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Abstract
Random forests have been successfully applied to vari-

ous high level computer vision tasks such as human pose

estimation and object segmentation. These models are ex-

tremely efficient but work under the assumption that the out-

put variables (such as body part locations or pixel labels)

are independent. In this paper, we present a conditional re-

gression forest model for human pose estimation that incor-

porates dependency relationships between output variables

through a global latent variable while still maintaining a

low computational cost. We show that the incorporation of

a global latent variable encoding torso orientation, or hu-

man height, etc., can dramatically increase the accuracy of

body joint location prediction. Our model also allows effi-

cient and seamless incorporation of prior knowledge about

the problem instance such as the height or orientation of

the human subject which can be available from the problem

context or via a temporal model. We show that our method

significantly outperforms state-of-the-art methods for pose

estimation from depth images. The conditional regression

model proposed in the paper is general and can be applied

to other problems where random forests are used.

1. Introduction

In the last few years, random forests have become in-

creasingly popular in computer vision. They have been

successfully applied to problems such as image classifica-

tion [16], object detection and segmentation [10, 22], hu-

man pose estimation [12, 29], action recognition [10], and

even image completion [24]. Their popularity can be at-

tributed to their simplicity and relatively low computational

complexity at test time. In particular, [12, 29] have shown

that random forests can be used to perform human pose es-

timation from depth images in real time.

The method proposed by Shotton et al. [29] works by

classifying pixels into body parts (an intermediate represen-

tation). The body joints are then predicted as the modes

of the parts density. They demonstrate that, given a 2D

depth image, a large quantity of synthesized motion capture

(mocap) training data, a simple pair-wise depth comparison

feature, and an efficient random forest pixel classifier, it is

sufficient to achieve impressive accuracy in real-time, even

with the assumption that body joint locations are indepen-

dent from each other.

∗This work was conducted while Min Sun was an intern in Microsoft

Research Cambridge.

Unlike Shotton et al. [29]’s classification based frame-

work, Girshick et al. [12] formulate body joint prediction as

a regression problem which avoids intermediate body part

classification. Their method uses the same feature and mo-

cap data to learn a regression forest which directly predicts

the locations of body joints from all pixels. Most impor-

tantly, it proposes a compact regression model at each leaf-

node of the forest which approximates the distribution by a

Gaussian mixture model with only a few components (e.g.

typically 2 components). This method obtains state-of-the-

art results and is extremely efficient but does not achieve

a perfect accuracy. The low computational complexity of

the algorithm can be attributed to its assumption that lo-

cations of different body parts are independent from each

other which is not true in practice.

In this paper, we present a conditional regression for-

est model for human pose estimation that incorporates de-

pendency relationships among output variables through a

global latent variable while still maintaining low compu-

tational cost. The latent variable can encode any property

of the pose estimation problem instance such as the torso

orientation, or the height of the human subject. When the

global variable is uncertain/unknown, the body joint loca-

tions are no longer independent as assumed in both [29, 12].

We propose an efficient approach (Sec. 5) to jointly estimate

the body joint locations and the global variable, and demon-

strate that even when the global variable is completely un-

known, the mean error reduced significantly (up to 6.6% in

Sec. 6.1 which is a relative 25% reduction).

In many applications of pose estimation, some prior

knowledge about the problem is known. For instance, while

estimating the pose of a person playing a golf game, in-

formation about the player’s height or orientation might be

available. Similarly, in a surveillance application, we might

know the walking directions of pedestrians. Unlike the re-

gression forest based model of [12] that cannot handle such

prior knowledge information, our model can incorporate it

seamlessly. This ability also allows our model to exploit

temporal consistency. For instance, the lengths of a person’s

limbs do not change while the person is playing the game.

In such situations we can refine our prior belief about the

lengths of the person’s limbs by aggregating information

across a video sequence and then using the refined belief to

make body joint location predictions (Sec. 5.1). This pro-

cess is extremely efficient and incurs almost no additional

cost.
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To summarize, the key differences between our model

and the traditional random forests are: i) the posterior distri-

bution of our model does not factorize over individual body

joint locations, and is a joint distribution over the global

latent variable and the body joint locations; ii) the regres-

sion model associated with each leaf node (codeword) in

our model is conditioned on a global variable; iii) our model

allows the incorporation of prior knowledge about the prob-

lem instance such as information about the player’s height

or torso orientation.

