Secure Outsourced Aggregation via One-way Chains

Suman Nath
Microsoft Research
sumann@microsoft.com

ABSTRACT

We consider the Outsourced Aggregation model, where sens-
ing services outsource their sensor data collection and aggre-
gation tasks to third-party service providers called aggrega-
tors. As aggregators can be untrusted or compromised, it is
essential for a sensing service to be able to verify the cor-
rectness of aggregation results. This work presents SECOA,
a framework with a family of novel and optimally-secure
protocols for secure outsourced aggregation. Our frame-
work is based on a unified use of one-way chains. It sup-
ports a large and diverse set of aggregate functions, can
have multiple hierarchically organized aggregators, can de-
terministically detect any malicious aggregation behavior
without communication with sensors, and incurs a small and
workload-independent communication load on sensors. We
also present extensive evaluation results to demonstrate the
feasibility of our framework.

Categories and Subject Descriptors

H.2.0 [Database Management]: Security, integrity, and
protection

General Terms
Algorithms, Security

Keywords

secure outsourced aggregation, wide-area sensing

1. INTRODUCTION

The paradigm of wide-area shared sensing [9, 12] has re-
cently received considerable attention. For example, Mi-
crosoft’s SenseWeb [12] provides a shared sensor portal where
numerous sensors, owned by different entities, publish data
and where users can query the sensors for the current state
of the physical world, e.g., the warmest park of a city. Simi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’09, June 29-July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

Haifeng Yu
National University of Singapore
haifeng@comp.nus.edu.sg

Haowen Chan
Carnegie Mellon University
haowen@cs.cmu.edu

larly, the portals at Weather Underground,® SciScope,? Sen-
sorBase,® etc. enable accessing a large number of live sen-
sors (e.g., weather stations, geological sensors, etc.) all over
the world. In all these cases, the portal needs to provide
various kinds of aggregate results on live data provided by
Internet-connected sensors. In contrast to a typical wireless
sensing application, a wide-area shared sensing service has
the following unique characteristics:

1) Diverse queries. Such shared service needs to support
a wide and diverse set of query processing functionalities on
sensor data. For example, important queries in SenseWeb
include Max/Min, Sum and related queries, Uniform Sam-
ples, Quantiles, Top-k readings, Frequent Readings, etc. In
contrast, typical wireless sensor networks are deployed for
dedicated sensing where a relatively small set of aggregates
can be sufficient in most cases.

2) Push-based data collection. In a wide-area sensing
service, sensor data is generally pushed from sensors to the
portal or to intermediate aggregators, without any explicit
communication initiated by the portal and before queries
are submitted. This is due to the following reasons. First, a
typical service incorporates a large number of geographically
dispersed sensors. For example, SciScope currently incorpo-
rates more than a million sensors worldwide. Pulling data
from all sensors during query time is infeasible as it can be
prohibitively slow in such a large network. Second, a sensor
may be shared by multiple sensing services and hence the
query rate can be substantially higher (e.g., multiple queries
per second) than the data collection/reporting frequency of
the sensor (e.g., once per hour). Third, some sensors may
even connect only occasionally (e.g., once per hour) to the
Internet for data reporting. Due to all these reasons, an on-
demand pull-based data collection at query time is usually
not feasible.

Instead of performing data collection and query process-
ing tasks itself, a portal often delegates such tasks to a
third party, called aggregator, that provides data aggrega-
tion services. For example, SenseWeb and SciScope cur-
rently use many such aggregators deployed by independent
parties worldwide. In such outsourced aggregation model, ag-
gregators collect sensor data and process aggregate queries
on the data. The portal simply forwards users’ queries to
aggregators and returns answers from aggregators to users.
Such outsourced aggregation provides multiple key bene-

"http://www.wunderground. com/
*http://sciscope.org/
3http://sensorbase.org/

fits. First, sensors periodically report data, and collecting
all data to the centralized portal may incur prohibitively
high network load on the portal. Second, some sensors gen-
erate large amounts of raw data, and sending such data to
a nearby aggregator (instead of to the far away portal) can
reduce network traffic. Finally, outsourcing makes a sensing
service more affordable for parties with limited resources.
Since database service providers (e.g., corporate-level ser-
vices) have the advantage of expertise consolidation, they
can potentially offer the service with much lower cost and
also with better performance and availability guarantees.

In spite of its clear advantages, the wide adoption of out-
sourced aggregation in commercial contexts faces key secu-
rity challenges. Namely, these third-party aggregators can
be untrusted, compromised, or even malicious. Since an ag-
gregator aggregates data from potentially a large number
of sensors, a problematic aggregator can significantly affect
query answers. To guard against this, the portal must be
able to verify the correctness of answers provided by an ag-
gregator. Such assurance is essential for outsourced aggre-
gation to become a sound and viable alternative to in-house
aggregation.

Previous research on outsourced database has provided
techniques to authenticate results of (range) selection and
join queries [13, 16, 20, 21, 22]. These techniques do not ap-
ply to aggregation queries. In the context of wireless sensor
networks, several existing works address the problem of mak-
ing aggregation query with distributed aggregators secure
(e.g., SHIA [6] and set sampling [27]). However, when pro-
cessing a query, all these approaches require communicating
with all the sensors in the system (e.g., for verification of the
query result). Such property makes these approaches rather
unsuitable for large-scale wide-area sensing with push-based
data collection. Moreover, these approaches support limited
sets of aggregates (e.g., they do not support Max and Top-k
queries), which is insufficient for general-purpose wide-area
sensing. While proof-sketch [11] can be trivially modified to
work in the push-based data collection model, it also sup-
ports only Count-related aggregates. Furthermore, proof-
sketch is not optimally-secure [6] (i.e., it has false positives
and false negatives in verification of the query result) and it
allows an aggregator to cheat without being detected.

Our approach and contributions. This paper presents
SECOA, the first unified framework with a family of novel,
optimally secure (i.e., no false positive/negative) protocols
that addresses the above challenges for secure outsourced
aggregation in wide-area sensing. SECOA supports a rich
and diverse set of aggregates, which is a strict superset of the
aggregates supported by all previous approaches [6, 11, 27].
SECOA does not require the sensors to be involve in each
query, and thus well-suits the push-based data collection in
wide-area sensing.

All our protocols are based on a novel and unified use of
one-way chains, where sensor readings and intermediate ag-
gregation results are represented as positions on the chains.
Using one-way chains, we first develop a novel, conceptually
clean, and optimally secure protocol for verifying the an-
swer to a Max query, without involving the sensors. In this
protocol, one-way chains prevent the adversary from deflat-
ing (i.e., under-reporting) the Max. Preventing inflation is
trivial via message authentication code.

We then show that many aggregates, such as Count, Count
Distinct, Sum, and Average, can be readily reduced to Max.

All our protocols are optimally secure, i.e., they are free
of false positives and false negatives. Generalizing from the
Max protocol, we further develop novel one-way-chain-based
protocols for verifying the query answers for a large set of ag-
gregates including Sum, Uniform Samples, Quantiles, Top-k
Readings, Top-k Groups, Most Popular Readings, and Fre-
quent Readings. To the best of our knowledge, no previous
secure aggregation scheme supports Most Popular Readings
or Frequent Readings.

One-way chains often incur substantial computational over-
head, especially with a relatively large number of chains. In-
deed, we find that with traditional one-way chains based on
one-way hash functions such as MD5 or SHA1, our protocols
would incur unacceptable overhead for certain aggregates
(e.g., several minutes to verify a Count answer). To reduce
such overhead, somewhat counter-intuitively, we use novel
one-way chains based on RSA encryptions. To the best of
our knowledge, ours are the first one-way chains based on en-
cryptions. We leverage the homomorphic property of RSA
encryption to develop aggressive optimization techniques.
These techniques can help reduce computation overhead by
multiple orders of magnitude (e.g., several milliseconds to
verify a Count answer), despite RSA encryptions being ex-
pensive compared to hashing. Using RSA also helps us to
address some other challenges in our protocols.

We have implemented all our protocols in C++. Our ex-
perimental evaluation shows that the computational over-
head on the portal to verify a query answer is less than
a few milliseconds, and corresponding communication over-
head is less than a few kilobytes. The overheads on sensors
and aggregators are rather small as well. Our results also
demonstrate the importance of removing false positives and
false negatives in SECOA—in one of our experiments with a
Count query with proof-sketches [11], an adversary can use
a safe cheating strategy [11] to report an incorrect Count
of 0 in place of a correct answer of 20,000 without being
detected.

