
SLAM2: Static Driver Verification with
Under 4% False Alarms

Thomas Ball
Microsoft Research

Redmond, USA

Ella Bounimova
Microsoft Research

Redmond, USA

Rahul Kumar
Microsoft

Redmond, USA

Vladimir Levin
Microsoft

Redmond, USA

Abstract—In theory, counterexample-guided abstraction re-
finement (CEGAR) uses spurious counterexamples to refine
overapproximations so as to eliminate provably false alarms.
In practice, CEGAR can report false alarms because: (1) the
underlying problem CEGAR is trying to solve is undecidable; (2)
approximations introduced for optimization purposes may cause
CEGAR to be unable to eliminate a false alarm; (3) CEGAR has
no termination guarantee - if it runs out of time or memory then
the last counterexample generated is provably a false alarm.

We report on advances in the SLAM analysis engine, which
implements CEGAR for C programs using predicate abstraction,
that greatly reduce the false alarm rate. SLAM is used by the
Static Driver Verifier (SDV) tool. Compared to the first version
of SLAM (SLAM1, shipped in SDV 1.6), the improved version
(SLAM2, shipped in SDV 2.0) reduces the percentage of false
alarms from 25.7% to under 4% for the WDM class of device
drivers. For the KMDF class of device drivers, SLAM2 has
under 0.05% false alarms. The variety and the volume of our
experiments of SDV with SLAM2, significantly exceed those
performed for other CEGAR-based model checkers.

These results made it possible for SDV 2.0 to be applied as
an automatic and required quality gate for Windows 7 device
drivers.

I. INTRODUCTION

A decade ago, the SLAM project [BR02b] introduced
the concept of counterexample-guided abstraction refinement
(CEGAR) for the analysis of temporal safety properties of
C programs. This work resulted in the Static Driver Verifier
(SDV) tool that Microsoft applies internally to its device
drivers and ships with the Windows Driver Development Kit
(WDK) for use by third-party device driver writers [BBC+06].

As shown in Figure 1, the essential points of the CEGAR
process, as implemented by SLAM, are: (1) the automated
creation of a Boolean program abstraction of an instrumented
C program that contains information relevant to the property
under consideration; (2) model checking of the Boolean pro-
gram to determine the absence or presence of errors; (3) the
validation of a counterexample trace to determine whether or
not it is a feasible trace of the C program. The last step can
either produce a validated counterexample trace or a proof
that the trace is invalid (a provably false alarm), in which
case information is added to the abstraction to rule out the
false alarm.

The CEGAR process has three distinct attributes: first, it
may terminate with either a proof of correctness (“verified”) or
a validated counterexample trace; second, if CEGAR proves a
counterexample trace is invalid then, in theory, it can rule out

Fig. 1. The SLAM realization of the CEGAR loop.

at least this trace from the abstraction (the so-called progress
property); third, even if CEGAR always makes progress it
still has no guarantee of terminating [BPR02].

Theoretically, the lack of a termination guarantee appears
to be the death knell for CEGAR: most program analyses
typically have termination guarantees despite having the prob-
lem of false alarms. However, we can set a time limit on a
CEGAR run. If the run is aborted, we have the result that
the last counterexample trace considered by CEGAR was
invalid (provably a false alarm). So, CEGAR with a time limit
has a three-valued outcome: (1) verified; (2) validated error
trace; (3) not-useful result (NUR) due to lack of progress or
timeout/spaceout. In the second case, the result still could be
a false alarm due to bugs in the environment model, temporal
safety property, or the SLAM engine itself. In the results
reported in the abstract and here in the introduction, we count
such cases as well as NURs as “false alarms”.

In order to improve the chances for CEGAR to terminate
with useful results and fewer false alarms, we explored four
main ideas in SLAM2, which was derived from SLAM1.

First, we increase the precision of the predicate transformer
over statement sequences. SLAM1 abstracts each C program
statement (such as an assignment or assume statement rep-
resenting a conditional branch) to a corresponding Boolean
program statement. Thus, if the C program contains the state-
ment sequence (S1;S2) then the Boolean program abstrac-
tion computed by SLAM1 contains the statement sequence
(S1

#;S2
#), where S# is the abstraction of statement S. We

call this approach fine-grained abstraction. Our contribution
here is to show how to construct the Cartesian/Boolean pro-
gram abstraction [BPR01] for sequences of assignments and
assume statements, so that the statement sequence (S1;S2)
abstracts to (S1;S2)

#. We call this approach coarse-grained
abstraction, which SLAM2 implements.

Second, we use diverse strategies for exploring counterex-
ample traces. SLAM1 uses a “depth-first” strategy: it sym-
bolically executes a counterexample trace in the C program
forward from the initial state. As soon as it finds a trace
prefix that is inconsistent, it generates a set of refinement
predicates and a refined Boolean program abstraction. The
SLAM1 symbolic execution step is complicated because of
its use of symbolic (Skolem) constants, which must be tracked
and eliminated in order to later generate properly scoped
predicates [BR02a].

