

Rethinking Eventual Consistency
Philip A. Bernstein

Microsoft Research
Redmond, WA 98052, USA
philbe@microsoft.com

Sudipto Das
Microsoft Research

Redmond, WA 98052, USA
sudiptod@microsoft.com

ABSTRACT
There has been a resurgence of work on replicated, distributed
database systems to meet the demands of intermittently-connected
clients and of disaster-tolerant databases that span data centers.
Many systems weaken the criteria for replica-consistency or
isolation, and in some cases add new mechanisms, to improve
partition-tolerance, availability, and performance. We present a
framework for comparing these criteria and mechanisms, to help
architects navigate through this complex design space.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – Distributed systems.

General Terms: Design

Keywords: Eventual consistency, replication.

1. INTRODUCTION
Data replication is a widely-used technique for spreading read and
write load across servers and improving availability. Research on
the topic began in the 1970’s. Commercial database management
systems (DBMS) started supporting replication in the late 1980’s.
Today, replication functionality is found in file systems, cache
managers, queue managers, and cloud storage systems.

Ideally, replication is transparent to the clients. This is captured in
two well-known correctness criteria: one-copy serializability (1SR)
[1] and linearizability [13]. A system is 1SR if it behaves like a
serial processor of multi-step transactions on a one-copy database.
A system is linearizable if it behaves like a serial processor of
single-step operations on a one-copy database. However, these
strict correctness goals are impractical in many situations.

The three basic techniques for synchronizing replicated data are
primary copy [1][25], multi-master, and quorum consensus.
Although each can achieve one-copy semantics, there is a cost due
to an unavoidable tradeoff between consistency, availability, and
partition-tolerance. This tradeoff was first observed in 1977 by
Rothnie and Goodman [22], and later popularized as Brewer’s
CAP conjecture [5], which was proved by Gilbert and Lynch [12].
It states that a replicated, distributed data store can have at most
two of Consistency of replicas (or copies), Availability of writes,
and Partition tolerance. That is, a system can provide: (i)
consistency of available copies and write availability if there are
no partitions; (ii) consistency of available copies during a partition
with at most one partition available for writes; or (iii) write
availability during a partition but copies in different partitions will
be inconsistent.

Most distributed systems need to cope with network partitions,
and write availability is essential for many Internet-facing
applications. Therefore, systems have to offer weaker forms of
consistency. One popular form is eventual consistency. It states
that in an updatable replicated database, eventually all copies of
each data item converge to the same value.

The origin of eventual consistency can be traced back to Thomas’
majority consensus algorithm [30]. The term was coined by Terry
et al. [29] and later popularized by Amazon in their Dynamo
system, which supported only eventual consistency [9]. Although
eventual consistency enables high availability, it increases
application complexity to handle inconsistent data. For instance,
in a seat reservation application implemented on an eventually-
consistent DBMS, two clients can reserve the last seat. The copies
will agree on the result, but the result is incorrect. Complex
application logic is needed to avoid the error.

Many consistency criteria have been proposed to improve on
eventual consistency, such as causal consistency [16][18],
timeline consistency [7], eventually consistent transactions [6],
parallel snapshot isolation [26], session consistency [29], and
prefix consistency [28]. It is a confusing design space. In this
tutorial, we simplify the design space by: (i) characterizing
consistency criteria; (ii) describing mechanisms to support these
criteria; (iii) organizing them in a taxonomy; and (iv)
summarizing their strengths and weaknesses.

Past surveys of replication include ones by Bernstein and
Newcomer [1] (Chapter 9), Davidson et al. [8], Kemme and
Alonso [14], Saito and Shapiro [23], and Terry [27]. Compared to
these, our tutorial presents a different framework for reasoning
about replication and covers newly-published techniques. Our
framework reasons about tradeoffs between consistency and
availability in a partitioned network, to help readers understand
which consistency and read-write ordering constraints a system
can support while still being available. We focus only on the
consistency and isolation of operations; atomicity and durability
properties are out of scope.