2. RELATED WORK

Outsourced Database. Outsourced Database model,
where entities outsource their data management needs to
third-party service providers, has been recently studied in
literature. This model allows data owners to create, store,
and update their databases, and users to query the database.
Our outsourced aggregation model is different, in the sense
that the sensor list at the aggregator is created and updated
by the portal, while the data to be aggregated come from
sensors. For outsourced databases, many existing mecha-
nisms can ensure that the query answer provided by the
third party is correct (i.e., data has not been modified by
the third party) and complete (i.e., all data within a given
range are returned) [13, 15, 16, 19, 20, 21, 22]. The scheme
by Li et al. [13] also supports the outsourced database to
be dynamically updated by the data owner, and ensures
data freshness (i.e., the latest version of data is returned).
However, all these work mostly deal with (range) selection
queries on ordered data, join queries, and various set oper-
ations. Such techniques are not sufficient for authenticating
aggregate answers, which requires verifying the correct pro-
cessing of an aggregate function on relevant data. Query
execution proofs presented in [25] can be used to detect if
an aggregator is lazy to compute the aggregate function over

all sensor data, but it is not adequate to prevent the aggre-
gator to report an incorrect result.

Secure in-network aggregation. In the context of wire-
less sensor networks, several previous works provide tech-
niques for secure in-network aggregation. SIA [5] supports
only a single aggregator, and is not suitable for a large num-
ber of sensors. SHIA [5] supports multiple aggregators or-
ganized hierarchically, but supports only Count and related
queries. Moreover, it has a verification phase where the
query result is broadcasted/disseminated to all sensors, so
that every sensor has the opportunity to raise an alarm if it
disagrees with the query result. Such on-demand pull-based
techniques, however, are not simply feasible for wide-area
sensing services with push-based data collection. Set sam-
pling [27] has a similar property where all sensors are in-
volved in the query processing, making it unsuitable for our
push-based paradigm.

Proof-sketch [11] can be trivially modified to use in the
push-based data collection model. However, it also supports
only Count-related aggregates. Moreover, it relies on “com-
plement predicates” to verify the query answer. For example,
to count the number of sensors satisfying a certain predi-
cate, proof-sketch estimates the approximate counts (using
Flajolet-Martin (FM) sketches [10]) Cy (C2) of sensors sat-
isfying (not satisfying) a given predicate. Then the protocol
checks whether the sum (C1+C5) is within (14¢)U, where U
is the total number of sensors and € is some positive constant.
Such an approach introduces both false positives and false
negatives in verification. In particular, a malicious aggre-
gator can use a safe cheating strategy [11] to always report
substantially incorrect results without ever been detected.

Fundamentally, the above problem stems from the fact
that proof sketches by themselves cannot detect the defla-
tion attack, where the aggregators throw away some sen-
sor readings and “under-report” FM sketches. As a result,
the protocol must rely on “complement predicates” and then
compare against U. It turns out that dealing with such
deflation attack is the key challenge when sensors are not
involved in the verification process (i.e., in the push-based
model).* SECOA solves this problem via a novel use of one-
way chains. Doing so enables SECOA to securely answer not
only all aggregates in [11] without any false positives or false
negatives, but also many other aggregates (such as Max,
Top-k, Frequent Items, Popular Items) that proof sketches
cannot deal with at all. Proof sketches cannot answer these
queries because the “complement predicates” technique does
not apply to these aggregates, and thus deflation attack can-
not be detected.

3. PRELIMINARIES

3.1 Problem Formulation

System model. Motivated by Microsoft’s SenseWeb, we
consider the outsourced aggregation model as in Figure 1,
where users query the portal for various aggregates on the
data submitted by sensors. The queries may be qualified
with predicates on static attributes of the sensors (e.g., sen-

4For wireless sensor networks where we can afford to involve
all sensors, preventing deflation attack is trivial. We can
simply disseminate the final result to all sensors. Any sensor
with a synopsis “larger” than the final result can raise an
alarm.

U

Query
A =—(Aggregator

Answer Answer
Aggregator) (Aggregator) (Aggregator

T &% &

Sensors and proxies
Figure 1: Model of secure outsourced aggregation.

sors within a given geographic region). The portal forwards
user queries to the root aggregator. The root aggregator
computes query answer (potentially after communicating
with other aggregators in the system), and then sends the
answer back to the portal. The portal verifies the correct-
ness of the answer and returns the answer to the user if it
passes verification. It is possible to have multiple indepen-
dent portals (not shown in Figure 1), e.g., for load balancing.

In all real-world sensing services we mentioned in Sec-
tion 1, a new sensor must first register itself (with all static
metadata) before publishing sensor data through the por-
tal. Therefore, we assume that the portal knows the com-
plete list of sensors in the system, as well as their static at-
tributes (e.g., locations).® Each aggregator knows the same
information for all sensors within its subtree. Given all such
information, it is trivial for the portal and the aggregators
to determine those sensors qualified by a query predicate
on static attributes, and exclude other sensors in the query
processing and verification protocol. Thus we will not ex-
plicitly discuss static predicates when the context is clear.
We assume that each sensor shares a distinct secret symmet-
ric key with the portal (e.g., established when the sensor is
registered to the portal).

All sensors and the portal are loosely synchronized in
time epochs. Each sensor independently and periodically
reports its latest data to its aggregator, which stores the
data. The reporting frequency can be multiple times per
epoch, once per epoch, or once per multiple epochs. Without
loss of generality, we assume that sensor readings are posi-
tive integers—other kinds of reading can always be encoded
as positive integers. Some sensors may directly connect to
the Internet while others (e.g., wireless embedded sensors)
may connect to the Internet via some proxy (not shown in
Figure 1). To simplify terminology, we simply consider the
proxy as part of the sensor. We assume that sensors (or their
proxies) and aggregators have the computational power to
perform RSA encryptions. Thus, our algorithms do not tar-
get classic wireless sensor networks.

Attack model. We assume the portal is trusted, but ag-
gregators are potentially malicious and are thus Byzantine.
Examples of malicious actions by an aggregator include fab-
ricating, replaying, duplicating, ignoring sensor readings,

SFrom security point of view, this requirement is fundamen-
tal; otherwise a malicious aggregator can introduce fake sen-
sors. In fact, all previous secure aggregation approaches
(including proof-sketch, SIA, SHIA, etc.) have such require-
ments.

computing the aggregate incorrectly, etc. Some sensors may
be malicious (and thus Byzantine) as well, and we allow all
malicious aggregators and malicious sensors to collude. We
do not consider denial-of-service attacks where aggregators
fail to or refuses to provide any acceptable result.

A malicious sensor can always report an arbitrary reading
(on its own behalf), and this fundamentally cannot be pre-
vented. Similar to most prior work on secure aggregation [5,
6, 11], we do not aim at preventing such attack. Fortunately,
all aggregates that we consider in this paper (except Max)
are robust [26] against (i.e., relatively insensitive to) those
arbitrary readings for a small number of malicious sensors.
We consider Top-k and Max mainly because they enable us
to generalize to other (robust) aggregates such as Frequent
Items.

Security goal. Our goal is to enable the portal to verify
whether an aggregate reported by an aggregator is correct.
Specifically, the portal should accept a reported aggregate
if and only if it equals to the output of a correct execution
of the aggregation function over all the readings reported
in the most recent epoch by those sensors qualified by the
query predicate, excluding sensors that are reported to have
failed. We need to exclude failed sensors since physical sen-
sor failures (e.g., due to dead battery, problematic network
connection, etc.) are unavoidable in a large-scale system.
The root aggregator will thus include a list of failed sensors
together with the query result.

It is possible for an aggregator to include some properly
functioning sensors in the list of failed sensors, in order to
maliciously “hide” the readings from those sensors. However,
one can show that without (occasional) out-of-band commu-
nication between the portal and sensors, this attack cannot
be prevented. All previous secure aggregation algorithms
(e.g., proof-sketch, SIA, SHIA, etc.) have the same vulner-
ability. One thus has to rely on various ad hoc techniques
to overcome this. For example, a sensor coming back from
its malfunctioning state can securely report to the portal
so that the portal can verify aggregator’s claim latter. Al-
ternatively, if occasional communication from the portal to
sensors are allowed, the portal can occasionally probe some
randomly selected sensors in the list of failed sensors.® A
probe does not need to be made at the current epoch. For
example, a probe during epoch z can ask a sensor ”did you
report during epoch w, x, and y?” Such techniques are or-
thogonal to our work, since previous algorithms will need
them as well. Thus, without loss of generality, we will de-
scribe all our protocols assuming that the list of failed sen-
sors is empty. If the list is not empty, it is trivial to simply
exclude those sensors in our protocol.

3.2 Cryptographic Essentials

Message Authentication Code (MAC). A message au-
thentication code (MAC) is a short piece of information used
to authenticate a message. A MAC algorithm accepts as in-
put a (secret) symmetric key and an arbitrary-length mes-
sage, and outputs a MAC. The MAC value protects both a
message’s data integrity as well as its authenticity, by allow-

SNotice that this is fundamentally different from the defla-
tion attack. In deflation attack, the portal cannot efficiently
probe the sensors since it does not know whose readings
have been dropped. In contrast, here aggregators disclose
the list of sensors whose readings are not included, which
makes efficient probing possible.

ing verifiers (knowing the secret symmetric key) to detect
any changes to the message content.