In contrast, SLAM2 uses both forward and backward
symbolic execution. Forward symbolic execution is a simple
interpreter that maintains a symbolic store. Backward symbolic
execution is based on preconditions, decomposed and cached
per program point in order to make predicate generation very
simple. The combination of forward and backwards symbolic
execution allows SLAM2 to detect inconsistencies near the
beginning of a counterexample trace as well as near the end
or in the middle, giving it more flexibility over SLAM1.

The third major difference is in how the two engines react
to the lack of progress, which can occur because SLAM com-
putes approximations to the best Boolean abstraction in order
to speed the search for both proofs and counterexamples. Upon
finding lack of progress (identified when none of the predicates
generated in the current iteration of CEGAR is new), SLAM1
refines the Boolean program transition relation [BCDR04]. We
call this the CONSTRAIN module of SLAM, which is common
to both SLAM1 and SLAM2. In contrast, SLAM2 detects
multiple inconsistencies in the same counterexample trace
when a lack of progress stops it; it interleaves the discovery
of new predicates with application of the CONSTRAIN module
so that it is less likely to get stuck.

Fourth, SLAM2 uses information computed during forward
symbolic execution to optimize backward symbolic execution
in several ways. In particular, the value of pointers computed
by the forward execution is critical to the optimization of
the precondition calculation for assignment statements and
procedure calls.

In addition to these four main ideas, SLAM2 has a com-
pletely re-implemented and more efficient pointer analysis. To
optimize predicate evaluation, SLAM2 uses the Z3 state-of-
the-art SMT solver [MB08] with two major improvements in
the interface between SLAM and Z3: an efficient encoding of
the predicates given to Z3 and a new set of axioms that express
the SLAM memory model, in particular, relations between
pointers and locations [BBdML10].

As the saying goes, “the proof is in the pudding”: compared
to SLAM1, SLAM2 reduces the percentage of false alarms
from 25.7% to under 4% for the WDM class of device drivers.
For the KMDF class of device drivers, SLAM2 has under
0.05% false alarms.1 These figures come from 5727 unique

1The Windows Driver Model (WDM) is a widely-used kernel-level API
that provides access to low-level kernel routines as well as routines specific
to driver’s operation and life-cycle. The Kernel-mode Driver Framework
(KMDF) is a new kernel-level API which provides higher-level abstractions
of common driver actions.

checks using both SLAM1 and SLAM2 on 69 device drivers
from the WDK against 83 temporal safety properties.

A common question about verification tools is “who verifies
the verifier?”. The typical answer is that one uses lots of
benchmarks and testing, as well as cross comparison to other
tools. In the development of SLAM2, we found numerous
deficiencies in SLAM1, including its overconstraining of the
abstract transition relation, which leads to “false verification”,
a real but little acknowledged problem with verification tools.

So, we also compared SLAM2 to the YOGI analysis en-
gine [NRTT09] on the same benchmarks. For WDM, SLAM2
provides 7% fewer NURs, fewer false defects (2 versus 18),
while finding 18 true defects that YOGI misses (YOGI finds
2 true defects that SLAM2 misses), and is two times faster
than YOGI. For KMDF, SLAM2 produces 58 times fewer
NURs (2 versus 117), and is 8 times faster than YOGI.

SLAM2 moves closer to the CEGAR promise to “abstract-
and-refine” until it produces a proof of correctness or a
validated trace. The false alarm rate of SLAM2 is so low
that SLAM2 empowers a truly push-button software model
checking experience for users of the SDV tool, which resulted
in the technology being required as quality gate for shipping
of Microsoft-produced Windows 7 device drivers.

The rest of this paper is organized as follows: Section II
presents the coarse-grained abstraction; Section III describes
the forward and backwards symbolic interpreters; Section IV
describes how SLAM2 uses these interpreters to optimize the
CEGAR loop; Section V presents the treatment of precondi-
tions for assignments and procedure calls in the presence of
pointers; Section VI presents experiments results; Section VII
reviews related work, and Section VIII concludes the paper.

II. COARSE-GRAINED BOOLEAN ABSTRACTION

Given a C program P , a set of Boolean expressions E,
SLAM’s predicate abstraction step produces the Boolean
program abstraction BP (P,E) containing variables V =
{b1, b2, . . . , bn}. Each variable bi in V corresponds to the
Boolean expression (predicate) φi in E. Boolean programs
contain all the control-flow constructs of C, including pro-
cedures and procedure calls. We will focus here on the
abstraction of a procedure with no procedure calls, as the
handling of procedure calls and returns remain unchanged
compared to SLAM1 [BMR05].

Each procedure of a C program is represented by a control-
flow graph with basic blocks, where each basic block is a
sequence of assignments, skips, and assume statements. The
assume statements are used to model the semantics of if-
then-else statements as well as assumptions about data (non-
nullness of pointers).

SLAM2 generalizes the abstraction step compared
to SLAM1 by abstracting sequences of statements as
opposed to single statements:

S → S1;S2 | skip | x := e | ∗ x := e | assume(e)

The main advantage of coarse-grained abstraction compared
to fine-grained is increased precision [CC77].

