
Leveraging Endpoint Flexibility in Data-Intensive Clusters

Mosharaf Chowdhury1, Srikanth Kandula2, Ion Stoica1
1UC Berkeley, 2Microsoft Research

{mosharaf, istoica}@cs.berkeley.edu, srikanth@microsoft.com

ABSTRACT
Many applications do not constrain the destinations of their net-
work transfers. New opportunities emerge when such transfers con-
tribute a large amount of network bytes. By choosing the endpoints
to avoid congested links, completion times of these transfers as well
as that of others without similar �exibility can be improved. In this
paper, we focus on leveraging the �exibility in replica placement
during writes to cluster �le systems (CFSes), which account for al-
most half of all cross-rack tra�c in data-intensive clusters. �e repli-
cas of a CFS write can be placed in any subset of machines as long
as they are in multiple fault domains and ensure a balanced use of
storage throughout the cluster.
We study CFS interactions with the cluster network, analyze op-

timizations for replica placement, and propose Sinbad – a system
that identi�es imbalance and adapts replica destinations to navigate
around congested links. Experiments on EC2 and trace-driven sim-
ulations show that block writes complete 1.3× (respectively, 1.58×)
faster as the network becomes more balanced. As a collateral ben-
e�t, end-to-end completion times of data-intensive jobs improve as
well. Sinbad does so with little impact on the long-term storage bal-
ance.

Categories and Subject Descriptors
C.2 [Computer-communicationnetworks]: Distributed systems—
Cloud computing

Keywords
Cluster �le systems, data-intensive applications, datacenter net-
works, constrained anycast, replica placement

1 Introduction
�e network remains a bottleneck in data-intensive clusters, as ev-
idenced by the continued focus on static optimizations [7, 31] and
data-local task schedulers [10, 34, 43, 44] that reduce network us-
age, and on scheduling the exchanges of intermediate data [10, 20].
�e endpoints of a �ow are assumed to be �xed: network sched-
ulers [8, 13, 20, 28] can choose between di�erent paths, vary rates of
�ows, and prioritize one �ow over another, but they cannot change
where a �ow originates from or its destination.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

However, many inter-machine transfers do not require their des-
tinations to be in speci�c locations as long as certain constraints
are satis�ed. An example of such transfers in data-intensive clus-
ters is the writes to cluster �le systems (CFSes) like GFS [27], HDFS
[15], Cosmos [19], Amazon S3 [2], or Windows Azure Storage [17].
�ese systems store large pieces of data by dividing them into �xed-
size blocks, and then transferring each block to three machines (for
fault-tolerance) in two di�erent racks (for partition-tolerance) using
chain replication [42]. �e replicas can be in any subset of machines
that satisfy the constraints.
Analysis of traces from production clusters at Facebook and Mi-

croso� reveals that such replicated writes (referred to as distributed
writes from hereon) account for almost half of all cross-rack tra�c in
both clusters (§4). Moreover, recent data suggests a growing trend in
the volume of distributed writes with hundreds of terabytes of data
being ingested everyday into di�erent CFS installations [5,6,17]. We
also �nd that while the network is o�en underutilized, there exists
substantial imbalance in the usage of bottleneck links. Such im-
balance leads to congestion and performance degradation. Com-
mon causes of imbalance include skew in application communica-
tion patterns1 [14,35] and a lack of control on the background tra�c
in multi-tenant datacenters.
Even though replication takes place over the network, its interac-

tions with the network have so far been ignored. In this paper, we
present Sinbad, a system that leverages the �exibility in endpoint
placement during distributed writes to steer replication transfers
away from network hotspots. Network-balanced placement has two
implications. First, it improves CFS write throughput by avoiding
network contention; response times of tasks that write improve as
well. Second, by steering CFS’ tra�c away from hotspots, through-
put of non-CFS tra�c on those links increase; in data-intensive clus-
ters, this speeds up tasks that shu�e intermediate data and jobs with
large shu�es.
Exercising the freedom in endpoint selection in our approach

is akin to that of overlay anycast, which is typically employed by
latency-sensitive request-response applications to select the “best”
source (server) from where to retrieve the content [18, 25]. How-
ever, in the case of distributed writes, we exploit this �exibility for
picking the “best” set of destinations to maximize the throughput
of replicating large blocks. In addition, we consider constraints like
the number of fault domains and aim to minimize the storage im-
balance across machines.
Storage imbalance during replica placement is harmful, because

machines receiving too many replicas can become hotspots for fu-
ture tasks. Existing CFSes employ a uniform replica placement pol-
1For example, when counting the occurrences of DISTINCT keys in
a dataset, the amount of data in each partition (to be received by
corresponding reducer) can be very skewed.

icy and perform periodic re-balancing to avoid such imbalance. We
show that a network-balanced placement policy does not trigger ad-
ditional storage balancing cycles. While network hotspots are stable
in the short term to allow network-balanced placement decisions,
they are uniformly distributed across all bottleneck links in the long
term ensuring storage load balancing.
Optimizing distributed writes is NP-hard even in the o�ine case,

because �nding the optimal solution is akin to optimally schedul-
ing tasks in heterogeneous parallel machines without preemption
[9, 26]. We show that if hotspots are stable while a block is being
written and all blocks have the same size, greedy placement through
the least-loaded bottleneck link is optimal for optimizing the av-
erage block write time (§5). Under the same assumptions, we also
show that to optimize the average �le write time, �les with the least
remaining blocks should be prioritized.

Sinbad employs the proposed algorithms and enforces neces-
sary constraints tomake network-aware replica placement decisions
(§6). It periodically measures the network and reacts to the im-
balance in the non-CFS tra�c. An application layer measurement-
based predictor performs reasonably well in practice due to short-
term (few tens of seconds) stability and long-term (hours) uniform-
ness of network hotspots. We �nd this approach attractive because
it is not tied to any networking technology, which makes it readily
deployable in public clouds.
We have implemented Sinbad as a pluggable replica placement

policy for the Facebook-optimized HDFS distribution [4]. HDFS is
a popular open-source CFS, and it is the common substrate behind
many data-parallel infrastructures [3, 32, 45]. We avoid the many
known performance problems in Hadoop [3] by running jobs us-
ing an in-memory compute engine (e.g., Spark [45]). We have eval-
uated Sinbad (§7) by replaying the scaled-down workload from a
Facebook trace on a 100-machine Sinbad deployment on Amazon
EC2 [1]. We show that Sinbad improves the average block write time
by 1.3× and the average end-to-end completion time of jobs by up to
1.26× with limited penalties due to its online decisions. In the pro-
cess, it decreases the imbalance across the network with little impact
on storage load balancing. For in-memory storage systems, the im-
provements can be even higher. �rough trace-driven simulations,
we also show that Sinbad’s improvement (1.58×) is close to that of an
optimistic estimation (1.89×) of the optimal.
We discuss known issues and possible solutions in Section 8, and

we consider Sinbad in light of relevant pieces of work in Section 9.

2 CFS Background
�is section provides a brief architectural overview of cluster
�le systems (CFSes) focusing primarily on the end-to-end write
pipeline. Examples of CFSes include distributed �le systems (DFS)
like GFS at Google [27], HDFS at Facebook and Yahoo! [4, 15], and
Cosmos [19] at Bing. We also include public cloud-based storage
systems like Amazon S3 [2] andWindows Azure Storage (WAS) [17]
that have similar architecture and characteristics, and are exten-
sively used by popular services like dropbox.com.
2.1 SystemModel
A typical CFS deployment consists of a set of storage slaves and a
master that coordinates the writes to (reads from) CFS slaves. Files
(aka objects/blobs) stored in a CFS are collections of large blocks.
Block size in production clusters varies from 64 MB to 1 GB.2 �e
block size demonstrates a trade-o� between disk I/O throughput vs.
the bene�t from parallelizing across many disks. Most CFS designs
provide failure recovery guarantees for stored �les through replica-
tion and ensure strong consistency among the replicas.
2Blocks are not padded, i.e., the last block in a �le can be smaller.

Core!

Fault Domain 1/!
Rack 1!

Fault Domain 2/!
Rack 2!

Fault Domain 3/!
Rack 3!

Figure 1: Distributed write pipeline. Each block has three copies in two racks
and three di�erent machines.

WriteWork�ow Whenwriting a �le to the CFS, the client provides
a replication (r) factor and a fault-tolerance (f) factor to ensure that
each block of that �le has r copies located in at least f (< r) fault
domains. �e former is for load balancing (blocks in popular �les
have more replicas [11]), while the latter ensures availability in spite
of failures. Machines in di�erent racks are typically considered to be
in independent fault domains. Typically, r = 3 and f = 1; meaning,
each block is stored in three machines in two racks and can survive
at most one rack failure (Figure 1). �us, writing a block copies it at
least once across racks.