2. RETHINKING CONSISTENCY
There are three classic approaches to replicated data: primary
copy, multi-master, and quorum consensus. In all approaches, a
client update arrives at one copy, is processed there, and is for-
warded as downstream updates to the other copies. In primary
copy, one copy, the primary, processes all client updates. Multi-
master allows all copies to process client updates. In quorum
consensus a client update completes only after a quorum of copies
has processed it. Quorum consensus can use primary copy or
multi-master.
The next subsection discusses techniques to achieve eventual
consistency of downstream updates. These techniques constrain
only the relative order of writes. Section 2.2 describes other
constraints on the order of writes and on the order of reads with
respect to writes, which we call admissible executions. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright © ACM 978-1-4503-2037-5/13/06...$15.00.

discuss these admissibility constraints first for single read and
write operations and then for multi-operation transactions.

2.1 Eventual Consistency
We classify techniques for applying downstream updates to
ensure eventual consistency into 3 categories: commutative
downstream operations, ordered updates, and custom convergent
merges.
2.1.1 Commutative Downstream Operations
If all downstream updates commute, then eventual consistency is
guaranteed. Thomas’ write rule [30] is the earliest generic
mechanism to make downstream operations commutative. Each
client write is assigned a timestamp. Each copy xc of data item x
stores the timestamp of the last write applied to xc. A downstream
update of x is applied to xc only if its timestamp is greater than
that of xc. That is, the highest timestamp wins at every copy.
Another mechanism for eventual consistency is the use of
convergent and commutative replicated data types (CRDTs) [24].
For example, an ordinary set is not a CRDT, since its add and
remove operations do not commute: for an element e,
[add(e), add(e), remove(e)] ≢ [add(e), remove(e), add(e)].
Instead, we can use the CRDT counting set, which associates a
count with each element in a set, where add(e) increments e’s
count, remove(e) decrements it, and element e exists if its count is
positive. Write operations on a counting set commute. Shapiro et
al. [24] present many other CRDT’s over registers, sets, and
graphs.
Commutative updates can be applied anytime, anywhere, and in
any order. However, they expose a constrained and unfamiliar
programming model, they do not address inconsistencies that arise
from read-write ordering, and they do not cover all operation
types.

2.1.2 Ordered Updates
If all updates are applied in the same order at all copies, then the
copies will be eventually consistent. This order can be total or
partial. In primary copy, downstream updates are applied in the
same order as their corresponding client updates at the primary.
Logging is a second approach to totally-order updates, where the
order in which operations are written to a log is the order they are
applied to copies. A third approach is consensus algorithms, to
reach agreement on the ordering, and group communication
abstractions, such as totally-ordered broadcast, where the update
order is based on the message order.
An early implementation of ordered updates was done in Bayou
[21], a multi-master system with a primary “committing copy.”
An update can be applied at any copy, but its order at the
committing copy determines its official order. After that order is
determined, it is reordered if necessary at copies where it
previously executed.
A major advantage of total ordering is that it simplifies reasoning.
However, each approach to it has disadvantages. In primary copy,
the primary is a bottleneck and point-of-failure. Similarly, in
logging the tail of the log is a bottleneck and point-of-failure.
Consensus algorithms have higher message overhead, more
complex implementations and higher update latency.
Vector clocks (or version vectors) are a classic approach to partial
ordering [11][20]. Each copy in multi-master assigns a
monotonically increasing version number to each client update. A
vector clock is an array of version numbers, one per copy. Vector
clock vc2 is later than vector vc1 if vc1[i] ≤ vc2[i] for all copies i,
and vc1[j] < vc2[j] for some copy j. Vector clocks can be used to

partially order updates, trim the prefix of the update logs, and
identify the state that a client update depends on [15]. However,
major challenges arise in efficient maintenance of these vectors as
the number of copies grows and when copies are added or
removed.

2.1.3 Custom Convergent Merges
An application-specified procedure can be used to merge updates
into a single update that can then be applied to the copies. Such a
merge procedure takes two versions of an object and creates a
new one. For eventual consistency, the merges must be commuta-
tive and associative. Such approaches are used in groupware
systems such as collaborative editing [10]. Custom merges enable
concurrent execution of conflicting operations without
establishing a total order. However, application-specific logic is
needed to define such functions and is hard to generalize.

2.2 Admissible Executions
Admissible execution criteria constrain read-write, write-read, and
write-write order. We classify admissibility criteria into two broad
categories: single read and write operations and multi-operation
transactions. Admissibility criteria for single operations comprise
causality constraints and session constraints. Admissibility
criteria for transactions are called isolation constraints.