One-way chain. A one-way chain is based on some (secret)
seed s and some public one-way function F' (with or without
a trapdoor). The one-way function F' is easy to compute
but computationally infeasible in general to invert (without
knowing the trapdoor). The chain has the sequence of values
F(s), F(F(s)), F(F(F(s))), Throughout this paper, we
use F*() to denote recursively applying the function F for x
times. Thus the z’th value in the sequence is F®(s), and is
called the SEAL (SElf-Authenticating vaLue) at position x.
Given a SEAL at position x, one can easily apply F' to obtain
all SEALs at positions y > x. In other words, the chain can
be rolled forward. On the other hand, it is computationally
infeasible (without knowing the trapdoor of s) to roll the
chain backward to obtain any SEAL at position z < .

Any one-way function can be used as F' in one-way chains,
though previous research mostly used one-way hash func-
tions such as MD5 and SHA-1. We will use RSA encryp-
tion [23] (where the encryption key is publicly known) as
the one-way function F' in our one-way chains. Since RSA
encryption is one-way (assuming the decryption key is not
disclosed), it obviously satisfies the requirement.

SEAL folding. Certain one-way functions allow folding’
multiple SEALSs into one SEAL for efficient communication
and verification. For example, when RSA encryption is used
as the one-way function, multiple SEALs based on the same
encryption key (but potentially different seeds) can be folded
together using modulo multiplication. The folding operation
(i.e., modulo multiplications) can be done by anyone, as it
does not require the decryption key. The folded SEAL has
the same size as an individual SEAL and it can be used to
verify all SEALs together. In addition, folded SEALS are
secure—an adversary cannot produce a folded SEAL with-
out knowing all the individual SEALs (by exactly the same
argument that shows the security of condensed RSA sig-
natures [14] and RSA batch verification [4]). As another
example, one can also fold multiple MACs into one using
XOR as the folding operation [6]. To unify terminology, we
will use the symbol ® to denote the folding operator.

4. SECURE COMPUTATION OF MAX

Starting from this section, we present a family of proto-
cols for computing various aggregates that satisfy the secu-
rity goal in Section 3.1. To help understanding, Section 4.1
first explains our approach of securely computing Max where
there is a single aggregator. Section 4.2 extends to hierarchi-
cal aggregators. Sections 5 to 7 generalize to a wide range
of aggregates beyond Max, and also describe critical opti-
mizations that dramatically reduce the protocols’ overhead.

4.1 Max with a Single Aggregator

Protocol intuition. For now assume that each sensor re-
ports exactly one reading per epoch; we will relax this as-
sumption later. We start from two basic pieces of infor-
mation that each sensor generates in our protocol. Let K;
denote the symmetric key shared between sensor ¢ and the
portal. Let v; be the reading on sensor ¢ at the current

"We use the term folding, instead of the more commonly
used term aggregation, to distinguish aggregation of SEALSs
from aggregation of sensor data.

3
= ©FY)
i=1
Reported by
aggregator to portal

Legend

Computed by
aggregator

Reported to
aggregator

Unknown to
aggregator

Figure 2: Secure Max with one-way chains.

recent epoch. Each sensor i generates:

1. 57 = {i,MACKk, (vi|lepoch#)}, which is called sensor
©’s inflation-free proof. This is basically an authenti-
cation code generated by the sensor on its reading.

2. s; = {MACk,(epoch#)}, which is called sensor i’s
deflation-free proof. To prevent attacks under a ran-
dom oracle model, the MAC is generated with a full-
domain hash function [4].

Including the epoch number is a standard technique to pre-
vent replay attacks where aggregators use stale data. Given
the properties of MAC, only sensor i can generate s; and
s; . Thus, for a given epoch, the portal can always verify
the validity of 53’. The naive approach of securely com-
puting Max would be for the aggregator to forward all the
individual sensor readings and the s;-"’s to the portal, which
obviously defeats the purpose of outsourced aggregation.

To avoid this, we decompose the security requirements
into two aspects: preventing inflation and preventing defla-
tion (i.e., preventing reporting a value larger/smaller than
the true Max). To prevent inflation, it is sufficient to re-
quire the aggregator to include the s from the sensor 4
that the aggregator claims to have reported the Max value.
Obviously, this would at least confirm that sensor i’s true
reading is indeed v;, and in turn that the Max is at least v;
and there is no malicious inflation.

Preventing deflation is much harder. We need to verify
that the aggregator did not throw away the true Max. Our
key idea is to construct one-way chains whose seeds are all
the s;’s (Figure 2). Specifically, let F' be some one-way
function. Sensor i reports to the aggregator F”(s;) (i.e.,
the SEAL at position v; on the one-way chain rooted at s;).
In Figure 2, these SEALS correspond to the solid black cir-
cles. Let v,, be the maximum sensor reading seen by the
aggregator. The aggregator then rolls the SEAL Fi(s;)
forward by a certain number of steps to obtain the SEAL
F*m(s;) at position vy,. This is represented by the top row
of circles in Figure 2. After performing this operation for all
the FVi(s;)’s, the aggregator uses some proper folding func-
tion ® to fold all the SEALs into ®; F*(s;). For example,
if Fis MD5, then the folding function can be simple XOR.
This acts as a concise proof that no values greater than vy,
were reported by any sensor. Intuitively, for the aggregator

to compute the SEAL at position v,, on the one-way chain
rooted at s; , sensor i must have released some SEAL at
position < v, implying that v; < v,.

General protocol skeleton. Before presenting the com-
plete protocol for computing Max, we set up a general pro-
tocol skeleton that will be used throughout this paper. In
the protocol skeleton, each sensor uses a synopsis generation
function SG() to generate a verifiable synopsis (VS), based
on its reading (and static attributes). A VS is a concise
structure that contains information for both answering the
query and proving the correctness of the answer. The sen-
sor then sends the VS to its aggregator, which will store the
VS. For each query, an aggregator uses a synopsis aggrega-
tion function SA(,) to combine all VS’s received from its
children into a single VS, and sends it to the portal (or, to
its parent aggregator, in case of hierarchical aggregation in
later sections). Our synopsis aggregation functions are asso-
ciative and commutative. Therefore, without loss of gener-
ality, we discuss SA(,) for aggregating only two VS’s—more
than two VS’s can be aggregated by applying SA() multiple
times. Finally, the portal uses the synopsis evaluation func-
tion SE() to evaluate the VS received from the aggregator to
obtain the query answer. SF() also creates a reference syn-
opsts (RS), based on static metadata of the sensors involved
in the query. SE() then compares the RS against certain
information in the VS. The answer is accepted if and only
if they match. With the above protocol skeleton, when we
present our protocols, we only need to describe the three
functions SG(), SA(,), and SE().

Secure Max protocol. We now present the protocol for
secure Max computation.

e Synopsis generation SG(): Sensor ¢ with a reading v;
generates the VS:

(Ui,sj_7FUi(si_))

e Synopsis aggregation SA(): Consider two VS’s a; =
(vi, s, F¥i(s;)) and o = (vj,sj,F”f(s;)). Let v,
be the globally maximum value, which is known by
the aggregator (since we have only a single aggregator

here). SA() aggregates them into
(U’m«v Sﬁ,a ®7«Fum(5;))

e Synopsis evaluation SE(): To verify the correctness
of a VS 0 = (vm, s, f), SE() first verify the validity
of s}. Then it computes all individual s; ’s and folds
them together to create the RS of @;F“™(s;). The
answer vy, is accepted if and only if this RS equals the
f from o.

THEOREM 4.1. If the portal accepts a result in the above
protocol, the accepted result must be the correct mazimum of
values reported by all sensors.

Proof (sketch). Let the true maximum of the reported
values be v,,. Let the result reported by the aggregator be
v),. Prove by contradiction and consider two cases. Case 1:
vl > Um. To pass verification, & must be si =
{vim, MACK; (v;,||lepoch#)} for some i. Since no sensor has
a reading of v},,, the adversary must have successfully forged
the MAC, which is impossible. Case 2: v}, < vmm. Let the

sensor m be the sensor reporting the true maximum wv,,.

aggregator @
aggregator @

sensor id

reading 11 13 20

aggregator

Figure 3: Example for hierarchical aggregators.

Since F' is a good one way hash function that maps ev-
ery input value to a random point on the range, SEALSs of
(uniformly) randomly chosen inputs are not correlated (i.e.,
they are also uniformly randomly distributed). Suppose the
aggregator was able to guess @iF”;n (si) with non-negligible
probability. Since SEALs are uncorrelated, this implies some
non-trivial knowledge of the distribution of the possible val-
ues of FVm (sm). However, since the aggregator knows only
F*™ (sy,) which is a subsequent image of F¥m ($m), this im-
plies the one-way function leaks information about preim-
ages (i.e., it is not pre-image resistant), which violates the
one-way property. O

Note that our protocol is optimally secure (according to
the definition in [6]) since the aggregator, by tampering with
the aggregation process, can not induce the portal to accept
an incorrect aggregation result.

Heterogeneous data reporting frequency. We have
been assuming that each sensor reports one reading per
epoch. It is trivial to extend to cases where a sensor reports
only one reading per multiple epochs. Namely, as long as
the portal is aware of the reporting schedule of each sensor,
it can always use the proper epoch numbers for different
sensors when verifying the answer. For sensors reporting
multiple readings in one epoch, a malicious aggregator will
be able to bias towards any one of the readings. But we still
allow sensors to submit multiple readings in our protocol, so
that a benign aggregator can still use the latest reading.