�e replica placement policy in the CFS master independently
decides where to place each block irrespective of their parent �les.
Blocks from the same �le and their replicas need not be collocated.
�e goal is to uniformly place blocks across all machines and fault
domains so as to
● minimize the imbalance in storage load across disks, and
● balance the number of outstanding writes per disk.
Both these constraints assume that writes are bottlenecked only

by disks. �is assumption, however, is not always true since the ex-
tent of oversubscription in modern datacenter networks (typically
between the core and racks) can cause writes to bottleneck on the
oversubscribed links. Even on topologies with full bisection band-
width, writes can bottleneck on the servers’ network interfaces for
high in-degrees orwhen the cumulative write throughput of a server
is larger than its NIC speed. For example, a typical server with six to
eight commodity disks [33, 41] has sequential write throughput that
is several times the typical NIC speed (1 Gbps).
Once replica locations have been determined, theCFS slave trans-

fers the block to the selected destinations using chain replication
[42]. Distributed writes are synchronous; to provide strong consis-
tency, the originator task will have to wait until the last replica of the
last block has been written. Hence, write response times in�uence
task completion times as well.

ReadWork�ow Reading from the CFS is simpler. Given a �le, the
CFS master reports the locations of all the replicas of all the blocks
of that �le. Given these locations, task schedulers try to achieve data
locality through a variety of techniques [10, 34, 43, 44].
Although reads are separate fromwrites, read performance is still

in�uenced by the placement of blocks. By minimizing storage im-
balance, a CFS strives to minimize the performance impact of reads
in future tasks.

2.2 Network Model

CFS deployments in modern clusters run on topologies that o�en
have a full-bisection bandwidth core (e.g., fat-tree [38], VL2 [28])
with some oversubscription in core-to-rack links (Figure 1). We
consider a network model, where downlinks to storage racks can
be skewed. �is is common in typical data-intensive clusters with

•  Static Information!
•  Network topology!
•  Link, disk capacities!
•  Dynamic distributions of !
•  loads in links!
•  popularity of files!

Info (from slaves)!

Sinbad Master!Where to put
block B?!

{ Locations }!

•  At least r replicas!
•  In f fault domains!
•  Collocate with block B’!
•  …!

Constraints & Hints!

Figure 2: Decision process of Sinbadmaster.

collocated compute and storage. For dedicated storage racks (i.e.,
when compute and storage are not collocated), skew can still exist
due to random placement decisions made by the CFS master.

3 Sinbad Overview
Sinbad is a measurement-based system to perform network-
balanced replica placement during distributed writes. In this sec-
tion, we present a brief overview of Sinbad to help the reader follow
the measurements (§4), analysis (§5), and design (§6) presented in
subsequent sections.

3.1 Problem Statement

Given a replica placement request – with information about the lo-
cation of the writer, size of the block, and the replication factor –
Sinbadmust return a set of locations for the CFS master to replicate
that block to (Figure 2). All information about a block request is
unknown prior to its arrival.
One can think of this problem as constrained overlay anycast in

a throughput-sensitive context. However, instead of retrieving re-
sponses from the best sources, we have to replicate large blocks to
multiple machines in di�erent fault domains without introducing
signi�cant storage imbalance across the cluster.

�e problem of placing replicas tominimize the imbalance across
bottleneck links is NP-hard even in the o�ine case (§5). Sinbad em-
ploys algorithms developed by exploiting observations from real-
world clusters (§4) to perform reasonably well in realistic settings.

3.2 Architectural Overview

Sinbad is designed to replace the default replica placement policy in
existing CFSes. Similar to its target CFSes, Sinbad uses a central-
ized architecture (Figure 3) to use global knowledge while making
its decisions. Sinbad master is collocated with the CFS master, and
it makes placement decisions based on information collected by its
slaves.

Sinbad slaves (collocated with CFS slaves) periodically sendmea-
surement updates to the master by piggybacking on regular heart-
beats from CFS slaves. �ey report back several pieces of infor-
mation, including incoming and outgoing link utilizations at host
NICs and current disk usage. Sinbad master aggregates the col-
lected information and estimates current utilizations of bottleneck
links (§6.2). Sinbad uses host-based application layer techniques for
measurements. �is comes out of practicality: we want Sinbad to
be usable in public cloud o�erings with little or no access to in-

Sinbad
Master!

CFS
Master!

CFS
Slave!

Sinbad
Slave!

CFS
Slave!

Sinbad
Slave!

CFS
Slave!

Sinbad
Slave!

Where to put
block B?!

Machine!

Figure 3: Sinbad architecture. Sinbad agents are collocated with the corre-
sponding agents of the parent CFS.

Table 1: Details of Facebook and Microso� Bing Traces

Facebook Microso� Bing
Date Oct 2010 Mar-Apr 2012
Duration One week One month
Framework Hadoop [3] SCOPE [19]
Jobs 175, 000 Tens of �ousands
Tasks 30 million Tens of Millions
CFS HDFS [4] Cosmos [19]
Block Size 256 MB 256 MB
Machines 3, 000 �ousands
Racks 150 Hundreds
Core:Rack
Oversubscription

10 ∶ 1 Lower (i.e., Better)

network measurement counters. Sinbad can interact nicely with ex-
isting network-level load balancers (e.g., Hedera [8], MicroTE [13],
or ECMP [28]). �is is because network-level techniques balance
load among paths given source-destination pairs, whereas Sinbad
dictates destinations without enforcing speci�c paths.

Fault Tolerance and Scalability Since Sinbad agents are collocated
with that of the parent CFS, host failures that can take Sinbad slaves
o�ine will take down corresponding CFS agents as well. If Sinbad
master dies, the CFSmaster can always fall back to the default place-
ment policy. Because most CFSes already have a centralized master
with slaves periodically reporting to it – Sinbad does not introduce
new scalability concerns. Furthermore, piggybacked measurement
updates from Sinbad slaves introduce little overhead.

4 Measurements and Implications
In this section, we analyze traces from two production data-parallel
clusters – Facebook’s Hadoop-HDFS cluster and Microso� Bing’s
SCOPE-Cosmos cluster. Table 1 lists the relevant details. In both
clusters, core-to-rack links are the most likely locations for network
bottlenecks.
Our goal behind analyzing these traces is to highlight character-

istics – the volume of distributed writes, the impact of writes on job
performance, and the nature of imbalance in bottleneck link utiliza-
tions – that motivate us to focus on distributed writes and enable us
to make realistic assumptions in our analysis and evaluation.

4.1 Network Footprint of DistributedWrites

Available data points indicate a growing trend of the volume of data
ingested into data-intensive clusters. Recent data from Facebook
claims that it ingests more than 500 TB every day (Aug. 2012) [5].
To provide fresh ads and content recommendations, ingestion hap-

Table 2: Sources of Cross-Rack Tra�c

Reads Inter. JobWrites Other Writes
Facebook 14% 46% 10% 30%
Microso� 31% 15% 5% 49%!"#$
!"#%
!"#&
!"#'
!"#(
!")
!")*
!")#
!"))
!")+
!")$
!")%
!")&
!")'
!")(
!"+
!"+*

0!

0.25!

0.5!

0.75!

1!

0! 0.25! 0.5! 0.75! 1!

C
D

F!
(W

ei
gh

te
d

by
 B

yt
es

 W
ri

tte
n)
!

Fraction of Task Duration in Write!

Preproc./Ingest!
Reducers!
Combined!

Figure 4: Weighted CDF of the fraction of task durations spent in writing to
HDFS by tasks with write phases.

pens at regular intervals including peak hours [16,41]. �e ingestion
engine of Windows Azure Storage (WAS) keeps around 350 TB of
Facebook and Twitter data to provide near-realtime search results
within 15 seconds [17]. Finally, Amazon S3 has experienced a sharp
rise in the number of objects it stores since 2006; it currently stores
more than 1.3 trillion objects (Jan. 2013) [6], many ofwhich are likely
to be large blobs due to S3’s performance and pricing models.3

�e impact of the increasing volume of writes was evident in our
traces. Although intermediate transfers are known to have signi�-
cant impact on application performance [20], they are far from be-
ing the dominant source of cross-rack tra�c! We found that inter-
mediate transfers account for 46% and 15% of all cross-rack tra�c in
Facebook and Microso� clusters (Table 2). As expected, both clus-
ters achieved good data locality – only 10% of all tasks read input
from non-local machines [10, 34, 44].
Contrary to our expectations, however, we observed that cross-

rack replication due to distributed writes accounted for 40% and
54% of the network tra�c in the two clusters. In addition to the
�nal output that jobs write to the CFS, we identi�ed two additional
sources of writes:
1. Data ingestion or the process of loading new data into the clus-
ter amounted for close to 50% of all cross-rack bytes in the Mi-
croso� cluster.