S pre(S,Q) wp(S,Q)
skip Q Q
x := e Q[e/x] Q[e/x]
∗x := e (x = &y1 ∧Q[e/y1]) ∨ . . . ∨ (x = &yk ∧Q[e/yk]) same as pre(S,Q)

assume(e) e ∧Q e =⇒ Q
S1;S2 pre(S1, pre(S2, Q)) wp(S1, wp(S2, Q))

Fig. 2. Predicate transformers pre and wp.

A. Transformation

We use the standard precondition (pre) and weakest pre-
condition (wp) predicate transformers to assign meaning to
C programs as well as to perform the abstraction to Boolean
programs. Figure 2 shows the predicate transformers for the
statements S under consideration. Recall that wp(S,Q) =
¬pre(S,¬Q).

We use a source-to-source transformation on the C program
to simplify the abstraction process. Any statement sequence
S is equivalent to assume(pre(S, true)); sub(S), where the
function sub(S) is defined to be the maximal subsequence of S
containing only assignment statements of S (and is defined to
be the skip statement in the case that S contains no assignment
statements).
Lemma 1 (Correctness of transformation). For all statement
sequences S and predicates Q:

wp(S,Q) ⇐⇒ wp(assume(pre(S, true)); sub(S), Q)

Proof. By induction on length of statement sequence S, show
that

wp(S,Q) ⇐⇒ (pre(S, true) =⇒ wp(sub(S), Q))

[The proof is straightforward but omitted due to lack of space]

B. Abstraction

A cube over V is a conjunction ci1 ∧ ci2 ∧ . . .∧ cik , where
each cij ∈ {bij ,¬bij} for some bij ∈ V . For a variable bi ∈ V ,
let E(bi) denote the corresponding predicate ϕi, and let E(¬bi)
denote the predicate ¬ϕi. Extend E to cubes and disjunctions
of cubes in the natural way.

For any predicate ϕ and set of Boolean variables V , let
FV (ϕ) denote the largest disjunction of cubes c over V such
that E(c) implies ϕ. The predicate E(FV (ϕ)) represents the
weakest predicate over E(V) that implies ϕ. The correspond-
ing weakening of a predicate is also defined similarly. Let
GV (ϕ) be ¬FV (¬ϕ). The predicate E(GV (ϕ)) represents the
strongest predicate over E(V) that is implied by ϕ.

Following Lemma 1 and the definition of Cartesian/Boolean
abstraction [BPR01], Figure 3 shows the translation of a state-
ment S to a guarded parallel assignment in the Boolean pro-
gram. Here the ∗ value represents a value non-deterministically
chosen from {true, false}. The computation of the predicate
abstraction of a formula φ, as represented by FV (φ), typically
relies on an automated theorem prover [GS97]. SLAM1 and
SLAM2 both rely on a specialized algorithms for predicate
abstraction [LBC05].

assume(GV (pre(S, true)));

b1 := if (FV (wp(sub(S), ϕ1)) then true else
if (FV (wp(sub(S),¬ϕ1))) then false else ∗,

. . .

bn := if (FV (wp(sub(S), ϕn)) then true else
if (FV (wp(sub(S),¬ϕn))) then false else ∗;

Fig. 3. Cartesian/Boolean abstraction of statement sequence S.

III. COUNTEREXAMPLE TRACE VALIDATION

In this section, we explain the two symbolic interpreters
that SLAM2 uses to perform counterexample trace validation
on C programs and predicate discovery. The first is a forward
interpreter and the second a backwards interpreter (SLAM1
only performs forward symbolic execution). The next section
will discuss more about how the two interpreters are used
together.

The language of compound statements introduced in the
previous section for the abstraction of basic blocks also serves
as the basis for our discussion of symbolic execution of an
execution trace. An execution trace is simply a sequence
of basic blocks through the control-flow graph, whose code
can be modeled by a sequence of assignment and assume
statements (one very long basic block). For the rest of this
section, let S1 . . . Sn represent the sequence of statements in
the execution trace under consideration.

A. Forward Symbolic Execution

Forward Symbolic Execution (FSE) processes the entire
trace S1 . . . Sn with two goals: (1) to find an invalid execution
trace prefix of the form S1 . . . Si; (2) to populate a “trace
database” that maps each statement Sj to the store computed
by FSE just before execution of Sj . The main use of the trace
database is to resolve pointer-aliasing questions in a trace-
sensitive manner, as detailed in Section V.

Operationally, forward symbolic execution is an interpreter
that computes the strongest post-condition (sp(P, S)) of a
statement sequence S with respect to the initial predicate
P = true. Recall that

sp(P, skip) = P
sp(P, assume(e)) = P ∧ e
sp(P, x := e) = ∃θx.P [x/θx] ∧ (x = e[x/θx])
sp(P, S1;S2) = sp(sp(P, S1), S2)

C-like Program Precondition Vectors
1: void main(){
2: int x, y, a;
3: x := y;
4: x := x+1;
5: if(a>0)
6: a := a+1;
7: if(x = y+2){
8: SLIC_ERROR:0;
9: }
10: }

↑ 0 1 2
3-4 true y + 1 = y + 2 ¬(a > 0)
5 true x = y + 2 ¬(a > 0)
7 true x = y + 2
8 true

(a) (b)

Fig. 4. Backwards Symbolic Execution

(for brevity, we omit the rule for ∗x := e).
FSE maintains a store mapping locations to values and

processes the statements S1 . . . Sn in order from S1 to Sn.
Symbolic evaluation of an assignment (x := e or ∗x := e)
involves: (1) evaluation of the RHS expression e in the context
of the current store to get a value v; (2) evaluation of the
LHS expression in the context of the current store to get a
location l; (3) mapping location l to value v in the store
(possibly overwriting the previous mapping for location l).
During symbolic execution, if a location l (such as the address
of variable x) doesn’t have a mapping in the store then a fresh
symbolic value θl for the value of l is created and l is mapped
to θl in the store.

