The Static Driver Verifier
Research Platform

Thomas Ball, Ella Bounimoval, Vladimir LevinZ,
Rahul Kumar?, and Jakob Lichtenberg?
Microsoft Research
’Microsoft Windows

http://research.microsoft.com/slam/

Plan

 Static Driver Verifier (SDV)

e SDV Research Platform
— Creating SDVRP Plugins
— Boolean Program repository
— SLAM2 verification engine

* Conclusion

The Static Driver Verifier

Static Driver Verifier (SDV):

 Compile-time verification tool
* Ships with Windows 7 Driver Kit (WDK)
Less than 4% false alarms on real drivers

e Supports many driver APls (WDM, KMDF, NDIS, ...)

Uses SLAM as the verification engine
v Based on CEGAR loop
v’ Boolean abstraction of input C programs
* APIl-specific components:
v’ environment model
v API rules in SLIC language

Static Driver e
Verifier isde

Driver)
Development Kit

Static Driver Verifier

Precise
API Usage Rules
SLIC

Environment
model

Driver’s Source Code in C

SDV Research Platform

Academic release of SDV, based on the code
that ships with Windows 7 WDK

Write custom plugins for APIs other than
device drivers and custom API rules

Apply SDV to verify modules (clients) written
in C that use the APIs

Based on the new, robust SLAM2 engine [see
upcoming FMCAD2010 paper]

New in This Release:
Boolean Program Test Suite

e About 2,800 Boolean programs (BPs) from
SDV runs on Windows 7 Device Drivers
o BPsize:1-31Mb

* Results from running SDV Boolean program
model checker Bebop on these programs

* Test scripts used to run Bebop — substitute
yvour BP model checker in place of Bebop!

Driver and Operating System:
A Module and an Environment

1/0 Manager

-l

Entry Point

Driver

KeAcquire KeRelease
SpinLock SpinLock
Device Driver

Interface

Replace Environment by Environment Model

1/0 Manager
Model

Entry Point

Driver

KeAcquire KeRelease
SpinLock SpinLock

Device Driver

Interface Model

API SLIC Rule

I/0 Manager state {
Model enum {unlocked, locked} s = unlocked;

RunDispatchFunction.exit

{

Entry Point if (s != unlocked) abort;
1

KeAcquireSpinLock.entry

{

Driver

if (s != unlocked) abort;
else s = locked;

}

KeReleaseSpinLock.entry

KeAcquire KeRelease {

SpinLock SpinLock
Device Driver

InterfaceModel

if (s != locked) abort;
else s = unlocked;

Generalized to Arbitrary Module

state {

}

Your

Rule

Here

SDVRP Plugin: Two Parts

e Platform model (in C)

— Harness
— API stubs

* APl usage rules (in SLIC)

Plugin Examples in SDVRP

* Plugins for driver platforms: WDM, KMDF,
NDIS — can be extended

e Custom platform and plugin —a simple, but
complete example

Example: Custom Platform and Plugin

e Custom Platform (what to verify)
o Platform implementation
o Sample driver (with a bug)

e Custom Plugin (what to write)
o sample platform rule
o platform model

Platform APls and Data Types

Data:

CUSTOM _IRP: request packet
CUSTOM_LOCK: int

CUSTOM _STATUS: return status for APIs

APls:
CUSTOM_READ
CUSTOM_WRITE
CustomAcquirelLock
CustomReleaselock
CustomMemMove

The Rule: CustomLock.slic

state{ enum {unlocked, locked} s = unlocked;}
watch CustomAcquireLock.exit.51;

CustomAcquireLock.exit[guard S1]
{ if(s==locked)
{ abort "The driver is calling Sfname after already acquiring the lock.”;
} else { s=locked;}}

CustomReleaseLock.exit[guard S1]
{ if(s==unlocked)
{ abort "The driver is calling Sfname without first acquiring the lock.”;
} else { s=unlocked;}}

sdv_stub_custom_main_end.entry
{ if(s==locked) { abort "The driver has returned from an entry point without releasing the lock.";}}

Sample Driver

Entry points:

CUSTOM_STATUS DriverWrite(PCUSTOM_IRP irp) {...}

CUSTOM_STATUS DriverRead(PCUSTOM_IRP irp)
{
CUSTOM _STATUS status;
CustomAcquireLock(&(DriverData.Lock));