2. Preprocessor outputs. Preprocessing jobs only have map tasks.
�ey read data, apply �lters and other user-de�ned functions
(UDFs) to the data, and write what remains for later consump-
tion by other jobs. Combined with data ingestion, they con-
tributed 30% of all cross-rack bytes in the Facebook cluster.

4.2 Impact of Writes on Job Performance

To understand the impact of writes on task durations, we compare
the duration of the write phase with the runtime of each writer. For
a reduce task, we de�ne its “write phase” as the time from the com-
pletion of shu�e (reading its input from map outputs over the net-
work) until the completion of the task. For other writers, we de�ne
the write phase as the timespan between a task �nishing reading its
entire input (from local disk) and its completion time. We found
that 37% of all tasks write to the CFS. A third of these are reduc-
ers; the rest are other writers. We observed that 42% of the reduce
tasks and 91% of other writers spent at least half their durations in
3S3 charges for individual PUT requests, and PUT response times are
empirically better for larger objects.

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4! 5! 6!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load Across
Core-Rack Links!

Down Links!

Up Links!

(a) Facebook

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load Across
Core-Rack Links!

Down Links!

Up Links!

(b) Microso� Bing

Figure 5: Imbalance in 10s average utilizations of up and downlinks between
the core and racks in Facebook and Microso� clusters due to CFS and non-
CFS tra�c.

the write phase (Figure 4). �is suggests that faster writes can help
many tasks to complete earlier.
4.3 Characteristics of Network Imbalance
We found that the cumulative tra�c from intermediate transfers,
distributed writes, cluster management workload, and the tra�c
from collocated services can be substantially imbalanced across the
bottleneck links in the short term (e.g., tens of seconds). Causes
of imbalance include skew in application communication patterns
[14,35], imbalance in the number ofmappers and reducers, and clus-
ter management events such as rolling updates.
We measured network imbalance using the coe�cient of varia-

tion4 (Cv) of the average link utilization in each 10s interval across
up and downlinks (Figure 5). With perfect balance, these values
would be zero. However, in both traces, we found that the down-
links had Cv > 1 for almost half the time. Uplinks were equally im-
balanced in the Facebook trace, but the imbalance was somewhat
lower in the Bing trace. We do not yet know the reason for this.
Although skewed, link utilizations remained stable over short

intervals. Such stability is important to enable predictable online
placement decisions for relatively short block transfers. To analyze
the stability of link utilizations, we calculated average utilization
over di�erent time intervals in all core-to-rack links in the Facebook
cluster. We consider a link’s utilizationUt(l) at time t to be stable for
the duration T if the di�erence betweenUt(l) and the average value
of Ut(l) over the interval [t, t + T) remains within StableCap% of
Ut(l). We observed that average link utilizations remained stable
for smaller durations with very high probabilities. For the most un-
predictable link, the probabilities that its current utilization from
any instant will not change by more than 5% for the next 5, 10, 20,
and 40 seconds were 0.94, 0.89, 0.80, and 0.66, respectively. Com-
pare these with the 256 MB blocks used in these clusters. It will take
around 5s to write such a block at a disk throughput of 50 MBps,
which is small enough to exploit utilization stability periods. We
found that 81% of all bytes written to the CFS come from 32% of the
blocks that are 256 MB in size.
Imbalance without congestion may not impact performance. We

observed in the Facebook trace that the 95th percentile load across
bottleneck links was more than 75% of link capacity 25% of the time.
However, the e�ect of congested links is magni�ed – a single bot-
tleneck link can impact a large number of jobs if they have tasks
communicating through that congested link.
Finally, despite signi�cant short-term imbalance, link usages be-

comemore balanced over longer intervals (e.g., over hours). During
4Coe�cient of variation, Cv = σ

µ , shows the extent of variability in
relation to the mean of the population.

normal operation (i.e., in absence of failures), we observed that each
bottleneck link is almost equally likely to become a hotspot.

4.4 Summary

Wemake the following observations in this section.
● Replication accounts for almost half the cross-rack tra�c in
data-intensive clusters, and its magnitude is rapidly increasing.

● Network congestion in such clusters has signi�cant skew across
bottleneck links in the short term, but the skew is minimal over
longer durations.

● Durations of write tasks (e.g., ingestion and preprocessing tasks)
are dominated by time spent in writing.

● Most bytes written to the CFS belong to themaximum sized (256
MB) blocks.

5 Analytical Results
�edistributed writing problem is NP-hard. In this section, we pro-
vide insights into the complexity of this problem, consider assump-
tions thatmake the problem tractable, and present two optimal algo-
rithms under the simplifying setting. We also discuss the potential
for improvements using a network-aware solution.
Detailed analysis and proofs can be found in the appendix.

5.1 Optimizing BlockWrites

�e primary objective of a CFS is to minimize the average block
write time, which also results in maximizing the system utiliza-
tion of the CFS. �e optimal placement algorithm must select the
best destinations (through suitable bottleneck links) for all block re-
quests as they arrive.

Complexity Optimizing for block writes is NP-hard, even when all
block requests and link capacities are known beforehand. �is can
be proven by a reduction from the NP-hard job-shop scheduling
problem (�eorem A.1).

�e online distributed writing problem is even harder because of
the following reasons:
1. Links have di�erent available capacities.
2. Lack of future knowledge about
(a) bottleneck link utilizations throughout the duration of repli-
cation, and

(b) new replica placement requests (sizes and arrival times) to
arrive while a block is being replicated.

Variations of job shop scheduling with one or more of the above-
mentioned characteristics are known to be NP-hard and hard to ap-
proximate as well [9, 36, 37].

Simpli�ed Model For the ease of analysis, we make the following
assumptions based on our observations in Section 4.
1. Blocks have a �xed size. �e size of each block is already
bounded. Additionally, we assume all blocks to have the same
size (i.e., blocks are padded). Because most bytes are generated
by a third of all blocks written, we ignore the impact of the rest
during analysis.

2. Link utilization is �xed while a block is being written. Since
link utilizations remain reasonably stable in the short term, we
assume that changes in bottleneck links are precisely known
throughout the duration of writing a block. Changes are ex-
pected only due to tra�c introduced by replication.

3. Potential bottleneck links are easily discernible. Given the over-
subscribed (logical) tree-based topologies of data-intensive clus-
ters, links leading in and out of the racks are likely to be the bot-

tlenecks. We assume that the potential network bottlenecks are
known, which allows us to abstract away the topology.5

4. Decision intervals are independent. We assume that block re-
quests arrive at the beginning of decision intervals, and they are
small enough so that their replication �nishes within the same
interval. All decision intervals have the same length, q.
Given the aforementioned assumptions, greedy assignment of

blocks to the least-loaded link �rst is optimal forminimizing the aver-
age block write time (see�eorem A.2). We refer to this algorithm
as OPT . OPT ’s improvements over the uniform placement policy
increases with the increasing imbalance in the network and as the
number of o�-rack replicas increases (§A.2).

5.2 Optimizing File Writes

CFSes store data by dividing it into �xed-sized blocks. Hence, a re-
quest to write a large �le/object generates a sequence of block write
requests. For a writer, the objective then tominimize the average �le
write time. Optimizing the average �le write time is no easier than
optimizing the average block write time, and, it is NP-hard as well.

OPT is optimal when all blocks have the same size. However,
�les can have di�erent sizes, which can result in di�erent numbers of
equal-sized blocks. Using a simple counter-example it can be shown
that OPT is not optimal in this case (Lemma B.1).
Given the assumptions in Section 5.1 and with OPT in place,

greedy assignment of blocks through links in the least-remaining-
blocks-�rst order is optimal forminimizing the average �lewrite time
(see�eorem B.2). We refer to this algorithm as OPT ′.

OPT ′ favors smaller �les. However, larger �les will not com-
pletely starve as long as the arrival rate of block requests does not
exceed the simultaneous serving capacity of the system.

OPT ′ requires the decision interval to be longer than zero (i.e.,
q > 0) so that it can order blocks from di�erent �les by the number
of blocks remaining in their parent �les. In contrast, q = 0 refers to
a pure online solution, where OPT ′ reduces to OPT . �e length of
the decision interval (q) presents a tradeo�. A larger q potentially
provides better opportunities forOPT ′, but it introduces additional
delay to the write time of each block in that interval.

6 Design Details
�is section discusses the expected operating environment of Sin-
bad (§6.1), how Sinbad estimates bottleneck link utilizations across
the cluster (§6.2), and how it incorporates (§6.3) the algorithms in-
troduced in Section 5.