2. Related Work on Human Pose Estimation

Human Pose Estimation (HPE) (i.e. estimating body

joint locations) is one of the most important problems

in computer vision, with applications in gaming, human-

computer interaction, security, telepresence, and even

health-care [1, 33, 14, 23]. Naturally, the problem has at-

tracted a lot of research (surveyed in [21, 26]). Researchers

have tried to exploit a variety of different inputs, from 2D

silhouettes (obtained from background subtraction) [9] to

2D intensity images [27, 7, 2].

The availability of high-speed depth sensors has led to

tremendous progress in human pose estimation [13, 15,

30, 25, 11]. However, many real-time systems, achieving

high speeds by tracking from frame to frame, struggle to

re-initialize quickly and are not robust to tracking failure.

Recently, two random forest based algorithms proposed

by [29, 12] achieve super-real-time human pose estimation

from a single depth image captured by the Kinect sensor

[20]. The super-real-time algorithms are designed to com-

plement any appropriate tracking algorithm [31, 13, 28, 11]

that incorporates temporal and kinematic coherence, so that

the overall system is much more robust to tracking failure.

However, these algorithms are still far from perfect.

Methods performing human pose estimation in 2D im-

ages or video sequences, like mixture of experts [4], struc-

ture prediction models [3] and latent variable models [18,

19], can also be applied to depth data. However, unlike

[29, 12] which utilize random forest, these methods cannot

achieve super-real-time performance.

Conditional models Many researchers have shown that

conditional models are very effective at improving accu-

racy. For example, in the field of object recognition, Felzen-

szwalb et al. [8] have shown how detectors conditioned

on different aspect ratios of the object bounding box miti-

gate the appearance variation caused by viewpoint changes.

Concurrent with our work, Dantone et al. [6] have used a

conditional regression forests model for facial feature de-

tection. They show that head pose can be used as a global

variable to improve the detection accuracy. Their method

works by first estimating the head pose and then using it

to detect facial features. It is similar to our “MaxA” and

“Mar.A” methods (described in Sec. 5) but different from

our “Joint” method (described in Sec. 5) that tries to jointly

infer the labelling of the global variable and the body joint

locations. Conditioning a model, in the worst case, results

in an increase in the model complexity which is linear in

number of states of the global variable. Moreover, if each

conditional model is trained independently, only a subset

of training data is used to train each model. To overcome

the first issue, we employ a shared model structure so that

the model complexity typically increases much slower than

the worse case (the Partial model in Sec. 3.1). The large

synthetic training dataset (similar to that in [29, 12]) helps

avoid the second issue.

3. Conditional Regression Model (C-RM)

This section provides a formal description of our model.

In what follows, we will use I to denote the image data, L to

denote a set of voting elements l (e.g. a patch or a pixel), and

C to denote the set of leaf node ids (also called codewords

{cl}) that any voting element l can map to.

Given an image I , the method proposed in [12] regresses

locations of body joints independently. For each body joint

j, the method calculates a scoring function S defined over

the 3D body joint location xj ∈ R
3. This function can be

written as a sum of probabilistic votes contributed from all

voting elements. The probabilistic vote p(xj , cl|Il) can be

further decomposed into the distribution of 3D body joint

locations for each codeword p(xj |cl) and the probability

that the image patch is mapped to a codeword p(cl|Il) (re-

ferred to as the codeword mapping probability). More for-

mally,

S(xj |I) =
∑

l∈L

∑

cl∈C

p(xj , cl|Il)

=
∑

l∈L

∑

cl∈C

p(xj |cl)p(cl|Il) . (1)

A random forest is utilized to discriminatively map each

voting element to a specific codeword. The probability

p(cl|Il) is a delta function at the leaf (codeword) reached

in the tree. The method of [12] outputs the value of xi with

the maximum score. To de-clutter the formal description,

we will drop the subscript j in subsequent equations. In

Fig. 1(a,b,c), one tree in the random forest is illustrated by

the round nodes and directed edges, and the probabilistic

votes are represented by the circles in the plate, where the

location of the circle denotes the voting direction and the

thickness of circle is proportional to the probability.

3.1. Conditioning on Global Variable

Some body joint locations are strongly dependent on

global variables like torso orientation, human height, etc.

