
SIRC: An Extensible Reconfigurable Computing 

Communication API

Ken Eguro 

Embedded and Reconfigurable Computing Group 

Microsoft Research 

Redmond, WA USA 

e-mail: eguro@microsoft.com 

 
Abstract—Reconfigurable computing applications often need to 

divide computation between software running on a 

conventional desktop processor and hardware mapped to an 

FPGA.  However, the reconfigurable computing development 

platforms available today either do not provide a sufficient 

mechanism for the communication and synchronization that is 

needed or else employ a complex & proprietary API specific to 

a given toolflow or device, limiting code portability.  The 

Simple Interface for Reconfigurable Computing (SIRC) 

project provides a straightforward, portable and extensible 

open-source communication and synchronization API.  It 

consists of both a software-side interface and a hardware-side 

interface that allows C++ code running on a host PC to 

communicate and synchronize with a Verilog-based circuit 

mapped to a FPGA.  One key feature of this API is that both 

the hardware and software user interfaces can remain 

consistent across all platforms and future releases.  This allows 

applications built for existing systems to migrate to different 

platforms without significant modification to user code. 

Keywords-FPGA, communication API, open-source 

I.  INTRODUCTION 

Even among the applications that are best-suited for 
execution on an FPGA, there is often the need to perform 
some part of the computation in software.  This division of 
labor makes a mechanism for communicating between the 
software and hardware portions of an application necessary.   

A popular way of building a reconfigurable computing 
platform is to attach a commercially available FPGA 
development board to a conventional desktop computer via a 
standard interface (e.g. Xilinx ML-series board 
communicating with a PC via Ethernet or PCI-E).  Although 
inexpensive, these systems generally lack the high-level 
hardware and software support that users need to easily 
communicate and synchronize at the application level.  

This lack of support for higher-level functionality means 
that significant engineering is required before development 
can begin on the actual target application.  Developers must 
build interface logic and low-level software to use the raw 
functionality provided by vendors of hardware IP and 
software drivers.  Developers may be very hesitant to invest 
the necessary time and effort to make these essential pieces.  
Time-to-market plays a role, as does the fact that any 
engineering effort would likely be very specific to a given 

platform.  Changing the communication interface, operating 
system, FPGA board, or lower-level IP that is used could 
require repeating the entire process in the future. 

One potential solution to this problem is to use a 
sophisticated commercial development toolflow that offers a 
higher-level synchronization and communication protocol 
(e.g. Impulse C).  Unfortunately, these development tools 
can be expensive, making them inaccessible to small 
research and development groups.  Furthermore, the user 
APIs that these development tools present are often complex 
and proprietary, preventing the developer from porting their 
application to other toolflows or to unsupported platforms. 

There has been work in the research community looking 
into the HW/SW interface for reconfigurable computing 
systems.  However, the focus of these projects has largely 
been on creating programming abstractions for developers to 
easily model the parallelism or communication relationships 
between their hardware and software modules (e.g. multi-
threading [1] or message passing [2]).  While appropriate for  
large-scale computations in which the HW/SW co-design 
problem is complex, these programming models may be 
overly complicated and introduce unnecessary overhead in 
smaller-scale systems in which the computation is not split 
over multiple hardware modules and the division between 
what should be done in hardware versus software is clear. 

For reconfigurable computing and FPGAs in general to 
gain traction outside of the most skilled or well-funded 
application developers, the community needs a simple, open-
source communication API.  Towards this end, the Simple 
Interface for Reconfigurable Computing (SIRC) project [3] 
was designed with a particular emphasis on ease-of-use, 
future extensibility, and backwards compatibility. 