Execution of a statement Si = assume(ei) first evaluates
the Boolean expression ei in the current store, which results
in an expression φi solely over constants of the programming
language (such as 1, 42, ...) and symbolic constants (such
as θl). FSE maintains a trace condition φ (initially true),
which is the conjunction of the φi. A call to the theorem
prover Z3 [MB08] determinines the satisfiability of the for-
mula ∃θ.φ ∧ ei. If the formula is satisfiable, then there is
an assignment of values to the symbolic constants θ (the
primary inputs to the execution trace) that witness the validity
of the execution trace. If it is unsatisfiable then the trace prefix
S1 . . . Si is inconsistent/invalid.

B. Backwards Symbolic Execution

Operationally, backwards symbolic execution (BSE) com-
putes pre(S1 . . . Sk, true), k ≤ n, but decomposes and caches
the representation of each application of pre in order to enable
predicate generation if the counterexample is determined to
be invalid. The benefits of symbolic execution with pre are:
(1) there is no need to introduce symbolic constants; (2)
assignments to variables that don’t appear in the postcondition
Q have no effect. An issue with the use of pre is a blow-up
in the size of the precondition formula due to pointer aliasing
(see the rule for ∗x := e in Figure 2), which we will return
to later.

The decomposition of pre is based on the simple ob-
servation that pre(assume(e), Q) = (e ∧ Q). If Q is a
conjunction (q0 ∧ . . . ∧ qr), represented implicitly by the
vector < q0, . . . , qr >, then we represent (e ∧ Q) by

< q0, . . . , qr, e >, which preserves the positions of the qi
in the vector.

BSE starts with the one element vector Q = < true >.
Processing of an assume statement lengthens the vector by one
element, as described above. For an assignment statement, the
pre computation for the assignment is applied point-wise to
the input vector, resulting in a new vector of the same length.

We can visualize the computation of pre as creating an
upper-left-triangular matrix of row vectors, where the first
column contains true everywhere and each subsequent column
represents the history of a subformula introduced by an
assume statement. The last row (k+1) of the matrix represents
the starting point where Qk =< true >. The ith row of the
matrix (1 ≤ i < k) represents Qi = pre(Si . . . Sk, true).

For each new precondition vector Qi computed, Z3 is
called to query if the conjunction of formulas in the vector
is satisfiable. If it is unsatisfiable then the trace Si . . . Sk

is invalid and the predicate discovery algorithm starts, as
described in the next subsection. Otherwise, BSE proceeds
to consider statement Si−1 in the trace. If BSE determines
that Q1 is satisfiable then the execution trace is valid.

Figure 4 illustrates BSE on a simple C program (a).
Consider the false counterexample trace 2-3-4-5-7-8. Fig-
ure 4(b) shows the vector-based computation of pre on this
trace, with the corresponding trace step numbers in the left-
most column (only the steps where the preconditions change
are shown).

Columns 0-2 in the table show the precondition computation
for each step of the trace, going backwards from the error step
7. For example, at step 6 a new vector element x = y + 2 is
added, which corresponds to the then branch of the condi-
tional. At steps 3 and 4, which correspond to the sequence of
assignments y := x;x := x+1, the precondition in column 1
is computed as pre(y := x;x := x+1, x = y+2) = (y+1 =
y+2), whereas the precondition in column 2 is not affected.2

C. Predicate Discovery

Given an invalid execution trace Si . . . Sk, the goal of
predicate discovery is very simple: find a set of predicates

2Note that the two assignment statements occupy the same basic block, so
are treated together, just as they are during the abstraction step. This reduces
the number of predicates generated.

E such that the abstract version of pre induced by E (preE)
can prove Si . . . Sk is an invalid execution trace.

More formally, let αE(φ) be the weakest formula φ′ (in
the implication ordering) such that φ′ is a Boolean combi-
nation of the predicates in E and φ′ implies φ. Then for
a basic block S, preE(S,Q) = αE(pre(S,Q)) and for a
sequence of two basic blocks S1 and S2, preE(S1;S2, Q) =
preE(S1, preE(S2, Q)). Suppose that pre(Si . . . Sk, true) =
false, where the Sx are basic blocks, then we wish to find a
sufficient set of predicates E such that preE(Si . . . Sk, true) =
false.