Intuitively, conditioning the joint locations on these global

variables would constrain them. We propose the following

two models to capture the conditional property.
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Figure 1: We illustrate the different regression models, including (a) Regression Model (RM) [12], (b) partially conditional regression model (Partial),

and (c) fully conditional model (Full). The tree graph in each panel illustrates the random forest codebook. The round nodes consisting of the tree structure

represent the nodes in the random forest, where a splitting function stored at each internal node and a regression model is stored at each leaf node. The

circles in the square plates represent the modes of the voting direction, where the thickness and the color of the circle indicates the confidence and the state

of the global variable, respectively. Notice that the confidence of the green mode is stronger in the green forest rather than the red forest in the full model

and visa versa. (d) Comparing the time and memory usage of different models (Full and Partial in Sec. 3.1) and different recognition approaches (Joint,

MaxA, and Mar.A in Sec. 5). Tt and Tv are time for evaluating the tree and voting for the regression model. Ta is the time to evaluate the global variable

scoring function in Eq. 14. St and Sv are the space for saving the tree structure and for accumulating the votes. A is the number of states of the global

variable and Â < A is number of time more voting modes stored in the regression model.

Full Model We define a new scoring function S which

introduces dependencies between the body joint locations

and a global variable a ∈ A as,

S(x|a, I) =
∑

l∈L

∑

cl∈C

p(x, cl|a, Il)

=
∑

l∈L

∑

cl∈C

p(x|cl, a)p(cl|a, Il) . (2)

We call this the full conditional regression model (referred

to as the Full model in Fig. 1(c)) since we model both the

conditional distribution of 3D body joint locations for each

codeword p(x|cl, a), and the conditional codeword map-

ping probability p(cl|a, Il). Notice that the drawback of the

Full model is that a separate tree structure per state of the

global variable needs to be learned and stored during learn-

ing, and evaluated during recognition.

Partial Model We define a partial conditional regres-

sion model (referred to as the Partial model in Fig. 1(b))

which overcomes this computational expense by sharing

tree structures (codebooks) for all states of the global vari-

able as,

S(x|a, I) =
∑

l∈L

∑

cl∈C

p(x|cl, a)p(cl|Il) . (3)

This greatly reduces the model complexity and training time

since we do not need to train and store separate random

forest for each state of the global variable. Moreover, as

indicated by our experimental results, it even produces the

most accurate pose estimation results.

3.2. Prior Knowledge of Global Variable

In certain application scenarios, prior knowledge about

attributes of the human subject such as height, gender or

torso orientation is available. This information can be incor-

porated in our scoring function as a prior probability p(a)
over the corresponding global variable as,

S(x, a|I) = S(x|a, I)p(a) . (4)

When no prior knowledge is available, we assume p(a) is

a uniform probability over all states for both the full and

partial models. In this case, for the Partial model of a

single body joint, the original scoring function in Eq. 1 is

equivalent to the scoring function in Eq. 4 marginalized

over the global variable a (i.e. S(x|I) ∝
∑

a S(x, a|I) =
∑

l∈L

∑

cl∈C

∑

a(p(x|cl, a)p(a))p(cl|Il)).

Dependency among body joint locations. Since all body

joints depend on the shared global variable a, we define the

following scoring function which is a function of all body

joints and the global variable as,

S(X, a|I) =
∑

j∈J

S(xj , a|I) = p(a)
∑

j∈J

S(xj |a, I) . (5)

where xj is the 3D location of the jth body joint and X =
{xj}j∈J is the set of all body joints. Hence, the dependency

among body joint locations is established through sharing

the global variable. Moreover, body joint locations become

independent to each other when the state of the global vari-

able is given.

3.3. Exploiting Temporal Consistency

The states of the global variable associated with the pose

estimation problem remain the same in certain situations.

For example, while estimating the pose of the same indi-

vidual in multiple frames, we know that their body height

would be the same. We can exploit this temporal consis-

tency in the global variable to improve the estimate of its

true state, and in turn the estimates of body part locations.

We define a scoring function for multiple frames with a

shared global variable as,

S(XF , a|IF ) =
∑

f∈{1,...,F}

S(Xf , a|If ) . (6)

where XF = {Xf ; f = 1 . . . F}, and IF = {If ; f =
1 . . . F} are the sets of body joints and image evidence from

the 1st frame to the f th frame, respectively. Notice that all

frames share the same global variable a since it is stationary

in time.



4. Learning

This section describes how the different factors used in

our model were learned.