II. USAGE MODEL & DESIGN OVERVIEW 

SIRC defines both a high-level software-side API and a 
high-level hardware-side API to allow C++ code running on 
a host processor to communicate and synchronize with a 
Verilog-based circuit mapped to a FPGA.  To provide the 
most approachable system possible, SIRC operates in a 
master/slave style arrangement in which commands issued 
by the user’s software directs the execution of the user’s 
hardware.  The expectation is that the user’s software will 
follow this basic operational model: 

1) send one or more pieces of data from the host PC to 
an input buffer connected to their circuit on the FPGA 



2) signal the FPGA to start execution on that data 
3) wait until the circuit indicates that computation is 

complete 
4) retrieve the results from an output buffer, also 

connected to the FPGA-based logic 
In turn, the hardware side of the user’s application will: 

1) wait until signaled by the software API to begin 
execution  

2) fetch input data from an input buffer, compute on that 
data and place the results into an output buffer 

3) signal the software API that execution has completed 
and return to an idle state 

 
For simplicity sake, this batched execution model 

operates in a single-threaded manner for a given partnered 
pair of one instance of the software API and one instance of 
the hardware API (i.e. only one operation is performed at a 
time and overlapped reads and writes are not allowed).  As 
will be discussed in more detail later, multiple sets of API 
interfaces can be used together to support streaming-style 
execution with overlapped I/O. 

As seen in Fig. 1, the software and hardware APIs focus 
on four fundamental components: two data buffers, a 
parameter register file, and an execution control module.  
The sizes of the bulk-transfer input and output buffers are 
compile-time constants and can be customized by the user.  
The parameter register file is primarily intended to be used 
for runtime data that seldom changes (e.g. a session hash 
key).  The execution control module is not only used to 
signal when the user logic can begin execution and when it is 
complete, it also enforces read and write synchronization 
between the user’s software and hardware.  The user’s 
software begins with exclusive read/write access to the 
register file and I/O buffers.  When the user’s hardware is 
given permission to execute, exclusive read/write access is 
transferred to the user’s circuit until it indicates that 
execution is complete or until execution is aborted by the 
software API. 

III. SOFTWARE API 

The software API consists of a SIRC C++ class and its 
12 member functions.  Table I shows the SIRC class 
included in our initial release of the project.  Although this 
particular class implements communication over Gigabit 
Ethernet, the class name and the type of argument passed to 
constructor are the only items that will differ between SIRC 
software classes, regardless of platform or communication 
mechanism.  This allows any SIRC class to be substituted for 
any other with minimal changes to user C++ code. 

The argument passed to the constructor is a unique 
identifier for the intended hardware-side SIRC counterpart of 
the newly created class object.  In the case of the Ethernet 
communication class shown in Table I and Fig. 2, the 
constructor is called with the MAC address of a specific 
instance of the SIRC hardware API that will be programmed 
onto the FPGA at execution time.  This is the one and only 
instance of the hardware API with which the software object 
will communicate. 

One problem with the constructor of a C++ class is that it 
simply succeeds or fails – it either returns a valid or null 
pointer.  While this is sufficient for the purposes of memory 
allocation, there are any number of reasons for which the 
constructor (or any other of the member functions) of a SIRC 
class object may fail. Some of the errors may be fatal and 
persistent, and some may be recoverable and transient.  Thus, 
it is important to provide the user with the reason for a given 
 

Output
Buffer

Parameter 
Register 

File

Input
Buffer

Software 
API

Hardware 
API

Commands
from user’s

software

Interface
to user’s

hardware

Execution 
Control

 
Figure 1.  High-level relationship between the software & hardware APIs 

TABLE I.  EXAMPLE OF SIRC SOFTWARE API CLASS AND MEMBER 

FUNCTIONS: CONNECTION VIA GIGABIT ETHERNET 

ETH_SIRC (uint8_t *FPGA_ID) Class constructor.  Initializes 
software side of API and verifies 

that the matching hardware-side 

interface can be contacted.   

~ ETH_SIRC() Class destructor. 

int8_t getLastError() Return error code returned by last 

execution of a class function 

BOOL sendWrite( 
 uint32_t startAddress,  

 uint32_t length,  

 uint8_t *buffer) 

Send block of data from software 
buffer to FPGA API input buffer. 

BOOL sendRead( 

 uint32_t startAddress,  

 uint32_t length,  
 uint8_t *buffer) 

Read block of data from FPGA  

API output buffer back to 

software buffer. 

BOOL sendParamRegisterWrite( 

 uint8_t  regNumber,  
 uint32_t value) 

Write value to FPGA API 

parameter register. 

BOOL sendParamRegisterRead( 

 uint8_t regNumber,  
 uint32_t *value) 

Read value from FPGA API 

parameter register. 