2.2.1 Single Read and Write Operations
2.2.1.1 Causality Constraints
A sequence of operations on each copy is causally consistent if it
preserves session order and reads-from order [16]. Session order
preserves the order of operations from a session across all copies.
For instance, suppose user 1 stores a photo and then a link to it. If
user 2 reads the link, then causality requires her to see the photo
as well. Reads-from order ensures that if a read r[x] in session V
reads the value of x written by a write w[x] in session S, then w[x]
causally precedes every operation in V that follows r[x]. Causality
is typically enforced by dependency tracking and vector clocks.
A common way to enforce causal consistency is to tag each
operation with a vector clock that describes a superset of the
earlier operations it depends on and for each copy to maintain a
vector clock that describes its state. An operation is executed at a
copy only if its dependencies are satisfied.
By itself, causality does not imply that copies are eventually
consistent, since there need not exist a causal relationship between
updates to two copies of the same data item. Still, most algorithms
that enforce causal consistency add a mechanism to ensure
eventual consistency [18]. An example is [15], which also offers
stronger synchronization options: forced operations, which
execute in the same order with respect to each other; and
immediate operations, which execute in the same order with
respect to all other operations.

2.2.1.2 Session Constraints
Session constraints encompass consistency in the context of a
single client session. Examples include read-your-writes, mono-
tonic reads, monotonic writes, consistent prefix, and bounded
staleness [27][29]. Read-your-writes requires a read to see all
preceding writes in the same session. Monotonic reads means that
successive reads of a data item in a session do not return older
versions. Monotonic writes means that writes from a session are
applied in the same order on all copies. Consistent prefix requires
that a copy’s state only reflects writes that represent a prefix of the
entire write history. Bounded staleness ensures that a read does
not return a version of an item older than a specified threshold.

S
p
e
m
it
c
to

2
I
a
r
a
w
u
a
P
is
e
n
e
b
c
d
w

F
R
o
d
lo
b
O
S
p
L
ti
a
c
s
s
ru
c
c
a
L
a
c
tr

Session constrain
precede each rea
expensive. A mo
maintain a versio
tem written. Thi

constraints but is
o be delayed eve

2.2.2 Multi-o
solation constra

and writes. Exam
evision diagram

a serial history
write set [1]. Pri
used to support
and recovering fr
Parallel snapsho
solation (SI) th

executing non-co
not have an equ
execution in Fig
benefit of PSI is
copies of the re
during a partition
with geo-replicat

Figure 1 Paralle
Revision diagram
of version contr
defines a new pr
ocally. A join o

branch to be appl
Operations are
Similar to CR
programming exp
Li et al. [17] pro
ions into two cla

all other transact
copies. Red ones
show how to tr
splitting it into a
un a blue transa

calculates intere
calculates interes
adds that interest
Lloyd et al. [19
and write-only
consistency. The
ransactions to im

Partition
1
r1[x,y]
w1[x]
c1
r2[x,y]
w2[x]
c2
w3[y]

nts can be implem
ad and write in a
ore practical app
on vector for the
is is a more com
s conservative a
en though they a

operation Tra
aints characteriz

mples include 1S
ms. 1SR requires

where each tra
imary copy with
1SR; the mecha
rom failures.

ot isolation (PSI
hat allows exe
onflicting writes
uivalent serial S
ure 1 is not equ

s that transaction
ead-only set. T
n and better perf
tion. However, it

el snapshot isola
ms [6] present a
rol systems wh
ivate snapshot in

of a branch to its
lied to the paren
pure reads and

RDTs, this m
perience.
pose RedBlue c
asses, blue and r
tions and can ru
s must run in the
ransform a red
a read-only trans
action. For exam
st at each copy
st at one copy,
t to every copy.
] support multi

transactions
ey leverage these
mprove latency a

Partition
2
r3[x,y]
w3[y]
c3
r4[x,y]
w4[y]
c4
w1[x]

mented by track
a session. Such e
proach is for the
last item read an

mpact representat
and hence might
are safe to run.

ansactions
ze correct interl
R, parallel snaps
that every histor

ansaction writes
h two-phase lock
anism’s complex

I) [26] is a va
cutions of con
s that run SI. A
SI history. For
uivalent to any S
ns only need ac