Once BSE has discovered that a precondition vector Qi is
unsatisfiable, it is clear that the set of predicates in the pre-
condition matrix Mi+1 =< Qi+1 . . . Qk > are sufficient. Of
course, we can do much better: the underlying theorem prover
can provide us an unsatisfiable core of Qi, a small subset of the
elements of Qi whose conjunction is unsatisfiable. This subset
identifies a set of “inconsistent” columns in Mi+1. Again, it
is clear that the set of predicates from this set of columns are
sufficient. In our example at line 3, the formula

∃y.∃a.true ∧ (y + 1 = y + 2) ∧ ¬(a > 0)

is unsatisfiable. An unsatisfiable core is {(y+1 = y+2)}. So,
a sufficient set E includes predicates from the second column:
{x = y + 2}.

IV. OPTIMIZING THE CEGAR LOOP: MULTIPLE
INCONSISTENCIES

Optimizations of the CEGAR loop are based on analysis
of the cases when SDV fails on Windows device drivers with
“not-useful results” (NURs, in SDV terminology). In theory,
for a CEGAR run, the set of predicates strictly increases
as the iterations of CEGAR increase. Let Ei be the set of
predicates discovered by iteration i of CEGAR. In practice,
both SLAM1 and SLAM2 may discover predicates Ej such
that Ej ⊆

⋃
0≤i<j Ei. This lack of progress condition can

arise due to approximations introduced in the abstraction step,
which can result in the same counterexample trace being
produced in consecutive iterations.

Upon finding lack of progress, SLAM1 employs a tool
called CONSTRAIN to refine the Boolean program abstraction
computed for the current set of predicates [BCDR04]. Our
experiments indicated that CONSTRAIN was a bottleneck in
SLAM1, so we experimented with techniques in SLAM2 to
reduce the need to use CONSTRAIN.

The optimized CEGAR loop makes use of both FSE and
BSE, as well as the CONSTRAIN module. Given a counterex-
ample trace S1 . . . Sn, SLAM2 first applies FSE. If FSE finds
an invalid trace prefix S1 . . . Si then BSE is applied to the
trace S1 . . . Si to discover new predicates.

The approach outlined above is similar to SLAM1: pred-
icates are discovered based on invalid trace prefixes. How-
ever, an invalid trace can have several invalid subtraces. So,
SLAM2 also uses BSE in two new ways to discover more
invalid subtraces. First, if there is lack of progress on invalid
trace prefix S1 . . . Si, SLAM2 will apply BSE to the entire

trace S1 . . . Sn to try to find an invalid trace suffix Sk . . . Sn.
Second, if there is lack of progress on invalid trace suffix
Sk . . . Sn, SLAM2 will perform a partial reset of the pre
computation and continue BSE, as follows. Suppose that
the set of inconsistent columns of the precondition matrix
after processing Sk . . . Sn are k1, k2, . . . , km. The partial reset
removes these columns from the precondition matrix and
resumes BSE at statement Sk−1. The partial reset can be done
multiple times to find multiple invalid traces.3

The above approach is interleaved with the application of
the CONSTRAIN module, which is applied just once when a
lack of progress is first identified. SLAM1 does not attempt
to find multiple invalid subtraces. Upon lack of progress,
it attempts to resolve the issue using CONSTRAIN. If lack
of progress continues, SLAM1 terminates with a “GiveUp”
result, whereas SLAM2 will continue to analyze the trace to
find new predicates. If SLAM2 finishes exploring S1 . . . Sn

with no new predicates, it too will terminate with a “GiveUp”
result.

V. PROCEDURE CALLS AND POINTERS

A key aspect of the SLAM approach to CEGAR is that
the Boolean program abstraction contains procedures and pro-
cedure calls. Thus, Boolean variables introduced by predicate
discovery can be locally scoped to a procedure, which reduces
the cost of model checking.

SLAM2 remains unchanged with respect to SLAM1 re-
garding Boolean program abstractions with procedures. BSE
performs precondition evaluation at procedure return and pro-
cedure call steps by converting the precondition from the scope
of the caller into the scope of the callee (for returns) and back
(for calls). This is done by using relations between actual and
formal parameters of the call/return, and between the return
value of the procedure call (if any) and the return variable of
the callee.

As discussed before, the precondition computation applied
during BSE has the potential to blow up in size because of
pointers. But, in fact, SLAM2 eliminates this possibility by
making the pre computation trace-sensitive for BSE, using
the pointer aliasing information computed by FSE. Consider
a statement Si : ∗x := e in the trace. Recall that pre(∗x :=
e,Q) is

(x = &y1 ∧Q[e/y1]) ∨ . . . ∨ (x = &yk ∧Q[e/yk])

To reduce the size of this formula, BSE looks up the location
pointed to by x in the store computed by FSE on entry to
statement Si. Suppose that in this store x maps to &yj . Then
the above equation reduces to Q[e/yj].

VI. EXPERIMENTAL RESULTS

We now present a comparison of SLAM2, SLAM1
and YOGI by running SDV on two large test suites developed
and maintained by Microsoft quality assurance teams for
testing SDV. We first describe our evaluation platform and

3One could also perform a full reset of the precondition matrix to the initial
vector < true > - we did not experiment with this approach.