4.2 Max with Hierarchical Aggregators

Our previous protocol cannot be directly used in a hier-
archical setting. As an example, consider Figure 3, where a
non-leaf aggregator A has two child aggregators B and C.
Suppose that B receives readings from sensors 1 and 2 with
value of 11 and 13, respectively. Suppose that C' receives
reading from sensor 3 with reading 20. A will then receive,
from B and C respectively, two VS’s (13,55, F'3(s]) ®
F(s3)) and (20, s5, F?°(s3)). According to the synopsis
aggregation function, A should now aggregate the two VS’s
into (20, s5, F?%(s7) ® F?°(s;) ® F?°(s3)). The problem is
that A cannot easily produce F2°(s7)®F(s5)0 F?°(s3)—
It only knows F'3(s7) ® F'3(s;) (from B) and F?°(s3)
(from C). In particular, F**(s7) and F'3(s;) have al-
ready been folded together, so A cannot compute F20(51_)
or F?°(s;) to produce F?°(s;) ® F?°(s;) . On the other
hand, B has to fold F**(s7) and F'3(s]) together, other-
wise it defeats the purpose of hierarchical aggregation.

Leveraging homomorphic functions. Thus, hierarchi-
cal aggregation requires that one-way chains can be rolled
forward even after they have been folded together with an
operation like ®. More precisely, we require a one-way func-

tion F' and a folding operator ® such that, the following two
processes yield identical results:

1. Individually roll a set of one-way chains forward with
F for x +y steps. Then fold the results together using
®.

2. Individually roll a set of one-way chains forward with
F, = steps. Then fold the results together using ©.
Finally, roll this folded result forward with F' further
by vy steps.

One can easily show that the sufficient and necessary con-
dition for the above property is for F' to be homomorphic
with respect to the operator ® both in the domain and the
range, such that F'(x1 © x2) = F(x1) © F(x2). Interestingly,
RSA encryption is homomorphic with respect to the fold-
ing operator modulo multiplication (hash functions such as
SHA1 and MD5 are not homomorphic). RSA encryption
is performed by exponentiating the plaintext by e, modulo
some number m. Hence, E(z1 - z2) = (21 - 22)® mod m =
(zf mod m)-(z5 mod m) = E(z1)-E(z2). Thus, two SEALS
satisfy our desired property as long as they are generated
using the same RSA encryption key (even if the seeds are
generated with different MAC keys).

Most existing works leveraging such property of RSA use
the homomorphic property of RSA signatures (instead of
encryptions). They rely on the property that the adversary
(not knowing the secret key) cannot generate an RSA sig-
nature. In contrast, we use the homomorphic property of
RSA encryption and rely on the property that an encrypted
message cannot be decrypted without knowing the secret
key. In fact, our protocols (in Sections 4 through 6) do
not use expensive RSA decryption or signature generation,
which makes our protocols computationally efficient. RSA
encryption is significantly cheaper than decryption and sig-
nature generation. For example, with 1024-bit keys, an Intel
2.5GHz desktop can perform around 20,000 encryptions of
a small seed (as in our protocol), which is & 30x faster than
decryption or signature generation [1].

From now on, we will always use RSA encryption as F' and
modulo m multiplication as the folding function ®. While
individual RSA operations are more expensive than hashing,
leveraging the homomorphic property of RSA, Section 5 will
develop optimizations that can make the overhead of using
RSA-based chains even smaller than using hashing-based
chains in our protocols.

5. COUNT AND RELATED QUERIES

This and the next two sections will generalize the secure
Max protocol developed earlier to a wide range of aggregates
(Table 1). We will always consider hierarchical aggregators
and use RSA encryption as F'.

5.1 Basic Protocols

Reducing Count to Max. The Count aggregate asks for
the number of sensors whose readings satisfy certain predi-
cate (e.g., number of sensors sensing fire). Our secure Count
protocol reduces Count to Max, based on the approximate
algorithm by Alon, Matias, and Szegedy (AMS) [2]. Ev-
ery sensor i whose reading satisfies the predicate (indepen-
dently) picks a random positive integer v;, such that integer
x is chosen with probability of 27%. Sensors whose readings

| Basic aggregates Trivial extensions

Max (§ 4) Min

Count(§ 5) Count Distinct, Sum, Mean
Count-Min Sketch

Uniform Sample, k-th Moments
Quantiles

Popular Items, Frequent Items
Threshold Groups

Top-k Readings (§ 6)

Top-k Groups (§ 7)

Table 1: Aggregates that can be computed in our
framework.

do not satisfy the predicate simply pick 0. The value v; is
usually called a sketch (inherited from streaming database
terminology). One can use our secure Max protocol to com-
pute v,,, the maximum of all v;’s, and can estimate the
Count to be 2. To reduce estimation error, one can in-
voke multiple independent instances, take the average v of
all v,, values, and estimate the count as 27. See [2] for rig-
orous arguments on the approximation error.

As mentioned before, Count is robust against a small frac-
tion of malicious sensors. Namely, Count will not be im-
pacted significantly when a small fraction of malicious sen-
sors submit fake readings. On the other hand, Max is not
robust even against a single malicious senor. In the above
reduction from Count to Max, it is possible for a malicious
sensor 4 to simply pick a large v;, without following the re-
quired probability distribution. This will make Count no
longer robust. We use existing techniques [5] to prevent
such problem. Namely, we require that each sensor ¢ picks
its random value v; using a pseudo-random number genera-
tor initialized with some known seed (e.g., the sensor’s id).
When the portal verifies the s;r corresponding to the Max, it
(knowing the seed) also verifies whether sensor i picked the
random integer in the proper way. This will make Count
robust. We will assume such technique for all remaining
aggregates in this paper.

Instead of the AMS algorithm, we can also readily use sev-
eral other approximate counting algorithms to reduce Count
to Max. For example, we can map each sensor (that satis-
fies the predicate) to some uniformly random value within
[0,1]. The Count is then estimated to be 1/(1 — v,,) where
U, is the maximum value [3]. We can also use the algorithm
by Flajolet and Martin (FM) [10], where each sensor (that
satisfies the predicate) generates a bit vector with exactly
one 1-bit. The 1-bit is at index x with probability of 27%.
Let V be the bitwise OR of all bit vectors from all sensors.
Note that bit-wise OR is exactly bit-wise Max. The Count
is estimated to be 2Y7'/0.7735 where y is the index of the
lowest-order 0-bit in V' [10].

Aggregates related to Count. Many aggregates are re-
lated to or can be reduced to Count. The Count Distinct
aggregate, which asks for the number of unique sensor read-
ings, can be easily computed with our Count protocol. The
only modification needed is that when generating a random
AMS sketch, a sensor needs to use its reading (e.g., the name
of the animal seen by the sensor) as the seed of a determin-
istic pseudorandom number generator. The aggregate Sum
can be naturally reduced to Count as well. Conceptually, a
sensor with a reading of v; simply pretends to be v; differ-
ent sensors, creates v; AMS sketches, and merges them. In
the actual protocol, existing optimizations [7, 17] can read-
ily avoid the need of producing and merging v; sketches.

o @) @) fold ©_ @) fod

5 : é

O O O O

3 : ; 1]

® o é fold

2 é g §

ot b S
without folded rolling: with folded rolling:
5 RSA operations (7) needed 3 RSA operations (?) needed

Figure 4: Folded rolling. Here we need to roll the
two shorter chains forward to the 5th position to
fold with the longest chain.

The aggregate Mean is simply Sum divided by Count. Fi-
nally, the Count-Min sketch [8], which consists of a matrix
of Count elements, trivially reduces to Count. The Count-
Min sketch can in turn be used [8] to answer kth statistical
moments, median, quantiles, inner product queries, etc.

High overhead of naive reduction. Directly using the
Max protocol as a blackbox in the above reduction from
Count to Max will unfortunately, pose excessive computa-
tion load on the portal and the aggregator, due to the large
number of the Max instances needed for each Count. Con-
sider a single instance of the AMS algorithm (and thus our
Max protocol). Let N be the total number of sensors and vr,
be the maximum AMS sketch value, where v, is usually on
the order of log N. When generating the reference synopsis
(RS), the portal needs to generate all the s; ’s, roll them to
position v,,, and then fold them together. This takes N - v,
rolling operations and N folding operations. Now with J
instances of the AMS algorithm for each Count, it becomes
J - N - vy, rolling operations and J - N folding operations.
To have reasonable estimation error, J usually needs to be
large (e.g., a few hundreds). With J = 300, N = 100, 000,
and vy, = log N = 17, the portal needs to perform 510 mil-
lion rolling operations and 30 million folding operations. For
RSA encryption based one-way chains, this will take more
than 7 hours (assuming 20,000 RSA encryptions/sec [1])!
Even if we use cheaper hash functions (e.g., MD5 or SHA-1)
to construct one-way chains, 510 million rolling operations
will take more than 510 seconds (assuming 1 million hash
operations/sec [1]). Such overhead is obviously not accept-
able and will offset the advantage of outsource aggregation
itself. In addition to the creation of RS, the protocol has
similar overheads elsewhere.