This results in b
formance during
t is weaker than

ated execution t
a checkin-check
ere there is a
n a branch that c
s parent causes

nt (and eventually
d writes, and w
model presents

onsistency whic
red. Each blue on
un in different o

same order on a
transaction into

saction that gene
mple, replace a re
y by a read-only

which generate

-operation read-
with a guara

e restrictions ov
and partition-tole

• Partition 1 has
• Partition 2 has
• Partitions 1 and
 snapshot isolate
• But the result i
 to T1T2T3T4 or
 the second two
 read the snapsh
 the first two

king the writes th
explicit tracking
e client session
nd one for the la
tion of the sessio
t cause operatio

leavings of rea
shot isolation, an
ry is equivalent
all copies of i

king is common
xity is in detectin

ariant of snapsh
ncurrent program
A PSI history ma

example, the P
SI execution. On
cess to seconda
better availabili

g normal operatio
both 1SR and S

that is not SI
out model typic
mainline. A fo
can process writ
all updates on th
y to the mainline
writes never fa
s an unfamili

ch divides transa
ne commutes wi

orders on differe
all copies. Li et a
o a blue one, b
erates a request
ed transaction th
y transaction th

es a blue one th

-only transactio
antee of caus
er read-write 1S
erance.

x’s primary
y’s primary

d 2 are each
ed
s not equivalent
T3T4T1T2, where
transactions

hot produced by

hat
is
to

ast
on
ns

ds
nd
to
its

nly
ng

hot
ms
ay
SI
ne

ary
ity
on
I.

cal
ork
tes
he
e).
ail.
iar

ac-
ith
ent
al.
by
to

hat
hat
hat

ns
sal
SR

3. AN
Figure
sistency
there is
system
trades
require
If there
or quor
since i
partitio
quorum
writes c
allowed
e.g., to
copy, a
What if
is being
is still p
mantics
commu
network
server
partitio
applica
in [8][
partitio
Table 1
system
eventua
availab
opposit
other co
remain
where i
divided
techniq
they bo
admissi
column
allows
and wr
one by

If the c
read is
writes
another

Figu

NALYZING
2 summarizes o

y guarantees. S
s no partition, th

is available an
off an app

ements.
e is a partition, a
rum consensus c
it knows it has
on knows it is a m
m, and hence in
can be allowed
d, a reconfigurat
 establish that a

and to catch up s
f a partition P do
g used (where e
possible to be co
s of operations.
ute and have e
k partition. Wh
applies the log

on. If updates
ation-specific me
[9][10]. This a

on when a total o
1 summarizes th

can support du
ally consistent.

ble while enforc
te. The first co
olumns are divid
s connected to
it migrates to a

d into two col
ques for the min
oth disallow wr
ibility constrain

ns refer only to r
writes to all cop

rite availability.
one.

client remains co
s guaranteed to

can be support
r server S, then

ure 2 A framew

G THE CAP
our framework

Start at the diam
hen there are wel
nd consistent. Th
plication’s iso

a quorum of cop
can offer consist
s the one and
minority partitio
general should
in special cases
tion step might b

a quorum is acce
stale copies.
oes not contain a
ffectively each c
onsistent and av
One approach i

each partition l
hen the network
gs that were ca

do not comm
erging logic to
allows multi-m

order on updates
he feasible const
uring a partition

A “ ” mean
cing the constra
olumn lists the
ded into two sce

the same serv
different server
lumns. Primary
nority partition a
rites and use sim
nts for reads. T
read availability
pies, so entries i
We now expla

onnected to the
see all its earli

rted. However,
n the client’s ear

work to reason a

P TRADEO
to reason about

mond labeled “P
ll known ways t
he consistency l
olation and p

pies based on pr
tent and availabl
only quorum. E

on, that is, it doe
not allow write

s. Whether or no
be required after
essible, to choos

a quorum, or if m
copy is a partitio

vailable by explo
s to allow only
log them locall
k partition is h

aptured during t
mute, then on
ensure copies c

master operation
is not enforceab

traints and opera
n while being av
ns the system
aint, and an “X”