Metric SDV 1.6 (SLAM1) SDV 2.0 (SLAM1) SDV 2.0 (SLAM2)
Drivers 69 69 69
Rules 68 83 83
Total checks 4692 5727 5727
LightweightPass results - 2477 2477
Pass results - 2563 2551
NUR results 6% (285/4692) 2.1% (123/5727) 3.3% (187/5727)
Defects reported 157 564 512
GiveUp results only - 0.52% (30/5727) 0.3% (16/5727)
False defects 19.7% (31/157) 9.04% (51/564) 0.4% (2/512)
Time for identical pass - 39922 65800
Time for identical defect - 4440 2669

TABLE I
COMPARISON OF SLAM1 AND SLAM2 FOR WDM DRIVER CHECKS.

criteria. At Microsoft, SDV is used for verification of device
drivers built in multiple driver development models. For our
analysis, we have chosen test suites developed for WDM
and KMDF drivers. These comprehensive test suites include
drivers of different sizes (1-30K LOC), with a mix of test
drivers written to test SDV rules (with injected defects),
sample drivers that are shipped in WDK to provide guidance
to driver developers, and drivers that are shipped as part of the
Windows operating system. Note that all the data presented in
this section has been extracted from test runs performed by
the test team.

Most of the metrics used in this section were explained
in previous sections. New to this section are the following
metrics. A “check” is a run on one driver for one rule. A
“LIGHTWEIGHTPASS” result refers to the fact that before
starting the CEGAR loop, SDV first applies property instru-
mentation, pointer analysis, and function pointer resolution to
show that the error state of a rule is not reachable in the
call-graph of the C program. An “out of resource” (OOR)
result refers to checks that exceeded the allocated time or
memory resources. The NUR results include both the OOR
and GiveUp results.

SDV can report a false defect for a number of reasons: a
bug in the verification engine, a bug in the rule, or a bug in
the environment model (the C code that calls into a driver
and provides stubs of kernel routines used by drivers). Hence,
improvements to any of those components can result in the
reduction in the number of false defects.

SDV can report a Pass result which is actually a “false
verification”, due to overconstraining of the abstract transition
relation. This problem can be revealed by comparing SDV
runs with different engines, for example, SLAM1 versus
SLAM2. In particular, we observed that some Pass results
with SLAM1 turn into Defect or OOR results with SLAM2.
The OOR result would mostly occur on the runs for large
drivers and/or hard rules. Specific data for such cases are
presented in Tables I and II.

For the purposes of profiling SDV and comparing the
analysis engines, we use the two official releases of SDV,
SDV 1.6 and 2.0, and also runs of SDV 2.0 with SLAM1,
for a more accurate comparison.

Table I compares the data for the WDM drivers for SLAM1
as part of both SDV 1.6 and SDV 2.0, and for SLAM2 as

SDV 2.0 (SLAM1) SDV 2.0 (SLAM2) COUNT CHANGE
OOR Pass 31

√

Defect (false) Pass 5
√

Defect (true) Pass 2 ×
GiveUp Pass 15

√

OOR Defect (true) 2
√

Defect (false) OOR 36
√

GiveUp OOR 13
√

Pass OOR 64 ∼
OOR GiveUp 2 ∼
Defect (false) GiveUp 11

√

Defect (true) GiveUp 1 ×

TABLE II
BREAKDOWN OF CHANGES OBSERVED BETWEEN SLAM1 AND SLAM2

USING SDV 2.0 FOR WDM DRIVERS.

part of SDV 2.0. Dashes in the table indicate that the data is
not available for that particular metric.

Table I shows significant reduction in the number of false
defects and GiveUp results for SLAM2. This is due to the
better precision of coarse-grained abstraction, as well as to
the improved trace validation and predicate discovery. All
three factors play a role in these improvements. In particular,
better predicate discovery helps make progress (discover new
predicates) in the cases where SLAM1 couldn’t; more precise
abstraction reduces the need for additional predicates in the
first place. The number of NURs significantly decreased be-
tween SDV 1.6 and SDV 2.0 for both engines. This is mostly
due to the improvements in SDV environment and rules, in
particular, NULL pointer dereference bugs. Those bugs have
been found by running SDV with SLAM2 (but not with
SLAM1). Finally, SLAM2 is faster in finding defects, but
takes more time to prove Pass results. The time difference for
the Pass results is due to the problem of overconstraining of the
abstract transition relation in SLAM1, i.e., “false verification”.

According to Table I, for WDM drivers, SLAM2 provides
a useful result 96.7% of the time, and upon discovery of a
defect, provides a 99.6% guarantee that this is a true defect.

Table II shows the breakdown of the individual results
and changes observed between SDV 2.0 with SLAM1 and
with SLAM2 for WDM drivers. The leftmost column is the
result reported by SLAM1, followed by the result reported
by SLAM2 and the count for such changes. The rightmost
column indicates whether the changes are in favor (

√
), against

Metric SDV 2.1 (SLAM2) SDV 2.1 (YOGI)
LightweightPass results 2457 2457
Pass results 2556 2538
NUR results 3.3% (194/5727) 3.65% (209/5727)
Defects reported 520 523
False/reported defects 0.4% (2/520) 3.4% (18/523)
Missed defects 2 18
Time for identical pass 76922s 147189s (∼2x)
Time for identical defect 1795s 9984s (∼6x)

TABLE III
COMPARISON OF SLAM2 WITH YOGI USING SDV 2.1 FOR WDM

DRIVERS.

