
The Static Driver Verifier Research Platform

Thomas Ball, Ella Bounimova, Vladimir Levin
Rahul Kumar, and Jakob Lichtenberg

Microsoft Corporation
http://research.microsoft.com/slam/

Abstract. The Sdv Research Platform (Sdvrp) is a new academic re-
lease of Static Driver Verifier (Sdv) and the Slam software model checker
that contains: (1) a parameterized version of Sdv that allows one to write
custom API rules for APIs independent of device drivers; (2) thousands
of Boolean programs generated by Sdv in the course of verifying Win-
dows device drivers, including the functional and performance results (of
the Bebop model checker) and test scripts to allow comparison against
other Boolean program model checkers; (3) a new version of the Slam
analysis engine, called Slam2, that is much more robust and performant.

1 Introduction

Static Driver Verifier [1] (Sdv) is a verification tool included in the Windows
Driver Kit (WDK), using Slam [4] as the underlying analysis engine. Sdv comes
with support for three classes of drivers: WDM (The Windows Driver Model);
KMDF (Kernel Mode Driver Framework); NDIS (Network Driver Interface Spec-
ification). For each of these driver classes, Sdv provides a number of class-specific
components (for example, API rules and an environment model). API rules are
expressed in the Slic language [5] and describe the proper way to use the driver
APIs.

The Sdv Research Platform (Sdvrp) is a new academic release of Sdv that
contains a number of features that should be useful to the verification research
community:

– Static Module Verification: Sdvrp enables the development of Slic rules
for APIs independent of device drivers, and the application of Sdv to mod-
ules that use these APIs. With this feature, researchers can use Sdv to verify
that clients of an API adhere to the API specification.

– Boolean Program Repository and Test Scripts: Sdvrp contains thou-
sands of Boolean programs generated by Sdv in the course of verifying
Windows device drivers, including the functional and performance results
of running the symbolic model checker Bebop [3] on these programs.

– Slam2 Engine: Sdvrp contains a new version of the Slam analysis engine
(Slam2) that is much more robust and performant than the first version of
Slam. Sdv for Windows 7 uses Slam2.

Sdvrp is available from http://research.microsoft.com/slam/ under a li-
cense for academic use.

Platform

API Model

AcquireLock ReleaseLock

Module

EntryPoint_1

Platform

Manager Model

EntryPoint_1.exit

{

 if (s != unlocked) error;

}

AcquireLock.entry

{

 if (s != unlocked) error;

 else s = locked;

}

ReleaseLock.entry

{

 if (s != locked) error;

 else s = unlocked;

}

state {

 enum {unlocked, locked} s = unlocked;

}

Fig. 1. The interaction between the platform model, a module, and a rule. The platform
manager model calls into the entry points of the module. The module itself interacts
with the underlying API model, while the rule specifies the safe interactions between
the various components.

2 Static Module Verification

In its early days, Sdv verified API usage requirements on WDM Drivers. With
the success of Sdv, came the difficulty of scaling out to other classes of drivers
and programs, which in turn motivated the need to parameterize Sdv so it could
be adapted for other uses.

At a high level, Sdv consists of a verification engine, a model of the oper-
ating system (platform/environment model), and a set of driver API rules. The
verification engine checks whether a user provided driver in the context of the
operating system model adheres to the applicable driver API usage rules.

Sdvrp generalizes this concept by allowing researchers to provide their own
version of the platform model and the API usage rules. Together these two parts
comprise a plugin for static module verification. The verification engine now
checks whether a user provided C module adheres to the plugin API usage rules,
in the context of the plugin platform model. This allows Sdv to be applied to
many other pieces of code besides device drivers.

The platform model itself can be thought of as having two major parts. First,
the platform model implements how the platform exercises the module by calling
into the module’s entry points. This is done by the platform manager model. We
can think of this component as the “main” routine of the system. Second, the
platform API model provides an implementation of the APIs that the module
can use. They are simplified implementations of each platform API that contain

behaviors relevant for the verification of associated platform API rules. The
platform model is written using the C language, with one special construct for
introducing non-deterministic choice.

Figure 1 shows the interaction between the platform model, the module, and a
rule. The platform manager model calls into the entry points of the module. The
module itself interacts with the underlying API model, while the rule monitors
the interactions between the various components. Slic [5] rules allow declaration
of state as well as state transitions based on API events (call/return). When
Sdv finds a rule violation, it constructs an error trace that passes through the
platform model, the module, and the rule.