admissibility c
enarios: one whe
ver after a failu
. Each group is

y copy and qu
are grouped in o
milar techniques
Therefore, entri

y. By contrast, m
in that column r

ain the entries in

same server, the
ier writes. Thus
if the session
rlier writes mig

about weak con

OFFS
t weak con-

Partition.” If
o ensure the
level chosen
performance

rimary copy
le operation,
Every other

es not have a
s. However,
ot writes are
r a partition,
se a primary

multi-master
on)? Then it

oiting the se-
updates that
ly during a
healed, each
the network

ne can use
converge, as
n during a
ble.
ations that a
vailable and
can remain

” means the
criteria. The
ere the client
ure and one
further sub-

uorum-based
one column;
s to enforce
ies in these
multi-master
refer to read
n each row,

en a client’s
s read-your-
migrates to

ght not have

nsistency

propagated yet to S. Thus, read-your-writes can only be supported
if the client session caches its writes locally and reads are served
locally if the server version is stale. This is depicted by a “?W”
since satisfying the constraint is contingent on the writes being
cached.

When the session remains connected to a server, enforcing mono-
tonic writes is straightforward. If the session migrates, primary
copy disables writes and monotonicity of earlier writes is
preserved. However, with multi-master, if the session migrates,
the client session must cache its writes locally and re-apply them
at the new server if its version is stale.

Table 1. Consistency-availability tradeoff when partitioned.

Bounded staleness cannot be guaranteed in a minority partition P,
because P cannot determine its staleness. In particular, P does not
know how many writes (if any) executed elsewhere, or when the
last one ran, while it was disconnected from the quorum partition.
A consistent prefix can be enforced with primary copy or quorum
consensus in a minority partition, since they disallow applying
new updates. Consistent prefix cannot be enforced with multi-
master either, since a total order on all writes is not known.
If the client session remains connected to the same server after a
network partition, enforcing monotonic reads is automatic.
However, if the session migrates to a different server, the version
of data at the newly-connected server might be stale. Monotonic
reads can be supported only if the client session caches the values
returned by its reads and serves repeated reads locally if the server
version is stale. This is depicted by a “?R” in the table.
Causality can be enforced with high availability only if the client
session does not migrate to another copy. To handle session
migration, it is tempting to cache reads and writes locally. But this
is not enough since transitive dependencies across client sessions
can break causality. For example, suppose a client session S1
wrote data item x (w1[x]) and then y (w1[y]). Then S2 read y (r2[y])
and wrote z (w2[z]). Hence, w1[x] causally precedes w2[z]. So if S2
loses its server connection, reconnects elsewhere, and reads x, it
must see the result of w1[x]. To handle this, the client session
would need to cache all such operations on which it is transitively
dependent, which is impractical.

In all cases of “?R” and “?W” in Table 1, even if the client does
not cache all of the relevant operations, it can maintain a synopsis

of the dependencies, such as operations’ timestamps. After a
session migration, it can check whether it is safe to execute the
relevant operation. For example, with read-your-writes, a client
can maintain the timestamp of its last write to each data item.
Before reading the new copy, it can check whether its previous
writes arrived. The same technique can be used to test for
causality, using vector clocks, as in [15][18][19].
Since reads do not commute with writes, commutative writes are
not enough to enforce linearizability during a network partition.
For example, suppose two copies each execute increment[x] and
then r[x]. There is no equivalent linear sequence of the four
operations in which both reads get the same value as in the
original execution.
Our discussion so far focused on single read and write operations.
Now consider the world of multi-operation transactions. Figure 2
still applies for reasoning about eventual consistency of writes.
With transactions, we have another issue: characterizing which
isolation constraints are enforceable. Consider a minority
partition. If reads and writes are allowed, then 1SR is
unenforceable, because reads in one partition might conflict with
writes in another. For example, if the sequence r[x] w[x] executes
in two partitions, there is no one-copy serial order because neither
transaction read the other’s output.
If a failure requires a client to migrate its session from a quorum
partition (which enforces 1SR) to a minority partition, it must stop
performing writes. However, it can continue to execute reads,
since data in the minority partition is consistent with a 1SR
execution.
Commutative or mergeable operations ensure eventual
consistency but do not help isolation, especially in the presence of
reads. We therefore need to consider isolation levels weaker than
1SR. One isolation level that can be supported is read committed,
since a transaction can read any committed data, no matter how
stale or inconsistent it might be. A further step is to support
snapshot reads, which ensures each transaction reads consistent
data, though again it is possibly stale. Snapshot Isolation (SI) or
Parallel Snapshot Isolation (PSI) can also be supported if all
updates are commutative, since first-writer-wins is irrelevant in
the absence of conflicts. But they cannot be supported with non-
commutative writes, since writes may execute in different
partitions, in which case the conflict will not be detected.
If operations are not commutative or mergeable, and if we are not
using weak transaction isolation levels, then the best we can do is
enforce operation-level admissibility criteria discussed in Table 1.