(×), or neutral (∼), for SLAM2 with respect to SLAM1.
There are 28 cases where GiveUp results by SLAM1

changed into Pass (15 cases) or OOR (13 cases) for SLAM2.
The change from GiveUp to OOR indicates that progress has
been made beyond the GiveUp point (but not until a definite
result, due to insufficient resources). Out of 14 cases where
SLAM2 produces a GiveUp, there are 11 cases for which
SLAM1 produces a (false) defect. There are 36 cases where
false defects reported by SLAM1 changed into OOR for
SLAM2, which is clearly favorable for SLAM2. Finally, we
mark the changes from the Pass result for SLAM1 into the
OOR result for SLAM2 (64 cases) as neutral, because we
have a strong evidence that SLAM1 was able to prove the Pass
result by overconstraining, but it is unrealistic to investigate
each case to validate this claim. Note that the two defects
found by SLAM1 but not by SLAM2 are being investigated.

Table III presents a comparison of SLAM2
with YOGI [NRTT09] for WDM drivers. SLAM2 provides
7% fewer NURs, fewer false defects (2 versus 18), while
finding 18 true defects that YOGI misses (the respective
number for YOGI is 2), and is two times faster than YOGI.
Note that YOGI does not report GiveUp results in the same
way as SLAM does, so this analysis is not performed -
instead, the GiveUp cases are included into the NUR cases.
Notably, YOGI takes 6 times longer for finding the same
defects as SLAM2, but only 2 times longer for finding the
same proofs as SLAM2.

According to Table III, for WDM drivers, YOGI provides
a useful result 96.3% of the time, and upon discovery of a
defect, provides a 96.6% guarantee that this is a true defect.
SLAM2 provides a useful result 96.6% of the time and a true
defect guarantee of 99.8%.

Table IV provides a breakdown of the changes observed
between SLAM2 and YOGI using SDV 2.1 on WDM drivers.
The format is the same as in Table II. The table shows
that in general, SLAM2 provides a higher rate of useful
results: 114 Pass results and 10 defect reports for which YOGI
reports NUR. There are 8 Pass results for SLAM2 for which
YOGI reports false defects. There are 11 cases where SLAM2
finishes with an NUR result, and YOGI reports a false defect.

On the other hand, there are two cases where YOGI finds
a defect which SLAM2 is unable to find (GiveUp) - those
proved to be useful in identifying limitations of SLAM2.

Table V compares SLAM1, SLAM2, and YOGI using SDV

SDV 2.1 (YOGI) SDV 2.1 (SLAM2) COUNT CHANGE
NUR Pass 114

√

Defect (false) Pass 8
√

NUR Defect (true) 10
√

Pass Defect (true) 8
√

Defect (false) OOR 1
√

Pass OOR 94 ×
NUR GiveUp 4 ∼
Defect (false) GiveUp 10

√

Defect (true) GiveUp 2 ×
Pass GiveUp 2 ×

TABLE IV
BREAKDOWN OF CHANGES OBSERVED BETWEEN SDV 2.1 WITH SLAM2

AND SDV 2.1 WITH YOGI FOR WDM DRIVERS.

on KMDF drivers. Note that KMDF drivers are significantly
smaller than WDM drivers, due to the higher level of the APIs
provided by the KMDF model. This explains the comparable
results for both SLAM1 and SLAM2. There is a significant
improvement in the number of NURs (1% to 0.04%) and false
defects (25% to 0%) between SDV 1.6 and SDV 2.0, regard-
less of the SLAM version. This improvement is primarily
due to the improvements in the KMDF environment model
and rules between the two releases. Comparing SLAM2 to
YOGI, we observe significantly larger number of NURs for
YOGI: 117 vesus 2 for SLAM2. Additionally, YOGI takes
8 times longer than SLAM2 for checks with the identical
results. Note that the defect analysis (true versus false defects)
for comparing YOGI to SLAM2 has not been performed
for KMDF drivers.

Table V shows the comparison of SLAM1, SLAM2,
and YOGI for KMDF drivers. SLAM2 provides a useful result
99.8% of the time, and upon discovery of a defect, provides
a 100% guarantee that this is a true defect. Comparatively,
YOGI provides a useful result 97.8% of the time.

In summary, our comprehensive analysis of the realistic
empirical data confirms that SLAM2 provides highly reliable
results by reporting defects with a high degree of confidence
that those are true defects, or finding proofs when there’s no
defect. Our comparison involves two driver models and three
verification engines and is based on the data obtained in an
industrial setting by independent testers.