BOOL sendRun() Signal FPGA API that user circuit 

can begin execution.  Transfer 

buffer/register file R/W access to 
user logic. 

BOOL waitDone( 

 uint8_t maxWaitTime) 

Wait up to N seconds for the user 

circuit to signal execution is 
complete and buffer/register file 

R/W control has been 

relenquished 

BOOL sendReset() Abort execution of user circuit 

and return buffer/register file R/W 

control to software. 

BOOL sendWriteAndRun( 

 uint32_t startAddress,  

 uint32_t inLength, 
  uint8_t *inData,  

 uint8_t maxWaitTime, 

 uint8_t *outData,  
 uint32_t  maxOutLength,  

 uint32_t *outputLength) 

Combination of sendWrite, 

sendRun, waitDone and sendRead 

functions.  For performance 
reasons, use this function rather 

than separate explicit function 

calls. 

BOOL sendConfiguration( 
 char *path) 

Reconfigure FPGA using 
provided bitstream file 



1 int main(){ 

2  uint8_t MAC[6]  = {0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA}; 
3  uint8_t input[4] = {1, 2, 3, 4}; uint8_t output[4]; uint32_t outLength; 

4  *ETH _SIRC fpga = new ETH_SIRC(&MAC); 

5  if(!fpga || fpga->getLastError() != 0) exit(-1); 
6  if(!fpga->configure(“pathtobitstream”)) //Configure FPGA 

7   cerr << “error “ << fpga->getLastError(); exit(-1); 

8  if(!fpga->sendWrite(0, 4, &input)) //Send input data 
9   cerr << “error “ << fpga->getLastError(); exit(-1); 

10  if(!fpga->sendRun())       //Begin execution 

11   cerr << “error “ << fpga->getLastError(); exit(-1); 
12  if(!fpga->waitDone(2))      //Wait up to 2 seconds 

13   cerr << “error “ << fpga->getLastError(); exit(-1); 

14  if(!fpga->sendRead(0, 4, &output)) //Retrieve results 
15   cerr << “error “ << fpga->getLastError(); exit(-1); 

  //Execute again, but use the faster, more concise batch command 

16  if(!fpga->sendWriteAndRun(0, 4,& input, 1, &output, 4,  
                      &outLength)) 

17   cerr << “error “ << fpga->getLastError(); exit(-1); 

18  return 0; 
19 } 

Figure 2.  Using the software API to process 4 bytes of data on FPGA 

failure.  This is where the getLastError() function comes into 
play.  As shown in Fig. 2, getLastError() should be called 
after the constructor returns a valid pointer, or after any of 
the other functions return false.  getLastError() will return a 
constant error code that is defined in the SIRC class 
definition.  While these error codes may be specific to a 
given SIRC class, by convention, fatal errors (e.g. memory 
allocation failure) are defined as negative constants and 
errors that may be resolved by retrying a command (e.g. a 
read command is issued while the hardware logic is still 
executing) are defined as positive constants.   

That said, relatively few of the potential errors returned 
by a SIRC class should truly be runtime-recoverable by the 
user.  This is because the functions provided by a SIRC class 
are intended to be robust session-level commands.  For 
example, Ethernet is a fundamentally unreliable 
communication medium.  Thus, our implementation of the 
ETH_SIRC class includes automatic packetization and a 
TCP-like acknowledgement/retry mechanism.  In the course 
of normal operation, the user does not need to be notified of 
every dropped packet.  However, in the event that multiple 
consecutive attempts are not acknowledged, the system will 
retry until a pre-defined threshold has been exceeded.  At 
that point, the API will return an error.  This error should be 
considered fatal, because it is likely that it is caused by some 
physical problem that will not be resolved by simply calling 
the function again. 