Even though RSA encryptions are substantially more ex-
pensive than hashing, interestingly, its homomorphic prop-
erty enables us to develop a number of aggressive optimiza-
tions. These optimizations together will help to reduce the
overhead by up to 7 orders of magnitude and make the over-
head quite acceptable. With our optimizations, verifying a
Count query answer requires only up to 2log N encryptions
and 2 log N multiplications, which takes less than 2 millisec-
onds for N = 100,000. We believe that this is an interesting
finding by itself, as using RSA enables us to achieve an over-
head smaller than using hashing. We next describe our two
key optimizations. These optimizations also apply to Max,
though they are obviously more important for Count due to
the J factor.

5.2 Reducing Rolling Cost via Folded Rolling

A key source of overhead in our protocol is that in several
places (e.g., when generating the RS or when merging VS),

the protocol needs to roll a large number of SEALs forward
to some position x, and then fold the SEALs at position
x together. In folded rolling, we aggressively fold SEALs
whenever possible so that we only need to roll forward the
(single) folded SEAL instead of multiple ones. To maximize
the benefit, we will roll the SEALSs in the order of their initial
positions (from smallest to largest). For example in Figure 4,
we need to fold together three SEALS, at positions 3, 2, and
5 respectively. Doing so naively would require five RSA
encryptions. With folded rolling, we start from the SEAL
at the lowest position (i.e., the SEAL on the second chain
at position 2), and roll it forward to position 3. We then
immediately fold it with the SEAL on the first chain (since
they are at the same position). Finally, we roll the folded
SEAL to position 5 and then fold with the last SEAL. As
shown, this requires only 3 RSA encryptions. Folded rolling
relies on the homomorphic property of RSA encryptions and
thus is not applicable to MD5 or SHA-1.

One can trivially prove that with folded rolling, regardless
of the total number of SEALS, the total number of RSA en-
cryptions will be no larger than the difference of the highest
and the smallest positions among all SEALs. A naive im-
plementation of folded rolling requires sorting all the SEALSs
(e.g., 1000 SEALs) according to their positions, which can
add non-trivial overhead. However, notice that for Count,
the highest position of the SEALSs is only on the order of
log N. Thus we can always first fold all SEALs at the same
positions together, and then sort the resulting log NV SEALS
and apply folded rolling.

Folded rolling is effective in reducing overheads in sev-
eral places in our Count protocol. First, for each of the J
instances of the Max protocol, an aggregator needs to ag-
gregate all the VS’s received from its children. Doing so
naively would incur up to J - C - log N RSA encryptions,
where C' is the number of children. Folded rolling reduces
this to J - log N, which is independent of C.

Second, when the portal receives the J VS’s (one for each
instance) from the root aggregator, the portal needs to ver-
ify each of them. To enable folded rolling, all J instances
use the same RSA encryption function (i.e., with the same
encryption key) to construct their one way chains. For the
jth instance, a sensor i will generate its deflation-free proof
as s; ; = {MACk, (epoch#[|j)}. This s; ; is then used as the
seed of the one-way chain for sensor 7 in instance j. Let the
folded SEAL in the VS submitted to the portal for the jth
instance be x;. Namely, z; should be ©; F"™ (s, ;) (when v,
is the maximum for this instance) if the aggregators are all
honest. For the jth instance, with folded rolling, the portal
can create the RS by first folding all s; ;s (for the given j)
together, and then rolling forward to v,,. Doing so reduces
the total number of RSA encryptions from J - N -log N to
J-log N.

A more careful look reveals that one can even apply folded
rolling across the J instances. Let w be the maximum of all
J sketches, which is roughly log V. Instead of verifying x;’s
individually, the portal first conceptually rolls all x;’s to
position w and then folds them together. Obviously, we can
apply folded rolling here so that the total number of RSA
encryptions needed is no larger than log N. Next, for the RS,
the portal conceptually roll all the s; ;’s forward to w and
fold them. Again, folded rolling enables us to do so with
no more than log N RSA encryptions. Finally, the portal
compares the two folded SEALs to see if they match. This

aggressive optimization helps to reduce the number of RSA
encryptions on the portal to 2log N per verification, which
is completely independent of J.

Finally, as a beneficial side effect, the root aggregator can
actually fold all those z;’s at identical positions (on the one-
way chains) together before sending to the portal. Since
there can be at most log N distinct positions for all z;’s,
the total number of SEALSs sent from the root aggregator
to the portal will be no more than log N. For N = 100, 000
and 1024-bit SEALs, this will be less than 2KB. The root
aggregator can also fold J inflation-free proof sifj’s together
(using XOR) before sending to the portal.

5.3 Reducing Folding Costs via B-Tree

Folded rolling only helps to reduce the number of rolling
operations. For each query, the portal still needs to gener-
ate an RS which takes up to J - N folding operations (mod-
ulo multiplication) to fold all the s; ; together. To better
understand our optimization, let us first focus on queries
with range predicates that cover sensors with continuous id
ranges. For these queries, the portal can create a binary tree
(or a B+-tree or an R-Tree) at the beginning of each epoch.
The leaves of the tree are all the s;’s, ordered by ¢ from
left to right. Each internal node of the tree is the modulo
multiplication of its children. Constructing such a tree still
takes J - N folding operations, but we only need to do this
once per epoch.

One can easily show that regardless of the id range re-
quired by the query, we can always find no more than 2log NV
disjoint subtrees, such that the set of all the leaves of these
subtrees is exactly the set of sensors falling within that
range. Roots of these subtrees can be found with a pre-
order traversal of the tree [13]. Multiplying all the root of
these subtrees then yields the required folded result. Doing
so thus reduces the number of multiplications from J - N to
2log N per query. It is trivial to generalize such technique
to dealing with range predicates based on other static at-
tributes of the sensors. One can simply build one tree for
each static attribute.

6. TOP-x READINGS AND RELATED
QUERIES

We move on to Top-k Readings queries and other aggre-
gates related to Top-k Readings. A Top-k Readings query
asks for the top-k values among the sensors’ readings. With-
out loss of generality, we assume that sensor readings are all
distinct (e.g., by appending the sensor id).

6.1 Protocol Intuition

One could trivially answer a Top-k Readings query by
invoking our Max protocol (as a black box) sequentially for
k times. Namely, the first invocation will return the largest
value, together with which sensor i1 generated this Max.
The second invocation of the protocol will simply exclude
sensor i1, and then compute the Max again. To exclude
sensor 41, the root aggregator (after the first invocation and
after knowing i) needs to potentially broadcast i, to all the
aggregators, so that they can exclude sensor ;. The second
invocation will then produce the second largest value, as well
as which sensor 72 generated that value. More precisely, for
the second largest value, the VS submitted to the portal will

Yy =80, 75, 61

a=280,61,12

B =75, 26,20

reading 80 12 10 61 26 20 18 75

Figure 5: Example for Top-k Readings query.

be
(viQ ’ 53;7 Oiiy Fi2 (51_))

Invoking the Max protocol in this way sequentially for k
times can then answer the Top-k Readings query.

Invoking Max sequentially, however, can incur unneces-
sary delay. Thus we aim to mimic the above process via
k parallel invocations of the Max protocol. It is not im-
mediately obvious how to do so: For the ith largest value,
we need to produce folded SEALs of all sensors excluding
those generating the top ¢ — 1 values. The challenge is that
each aggregator, when performing the aggregation, does not
yet know which sensors generated the globally top ¢ — 1 val-
ues. Consider the example in Figure 5 where £ = 3 and
we want to aggregate VS a and VS (. Suppose that each
VS contains the top-k values observed so far. The VS «
covers sensors 1 through 4, and the Top-3 values observed
so far are 80, 61, and 12. It is easy to include similar ver-
ification information in « as before in the Max protocol.
For example, to prove that 61 is the maximum reading seen
so far excluding the reading from sensor 1, a can include
FO'(s5)® F%(s3) ® F%(s;). B covers sensors 5 through 8
and the Top-3 values observed so far are 75, 26, and 20. It
is obvious that when merging two synopses, we can simply
take the top-k values in their union. Thus the new Top-3
values after aggregation should be 80, 75, and 61.

In the new VS, the verification information for 61 needs
to be the folded SEALs of sensor 2 through 7, since 61 is
the 3rd largest value and we need to exclude sensor 1 and
8 who generated the top 2 values. Notice that for the value
61, o only contains the folded SEALs of sensors 2, 3, and
4 (ie., F(s;5) ® F%(s3) ® F®(s;)). We do not know
FS'(s3), F%(s5), or FO'(s7). Fortunately, the verification
information for 26 in 8 should contain the folded SEALSs
from sensors 5, 6, and 7 (i.e., F?5(s5)® F?(s5)© F?5(s7)).
Since 61 > 26, all we need to do is to roll this folded SEAL
forward, and then fold it with the SEAL from «.