Along with the three highly developed plugins for existing driver platform
models, Sdvrp also comes with a minimal plugin. All of these are available for
use, modification, and cloning for research purposes.

3 Boolean Program Repository

Sdv/Slam generates Boolean programs that represent abstractions of C pro-
grams, where each Boolean variable represents a predicate on the state of the
C program. Boolean programs are an interesting object of study because they
admit efficient symbolic model checking, despite the fact that they have recur-
sive procedures. Bebop [3] is Slam’s model checker for Boolean programs. Sdv
runs on many drivers, for each driver checking many Slic rules. A single run
of Sdv on a driver against a rule can generate many Boolean programs, one for
each iteration of the counterexample guided abstraction refinement (CEGAR)
process, which successively refines the Boolean program. The Sdvrp contains
the Boolean programs generated by Sdv when run on the drivers in the WDK,
as well as the functional and performance results of running Bebop on these
programs. Furthermore, the Sdvrp contains the set of test scripts used to gen-
erate the results, so that others may easily substitute other Boolean program
model checkers in place of Bebop.

4 Slam2 Engine

Slam2 improves the precision, reliability, maintainability and scalability of the
original Slam verification engine (Slam1). Sdv 2.0, released with the Windows
7 WDK, uses Slam2. For Sdv 2.0, the true bugs/total bugs ratio is 90-98% on
Windows 7 Microsoft drivers, depending on the class of driver. The number of
non-useful results (timeouts, “don’t know” results) has been reduced greatly. In
particular, for drivers shipped as WDK samples, it is 3.5% for WDM drivers and
0.02% for KMDF drivers.

Comparing Slam2 to Slam1, on WDM drivers Slam1 had 19.7% false
defects (31/157 reported defects), while Slam2 had 0.4% (2/512). On WDM
drivers, Slam1 had 6% “give-up” runs (285/4692), while Slam2 had 3.2%
(187/5727). On KMDF drivers Slam1 had 25% false defects (75/300), while

Slam2 had 0% (0/271). On KMDF drivers Slam1 had 1% “give-up” runs
(31/3111), while Slam2 had 0.004% (2/5202)

Slam2 implements a CEGAR loop, which consists of the following main
components: a predicate abstraction module, a model checker, and an error trace
validation/predicate discovery module. Slam2 has a new field-sensitive alias
analysis with improved precision and performance, and uses the Z3 state-of-the-
art SMT solver [6] and new axiomatization of pointer aliasing [2].

The changes in Slam2 are mostly related to the abstraction, trace validation
and predicate discovery functionalities of the CEGAR loop. An abstract inter-
mediate representation (IR) of the input program is introduced as an interface
between the low-level IR representing the C program and the CEGAR loop,
which permits independence from the input language and from the granularity
of abstraction (single statement or multiple statements).

The error trace validation algorithm in Slam2 is bi-directional with respect
to the error trace, combining forward symbolic execution of the error trace
(strongest postconditions) with backwards symbolic execution (weakest precon-
ditions). As a result, significant optimization is achieved on long error traces
often encountered in the runs on Windows Device Drivers.

Forward execution computes data about the trace (procedure call graph,
variable values at each step, pointer aliasing, etc.). The data is used to perform
simple feasibility checks on the trace and to optimize subsequent backwards
execution and predicate discovery algorithms. Backwards execution is optimized
by taking into account data about the trace discovered on the forward pass (for
example, program-point-specific pointer aliasing),

Slam2 implements a new algorithm for discovering Boolean predicates, which
is a part of the backwards execution pass. The algorithm is iterative and pro-
gresses (on an as-needed basic) from generating a small set of new predicates via
computationally cheaper techniques, towards larger sets of predicates via more
expensive discovery algorithms.

References

1. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
In EuroSys, pages 73–85, 2006.

2. T. Ball, E. Bounimova, L. de Moura, and V. Levin. Efficient evaluation of pointer
predicates with z3 smt solver in slam2. Technical Report MSR-TR-2010-24, Mi-
crosoft Research, 2010.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In SPIN 00: SPIN Workshop, pages 113–130, 2000.

4. T. Ball and S. K. Rajamani. The SLAM toolkit. In CAV, pages 260–264, 2001.
5. T. Ball and S. K. Rajamani. SLIC: A specification language for interface checking.

Technical Report MSR-TR-2001-21, Microsoft Research, 2001.
6. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, pages

337–340, 2008.