Although most of the functions shown in Table I are 
relatively straightforward, sendWriteAndRun() requires 
further explanation.  As shown in Fig. 2, this function is 
almost equivalent to explicitly calling sendWrite(), 
sendRun(), waitDone() and sendRead() in series.  One 
difference is purely conceptual – combining these operations 
into a single function call strongly re-enforces the batch 
processing nature of the API.  However, there is also an 
implicit functional difference.  Calling sendRead() separately 
requires the user to know the size of the results that are 
expected back from the hardware.  This may be the case if 
the size of the output is purely a function of the size of the 

input provided or because the user’s logic relays the size of 
the output through the parameter registers.  
sendWriteAndRun(), however, does not require that the user 
know the size of the output response.  Rather, it can receive 
an arbitrary amount of output data and it returns this 
information using the outputLength variable.  For both 
conceptual reasons and for performance reasons, 
sendWriteAndRun() is the preferred method of interfacing 
with the user’s hardware logic.  The other functions are 
included for the sake of simplicity, completeness, and 
debugging. 

IV. HARDWARE API 

A straightforward and standard interface for the hardware 
portion of a reconfigurable computing application is 
particularly important – arguably, even more so than the 
software interface.  This is because the design and debugging 
effort required for the hardware will likely dwarf that 
required to build the accompanying software, regardless of 
how simple the hardware interface is or how skilled the 
developer.  Thus, anything that can shorten the process and 
make a hardware implementation more portable is valuable. 

The abstractions presented by the SIRC software API are 
intended to closely mirror the physical features of the SIRC 
hardware API.  For example, as seen in Fig.3 and Fig. 4, 
when the user calls sendRun() from software, the execution 
control module asserts the userRunValue signal.  This 
notifies the user’s circuit that it can begin execution.  At the 
same time, the handshaking protocols on the I/O buffers and 
the parameter register file become active.  The user’s logic 
can then submit read requests to the input buffer via 
inputMemoryReadReq and inputMemoryReadAdd. The 
user’s circuit should hold the values for the request steady 
until inputMemoryReadAck is asserted.  This signals that the 
read request was accepted by the API logic.  The user’s 
circuit can obtain the input data back from the buffer on the 
inputMemoryReadData bus when inputMemoryRead-
DataValid is asserted.  The circuit can then compute on this  
 

API
Logic

Input
Buffer

inputMemoryReadReq
inputMemoryReadAck
inputMemoryReadAdd[N:0]
inputMemoryReadDataValid
inputMemoryReadData[M:0]

userInterfaceClk

userLogicReset
userRunValue
userRunClear

register32CmdReq
register32CmdAck
register32WriteData[31:0]
register32Address[7:0]
register32WriteEn
register32ReadDataValid
register32ReadData[31:0]

outputMemoryWriteReq
outputMemoryWriteAck
outputMemoryWriteAdd[X:0]
outputMemoryWriteData[Y:0]
outputMemoryWriteByteMask[Y’:0]

Output
Buffer

Parameter 
Register 

File

connections to
physical 

communication 
interface, etc.

user logicAPI controller

Execution
Control

top-level system module

(optional)

Clock 
Generation

 
Figure 3.  Illustration of Hardware API 



1 module simpleExample(input userInterfaceClk, input userRunValue…) 

2  initial begin ... end 
3  always @(posedge userInterfaceClk) begin   

4   case(currState) 

5    IDLE: begin 
6     if(userRunValue)begin 

7      currState <=RUN;  inputMemoryReadAdd <=0; 

8      outputMemoryWriteAdd <=0;  inputMemoryReadReq <=1; 
9    end end 

10    RUN: begin 

     //Should we request a different input value? 
11     if(inputMemoryReadAck && outputMemoryWriteAck) 

12      inputMemoryReadAdd <= inputMemoryReadAdd + 1; 

     //Are we computing on a new input? 
13     if(inputMemoryReadDataValid) outputMemoryWriteReq <=1; 

14     else outputMemoryWriteReq <=0; 

     //Did we output a new result? 
15     if(outputMemoryWriteReq && outputMemoryWriteAck) begin 

16      if(outputMemoryWriteAdd < 3) //Did we output the last result? 

17       outputMemoryWriteAdd <=outputMemoryWriteAdd+1; 
18      else begin 

19       currState <= FINISH; userRunClear <= 1; 

20       outputMemoryWriteReq <= 0; 
21    end end end 

22    FINISH: begin 

23     currState <= IDLE; userRunClear <= 0;  
24     inputMemoryReadReq <=0; 

25    end  

26   endcase 
27   outputMemoryWriteData <=inputMemoryReadData + 1; 

28  end 

29 endmodule 

Figure 4.  Using the hardware API to increment 4 bytes of received data 

data and submit results to the output buffer over a similar 
handshaking interface.   