4. CONCLUDING REMARKS
When there is a partition, it is not a binary choice to give up either
consistency or availability—a system can give up a little of each.
For instance, a system supporting PSI can remain available to
writes of data items whose primary is accessible while being
unavailable to other writes. We discussed the different tradeoffs
for different operation types and the consequences of ordering
constraints and admissibility criteria.
Another approach is to ensure that every atomic operation
preserves consistency, and design the application to depend only
on causal consistency. For instance, when uploading a photo to an
album, first upload the photo and then add the link to the album.
Similarly, for an e-commerce application, assemble the order in a
shopping cart and then place the order. Unfortunately, it is hard to
encode all application logic such that causal consistency is
enough. In these cases, transactions are very useful. For instance,
exchanging, purchasing, or bartering items requires each party to

Admissibility
criteria

Session maintains
connection to server

Session migrates
to another server

Read availability
for Primary copy &
Quorum‐based in
Minority partition

Read & write
availability in
Multi‐master

Read availability
for Primary copy &
Quorum‐based in
Minority partition

Read & write
availability in
Multi‐ master

Read‐your‐
writes ?W ?W

Monotonic
writes ?W

Bounded
staleness X X X X

Consistent
prefix X X

Monotonic
reads ?R ?R

Causality X X

be credited and debited atomically. Similar scenarios include
maintaining referential integrity, and using queued transactions
where a queue and a database must both be updated. Although
some of these scenarios can enforce these constraints without
transactions by using dependency tracking and vector clocks,
more error cases arise due to partial failures.
Another useful tradeoff is consistency vs. latency. By allowing a
read or write to complete before it has attained a quorum, latency
improves, but some reads will see stale data. Probabilistic bounds
on staleness for such cases are presented in [3].
As future research, one interesting direction is to design
encapsulated solutions that offer good isolation for common
scenarios. Examples are CRDTs and convergent merges for non-
commutative operations. Another direction is scenario-specific
patterns, such as compensations and queued transactions, which
can be leveraged to achieve high availability while providing
consistency that applications can reason about.

5. GOALS OF THIS TUTORIAL
This paper summarizes a tutorial that targets database researchers
and system designers with a basic understanding of transactions.
Some knowledge of replication mechanisms is helpful but not
essential. For novices, the tutorial offer a survey of consistency
criteria and mechanisms for synchronizing replicated data. For
experts, it explains tradeoffs between criteria, and presents a
framework to reason about them.

6. BIOGRAPHICAL SKETCHES
Philip A. Bernstein is a Distinguished Scientist at Microsoft and
an Affiliate Professor at Univ. of Washington. His research
interests are transaction processing and data integration. He is an
Editor-in-Chief of The VLDB Journal, an ACM Fellow, a winner
of the SIGMOD Innovations Award, and a member of the
National Academy of Engineering.

Sudipto Das is a Researcher at Microsoft. His research interests
are in scalable, distributed, and multi-tenant DBMSs for cloud
platforms. He received the CIDR 2011 Best Paper award and UC
Santa Barbara’s Lancaster Dissertation Award for 2012.

Acknowledgements
We are grateful to Sameh Elnikety, Alan Fekete, and Doug Terry
for suggested improvements to earlier drafts.

7. REFERENCES
[1] Alsberg, P. A., and Day, J. D.: A principle for resilient sharing of

distributed resources. In ICSE, pp. 562-570, 1976.
[2] Attar, R., Bernstein, P.A, and Nathan Goodman: Site Initialization,

Recovery, and Backup in a Distributed Database System. IEEE
Trans. Soft. Eng. 10(6), pp. 645-650, 1984.

[3] Bailis, P., Venkataraman, S., Franklin, M. J., Hellerstein, J. M., and
Stoica, I.: Probabilistically Bounded Staleness for Practical Partial
Quorums. PVLDB 5(8), pp. 776-787, 2012.

[4] Bernstein, P. A. and Newcomer, E.: Principles of Transaction
Processing, Morgan Kaufmann, 2nd ed., 2009.