4.1. Conditional Codeword Mapping

We partition the training data based on the value of the

attribute corresponding to the specific instance in the train-

ing data. We then learn the random forests (to act as dis-

criminative codebooks) corresponding to each partition of

the training data. The conditional probabilistic mapping

function can be represented as

p(cl|a, Il) =
1

T

∑

t∈{1,...,T}

δ(c
q(a)
t (Il)− cl) . (7)

where T is the number of trees, c
q(a)
t is the mapped code-

word for tree t in the forest corresponding to partition q(a).
Notice that each random forest is trained using the same

procedure as described in [29] which minimizes the Shan-

non entropy for a classification task. Notice that the condi-

tional codebook is only used in the full model but not in the

partial model.

4.2. Conditional Distribution of Votes

We use the same algorithm as [12] to learn a compact

regression model p(x|cl, a) for each codeword conditioned

on each state of the global variable. Specifically, we use the

mean-shift algorithm with a Gaussian kernel of bandwidth

b∗ to cluster the relative votes and obtain the largest K clus-

ters. Each cluster consists of the relative vote ∆kca, given

by the mean-shift mode, and a confidence weight wkca,

given by the size of the cluster. The conditional distribu-

tion of votes is approximated as p(x|cl, a) ∝

∑

k∈K

wkcla·exp

(

−‖
x− (∆kcla + zl)

b
‖22

)

·δ(‖∆kcla‖
2
2 ≤ λ) ,

where zl is the 3D location of the voting element l, b is the

kernel bandwidth used to approximate the distribution, λ is

the maximum distance threshold that a relative vote should

be used.

4.3. Relating States of the Global Attribute

The different states of the global variable used in our

model might be related to each other. For example, the torso

orientation and person height are both intrinsically contin-

uous variables. Intuitively, a person facing 15 degree left

should share similar body joint locations with a person fac-

ing 10 degree left compared to a person facing 20 degree

right. This structural information is lost when we model

the global attribute using a set of discrete states. To rein-

state these relationships, we utilize a vote transfer scheme

which enables votes from other states of the global attribute

to contribute to the scoring function,

p(x|cl, a) =
∑

â

p(x|cl, â)p(â|a) . (8)

where p(â|a) is the transfer probability that re-weighted the

votes (p(x|cl, â)) conditioned on state â ∈ A. The transfer

probabilities are learned using a model selection approach

on a validation set. We use a symmetric and linearly1 de-

creasing transfer probability defined as,

p(â|a) ∝

{

1− d
2Da

if d ≤ Da

0 otherwise

}

. (9)

where d = |a−â| is the distance between the two states, and

parameter Da specifies the maximum vote transfer distance.

5. Inference

We now describe how to estimate the body joint loca-

tions and the state of the global variable from the scoring

functions defined earlier. If the true state of the global vari-

able is known, then we can estimate each body part location

“independently” by using the mean-shift [5] mode finding

algorithm to find the location with the maximum score as

x∗
j = argmax

x

S(xj |a, I); ∀j ∈ J . (10)

where J is the set of all body joints and the scoring func-

tion is defined in Eq. 2 and 3. When the true state of the

global variable is unknown, the part locations are not inde-

pendent to each other and need to be inferred jointly with

the global variable. We now describe our methods to solve

this inference problem.

Jointly estimate X and a (“Joint”). Instead of indepen-

dently estimating each body joint location, we use mean-

shift algorithm to jointly find all body joint locations {x∗
j}

and the global variable a∗ corresponding to the maximum

score in Eq. 5 as

(X∗
, a

∗) = argmax
X,a

S(X, a|I) = argmax
X,a

p(a)
∑

j∈J

S(xj |a, I) .

(11)

The solution of the MAP inference problem defined in

Eq. 11 can be efficiently solved by first calculating

x∗
j (a) = argmax

xj

S(xj |a, I), S
∗
j (a) = max

xj

S(xj |a, I)

(12)

for all a. Then, a∗ and X∗ are obtained as

a∗ = argmax
a

∑

j∈J

S∗
j (a), X

∗ = {x∗
j (a

∗); j ∈ J} . (13)

1We also tried a Gaussian shape model but found that it achieves accu-

racy similar to the linear one.
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Figure 2: Mean body joint prediction error (y-axis) comparison between [12], Joint recognition approach on Partial and Full models (Partial + Joint and

Full + Joint), and two other recognition approaches on Partial model (Partial + MaxA and Partial + Mar.A) for different torso orientations (x-axis).