Notice that the above is not entirely obvious: For exam-
ple, if 3 only contained F?°(s5) ® F?°(s;) and F™®(s5) ®
F™(s5)® F™(s7)® F™(sg), we would not be able to gen-
erate the verification information for 61. However, we will
prove later that we can always generate the verification in-
formation for 61 by finding the largest value in 3 that is
smaller than 61, and use its corresponding verification infor-
mation. This means that the previous problematic scenario
will never occur.

6.2 Protocol Description

For any given aggregator in the aggregation tree, its cov-
erset is defined as the set of all sensors in its subtree. For

Top-k Readings query, the V'S sent by an aggregator with
coverset U has the form of:

(VSiy,VSiy, . VSi,
VSij = (Uij753;'7QiEU\{il7i27-<»,ij—1}FW'j (Sz_))v and
Vi > Vi > oo > Vi

The value of k' is within [1,%k]. Roughly speaking, VS;,
through V'S;,, contains the top k' values observed so far,
and these values are from sensors i1 through ix/. The value
k’ can be smaller than k initially when we observe less than
k values.

For SG(), a sensor i with reading v; generates:

{(Uivsz-'"_’Fvi(Si_))}

Consider two VS’s a = {a,, @iy, ...} and 8 = {B;,, Bjs, .- }-
The SA() function will aggregate them into v = {7, , Vts, ---}-
Here ~:,, 7ty, ..., simply correspond to the top-k values
among o, , Qi,, ..., and Bj;, Bj,, Without loss of gener-
ality, consider some o, = (vs, s), fz) in « that is one of the
new top-k values, where we need to construct a correspond-
ing v, in . Let vy be the largest value in 3 (i.e., among v, ,
Vjgy, -..) such that vy > vy.

If v, does exist, let the element By, = (vy, sy, fy). We
construct v, as (vz,s7, fo © FU= %) (f,)). To understand
why doing so is correct, suppose a covers U, and (3 covers
Us. Then f, covers all sensors in U, except those sensors
with readings larger than v,. Similarly, f, covers all sensors
in Ug except those sensors with readings larger than v,. But
because v, > v, and Ug does not contain any sensor with a
reading between v, and vy, f, actually covers all sensors in
Ups except those sensors with readings larger than v,. As a
result, f,©F“==)(f,) exactly covers all sensors in U, UUp
except those sensors with readings larger than v,.

If all values in [are larger than v, then v, does not exist
and we set v, = ag. In such case, # must have less than
k values, since otherwise v; can never be among the new
top-k. Let Ug be the set of sensors covered by 3. Then all
sensors in Ug have readings larger than v,. As a result, we
do not need to fold additional SEALSs from any sensor in Ug.

Synopsis evaluation is trivial. Namely, the portal verifies
the largest value in the same way as for Max, and then
verifies the second largest value as the Max excluding the
largest value, and so on.

}, where

6.3 Correctness and Optimizations

The correctness of the above protocol naturally follows
from Theorem 4.1. Namely, Theorem 4.1 already tells us
that the largest value reported must be correct. When ver-
ifying the second largest value, the portal excludes the sen-
sor 41 that generated the maximum value. Applying Theo-
rem 4.1 then tells us that the value must be the largest value
if we exclude sensor i1, which means that it must be the sec-
ond largest value. Continuing this argument can prove the
correctness of all the top-k values reported.

To further reduce the overhead of verification, the portal
should verify the VS;,, ..., VSi,, VS;, according to that
order. After constructing the RS of

Pk = Qigfir,in,..in 1} F (87)
for V.S;,, the portal can generate the RS for VS;, , as
pr—1 = F"»=17"% (p. © $;,_,)- Doing so will make the
number of RSA encryption operations independent of k.

6.4 Aggregates Reducible to Top-+ Readings

A Uniform Samples query can be readily reduced [17] to
a Top-k Readings query, by having each sensor generate a
uniformly random number in (0,1) and by returning the
sensors with the top-k numbers. It is known [17] that k-
th statistical moments, quantiles, and median can all be
computed from uniform samples, and can thus be securely
answered via Top-k Readings query.

7. TOP-x GROUPS AND RELATED
QUERIES

‘We move on to more complex queries which we call Top-k
Groups queries. We continue assuming that sensor read-
ings are all distinct. For a Top-k Group query, each sensor
is first mapped to some group, where the mapping can be
either static or dynamic. For example, a group may cor-
respond to some geographic region. An immobile sensor
will thus belong to some fixed group, while a mobile sensor
may belong to different groups at different times, making
the mapping dynamic. The mapping can also be dynamic if
the groups are defined based on sensor readings (e.g., when
we later consider frequent items and popular items query).
We assume that each sensor knows which group it currently
belongs to, while the portal may not have such information
(since the groups can be dynamic). Each group has a local
max, called the value of the group, which is the maximum
sensor reading within that group. A Top-k Groups query
asks for k groups with the k largest values. Thus, if some
group has many sensors with large readings, the group will
only “occupy” one position in the final answer, and the query
can still discover other k£ —1 groups. In comparison, a Top-k
Readings query may return k readings from sensors in that
single group.

Top-k Groups queries are interesting mainly because some
other common queries, such as Most Popular Items and Fre-
quent Items, can be reduced to Top-k Groups queries. Top-k
Groups queries can also have interesting real world applica-
tions themselves when Top-k Readings queries are less ap-
propriate. For example, consider a pressure sensor network
in a ski resort that detects the high pressure caused by snow
mass in avalanche and uses such information to warn visi-
tors about dangerous regions. A Top-k Readings query may
return readings from sensors in one single region with a large
avalanche. In contrast, a Top-k Groups query will identify
k most dangerous regions.

Challenge. While Top-k Groups query appears similar as
Top-k Readings, it is substantially harder. The reason is
that in Top-k Readings, to verify the correctness of the sec-
ond largest value, we only need to fold the SEALs of all
sensors excluding the sensor reporting the largest value. For
Top-k Groups query, to prove the correctness of the sec-
ond largest value, we need to exclude all sensors in the top-
1 group. This is difficult since the portal does not know
which sensors belong to the top-1 group. Directly sending
the group membership to the portal would incur linear com-
munication complexity (in terms of the number of sensors),
which can be prohibitive.

7.1 Protocol Intuition

Define g; to be the id of the group containing sensor i,
which is known to sensor 7. Let sensor i1 (with value v;,)
be the sensor with the globally maximum reading, which

also implies that g;, is the group with the largest value. Let
sensor 42 (with value v;,) be the sensor with the maximum
reading except all those sensors in group g¢;,. The group g,
is thus the group with the second largest value. Define i3
(gi5) through i (gi,) similarly. We further define a special
group with id go that includes all sensors not in any of the
groups gi, , Gis, ---, 9i,- We explained earlier that without
group membership information, the portal cannot verify the
folded SEALSs from the sensors in individual groups.

Notice that each sensor must be either in go or in ex-
actly one of the k group. To see how this can help, assume
for now that each sensor knows whether it belongs to one
of the top-k groups. For each group g;, we define an in-
dependent one-way function Fy,. We similarly define Fp
for the special group go. We further assume (only for this
protocol) that the portal (and only the portal) knows the
trap-door of these functions so that the portal can roll the
one-way chain backward. For example, our implementation
uses independent RSA encryption functions as Fy, Fy,, Fy,,
...y Fg,, where the portal knows all the corresponding de-
cryption keys. By “independent”, we mean that each such
function uses an independent RSA key pair under an inde-
pendent modulus. Independent modulus will later help us
to prevent the Common Modulus Attack [24] on RSA.

Imagine now that we invoke k parallel instances of the
max protocol for groups ¢i,, gis, ---; gi,. We also invoke one
additional parallel instance for the special group go (i.e., for
all the sensors not in one of the top-k groups). The portal
will eventually receive k + 1 folded SEALs F, ";‘11 (z1) (for

group gi,), ... F;f: (zr) (for group g;,), and Fy°(zo) (for
group go). Here vg is the largest reading from the sensors in
group go. The portal can then roll these SEALs backward
to obtain x1, x2, ..., Tk, and xg. Each z; here is the folded
SEALSs of those sensors in group g;. Though the portal still
cannot verify the individual x;’s, it can verify that 1 ®...®
Zr © xo = @i(s;). The security of this protocol comes from
the fact that each s; must be folded into one and exactly
one of the x;’s.

In reality, a sensor does not know whether it belongs
to one of the top-k groups. A sensor i will thus generate
both Fy?(s;) and Fy*(s;), and submit to some aggregator.
When using RSA encryption as the one-way function, notice
that the moduli of the two encryption functions (i.e., Fy, and
Fy) are different, which prevents the Common Modulus At-
tack [24]. Submitting both F,?(s;") and F*(s;) enables the
aggregator to perform proper folding regardless of whether
group g; is among top-k or not. On the other hand, provid-
ing both Fy#(s;) and Fy(s;) also gives a malicious aggre-
gator the freedom to choose whether to classify sensor i into
group g; or group go. Consider an example where sensor i1
generated the globally maximum 15, together with F, 91151 (54,)
and F&s(si_l). A malicious aggregator could potentially fold
F015(sl_1) into the folded SEAL for group go. Doing so can
“hide” this maximum and thus deflate the reported value for
group gi;. A closer look, however, will reveal that if this
indeed happens, then vy will reach 15. It is then easy for
the portal to detect that the reported vg is larger than the
values of some of the top-k groups.