6.1 Operating Environment

We make the following assumptions about the characteristics of
write requests and on the availability of certain pieces of information
(e.g., oversubscription in the topology).
Because most bytes are generated by a third of all blocks written,

we consider only �xed-sized blocks in Sinbad. �is allows Sinbad to
ignore the arrival order of block requests when making a decision
for the current block request. In a sense, this problem is akin to an
online load balancing problem. A frequent stream of roughly equal-
sized entities is quite easy to balance. Contrast this with the case
when block sizes are unbounded; whether or not large blocks will
arrive in the future crucially impacts placement, since one needs to
keep room on both network links and disks for such blocks. �e rest
of the blocks, which are many but contribute insigni�cant amount
of bytes, are placed using the default policy.
5Generalizing to arbitrary topologies adds overhead. For example,
we would have to run max-�ow/min-cut to determine which of the
many bottlenecks are tight given a placement.

Pseudocode 1 Request Dispatching Algorithm
1: procedure getReplicaLocations(Request B)
2: if B.size < THRESHOLD then ▷ Ignore small blocks
3: return Default.getReplicaLocations(B)
4: end if
5:
6: if q = 0 then ▷ Instantaneous decision
7: return selectLinks(B, Nil)
8: end if
9:
10: Q.addToQueue(B) ▷ Queue up the request. Order by policy.
11: end procedure

12: procedure dispatchRequest(Link l) ▷ Called at q intervals.
13: for all B ∈ Q do
14: return selectLinks(B, Nil)
15: end for
16: end procedure

Sinbad uses optional information provided by the operator in-
cluding the topology of the cluster, oversubscription factors at dif-
ferent levels of the topology, and fault domains with corresponding
machines. We populate the bottleneck links’ set (L) with links that
are likely to become bottlenecks; on the topologies used in data-
centers today, these are links that have a high oversubscription fac-
tor (e.g., host to top-of-rack switch and top-of-rack-switch to core).
In the absence of this information, Sinbad assumes that each ma-
chine is located in its own fault domain, andL is populated with the
host-to-rack links.

6.2 Utilization Estimator

Sinbad master receives periodic updates from each slave at ∆ in-
tervals containing the receiving and transmitting link utilizations
at corresponding NICs. A�er receiving individual updates, Sinbad
estimates, for each potential bottleneck link l , the downlink (Rx(l))
and uplink (Tx(l)) utilizations using exponentially weighted mov-
ing average (EWMA):

vnew(l) = α vmeasured(l) + (1 − α) vold(l)

where, α is the smoothing factor (Sinbad uses α = 0.2), and v(.)
stands for both Rx(.) and Tx(.). EWMA smooths out the random
�uctuations. v(l) is initialized to zero. Missing updates are treated
conservatively, as if the update indicated the link was fully loaded.
When L contains internal links of the topology (i.e., links be-

tween switches at di�erent levels), vnew(l) is calculated by sum-
ming up the corresponding values from the hosts in the subtree of
the farthest endpoint of l from the core.
�e update interval (∆) determines how recent the vnew(l) val-

ues are. A smaller ∆ results in more accurate estimations; however,
too small a ∆ can overwhelm the incoming link to the master. We
settled for ∆ = 1s, which is typical for heartbeat intervals (1 to 3 sec-
onds) in existing CFSes.

Hysteresis A�er a Placement Decision Once a replica placement
request has been served, Sinbad must temporarily adjust its esti-
mates of current link utilizations in all the links involved in transfer-
ring that block to avoid selecting the same location for subsequent
block requests before receiving the latest measurements. We use an
increment function I(B, δ) that is proportional to the size of the
block and inversely proportional to the amount of time remaining
until the next update (denoted by δ). At the beginning of an update
period, we set v̂(l) = vnew(l), and upon each assignment of a block

Pseudocode 2 Link Selection Algorithm
1: procedure selectLinks(Request B, Link l)
2: if l is an edge link then ▷ Terminating condition
3: return {Machine attached to l}
4: end if
5:
6: M = {}
7: if l = Nil then ▷ Called with the tree root
8: Lcur = L ▷ Consider all bottleneck links
9: M = {B.localMachine}
10: B.r = B.r − 1
11: else ▷ Called recursively
12: Lcur = {l ′ ∶ l ′ ∈ subtree of l}
13: end if
14:
15: Lcur = Lcur.�lter(B.constraints) ▷ Filter (§6.4)
16:
17: if ∣Lcur∣ < B.r then
18: return Nil ▷ Not enough locations
19: end if
20:
21: SORT_DESC Lcur by expectedCapacity(l)
22: for all l ∈ {First B.r links from Lcur} do
23: Add hysteresis to l ▷ Only to the selected links
24: Set B.r = 1 ▷ One replica from each subtree
25: M =M ∪ {selectLinks(B, l)}
26: end for
27: return M
28: end procedure

29: procedure expectedCapacity(Link l)
30: return min(Cap(l) − R̂x(l),DiskWriteCap)
31: end procedure

B to link l , we add hysteresis as follows:

I(B, δ) = min(Cap(l) − v̂(l), Size(B)
δ

)

v̂(l) = v̂(l) + I(B, δ)

When an updated measurement arrives, v̂(l) is invalidated and
vnew(l) is used to calculate the weighted moving average of v(l).
Here, Cap(l) represents the capacity of link l and Size(B) is the
size of block B.

6.3 Network-Balanced Placement Using Sinbad

Sinbad employs the algorithms developed in Section 5 to perform
network-aware replica placement. It involves two steps: ordering of
requests and ordering of bottleneck links.

Sinbad queues up (Pseudocode 1) all block requests that arrive
within a decision interval of length q and orders them by the num-
ber of remaining blocks in that write request (for OPT ′). For q = 0,
Sinbad takes instantaneous decisions. �e value of THRESHOLD
determines which blocks are placed by Sinbad. Recall that to lower
overhead, Sinbad causes most of the smaller blocks, which are nu-
merous but contribute only a small fraction of cluster bytes, to be
placed using the default policy.
Given an ordered list of blocks, Sinbad selects the machine with

the highest available receiving capacity, i.e., the one that is reachable
along a path with bottleneck link lsel, which has the largest remain-
ing capacity among all potential bottlenecks:

lsel = argmax
l∈L

min(Cap(l) − R̂x(l),DiskWriteCap)

where, R̂x(l) is the most recent estimation of Rx(l) at time Arr(B)
and DiskWriteCap is the write throughput of a disk. �is holds
because the copy has to move in the transmit direction regardless.
�e choice of placement only impacts where it ends up, and hence,

which other links are used on their receive direction. Further, Sin-
bad can generalize to the case when there are multiple bottleneck
links along such receiving paths. Hysteresis (described above) lets
Sinbad track the ongoing e�ect of placement decisions before new
utilization estimates arrive.
Pseudocode 2 shows how Sinbad proceeds recursively, starting

from the bottleneck links, to place the desired number of replicas.
�e entry point for �nding replicas for a request B with this proce-
dure is selectLinks(B, Nil). Calling it with an internal link restricts
the search space to a certain subtree of the topology.
Because a replication �ow cannot go faster than DiskWriteCap,

it might seem appealing to try to match that throughput as closely
as possible. �is choice would leave links that have too much spare
capacity for a given block free, possibly to be used for placing an-
other larger block in near future. However, in practice, this causes
imbalance in the number of replication �ows through each bottle-
neck link and in the number of concurrent writers in CFS slaves,
and hurts performance.

6.4 Additional Constraints

In addition to fault tolerance, partition tolerance, and storage bal-
ancing, CFS clients can provide diverse suitability constraints. Col-
location of blocks from di�erent �les to decrease network commu-
nication during equi-joins is one such example [23]. Because such
constraints decrease Sinbad’s choices, the improvements are likely
to be smaller. Sinbad satis�es them by �ltering out unsuitable ma-
chines from Lcur (line 15 in Pseudocode 2).

7 Evaluation
We evaluated Sinbad through a set of experiments on a 100-machine
EC2 [1] cluster using workloads derived from the Facebook trace.
For a larger scale evaluation, we used a trace-driven simulator that
performs a detailed replay of task logs from the same trace. �rough
simulation and experimentation, we look at Sinbad’s impact when
applied on two di�erent levels of the network topology: in the for-
mer, Sinbad tries to balance load across links connecting the core
to individual racks; whereas, in the latter, it aims for balanced edge
links to individual machines (because the EC2 topology and corre-
sponding bottlenecks are unknown). Our results show the follow-
ing:
● Sinbad improves the average block write time by 1.3× and the
average end-to-end job completion time by up to 1.26×, with
small penalties for online decisions (§7.2).

● �rough simulations, we show that Sinbad’s improvement
(1.58×) is close to that of an optimistic estimation (1.89×) of the
optimal (§7.2).

● Sinbad decreases the median imbalance across bottleneck links
(i.e., median Cv) by up to 0.33 in both simulation and experi-
ment (§7.3).

● Sinbad has minimal impact on the imbalance in disk usage
(0.57% of disk capacity), which remains well within the toler-
able limit (10%) (§7.4).