By jointly estimating all body joint locations and the

states of the global variable, the approach becomes more ro-

bust than the original regression approach. However, mean-

shift needs to be applied A (i.e. the number of states of the

global variable |A|) times compared to once in the original

regression approach (See row 2 and 3 in Fig. 1(d)). In order

to be both robust and efficient, we also explore the follow-

ing approaches.

Estimate a then X (“MaxA”). We propose to simplify the

scoring function in Eq. 4 to a scoring function of global

variable a as follows,

S(a|I) =
∑

l∈L

∑

cl∈C

p(cl, a|Il) =
∑

l∈L

∑

cl∈C

p(a|cl)p(cl|Il) . (14)

This allows us to estimate a∗ efficiently as

argmaxa S(a|I). Given a∗, we can use Eq. 10 to

estimate the 3D body joint locations.

Estimate p(a) then marginalize over a (“Mar.A”). In this

approach, we estimate p(a) by assuming p(a) ∝ S(a|I).
Given this prior over the global variable, we can obtain the

following marginalized scoring function over a as S(x|I) =
∑

a S(x, a|I). Hence, we can use the original recognition

approach [12] to estimate the 3D location of each body joint

independently.

The time and memory usage of different approaches are

shown in Fig. 1. The estimation accuracy of all these ap-

proaches are reported in Sec. 6.

5.1. Temporally Stationary Global Variable

Instead of estimating sets of body joints and global vari-

ables at different frames independently, we jointly find sets

of body joints XF∗ and the global variable a∗ that corre-

spond to the maximum score in Eq. 6,

(XF∗, a∗) = argmax
XF ,a

S(XF , a|IF ) . (15)

Since frames are observed in a sequential order, the follow-

ing efficient algorithm infers the body joint locations Xf+1

and global variable a for the new frame f + 1,

(Xf+1∗, a∗) = argmax
Xf+1,a

(S(Xf+1, a) + Sf∗(a)) . (16)

where Sf∗(a) is the max-marginal score of the global vari-

able a when the first f frames are observed, and it is defined

recursively as

Sf∗(a) = max
Xf

(S(Xf , a) + Sf−1∗(a)) . (17)

6. Experiments

We demonstrate the efficacy of our proposed models

each conditioned on a global attribute: torso orientation or

person height. Intuitively, given a specific orientation, pos-

sible space of body joint locations reduces due to the kine-

matic constraints. Similarly, person height captures pose

variation caused by scale changes (e.g.the lengths of the

limbs are very different for kids and adults). Following

[29], we cast the body joint prediction problem as a detec-

tion problem, and average precision or average error (Err)

(i.e.,1-AP) is reported. Notice that we use the same 0.1m

tolerance criteria to calculate average precision or average

error. Global variable estimation is treated as a classifica-

tion problem, and mean accuracy (mAcc.) is reported. In

all experiments, we compare our methods to the state-of-

the-art method of [12], and the performances are evaluated

on the MSRC dataset containing 5k synthetic depth images

[29].

Implementation Details To enable a fair comparison of our

models, our implementation uses the settings of [29, 12]:

we use the depth comparison feature proposed in [29] as

input to the random forest split function, our forest is trained

using the same parameters for bagging and maximum tree

depth, and we use the classification objective of [17] for

training. We train the models using the 100k image training

set from [29] and choose parameter values using their 5k

image validation set. The values of hyper-parameters such

as mean-shift bandwidth b∗, Gaussian kernel bandwidth b,

and maximum distance threshold λ are also the same as the

ones learned in [12].

6.1. Conditioning on Torso Orientation

We divide the torso orientation space (360◦) into 32 non-

overlapping partitions, each with 11.25◦. Since the torso

orientations in the MSRC dataset are uniformly distributed

between −120◦ to 120◦, we train models conditioning on

23 unique states corresponding to torso orientations from

the 5th partition to the 27th partition. In the following ex-

periments, we demonstrate that our methods can reliably

estimate the body joint locations and the states of the torso

orientation.
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Figure 3: Mean body joint prediction errors (y-axis) for different torso orientations (x-axis) under different levels of torso orientation uncertainty.

Body Joint Prediction. We evaluate the Full and Partial

conditional models (described in Eq. 2 and 3 respectively).