VII. RELATED WORK

Coarse-grained Abstraction. After the development of
SLAM1, it became clear that we were underutilizing the
power of automated theorem provers such as Z3 to cope with
complex Boolean formulae, relying instead on the Boolean
program model checker to deal with arbitrary Boolean combi-
nations of predicates. With coarse-grain abstraction, we give
Z3 a little bit more work to do and increase the precision
of the abstraction. However, one can do much more, as
explored by Beyer and colleagues in their work on “software
model checking via large-block encoding” [BCG+09]. They
show that one can abstract over loop-free fragments of code
such as sequences of if-then-else statements. They compared
their large-block approach to the approach where each single

Metric SDV 1.6 (SLAM1) SDV 2.0 (SLAM1) SDV 2.0 (SLAM2) SDV 2.1 (SLAM2) SDV 2.1 (YOGI)
Driver 51 51 51 51 51
Rules 61 102 102 103 103
Total checks 3111 5202 5202 5253 5253
NUR results 1% (31/3111) 0.04% (2/5202) 0.04% (2/5202) 0.04% (2/5253) 2.2% (117/5253)
Defects reported 300 271 271 271 -
False defects 25% (75/300) 0% (0/271) 0% (0/271) 0% (0/271) -
Total time for identical checks - - - 8414s 63645s (∼8x)

TABLE V
COMPARISON OF SLAM1, SLAM2 AND YOGI USING SDV FOR KMDF DRIVERS.

statement is abstracted in isolation. It would be interesting to
compare their approach to the presented approach.

Multiple Inconsistencies Per Trace. We are not aware of
other work that explores the idea of finding multiple invalid
subtraces of a single counterexample trace. We found this
technique to be very valuable for making more progress,
but it does come at an increased cost in model checking,
as more predicates are introduced. The ability to recover
from “irrelevant refinements” (retracting predicats that are
not useful) would be valuable in order to explore multiple
inconsistencies during CEGAR. McMillan explores how to
give CEGAR such a flexibility, which would be very helpful
for the case of detecting multiple inconsistencies. [McM10]

Path/Trace-Sensitive Pointer Aliasing. SLAM2’s use of
pointer aliasing information, computed by forward symbolic
execution, to refine the precondition computation is very
similar to that used by the DASH algorithm [BNRS08], that
forms the basis of the the YOGI tool we compare against.
However, SLAM2 only uses this technique during symbolic
execution and not the abstraction process, as YOGI does.

VIII. CONCLUSION

We have described major improvements in the SLAM
verification engine, shipped with SDV 2.0 in September, 2009
as a part of the Windows 7 WDK. SLAM2 significantly
improved the reliability, robustness and precision of SDV.
SDV adoption inside Microsoft proved to be very successful,
with “SDV clean” being a requirement for Microsoft drivers
to be shipped with Windows 7.

Our results show that SDV 2.0 with SLAM2 is an industrial
quality static analysis tool, compared to previous versions
of SDV based on SLAM1, which was in many respects a
research prototype. The SDV tool has benefited greatly from a
multi-engine approach, allowing us to easily compare SLAM2
to YOGI.

REFERENCES

[BBC+06] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In EuroSys 06, pages
73–85, 2006.

[BBdML10] T. Ball, E. Bounimova, L. de Moura, and V. Levin. Efficient
evaluation of pointer predicates with Z3 SMT Solver in SLAM2.
Technical Report MSR-TR-2010-24, Microsoft Research, 2010.

[BCDR04] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining
approximations in software predicate abstraction. In TACAS
04: Tools and Algorithms for the Construction and Analysis of
Systems, pages 388–403, 2004.

[BCG+09] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Se-
bastiani. Software model checking via large-block encoding. In
FMCAD 09: Formal Methods in Computer Aided Design, pages
25–32, 2009.

[BMR05] T. Ball, T. D. Millstein, and S. K. Rajamani. Polymorphic pred-
icate abstraction. ACM Trans. Program. Lang. Syst., 27(2):314–
343, 2005.

[BNRS08] N. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. In ISSTA 08: International Symposium on
Software Testing and Analysis, pages 3–14, 2008.

[BPR01] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstractions for model checking C programs. In TACAS 01:
Tools and Algorithms for Construction and Analysis of Systems,
pages 268–283, 2001.

[BPR02] T. Ball, A. Podelski, and S. K. Rajamani. On the relative
completeness of abstraction refinement. In TACAS 02: Tools
and Algorithms for Construction and Analysis of Systems, pages
158–172, April 2002.

[BR02a] T. Ball and S. K. Rajamani. Generating abstract explanations
of spurious counterexamples in C programs. Technical Report
MSR-TR-2002-09, Microsoft Research, January 2002.

[BR02b] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. In POPL 02: Principles of
Programming Languages, pages 1–3, January 2002.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by construction
or approximation of fixpoints. In POPL 77: Principles of
Programming Languages, pages 238–252, 1977.

[GS97] S. Graf and H. Saı̈di. Construction of abstract state graphs with
PVS. In CAV 97: Computer Aided Verification, pages 72–83.
1997.

[LBC05] S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via
symbolic decision procedures. In CAV 05: Computer-Aided
Verification, pages 24–38, 2005.

[MB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In TACAS 08: Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

[McM10] K. L. McMillan. Lazy annotation for program testing and
verification. In CAV 10: Computer-Aided Verification, 2010.

[NRTT09] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The
Yogi project: Software property checking via static analysis
and testing. In TACAS ’09: Tools and Algorithms for the
Construction and Analysis of Systems, pages 178–181, 2009.