● If disks are never the bottlenecks, Sinbad improves the average
block write time by 1.6× and the average end-to-end job com-
pletion time by up to 1.33× (§7.6).

7.1 Methodology

Workload Our workload is derived from the Facebook trace (§4).
During the derivation, we preserve the original workload’s write
characteristics, including the ratio of intermediate and write traf-
�c, the inter-arrival times between jobs, the amount of imbalance in

Table 3: Jobs Binned by Time Spent in Writing

Bin 1 2 3 4 5

Write Dur. < 25% 25–49% 50–74% 75–89% ≥ 90%
% of Jobs 16% 12% 12% 8% 52%
% of Bytes 22% 5% 3% 3% 67%

communication, and the input-to-output ratios for each stage. We
scale down each job proportionally to match the size of our cluster.
Wedivide the jobs into bins (Table 3) based on the fraction of their

durations spent inwriting. Bin-5 consists ofwrite-only ingestion and
preprocessing jobs (i.e., jobs with no shu�e), and bins 1–4 consist
of typical MapReduce (MR) jobs with shu�e and write phases. �e
average duration of writes in these jobs in the original trace was 291
seconds.
Cluster Our experiments use extra large EC2 instances with 4 cores
and 15 GB of RAM. Eachmachine has 4 disks, and each disk has 400
GB of free space. �e write throughput of each disk is 55 MBps on
average.

�e EC2 network has a signi�cantly better oversubscription fac-
tor than the network in the original Facebook trace – we observed a
bisection bandwidth of over 700 Mbps/machine on clusters of 100
machines. At smaller cluster sizes we saw even more – up to 900
Mbps/machine for a cluster of 25 machines. Note that the virtual
machine (VM) placement in EC2 is governed by the provider and
is supposed to be transparent to end users. Further, we did not see
evidence of live migration of VMs during our experiments.
We use a computation framework similar to Spark [45] and the

Facebook-optimized distribution of HDFS [4] with a maximum
block size of 256 MB. In all experiments, replication and fault-
tolerance factors for individual HDFS �les are set to three (r = 3)
and one (f = 1), respectively. Unless otherwise speci�ed, we make
instantaneous decisions (q = 0) in EC2 experiments.
Trace-Driven Simulator We use a trace-driven simulator to assess
Sinbad’s performance on the scale of the actual Facebook cluster (§4)
and to gain insights at a �ner granularity. �e simulator performs a
detailed task-level replay of the Facebook trace that was collected on
a 3000-machine cluster with 150 racks. It preserves input-to-output
ratios of all tasks, locality constraints, and presence of task failures
and stragglers. We use the actual background tra�c from the trace
and simulate replication times using the default uniform placement
policy. Disk write throughput is assumed to be 50 MBps. Unless
otherwise speci�ed, we use 10 second decision intervals (q = 10s) in
simulations to make them go faster.
Metrics Our primarymetric for comparison is the improvement in
average completion times of individual block replication, tasks, and
jobs (when its last task �nished) in the workload, where

Factor o f Improvement = Modi f ied
Current

We also consider the imbalance in link utilization across bottleneck
links as well as the imbalance in disk usage/data distribution across
the cluster. �e baseline for our deployment is the uniform replica
placement policy used in existing systems [4, 19]. We compare the
trace-driven simulator against the default policy as well.
7.2 Sinbad’s Overall Improvements

Sinbad reduces the average completion time of write-heavy jobs by
up to 1.26× (Figure 6) and jobs across all bins gain a 1.29× boost in
their average write completion times. Note that varying improve-
ments in write times across bins are not correlated with the char-
acteristics of jobs in those bins; blocks in these experiments were

1.
11
!

1.
08
!

1.
08
! 1.

18
! 1.

26
!

1.
19
!

1.
45
!

1.
27
!

1.
19
!

1.
24
!

1.
28
!

1.
29
!

1!

1.1!

1.2!

1.3!

1.4!

1.5!

1.6!

Bin 1! Bin 2! Bin 3! Bin 4! Bin 5! ALL!

Fa
ct

or
 o

f I
m

pr
ov

em
en

t! End-to-End!
WriteTime!

Figure 6: [EC2] Improvements in average job completion times and time
spent in distributed writes.

1.
07
!

1.
11
!

1.
08
!

1.
13
!

1.
22
!

1.
20
!

1.
31
!

1.
15
! 1.
44
!

1.
23
!

0!

0.5!

1!

1.5!

2!

[0, 10)! [10, 100)! [100, 1E3)![1E3, 1E4)![1E4, 1E5)!

Fa
ct

or
 o

f I
m

pr
ov

em
en

t!

Job Write Size (MB)!

End-to-End!
WriteTime!

Figure 7: [EC2] Improvements in jobs categorized by amounts of distributed
writes.

placed without considering any job-speci�c information. MR jobs
in bin-1 to bin-4 have lower overall improvements than bin-5 be-
cause they are computationally heavy and because shu�es see neg-
ligible change in these set of experiments. �e average end-to-end
completion times of jobs improved by 1.19× and block write time
across all jobs improved by 1.3×.
Being an online solution, Sinbad does not always perform well.

We found that 15% of the jobs either had no improvements or ex-
perienced slightly higher overall completion times. In contrast, the
top 15% jobs improved by at least 1.4×. Part of Sinbad’s ine�ciency
can be attributed to its limited view of the network in the virtualized
EC2 environment.
A breakdown of improvements in jobs by their write sizes (Fig-

ure 7) does not show any signi�cant di�erence between categories.
�is is because we optimize for blocks in the experiments using
q = 0 which does not di�erentiate between the di�erent amounts
that each task or job writes.
Trace-Driven Simulation Unlike the EC2 deployment, we pre-
calculated the background tra�c due to shu�e in the simulation
and assumed it to be una�ected by placement decisions. Hence, we
do not distinguish between jobs in di�erent bins in the simulation.
We used OPT ′ in the simulations with q = 10s.
We found that 46% of individual block replication requests im-

proved, 47% remained the same, and 7% became slower. �e aver-
age improvement across all requests was 1.58×, and 16% completed
at least 2× faster. Average completion times of writers and commu-
nication times of jobs (weighted by their sizes) improved by 1.39×
and 1.18×, respectively.
How Far are We From the Optimal? While it was not possible to
exhaustively enumerate all the possible orderings of block requests
to �nd the optimal, we tried to �nd an optimistic estimation of im-
provements. First, we increased q to up to 100s. But, it did not result
in signi�cant increase in improvements.
Next, we tried a drastic simpli�cation. Keeping q = 10s, we as-

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Core Links!

Network-Aware!

Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Core-to-Rack Links!

Network-Aware!

Default!

(a) Uplinks

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Core Links!

Network-Aware!

Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Core-to-Rack Links!

Network-Aware!

Default!

(b) Downlinks

Figure 8: [Simulation] Network awareness (Sinbad) decreases load imbal-
ance across racks in the Facebook trace.

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Host-to-Rack Links!

Network-
Aware!
Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Host Links!

Network-
Aware!
Default!

(a) Uplinks

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Host-to-Rack Links!

Network-
Aware!
Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Host Links!

Network-
Aware!
Default!

(b) Downlinks

Figure 9: [EC2] Network awareness (Sinbad) decreases load imbalance
across machines.

sumed that there are no bottlenecks at sources; i.e., sources can also
be placed at suitable locations before writes start. Note that unlike
destination placement, this is hard to achieve in practice because it
is hard to predict when a task might start writing. With this sim-
pli�cation, we found that 58% requests improved, 39% remained the
same, and 3% were worse o� using Sinbad. �e average improve-
ments in block write time, task completion time, and weighted job
communication time were 1.89×, 1.59×, and 1.36×, respectively.
On Batched Decisions We did not observe signi�cant improve-
ment for q > 0 using OPT ′. �is is because the e�ectiveness of
batching depends on the duration of the window to accumulate re-
quests, which in turn depends on the request arrival rate and the
average time to serve each request. Batching can only be e�ective
when the arrival rate and/or the service time are substantial (i.e.,
larger blocks).
In the Facebook trace, on average, 4 large block requests arrive

every second. With 50 MBps disk write speed, writing a 256 MB
blockwould take 5 seconds. However, the number of suitable bottle-
neck links is several times larger than the arrival rate. Consequently,
batching for a second will not result in any improvement, but it will
increase the average write time of those 4 blocks by 20%.
7.3 Impact on Network Imbalance
We found that Sinbad decreases the network imbalance in both sim-
ulation and deployment. Figure 8 plots the change in imbalance of
load in the bottleneck links in the Facebook cluster. We see that
Sinbad signi�cantly decreases load imbalance (Cv) across up and
downlinks of individual racks – decrease in median Cv being 0.35
and 0.33, respectively. We observed little improvement on the low
end (i.e., Cv close to zero) because those rack-to-core links had al-
most equal utilizations to begin with.
Figure 9 presents the imbalance of load in the edge links con-

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
lo

ck
s!