To measure the generality of different approaches, we cal-

culate the average error (Err) of body joints for every state

of the global variable separately. We then obtain a mean

error (mErr) across all body joints for each state. The fi-

nal accuracy is summarized as the mean of the mErr across

all states. This is slightly different from the metric used

in [12], where AP of each body joint is calculated, and a

mean AP across all body joints is reported as the overall

accuracy. The body joint prediction accuracy comparison

between [12], and our Full and Partial models is shown in

Fig. 2. In the following, we use A+B to denote that B in-

ference algorithm is applied on A model. Joint inference

on both models achieves similar accuracy. In particular,

Partial+ Joint reduces the mean of mErr across all states of

the global variable by up to 6.6% (which is a relative 25%
reduction) compared to [12]. Moreover, we obtain 0.834
and 0.827 mAP for Partial + Joint and Full + Joint, re-

spectively, using the metric in [12]. Both are much better

than the 0.789 mAP obtained by [12]. Fig. 2 also shows

that MaxA and Mar.A inferences on the Partial model pro-

duce inferior body part prediction accuracy compared to

Partial+ Joint. However, Partial+MaxA strikes a good bal-

ance between body joint prediction accuracy and efficiency.

Torso Orientation Estimation. As a baseline method

(BL), we learn a classification forest (Eq. 14) using the

tree structures in the Partial model. The comparison be-

tween BL, and Full + Joint and Partial + Joint is shown in

Fig. 4a. Our methods achieve similar accuracy compared

to the baseline method, while simultaneously predicting the

body joint locations.

Model analysis. We now investigate the effect of the prior

knowledge of the torso orientation on body joint prediction

accuracy. In Fig. 3, we compare Partial + Joint with dif-

ferent levels of uncertainty of the torso orientation (e.g. set

p(a) to be uniform distributions across 360◦, 56◦, 33◦, 11◦).

When the uncertainty of the torso orientation reduces from

360◦ to 56◦, the body joint prediction error improves from

25% relative reduction to 30% relative reduction compared

to [12]. In many real world applications such as gaming,

a rough estimate of the torso orientation (∼ 50◦) can be

inferred from the context and can be used to significantly

improve body joint prediction accuracy.

To understand the correlation between torso orientation

and body joint location, we show the selected maximum
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Figure 4: Panel (a) compares the mean accuracy (y-axis) between the

baseline classification forest, Full+Joint, and Partial+Joint, when different

errors in degree are considered as misclassified. Panel (b) shows the se-

lected Da in Eq. 9 (i.e., the number of neighbours for vote transfer) for

different combinations of body joint (y-axis) and state of the torso orienta-

tion (x-axis). Notice that brightness-coded bins represent long range vote

transfer is required (i.e.,larger Da). Body joints above the red separation

line are closely correlated with the torso orientation.

vote transfer distance (Da) which produces the best predic-

tion accuracy on the validation set for each unique pair of

body joint and state of the torso orientation (Fig. 4b). Inter-

estingly, the closer the body joint with respect to the torso,

the smaller Da is selected. This implies that there might

be other global variables which can improve the body joint

prediction accuracy for hands, foot, etc., more than the torso

orientation.

6.2. Conditioning on Person Height

We divide the person height (ranging from about 0.5m to

2m) into 4 discrete partitions (i.e. ∼ 0.4m each partition),

and define models with 4 global states. The number of im-

ages in the MSRC dataset are distributed in different parti-

tions with the proportion (0.14 : 0.47 : 1 : 0.17). The num-

ber of training images in each partition affects the value of

the scoring function. Therefore, before we select the param-

eters for vote transfer on the validation set, we first estimate

a weight to be multiplied on the score of each state so that

the scores are comparable (see more detail in our technical

report [32]). Our learned weights 1.5433, 1.0230, 1, 2.8497



0.1

0.2

0.3

0.4

0.5

1 2 3 4 meanmErr

[12](New Metric)

Joint

MaxA

Mar.A

Short Tall

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

1 2 3 4 meanmErr

Inf

1.125m

0.375m

Short Tall

Figure 5: (Left) Mean body joint prediction error (y-axis) compari-

son between [12] and three recognition approaches (e.g.Joint, MaxA, and

Mar.A) applied on our Partial model for different player heights (x-axis).