/* Left out: read DriverData.buffer from disk. */
status=CustomMemMove(irp->buffer, DriverData.buffer, 512);
if (status==CUSTOM_STATUS_UNSUCCESSFUL)

{
return CUSTOM_STATUS_UNSUCCESSFUL;

}

CustomReleaselLock(&(DriverData.Lock));
return CUSTOM_STATUS_ SUCCESS;

Platform API model

CustomMemMove stub:

CUSTOM_STATUS CustomMemMove(char *dst, char *src, int
bytes)
{
int choice = SdvMakeChoice();
switch (choice) {
case 0: return CUSTOM_STATUS SUCCESS;
default: return CUSTOM_STATUS UNSUCCESSFUL;

}
}

Platform model: test harness

int sdv_main() {
CUSTOM_STATUS status;
int choice = SdvMakeChoice();

switch (choice) {

case O:
status=fun_CUSTOM_READ(sdv_pcustom_irp);

break;

case 1:
status=fun_CUSTOM_WRITE(sdv_pcustom_irp);

break;

default:
status=sdv_DoNothing();

break;

1

Defect in sample driver

Ml static Driver Verifier Report Page - [Static Driver Yerifier Defect Yiewer] oy] 4
v/ Eile Edit Wiew Trace Tree Help =15 =]
— Trace Tree —Source Code = 5, fail_driver]
sdv_main .customlock.slicl sdvhamessc 4/ fail_driverl.c Eggiﬁiﬂrﬁock
42 : int choice = SdviMakeChoice () ; Z6: { ;I g 1
44: =sdv stub custom mwain begin 37, CUSTOM LOCE Lock; 2
46: switch (choice) | 25 e re;ds; L4 Properties
S50: =dv_stub_custom _read begin 30, Ay CEEseEE
LB P EEe 30: char buffer [S12];
-39 CustomAcouireLock 31: } DriverData;
H-39: SLIC CustomAccuirelock exit 33 .
- 42: CustomMerMowve 33: CUSTOM STATUS
43 if [Statu3==CUSTOM_STATUS_UNSUC(34: DriverRead|
- 451 return COUITOM ITATUI UNSUCCESIET 5. PCUSTOM _TRP Trp
~45: Return 95)
52: =dv_stub_custom read end 37: 4
73: sdv_stub_custom main end 38 . CUSTOM STATUS status;
39: Customicguirelock (& (DriverData.Lock)) ;
40:
41: F* Left out: Sowehow magically read DriverData.bt
42 = status=CustomMenMove [(Irp—>buffer, DriwverDats.buff
43z if [Status==CUSTOM_STATUS_UNSUCCESSFUI::I
44 : i
47 : DriverData.reads++;
LI | _,I 48 CustowmReleaselLock (& (DriverData.Lock)) ;
| ciate 49: return CUSTOM STATOS SUCCESS: b
50: }
Step: 23 |Step:3El| 51:
Current state: 5Z: CUSTOM STATUS
status==1 53: DriverWritel
ILAM guard==& (DriwverData.Locl)
— 54: FCUSTOM_IRF Irp

=1=0 55: i -
K | »

File: Mfail_driverl.c Line: 45, Function 'DriverRead'

Fiesults I

-5; The drnver has returned from an entry point without releasing the lock_ o

SLAM?2 Verification Engine

Improvements include
e Boolean abstraction on basic blocks

 Error Trace validation: combination of forward
and backwards symbolic execution

* Optimized predicate discovery
e Uses Z3, new axiomatization of pointers

SLAM?2 Verification Engine

SLAM 2.0 released with SDV 2.0, part of
Windows 7 WDK

Parameter for WDM SDV 2.0 (SLAM2) SDV 1.6 (SLAM1)
drivers

False defects 0.4% (2/512) 19.7% (31/157)

Give-up results 3.2% (187/5727) 6% (285/4692)

Download/Installation

e Download and installation instructions on
http://research.microsoft.com/slam/

 SDVRP requires that the (freely available)
Windows Driver Kit Version 7.1.0 (WDK) be
installed first

* |nstall the SDVRP on top of WDK

http://research.microsoft.com/slam/

Conclusion

e SDVRP toolkit for customizable verification of
client code against API rules

* SDV for Windows 7 based on SLAM?2
* Boolean program repository
* Licensed for research purposes

SDVRP discussion alias:
sdvrpdis@microsoft.com