Rank of Racks!

NetworkAware!

Default!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
yt

es
!

Rank of Racks!

NetworkAware!

Default!

(a) Distribution of blocks

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
lo

ck
s!

Rank of Racks!

NetworkAware!

Default!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
yt

es
!

Rank of Racks!

NetworkAware!

Default!

(b) Distribution of bytes

Figure 10: [Simulation] PDFs of blocks and bytes across racks. Network-
aware placement decisions do not signi�cantly impact data distribution.

necting individual machines to the EC2 network. We notice that ir-
respective of the placement policy, the average values of imbalance
(Cv) are higher than that observed in our simulation. �is is because
we are calculating network utilization and corresponding imbalance
at individual machines, instead of aggregating over 20 machines in
each rack. We�nd thatSinbaddecreases imbalance across edge links
as well – decrease in median values of Cv for up and downlinks are
0.34 and 0.46, respectively. For high Cv values (Cv ≥ 2.5), Sinbad
experienced more variations; we found that most of these cases had
low overall utilization and hence had little impact on performance.

7.4 Impact on Future Jobs (Disk Usage)

Since replica placement decisions impact future jobs,6 does Sinbad
create signi�cant imbalance in terms of disk usage and the total
number of blocks placed across bottleneck links?
We found that a�er storing 9.24 TB data (including replicas) in

an hour-long EC2 experiment, the standard deviation of disk usage
across 100 machines was 15.8 GB using Sinbad. For the default pol-
icy it was 6.7 GB.Hence, the imbalancewas not somuchmore that it
would trigger an automated block rebalancing, which typically hap-
pens when imbalance is greater than some �xed percentage of disk
capacity.
Simulations provided a similar result. Figure 10 presents the

probability density functions of block and byte distributions across
150 racks at the end of a day-long simulation. Weobserve thatSinbad
performs almost as good as the default uniform placement policy in
terms of data distribution.

Sinbad performs well because it is always reacting to the imbal-
ance in the background tra�c, which is uniformly distributed across
all bottleneck links in the long run (§4.3). Because Sinbad does
not introduce noticeable storage imbalance, it is not expected to
adversely a�ect the data locality of future jobs. Reacting to net-
work imbalance is not always perfect, however. We see in Figure 10
that some locations (less than 4%) received disproportionately large
amounts of data. �is is because these racks were down7 through-
out most of the trace. Sinbad can be extended with constraints on
maximum imbalance in data placement to avoid such scenarios.

7.5 Impact of Cluster/Network Load

To understand the impact of network contention, we compared Sin-
bad with the default placement policy by changing the arrival rate
of jobs. In this case, we used a shorter trace with the same job mix,
scaled down jobs as before, but we spread the jobs apart over time.

6Placing too many blocks in some machines and too few in others
can decrease data locality.
7Likely reasons for downtimes include failure or upgrade, but it can
be due to any number of reasons.

1.
08
!

1.
45
!

1.
14
!

1.
13
!

1.
07
!

1.
4!

1.
27
!

1.
27
!

1.
1!

1.
25
!

1.
26
!

1.
28
!

1!
1.1!
1.2!
1.3!
1.4!
1.5!
1.6!
1.7!

End-to-End! WriteTime! End-to-End! WriteTime!

Bins 1-4! Bin 5!

Fa
ct

or
 o

f I
m

pr
ov

em
en

t! 2X Arrival!
Original Rate!
0.5X Arrival!

Figure 11: [EC2] Improvements in average completion times with di�erent
arrival rates of jobs.

Wenotice in Figure 11 thatSinbadperformedwell for di�erent lev-
els of network contention. However, changing the arrival rate by a
factor of N does not change the network load by N×which depends
onmany factors including the number of tasks, the input-output ra-
tio, and the actual amount of data in the scaled-down scenario. By
making jobs arrive 2× faster, we saw around 1.4× slower absolute
completion times for both policies (not shown in Figure 11); this sug-
gests that the network load indeed increased by some amount. We
observe that Sinbad’s improvements decreased as well: as the net-
work becomes more and more congested, the probability of �nding
a less loaded destination decreases.
Changing the arrival rate to half of the original rate (i.e., 0.5× ar-

rival rate) decreased the overall time very little (not shown in Fig-
ure 11). �is suggests that perhaps resource contention among tasks
from the same job is more limiting compared to that across tasks
from di�erent jobs. For the write-only jobs, Sinbad’s improvements
did not change either. However, for the MR jobs, shu�e time im-
proved at the expense of corresponding writes.

7.6 Impact on In-Memory Storage Systems

So far we have considered Sinbad’s performance only on disk-based
CFSes. However, improvements in these systems are bounded by the
write throughput of disks and depend on howCFSes schedule writes
across multiple disks. To avoid disk constraints, several in-memory
storage systems and object caches have already been proposed [12].
To understand Sinbad’s potentials without disk constraints, we im-
plemented an in-memory object cache similar to PACMan [12].
Blocks are replicated and stored in the memory of di�erent ma-
chines, and they are evicted (in FIFO order) when caches become
full. Note that the network is the only bottleneck in this setup. We
used the same settings from §7.2.
From EC2 experiments, we found that jobs across all bins gained

boosts of 1.44× and 1.33× in their averagewrite and end-to-end com-
pletion times, respectively. �e average block write time improved
by 1.6× using Sinbad in the in-memory CFS.
A trace-driven simulation without disk constraints showed a

1.79× average improvement across all block write requests. We
found that 64% of individual block replication requests improved,
29% remained the same, and 7% became slower. Average comple-
tion times of writers and communication times of jobs (weighted by
their sizes) improved by 1.4× and 1.15×, respectively.

8 Discussion
Network-Assisted Measurements In the virtualized EC2 environ-
ment, Sinbad slaves cannot observe anyone else’s tra�c in the net-
work including that of collocated VMs. �is limits Sinbad’s e�ec-
tiveness. When deployed in private clusters, with proper instrumen-
tation (e.g., queryable SDN switches), Sinbadwould observe the im-

pact of all incoming and outgoing tra�c. We expect that correcting
for more imbalances will increase Sinbad’s gains.

Sinbad is also sensitive to delayed and missing heartbeats, which
can introduce inaccuracy in usage estimations. By placing the heart-
beats in a higher priority queue [24], the network can ensure their
timely arrival.
Flexible Source Placement By carefully placing the sources of
write tra�c, it is possible to make the entire write pipeline network
aware. However, this is harder and less useful than choosing desti-
nations. Because, a task must �nish everything else before writing,
e.g., computation for a preprocessing task and shu�e for a reducer,
it is hard to estimate the start time or the size of a write operation.
Moreover, all the blocks to be written by a source share the same
upstream bottleneck. �is further constrains source placement, be-
cause e�ectively they look like one large, variable-sized block.
Optimizing Parallel Writers �e completion time of a data-
parallel job depends on the task that �nishes last [20, 21]. Hence,
to minimize the job completion time, one must minimize the
makespan of all the concurrent writers of that job. �is, however,
calls for a cross-layer design with additional job-speci�c details in
the placement algorithm.

9 RelatedWork
Datacenter Tra�c Management Hedera [8] uses a centralized
scheduler to infer the demands of elephant �ows and assigns them
to one of the several paths through the core that exist in a fat-tree
topology between the same endpoints. MicroTE [13] adapts to traf-
�c variations by leveraging short-term predictability of the tra�c
matrix. Orchestra [20] focuses on certain forms of network traf-
�c in data-intensive applications (shu�es and broadcasts) but does
not consider the network impact of cluster storage. All of the above
manage �ows with already-�xed endpoints and do not leverage the
�exibility in endpoint placement.
Endpoint-Flexible Transfers Overlay anycast comes the closest to
Sinbad in exploiting �exibility in choosing endpoints [18, 25]. How-
ever, anycast has typically been used in low latency request-response
tra�c (e.g., DNS requests); on the contrary, we use endpoint �exi-
bility in a throughput-sensitive context for replica placement. Our
constraints – number of replicas/fault domains and overall balance
in storage – are di�erent as well.
Full Bisection Bandwidth Networks Recent datacenter network
architectures [28–30, 38] aim for full bisection bandwidth for better
performance. �is, however, does not imply no network contention.
In presence of (skewed) data-intensive communication, some links
o�en become more congested than others [35]. Selection of appro-
priate destinations during replica placement is necessary to pick less
congested destinations.
Distributed File Systems Distributed �le systems [15, 19, 27] o�en
focus on the fault-tolerance and consistency of stored data with-
out considering the network. Replica placement policies empha-
size availability in presence of network failures. We focus on perfor-
mance improvement through network-balanced replica placement
without changing any of the fault-tolerance, availability, or consis-
tency guarantees. Unlike traditional designs, Flat Datacenter Stor-
age (FDS) separates computation and storage: data is always read
over the network [39]. FDS does not have a centralized master and
uses randomization for load balancing. Network-awareness can po-
tentially improve its performance as well.
Erasure-Coded Storage Systems To mitigate the storage crunch
and to achieve better reliability, erasure coding of stored data is be-
coming commonplace [33, 40]. However, coding typically happens

post facto, i.e., each block of data is three-way replicated �rst, then
coded lazily, and replicas are deleted a�er the coding �nishes. �is
has two implications. First, network awareness accelerates the end-
to-end coding process. Second, in presence of failures and ensuing
rebuilding storms, the network experiences even more contention;
this strengthens the need for Sinbad.