One can generalize the above argument to make it more
precise (see Figure 6). Remember that v;, denotes the value
of the group with the kth largest value (e.g., v;;, = 10 in
Figure 6). For any sensor ¢ with v; > v;, , if the aggregator

15
13
11
9
8
5
4

7 groupg,
top—3 groups

Figure 6: An example with 8 sensors. The numbers
are sensor readings. For all sensors with readings
below 10, regardless of which group they are classi-
fied into, the final result (i.e., 15, 11, and 10) will
not be affected.

maliciously uses Fy,?(s;) instead of F,7(s;), it will neces-
sarily cause the reported vo to be larger than the reported
values of some of the top-k groups. On the other hand, for
any sensor ¢ with v; < v;,, even if the adversary maliciously
classifies it into the wrong group (e.g., by using Fy(s;) in-
stead of Fji(s;)), it will never affect the correctness of the
query answer (see Figure 6).

7.2 Protocol Description
We first re-define s?’ to include g;:
si = {i, MACKk; (vi]|gi|lepoch#)}

For any sensor set U, define U; to be any non-empty set such
that U; C (U N group g;). For Top-k Groups query, the V'S
sent by an aggregator with coverset U has the form of:

Vs = {VS»;I,VSZ'Z,...,VSik,,VSO}, where

VS&E = (Umvgam8;»7QiGUa:F;;f(Si_)7QiGUzF(;)m(Si_))
for x = i1,142,..., 1%,

VSo = (vo,®icvr Fg°(s;))

for U’ = U\(Uz1 U UZ'2 u...u Uik,)7

Vi > Vi > .. > Vi > Vo

The value of k' is within [1,k]. Roughly speaking, V'S,
through V.S;,, contains the top k" local max from &’ different
groups (from sensors i1 through 4,/) observed so far. VS
corresponds to the maximum value (vo) observed excluding
these &k’ groups. A VS, contains the folded SEALs based
on both F,, and Fy because the intermediate aggregators
do not know whether group g, is among top-k or not.

For synopsis generation, a sensor ¢ with reading v; gener-
ates:

{VSiy = (vi, gi, 57, Fyi (s77), Fy* (s7)), ViSo = (null)}

Let & = {ai,,aiy, a0} and 8 = {B),, Bz, . fo}. The
synopsis aggregation function will aggregate the two syn-

opses into v = {V¢;,Vta,---, Y0} Here v, Yty, ..., simply
correspond to the top-k groups among o, , @, ..., and Gj;,
Bjs, ... Notice that it is possible for some a, and 3, to

correspond to the same group, in which case they will be
merged (i.e., by keeping the larger group value only).
Without loss of generality, consider some
ay = (Vz, gu, 53, fu, f) where v, is the value of one of the
new top-k groups. We need to construct a corresponding =,
for . If there does not exist any 8, = (vy, gy, 85 , fy, f4) such

that g, = gy, we simply set 7, = a,. Otherwise it means
that there exists a 3, such that a, and 8, correspond to
the same group. In such case, we must have v, > v, since
otherwise v, will not be the value of one of the new top-k
groups (i.e., it will be vy instead). We construct v, to be

(Vas Gas 853 o O Fol? "2 (), fo @ F™ 779 (£1))

We also say that a, and (8, have been incorporated into
~. Finally, we combine all the a;’s and 7,’s (including ao
and (o) that have not been incorporate into v to construct
o = (vo, ©F;°(s;)). Here vg is the maximum value among
all these a;’s and ~,’s. The folding operation is done after
properly rolling forward all the SEALSs based on Foy (in ag’s
and 7,’s) until the voth position.

For synopsis evaluation, let ¢ = {0y,,...,04,,00} be the
VS reported to the portal. The portal first verifies i) all
the s}’s are valid, ii) v;, (from o;,) > ... > v;, (from o;,)
> vy (from o¢), and iii) gi;, gis, ..., gi, are all distinct.
Next, for each o, where x = i1 through i, the portal de-
crypts ©Fg®(s;) for v, times using the decryption key cor-
responding to g,. This will recover ®s; . For og, the portal
similarly decrypts ©F;°(s;) to get @s; . The portal then
folds all these ©s; ’s together. Finally, the portal creates
all the s; ’s itself and folds them together to see if the two
results match.

THEOREM 7.1. If the portal accepts a result in the above
protocol, the accepted result must be correct.

Proof (sketch). We prove the following statement for all
integer x € [1, k]: If the portal accepts a result in the above
protocol, then conditioned upon the top-(z — 1) group val-
ues being correct, v;, must be the value of the group with
the xth largest value. We define “top-0 group value being
correct” to be an event that always happens. Obviously, the
theorem can be trivially proved via an induction on x in the
previous statement (if it indeed holds).

Let the group with the zth largest value be group g, and
let its value be v,,. Let g, and v), be the corresponding an-
swers returned by the aggregator. We prove by contradiction
and consider two cases. First consider v},, > vm. The portal
must successfully verified some inflation-free proof s} for v/,.
Since the top-(z — 1) group values are all correct, we know
that the sensors in the remaining groups all have values no
larger than v,, and none of them will generate an s} for the
value v,,. It is possible that some sensor within the top-
(z — 1) groups generated an s} for the value vl,. However,
the s:r will also be only for the group id that corresponds to
one of those top-(z — 1) groups. Thus the aggregator must
have forged an sj corresponding to v, and g,, which is
impossible.

Consider the second case of v, < vm. Let the values of
the top-k groups returned by the aggregator be v;; through
v;,, (where v;, = v},). Let the value of group 0 as returned
by the aggregator be vg. Since the portal accepts the an-
swer, we have v;; > ... > v;, > vg. Since the top-(z — 1)
groups are all correct, we know that group g, is not one of
the top-(z — 1) groups returned by the aggregator. Now con-
sider all the decryption operations done by the portal during
the verification process. We claim that the total number of
decryptions using the description key corresponding to gm
can be at most v},. The reason is that gm does not corre-
spond to the first (z —1) values in v;; > ... > v, > vo, while

all later values are no larger than v},. Similarly, the total
number of decryption operations using the description key
corresponding to go can be at most v, as well. Now con-
sider the sensor m with reading v, in group gm,. It has only
generated Fy™ (s,,) and Fy™ (s.,). To pass verification, the

SEAL s, must be present in the folded result after all the
decryption operations. Since folding is secure, this implies

that the aggregator must have obtained either F,™ (8m) or

m

’
Fy™ (sm), which is impossible given vl,, < vy,. O

7.3 Popular Items and Frequent Items

For Popular Items and Frequent Items queries, each sen-
sor’s reading is considered as an “item”. A Popular Items
query asks for the top-k items in terms of their occurrence
counts. It is known [18] that a Popular Items query can be
reduced to a Top-k Groups query as follows. Each sensor
uses the value of its reading as its group id. Thus, sensors
with the same reading (i.e., “item”) are considered to be in
the same group. Next, each sensor generates an AMS sketch,
and the Top-k Groups query is executed on the values of
AMS sketches of all sensors. In other words, the value of
each group is given by the maximum of all AMS sketches in
that group. Intuitively, the maximum AMS sketch within
each group represents the occurrence count of the corre-
sponding item. The approximation error can be control by
using multiple AMS sketches.

A Frequent Items query asks for all items whose occur-
rence count is above certain threshold. This query can be
reduced [17] to the Threshold Groups query, which is the
same as a Top-k Groups query except that it returns all the
groups whose values exceed a given threshold. A Thresh-
old Groups query can be answered in almost exactly the
same way as the Top-k Groups query—the only difference
is that for synopsis aggregation, we need to keep all groups
whose values exceed the threshold, instead of only the top
k groups. To reduce a Frequent Items query to a Threshold
Groups query, again it suffices to consider sensors with the
same reading (i.e., “item”) as in the same group, and then
use the AMS sketch as the reading for the Threshold Groups

query.

8. EVALUATION

We have implemented our secure aggregation protocols for
sensor, aggregator, and portal, in C++, using the Crypto++
5.5.2 library. This section evaluates our prototype using 2.5
GHz PC with Intel Core 2 Duo CPU and 2GB RAM. (We
assume that the proxies connecting sensors to the Internet
are desktop-class computers, so we use the same hardware
for sensors/proxies as well.)

