that it can be used as a subroutine by existing inference engines
to improve the efficiency of inference.

Query sensitive inference has been explored in the case of
Markov Logic Networks (which are special instances of proba-
bilistic programs). Recent work employs counterexample-guided
abstraction refinement (CEGAR) during inference to simplify the
model in a query sensitive manner [3]. However, it is interesting
to note that existing inference engines (in particular, Church and
Infer.NET) do not seem to exploit the knowledge of the query in
order to efficiently slice the probabilistic model, as shown by our
experimental results.

8. Concluding Remarks
We have identified a new notion of dependence called observe de-
pendence in probabilistic programs, and combined it with tradi-
tional notions of control and data dependences to define a slicing
transformation SLI. We have shown that SLI is semantics preserv-
ing. Our empirical results also demonstrate that it greatly improves
the performance of inference by slicing away irrelevant parts be-
fore doing inference, when we are interested in only a subset of the
the variables r as output (or return values) of the program.

A probabilistic program P typically encodes a set of observa-
tions from real world data. We can use the notation P = C(D)
to denote a program P which has a code template C and data D
(which is read from a file or a database). Suppose we are inter-
ested in only a subset r of the variables of the program, and return
these variables from the program. It is interesting to ask if we can
construct a slice SLI(P ) = C′(D′) with respect to the return vari-
ables r, where C′ is some transformation of C and D′ ⊆ D. Such
a slicing operator will be of great use to practitioners who routinely
process different data sets with a fixed probabilistic model and ask
the same query for all data sets. We call this problem probabilistic
data slicing and plan to explore it in future work.
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