[5] Brewer, E. A.: Towards Robust Distributed Systems (abstract). In
PODC, p. 7, 2000.

[6] Burckhardt, S., Leijen, D., Fähndrich, M.,Sagiv, M.: Eventually
Consistent Transactions, In ESOP, pp. 67-86, 2012.

[7] Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A.,
Bohannon, P., Jacobsen, H., Puz, N., Weaver, D., and Yerneni., R.:
PNUTS: Yahoo!'s hosted data serving platform. Proc. VLDB Endow.
1(2), pp. 1277-1288, 2008.

[8] Davidson, S. B., Garcia-Molina, H. and Skeen, D.: Consis-tency in a
Partitioned Network: a Survey. ACM Comput. Surv. 17(3), pp. 341-
370, 1985.

[9] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and
Vogels, W.: Dynamo: Amazon's highly available key-value store. In
SOSP, pp. 205-220, 2007.

[10] Ellis, C. A. and Gibbs, S. J.: Concurrency control in Groupware
systems. In SIGMOD, pp. 399-407, 1989.

[11] Fischer, M. J. and Michael, A.: Sacrificing Serializability to Attain
High Availability of Data in an Unreliable Network. In PODS, pp.
70-75, 1982.

[12] Gilbert, S. and Lynch, N. A.: Brewer's conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT
News 33(2), pp. 51-59, 2002.

[13] Herlihy, M. P. and Wing, J. M.: Linearizability: a Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst.
12(3), pp. 463-492, 1990.

[14] Kemme, B. and Alonso, G.: Database Replication: a Tale of
Research across Communities. PVLDB, 3(1), pp. 5-12, 2010.

[15] Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S.: Providing high
availability using lazy replication. ACM Trans. Comput. Syst. 10 (4),
360-391, 1992.

[16] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Comm. ACM, 21(7), pp. 558-565, 1978.

[17] Li, C., Porto, D., Clement, A., Gehrke, J., Preguic, N., and
Rodrigues, R.: Making Geo-Replicated Systems Fast if Possible,
Consistent when Necessary. OSDI, pp. 265-278, 2012.

[18] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G.:
Don't settle for eventual: scalable causal consistency for wide-area
storage with COPS. SOSP, pp. 401-416, 2011.

[19] Lloyd, W., Freedman, M.J., Kaminsky, M. and Andersen, D.G.:
Stronger Semantics for Low-Latency Geo-Replicated Storage. NSDI
‘13, pp. 313-328, 2013.

[20] Parker Jr., D. S., Popek, G. J., Rudisin, G., Stoughton, A., Walker,
B.J., Walton, E., Chow, J.M., Edwards, D., Kiser, S., Kline, C. :
Detection of Mutual Inconsistency in Distributed Systems. IEEE
Trans. Software Eng 9(3), pp. 240-247, 1983.

[21] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers.
Flexible update propagation for weakly consistent replication. In
SOSP, Oct. 1997.

[22] Rothnie. J. B., and Goodman, N.: A Survey of Research and
Development in Distributed Database Management. In VLDB, pp.
48-62, 1977.

[23] Saito, Y. and Shapiro, M.: Optimistic replication. ACM Comput.
Surv. 37(1), pp. 42-81, 2005.

[24] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Convergent
and Commutative Replicated Data Types. Bulletin of the EATCS,
No.104, pp. 67-88, 2011.

[25] Stonebraker, M. and Neuhold, E. J.: A Distributed Database Version
of INGRES. Berkeley Workshop, pp. 19-36, 1977.

[26] Sovran, Y., Power, R., Aguilera, M. K., and Li, J.: Transactional
Storage for Geo-replicated Systems. In SOSP, pp. 385-400, 2011.

[27] Terry, D. B.: Replicated Data Management for Mobile Computing.
Morgan Claypool Publishers, 2008.

[28] Terry, D.B.: Replicated Data Consistency Explained Through
Baseball, MSR-TR-2011-137, http://research.microsoft.com

[29] Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M.J., Theimer,
M.M., Welch, B. B.: Session guarantees for Weakly Consistent
Replicated Data. In PDIS, pp. 140-149, 1994.

[30] Thomas, R. H.: A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. on Database
Systems, 4(2), pp. 180–209, 1979.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