Data Locality Disk locality [22] has received more attention than
most concepts in data-intensive computing, in designing both dis-
tributed �le systems and schedulers for data-intensive applications
[10, 34, 44]. Data locality, however, decreases network usage only
during reads; it does not a�ect the network consumption of dis-
tributed writes. Sinbad has little impact on data locality, because it
keeps the storage balanced. Moreover, Sinbad can help systems like
Scarlett [11] that increase replica count to decrease read contention.
Recent calls formemory locality [12]willmake network-aware repli-
cation even more relevant by increasing network contention during
o�-rack reads.

10 Conclusion
We have identi�ed the replication tra�c from writes to cluster �le
systems (CFSes) as one of the major sources of network communi-
cation in data-intensive clusters. By leveraging the fact that a CFS
only requires placing replicas in any subset of feasible machines, we
have designed and evaluated Sinbad, a system that identi�es net-
work imbalance through periodic measurements and exploits the
�exibility in endpoint placement to navigate around congested links.
Network-balanced replica placement improves the average block
write time by 1.3× and the average completion time of data-intensive
jobs by up to 1.26× in EC2 experiments. Because network hotspots
show short-term stability but they are uniformly distributed in the
long term, storage remains balanced. We have also shown that Sin-
bad’s improvements are close to that of the optimal, and they will
increase if network imbalance increases.

Acknowledgments
We thank Yuan Zhong, Matei Zaharia, Gautam Kumar, Dave Maltz, Ali Gh-
odsi, Ganesh Ananthanarayanan, Raj Jain, the AMPLabmembers, our shep-
herd John Byers, and the anonymous reviewers for useful feedback. �is
research is supported in part by NSF CISE Expeditions award CCF-1139158
and DARPA XData Award FA8750-12-2-0331, and gi�s from Amazon Web
Services, Google, SAP, Blue Goji, Cisco, Clearstory Data, Cloudera, Eric-
sson, Facebook, General Electric, Hortonworks, Huawei, Intel, Microso�,
NetApp, Oracle, Quanta, Samsung, Splunk, VMware, Yahoo!, and a Face-
book Fellowship.

11 References

[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] Amazon Simple Storage Service. http://aws.amazon.com/s3.
[3] Apache Hadoop. http://hadoop.apache.org.
[4] Facebook Production HDFS. http://goo.gl/BGGuf.
[5] How Big is Facebook’s Data? 2.5 Billion Pieces Of Content And 500+
Terabytes Ingested Every Day. TechCrunch http://goo.gl/n8xhq.

[6] Total number of objects stored in Amazon S3.
http://goo.gl/WTh6o.

[7] S. Agarwal et al. Reoptimizing data parallel computing. In NSDI, 2012.
[8] M. Al-Fares et al. Hedera: Dynamic �ow scheduling for data center

networks. In NSDI, 2010.
[9] N. Alon et al. Approximation schemes for scheduling on parallel

machines. Journal of Scheduling, 1998.
[10] G. Ananthanarayanan et al. Reining in the outliers in mapreduce

clusters using Mantri. In OSDI, 2010.
[11] G. Ananthanarayanan et al. Scarlett: Coping with skewed popularity

content in mapreduce clusters. In EuroSys, 2011.

http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://hadoop.apache.org
http://goo.gl/BGGuf
http://goo.gl/n8xhq
http://goo.gl/WTh6o

[12] G. Ananthanarayanan et al. PACMan: Coordinated memory caching
for parallel jobs. In NSDI, 2012.

[13] T. Benson et al. MicroTE: Fine grained tra�c engineering for data
centers. In CoNEXT, 2011.

[14] P. Bodik et al. Surviving failures in bandwidth-constrained
datacenters. In SIGCOMM, 2012.

[15] D. Borthakur. �e Hadoop distributed �le system: Architecture and
design. Hadoop Project Website, 2007.

[16] D. Borthakur et al. Apache Hadoop goes realtime at Facebook. In
SIGMOD, 2011.

[17] B. Calder et al. Windows Azure Storage: A highly available cloud
storage service with strong consistency. In SOSP, 2011.

[18] M. Castro et al. Scalable application-level anycast for highly dynamic
groups. LNCS, 2003.

[19] R. Chaiken et al. SCOPE: Easy and e�cient parallel processing of
massive datasets. In VLDB, 2008.

[20] M. Chowdhury et al. Managing data transfers in computer clusters
with Orchestra. In SIGCOMM, 2011.

[21] M. Chowdhury and I. Stoica. Co�ow: A networking abstraction for
cluster applications. In HotNets-XI, 2012.

[22] J. Dean and S. Ghemawat. MapReduce: Simpli�ed data processing on
large clusters. In OSDI, 2004.

[23] M. Y. Eltabakh et al. CoHadoop: Flexible data placement and its
exploitation in hadoop. In VLDB, 2011.

[24] A. D. Ferguson et al. Hierarchical policies for So�ware De�ned
Networks. In HotSDN, 2012.

[25] M. Freedman, K. Lakshminarayanan, and D. Mazières. OASIS:
Anycast for any service. In NSDI, 2006.

[26] M. Garey and D. Johnson. “Strong” NP-completeness results:
Motivation, examples, and implications. Journal of the ACM,
25(3):499–508, 1978.

[27] S. Ghemawat, H. Gobio�, and S.-T. Leung. �e Google �le system. In
SOSP, 2003.

[28] A. Greenberg et al. VL2: A scalable and �exible data center network.
In SIGCOMM, 2009.

[29] C. Guo et al. DCell: A scalable and fault-tolerant network structure
for data centers. In SIGCOMM, 2008.

[30] C. Guo et al. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. ACM SIGCOMM, 2009.

[31] Z. Guo et al. Spotting code optimizations in data-parallel pipelines
through PeriSCOPE. In OSDI, 2012.

[32] B. Hindman et al. Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center. In NSDI, 2011.

[33] C. Huang et al. Erasure coding in Windows Azure Storage. In
USENIX ATC, 2012.

[34] M. Isard et al. Quincy: Fair scheduling for distributed computing
clusters. In SOSP, 2009.

[35] S. Kandula et al. �e nature of datacenter tra�c: Measurements and
analysis. In IMC, 2009.

[36] J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for
scheduling unrelated parallel machines.Mathematical Programming,
46(1):259–271, 1990.

[37] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In
SODA, 1993.

[38] R. N. Mysore et al. PortLand: A scalable fault-tolerant layer 2 data
center network fabric. In SIGCOMM, 2009.

[39] E. Nightingale et al. Flat Datacenter Storage. In OSDI, 2012.
[40] M. Sathiamoorthy et al. XORing elephants: Novel erasure codes for

big data. In PVLDB, 2013.
[41] A. �usoo et al. Data warehousing and analytics infrastructure at

Facebook. In SIGMOD, 2010.
[42] R. van Renesse and F. B. Schneider. Chain replication for supporting

high throughput and availability. In OSDI, 2004.
[43] M. Zaharia et al. Improving mapreduce performance in

heterogeneous environments. In OSDI, 2008.
[44] M. Zaharia et al. Delay scheduling: A simple technique for achieving

locality and fairness in cluster scheduling. In EuroSys, 2010.
[45] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In NSDI, 2012.

APPENDIX
A Optimizing BlockWrites
A.1 Problem Formulation and Complexity

Assume that a replica placement request for a block B of size
Size(B) arrives at time Arr(B) with replication factor r and fault-
tolerance factor f . �e CFS client will write a local copy wherever it
is located, and the replica placement policy must �nd locations for
(r − 1) o�-rack copies in f other fault domains across rack bound-
aries. We choose r = 2 and f = 1 to simplify the analysis: the case
of larger r is ignored, because an increase in r does not increase the
number of o�-rack copies; the case of larger f is discussed in §A.2.
Assume that there are no other constraints besides physical limits
such as link capacity and disk throughput.
Let L denote the set of possible bottleneck links in the network.