(Right) Mean body joint prediction errors (y-axis) for different play heights

(x-axis) under different level of player height uncertainty (color coded).
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Figure 6: Person height estimation accuracy comparison between

Partial + Joint (a) and the baseline classification forest (b).

are roughly proportional to the inverse of the size of each

partition. We also observe that the scale of the relative

body joint locations changes a lot when the person height

is changed. However, the ratio between the body joint rela-

tive location and person height remains much more stable.

Therefore, instead of transferring the absolute votes from

neighbouring states, we first rescale the votes (see our tech-

nical report [32]). Other than these two additional steps,

we follow the procedures described in Sec. 6.1 to train the

conditional models.

Body joint prediction. Here we only evaluate the Partial

model since it is compact and typically produces results

similar to the full model. The body joint prediction com-

parison between [12] and different recognition approaches

applied on the Partial model is shown in Fig. 5-Left. It can

be seen that the Joint approach achieves the lowest error.

Person height estimation. The comparison between the

classification forest Baseline (BL) and Partial + Joint is

shown in Fig. 6. Our method achieves better accuracy

(mAcc. 74.45%) compared to BL (mAcc. 68.68%), while

simultaneously predicting body joint locations.

Model analysis. In Fig. 5-Right, we compare the accuracy

of Partial + Joint with different levels of uncertainty of the

player height. The accuracy improves when prior knowl-

edge is available and the level of uncertainty is reduced.

Multiple frames. We now consider a new dataset which

contains multiple frames for each human subject. Since

person height is a stationary variable for each subject, our

methods can use temporal consistency to obtain more ac-

curate height estimates (Fig. 8b) and in turn body part loca-

tions (Fig. 8a). We observe that person height estimation ac-

Figure 7: Predicted body joint locations. Each example shows an input

depth image overlaid with color-coded ground truth body joint locations,

and then inferred body joint locations from front, right, and top views. The

size of the boxes indicates the inferred confidence. We compare the pre-

dictions of Partial + Joint (First-Column) with [12] (Last-Column). We

observe that the method proposed in [12] confuses symmetric body joints

in many images. For instance, left-wrist (pink) is confused with the right-

wrist (light-blue) in the first example (highlighted in red circles). Our pro-

posed model with a global variable encoding torso orientation does much

better. Our method can also predict occluded body joints more accurately

(e.g. the occluded hips are successfully predicted in the second row (high-

lighted in green circles)). When a variable encoding human height is used,

we observe more accurate prediction especially for kids (e.g. our predic-

tions in the last row is less noisy (highlighted in blue circles)).
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Figure 8: Stationary player height across multiple frames (up to 30

frames). Panel (a) shows the mean body joints prediction errors (y-axis)

when different number of frames (x-axis) are observed. Panel (b) shows

the mean accuracies of predicted player heights (y-axis) when different

number of frames (x-axis) are observed. In both panels, the accuracies of

4 states of player height are shown in curves with different color.

curacy improves significantly when more frames are given

(except for the tallest person state (PH4)), and the body joint

prediction error reduces for every state of the person height.

7. Conclusion and Future Work

We have presented a novel conditional regression model

that significantly outperforms the state-of-the-art method

for predicting human pose from depth images [12]. Our

model incorporates dependency relationships between out-

put variables through a global latent variable while still

maintaining low computational cost. We show that the in-

corporation of a global latent variable encoding torso orien-

tation, or human height, etc., can dramatically increase the

accuracy of body joint location prediction. Further, it also

allows efficient and seamless incorporation of prior knowl-

edge about the problem instance. When there exists an effi-



cient way to estimate the global variable (e.g. torso orienta-

tion) with good accuracy, Partial+MaxA strikes a good bal-

ance between accuracy and efficiency. We also show how

our model can efficiently utilize temporal consistency in the

state of the global variable such as the height of the subject

to improve performance. The method presented in this pa-

per is general and can be applied to other problems where

random forests are used.

Our results raise a number of interesting questions. How

can one makes the model conditioned on continuous vari-

ables rather than having to discretize the domain of the

global variables? Conditioning on different global variables

implies different dependencies among locations of body

parts. Can we infer the global variables that lead to the best

accuracy for predicting body part locations? Similarly, for a

general image labelling problem, like object segmentation,

can we find the definition of the global latent variable that

leads to the best performance? We believe all these ques-

tions are interesting directions for future work.
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