As mentioned earlier, multiple sets of API interfaces can 
be used simultaneously to allow overlapped I/O and 
streaming execution.  For example, if the user creates two 
instances of the software-side API (in two different threads), 
each one will communicate independently with one of two 
hardware-side APIs.  Each of these hardware APIs will have 
their own set of I/O buffers, parameter registers, and 
associated handshaking/execution control signals.  The user 
logic can then alternate between these two independent 
hardware interfaces in a double-buffering manner. 

V. DETAILS OF THE ETHERNET SIRC IMPLEMENTATION 

The current implementation of the SIRC software API 
requires the Virtual Network Services driver freely available 
from Microsoft.  The documentation included with our 
source code provides detailed instruction regarding how to 
download, install, and set up this driver.  It has been tested 
using both Visual Studio 2005 and Visual Studio 2008. 

The current hardware implementation of the Ethernet 
SIRC API targets Xilinx Virtex 5 “transceiver” devices – i.e. 
the LXT, SXT, TXT, FXT chips, but not the baseline LX 
series.  The LX series is not supported because our 
implementation uses the on-board Ethernet MAC only found 
on the “T” devices.  Our implementation also utilizes two 
pieces of Xilinx Core Generator IP, the EMAC wrapper core 
and the block memory generator.  These cores are available 

free of charge from Xilinx, but must be generated by the end 
user.  Lastly, the default pin layout of the project targets the 
Xilinx ML505, ML507 and Digilent XUP-V5 development 
boards.  With the proper modifications to the pin layout, any 
board with a compatible FPGA and an external GMII 
Ethernet PHY can be used.  The documentation included 
with our source code provides detailed instructions regarding 
how to generate, customize and compile the SIRC hardware 
API. 

In our testing of the full SIRC system, sendWrite() and 
sendRead() were able to achieve effective transfer rates of 
~950Mbps (98% theoretical max) for transfers greater than 
512KB and consistently over 450Mbps for smaller transfers.  
Furthermore, all of the transmission and execution functions 
incurred less than 65μs of roundtrip latency beyond the 
minimum theoretical transfer or FPGA-based logic execution 
time. 

Alongside any community-based support, we intend to 
consistently maintain the SIRC API.  For example, new 
versions of the system supporting PCI Express, DDR2 
memory and multi-user/multi-device platforms are currently 
under development.  These will be released later this year. 

VI. CONCLUSIONS 

In this paper, we have presented SIRC, a software-
hardware communication and synchronization API 
specifically designed for reconfigurable computing 
platforms. The high-level, platform-agnostic design of the 
API allows us to completely separate the implementation 
details a given communication mechanism from all user-
generated application code.  Combined with its open-source 
nature, the FPGA community can add support for new 
communication protocols and devices with full compatibility 
with all applications past and future.  Developers can freely 
migrate their applications to different supported platforms 
with virtually no source code modifications.  Furthermore, 
the API uses easy-to-understand session-level operations.  
This makes it possible for developers to build high-
performance computing applications with nothing but a basic 
knowledge of C++ and Verilog.  No knowledge of drivers, 
operating systems or communication protocols is necessary. 

These characteristics dramatically lower the cost, effort 
and risk generally associated with developing applications on 
reconfigurable hardware.  We believe that this will attract a 
new breed of FPGA users/developers and encourage 
reconfigurable devices in a more widespread range of 
applications. 

REFERENCES 

[1] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J Stevens, F. 
Baijot, and E. Komp, “Achieving Programming Model Abstractions 
for Reconfigurable Computing,” IEEE Transactions on VLSI, vol. 16, 
No. 1, Jan. 2008, pp. 34-44. 

[2] M. Saldana, A. Patel, C. Madill, D. Nunes, D. Wang, H. Styles, A. 
Putnam, R. Wittig, and P. Chow “MPI as an Abstraction for 
Software-Hardware Interaction for HPRCs,” presented at HPRCTA 
2008. 

[3] Download from http://research.microsoft.com/en-us/people/eguro/  

 