Also, let Cap(l) and Ut(l) denote the capacity and the estimation
of the utilization of link l ∈ L at time t. Placement decisions are
instantaneous.
For a given time period T (discretized into equal-sized decision

interval or quanta, q) from t, the objective (U(.)) can then be rep-
resented by the following equation.

Minimize ∑
{B ∣ Arr(B)∈[t ,t+T)}

Dur(B) (1)

where Dur(B) is the time to write a block B from Arr(B).
Distributed writing (i.e., optimizingU) is NP-hard, even when all

block requests and link capacities are known beforehand.

�eorem A.1 Distributed Writing is NP-hard.

Proof Sketch We reduce job shop scheduling, which is NP-hard
[26], to distributed writing. Consider m identical machines, and
n jobs (J1 , J2 , . . . , Jn) of varying lengths that arrive over time. Let
dur(Jk) denote the time to process Jk in any of the machines. Now,
consider a network withm bottleneck links, where all links have the
same capacity. For each job Jk , create a block Bk , such that Bk takes
exactly dur(Jk) time to be written through any of the bottleneck
links. �en, optimally placing these n blocks through m links will
provide the optimal schedule of jobs. ∎

A.2 Optimal Block Placement Algorithm

If all blocks have the same size, decision intervals are independent,
and link utilizations do not change within the same decision inter-
val, greedy assignment of blocks to the least-loaded link will maxi-
mize U.

�eorem A.2 Under the assumptions in Section 5.1, greedy assign-
ment of blocks to the least-loaded link is optimal (OPT).

Proof Sketch Assume that the bottleneck links in L at time t are
sorted in the non-decreasing order of their current utilizations
(Ut(l1) ≤ Ut(l2) ≤ . . . ≤ Ut(l∣L∣)), and multiple block requests
(B = {B j}) of equal size arrived at t. Since all blocks have the same
size, they are indistinguishable and can be assigned to correspond-
ing destinations through some bottleneck links one by one.
Assume block B j is placed through a bottleneck link l i . If there

is another link l i−1 with more available capacity, then we can simply
place B j through l i−1 for a faster overall completion time. �is pro-
cess will continue until there is no more such links, and B j has been
placed through l1 – the least-loaded bottleneck link. ∎

10%!

20%!

30%!
40%!50%!

0!

0.2!

0.4!

0.6!

0.8!

1!

1! 2! 3! 4!

Pr
ob

ab
ili

ty
 o

f
Ex

pe
ri

en
ci

ng
 S

lo
w

do
w

n!

Number of Fault Domains, f!

Figure 12: Analytical probability of at least one o�-rack replica experiencing
a slowdown with uniform placement, as the number of o�-rack replicas (f)
increases. Each line corresponds to the fraction of contended links (out of
150) that can cause slowdown.

Improvements Over the Default Policy Let AC(l i) denote the
available capacity to write block B through l i ,

AC(l i) = min(Cap(l i) −Ut(l i),DiskWriteCap)

where DiskWriteCap is the write throughput of a disk. �en the
completion time of OPT for writing ∣B∣ blocks that must be placed
during that quantum is

U(OPT) = ∣B∣Size(B)
∣L∣
∑
i=1

f i
AC(l i)

(2)

where f i is the fraction of blocks allocated through l i . BecauseOPT
greedily places blocks starting from the least-loaded link, higher
AC(l i) will result in higher f i .
Current CFS replica placement algorithms (UNI) place replicas

uniformly randomly across all bottleneck links. �e expected time
forUNI towrite ∣B∣ blocks thatmust be placed during a single quan-
tum is

U(UNI) = ∣B∣Size(B)
∣L∣

∣L∣
∑
i=1

1
AC(l i)

(3)

where each link l i will receive equal fractions (1∣L∣) of blocks.
Given (2) and (3), the factor of improvement (I) of OPT over

UNI at any decision interval is

I = U(UNI)
U(OPT)

= ∣L∣
∑∣L∣

i=1
f i

AC(l i)

∑∣L∣
i=1

1
AC(l i)

(4)

�e overall improvement during the discretized interval [t, t + T)
is

∑[t ,t+T) U(UNI)
∑[t ,t+T) U(OPT)

(5)

Improvements for f > 1 We have assumed that only one copy of
each block crosses the bottleneck links (i.e., f = 1). However, for a
given placement request, the probability of experiencing contention
using UNI increases with f ; this should increase I , because OPT
will never experience more contention than UNI.
While creating replicas in f fault domains through ∣L∣(≫ f) bot-

tleneck links, if one of the f replicas experience contention, the en-
tire write will become slower. Using the uniform placement policy,
the probability of at least one of them experiencing contention is

P(UniSlowdown) = (1 −
f

∏
g=1

∣L∣ −G − g + 1
∣L∣ − g + 1

)

where G is the number of congested links in L. As f increases, so
does P(UniSlowdown); Figure 12 shows this for di�erent values ofG
in a 150-rack cluster. �e extent ofUNI slowdown (thus I) depends
on the distribution of imbalance.

B Optimizing File Writes
B.1 Problem Formulation and Complexity
Assume that a �leW = (B1 , B2 , . . . , B∣W ∣)with ∣W ∣ blocks arrives at
Arr(W). Requests for its individual blocks B j arrive one at a time,
each at the beginning of a discrete decision interval. For a given
time period T (discretized into equal-sized quanta, q) from t, the
objective (V(.)) can then be represented by the following equation.

Minimize ∑
{W ∣ Arr(W)∈[t ,t+T)}

Dur(W) (6)

where Dur(W) = max
B j∈W

Dur(B j) denotes the time to �nish writing

all the blocks ofW from Arr(W). Optimizing (6) is no easier than
optimizing (1), and it is NP-hard as well.
B.2 Optimal File Write Algorithm
Lemma B.1 OPT is not optimal for end-to-endwrite operations with
multiple blocks (V).

Proof Sketch We prove this using a counterexample. Let us take a
simple example with two bottleneck links, l1 and l2 , through which
a single block can be written in d1 and d2 time units (d1 < d2 and
d1 , d2 ≤ 1 time unit), respectively. Also assume that two write re-
quests W1 = (B11 , B12) and W2 = (B21) arrive at the same time t;
more speci�cally, B11 and B21 arrive at t and B12 arrives at (t + 1).
Because OPT treats requests interchangeably, it can either write

B11 through l1 and B21 through l2 or in the inverse order (B11 through
l2 and vice versa) at t. In either case, OPT will write B12 through l1
at (t+ 1) because d1 is smaller. Irrespective of the order,U(OPT) =
2d1 + d2 .
However, end-to-end response times are di�erent for the two

cases: in the former, V1 = (1 + d1) + d2 , while in the latter, V2 =
(1+d1)+d1 . BecauseOPT can choose either with equal probability,
its expected total response time is 12 (V

1 + V2), which is more than
the actual optimal V2 . ∎

�eorem B.2 Given �eorem A.2, greedy assignment of writes
through links using the least-remaining-blocks-�rst order is optimal
(OPT ′).

Proof Sketch Given OPT , the bottleneck links l i ∈ L at time t are
sorted in the non-decreasing order of their expected times to write
a block, i.e., d1 ≤ d2 ≤ . . . ≤ d∣L∣. Assume that multiple equal-
sized block requests (B = {B j}) from unique write operations (W =
{Wj}) have arrived at t, and let us denote the number of remaining
blocks in a write operationWj by Rem(Wj).
Consider two blocks B j and B j+1 from writes Wj and Wj+1 that

will be considered one a�er another and will be assigned to des-
tinations through links l i and l i+1 such that d i ≤ d i+1 . Assume,
Rem(Wj) > 1 and Rem(Wj+1) = 1. Now, the total contributions of
B j and B j+1 toV(OPT ′) is (1+d i+1). We can decrease it to (1+d i) by
swapping the order of B j and B j+1 . By continuously performing this
pairwise swapping, we will end up with an order where the block
from the write with the fewest remaining blocks will be considered
before others. ∎

	Introduction
	CFS Background
	System Model
	Network Model

	Sinbad Overview
	Problem Statement
	Architectural Overview

	Measurements and Implications
	Network Footprint of Distributed Writes
	Impact of Writes on Job Performance
	Characteristics of Network Imbalance
	Summary

	Analytical Results
	Optimizing Block Writes
	Optimizing File Writes

	Design Details
	Operating Environment
	Utilization Estimator
	Network-Balanced Placement Using Sinbad
	Additional Constraints

	Evaluation
	Methodology
	Sinbad's Overall Improvements
	Impact on Network Imbalance
	Impact on Future Jobs (Disk Usage)
	Impact of Cluster/Network Load
	Impact on In-Memory Storage Systems

	Discussion
	Related Work
	Conclusion
	References
	Optimizing Block Writes
	Problem Formulation and Complexity
	Optimal Block Placement Algorithm

	Optimizing File Writes
	Problem Formulation and Complexity
	Optimal File Write Algorithm