8.1 Basic Performance of SECOA

We first use a real dataset to demonstrate the advantages
of outsourced aggregation. We use 16,106 stream gauge sen-
sors provided by the U.S. Geological Survey (USGS) all over
the U.S.A. The sensors report different real-time data such
as water discharge, gauge height, water temperature, etc.
We use a two-level aggregation tree with a single root ag-
gregator and 17 leaf aggregators, and report the load of the
most loaded aggregator. We consider Max, Count, Top-10
Readings, and Top-10 Groups queries. The range of sensor
readings is [0, 200]. For Count, we use 300 AMS sketches to
bound the relative approximation error within 10% with a

Query Sensor Aggregator Portal
(ms/reading) | (ms/query) | (ms/query)
Max 0.84 11.97 1.05
Count 35.97 158.9 1.11
Top-10 Readings 1.09 10.9 1.12
Top-10 Groups 0.78 8.2 80.9

Table 2: Average computation time (milliseconds)

probability of 0.9 [3]. We assume that all queries ask for the
aggregate of readings from all sensors, which demonstrates
the worst-case overhead.

Each SEAL in our implementation is 128 bytes while each
MAC is 20 bytes. With all the optimizations in Section 5,
for each Count query, the portal in our prototype needs to
receive only less than 3KB data from the root aggregator
(300 bytes for 300 AMS sketches, 2048 bytes for 16 SEALS,
and the 20 bytes for folded s;’s). The communication over-
head at the portal for Max, Top-10 Readings, and Top-10
Groups is less than 0.5KB, 1.5KB, and 1.6KB, respectively.
In contrast to such overhead, if the aggregators simply for-
ward the raw data to the portal, then 16,106 signed readings
from the sensors would need to be delivered to the portal,
which will be at least 320KB (assuming signature is done
via 20-byte MAC). This demonstrates the obvious benefit of
in-network aggregation.

Table 2 further gives the computational overhead on the
sensors, the aggregators, and the portal, when using our pro-
tocol. These overheads are rather small and acceptable in
all cases. In particularly, the overhead on the portal is only
about one millisecond per query except for Top-10 Groups
query (which still only takes around 80 milliseconds). No-
tice that this is despite of the use of RSA encryption-based
one-way chains in SECOA. The overhead on the aggrega-
tors is usually larger than the overhead on the portal. This
is expected, since outsourced aggregation precisely intends
to offload the load from the portal to the aggregators. Nev-
ertheless, the absolute overhead on the aggregators remain
quite acceptable (i.e., around 0.1 to 0.01 second per query).

8.2 Computational Overhead: A Deeper Look

To have a deeper understanding of the computational over-
head and in particular the utility of our optimizations, we
run our prototype with different optimizations incrementally
enabled. We will use Max and Count as examples. Fig-
ures 7(a) and (b) plot the overhead on the portal to verify
the answer for Count and Max, respectively, as the total
number of sensors in the system change. The results show
that in all cases, our optimizations are critical and they help
to reduce the computational overhead by up to 7 orders
of magnitude. Figures 7(c) and (d) further plot the com-
putational overhead on an aggregator, as a function of the
number of children it has. There our optimizations help to
reduce the overhead by roughly 2 to 3 orders of magnitude.

8.3 Benefits of No False Positives or Negatives

In addition to supporting more aggregates, a key advan-
tage of SECOA over proof-sketch [11] is that SECOA does
not have false positives and false negatives. To demonstrate
such advantage, we implemented proof-sketch for Count and
then compare against SECOA. Because proof-sketch uses
the FM algorithm [10] for reducing Count to Max, we also

lO3 /_ 10
> No-opt 10
g 10} FR 1 .
= FR+BT weeveeees 10
Is) 1L i
B0 10"
10° | .
10* 10° 10°
sensors
(a) Portal (Max)
1
10 T T T
/// 102
1 L -
No-opt —— 10t
10-1 L FR i
102 f 1
103 . . .
0 250 500 750 1000
children

(c) Aggregator (Max)

1073 4

No-opt
FR J
FR+BT S
SRR PO [P PR [P 4
4 10° 10°
sensors

(b) Portal (Count)

No-opt
FR - PO
T SR I IneT s e 4
250 500 750 1000

children
(d) Aggregator (Count)

Figure 7: Per-query computational load on portal and aggregator. “No-opt” means no optimizations, “FR”

means folded rolling, and “BT” means B-Tree.

100 " Proof-sketch

Estimation error (%)
[o2]
o

Estimation error (%)
[o2]
o

of CUNRS SEEEE pened]

Proof-sketch

0 02 04 06 08 1 0 02 04
Predicate selectivity

(a) 333 FM sketches

Predicate selectivity
(b) 54 FM sketches

T 8000 T T T
] Proof-sketch
$ 6000 | SECOA ——+— |
S
@ 4000 r
4 X
(%]
. 1 # 2000 1
06 038 1 50 60 70 80 90 99

Estimation accuracy (%)
(c) # FM sketches needed for target accuracy

Figure 8: Comparing SECOA with proof-sketches. (c) uses a selectivity of 1.

use the same reduction in SECOA for a fair comparison. We
consider an adversary that aims to maximize the error in the
query answer, without being detected. Since SECOA does
not have false positives or false negatives, to avoid being de-
tected, the adversary can only behave honestly in SECOA.
For proof-sketch, the adversary can use the safe cheating
strategy mentioned in [11]. Due to the existence of such
safe cheating strategy, the inaccuracy in proof sketch (which
comes from both approximation error and adversarial ma-
nipulation) will be larger than the inaccuracy in SECOA
(which is purely approximation error). We quantify the in-
accuracy or error as |C' — C|/C, where C is the accurate
count while C' is the answer returned. In the following ex-
periments, we consider a system with 100,000 sensors.
Figure 8(a) and (b) plot the errors in SECOA and proof-
sketch under different predicate selectivity x. A selectivity of
x means that x fraction of the sensors satisfy the predicate
in the Count query. The figures show that the inaccuracy
in SECOA is always substantially lower than than in proof-
sketch. In fact, the error in proof sketch is often larger than
50%. Such high relative error can easily limit the utility

of the final answer. Under relatively small selectivity values
(e.g., below 0.2), the aggregator can always safely report 0 as
the Count answer in proof-sketch, without being detected.
This translates to an error of 100%.

Since using a larger number of FM sketches can always
reduce the error, one can interpret the above results from
another perspective. Namely, to achieve the same accuracy,
proof-sketch needs to use a larger number of FM sketches
than SECOA. Figure 8(c) plots the number of FM sketches
needed by the two schemes to achieve some given target ac-
curacy. The figure shows that to achieve the same accuracy,
proof-sketch can easily require 20 to 100 times more FM
sketches than SECOA. This will in turn, increase the com-
munication/computational overhead for dealing with the FM
sketches by over an order of magnitude.

9. CONCLUSION

We have presented SECOA, a framework with a fam-
ily of novel and optimally-secure protocols for secure out-
sourced aggregation. Our framework is based on a unified
use of one-way chains. It supports a large and diverse set of

aggregate functions, can have multiple hierarchically orga-
nized aggregators, can deterministically detect any malicious
aggregation behavior without communication with sensors,
and incurs small communication and computational over-
heads. Our evaluation results demonstrate feasibility and
significant benefits of SECOA.

Acknowledgements

We thank Josh Benaloh and Melissa Chase for many useful
discussions. This work is partly supported by NUS Young
Investigator Award R-252-000-334-123.

10. REFERENCES

[1] Speed comparison of popular crypto algorithms.
http://www.cryptopp.com/benchmarks.html, 2008.

[2] ALON, N., MATIAS, Y., AND SZEGEDY, M. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci. 58, 1 (1999), 137-147.

[3] BAR-YOSSEF, Z., JAYRAM, T., KUMAR, R.,
SIVAKUMAR, D., AND TREVISAN, L. Counting distinct
elements in a data stream. In RANDOM (2002).

[4] BELLARE, M., GARAY, J., AND RABIN, T. Fast batch
verification for modular exponentiation and digital
signatures. In Eurocrypt (1998).

[5] CHAN, H., PERRIG, A., PRZYDATEK, B., AND SONG,
D. SIA: Secure information aggregation in sensor
networks. Journal of Computer Security 15, 1 (2007),
69-102.

[6] CHAN, H., PERRIG, A., AND SONG, D. Secure
hierarchical in-network aggregation in sensor
networks. In 18th ACM conference on Computer and
communications security (CCS) (2006).

[7] CoNSIDINE, J., L1, F., KoLL1OS, G., AND BYERS, J.
Approximate aggregation techniques for sensor
databases. In ICDE (2004).

[8] CORMODE, G., AND MUTHUKRISHNAN, S. An
improved data stream summary: The count-min
sketch and its applications. LATIN 2004: Theoretical
Informatics (2004), 29-38.

[9] DESHPANDE, A., NATH, S., GIBBONS, P. B., AND
SESHAN, S. Cache-and-query for wide area sensor
databases. In SIGMOD (2003).

[10] FLAJOLET, P., AND MARTIN, G. N. Probabilistic
counting algorithms for data base applications. J.
Comput. Syst. Sci. 31, 2 (1985), 182-209.

[11] GAROFALAKIS, M., HELLERSTEIN, J., AND MANIATIS,
P. Proof sketches: Verifiable in-network aggregation.
In ICDE (2007).

[12] KANSAL, A., NaTH, S., Liu, J., AND ZHAO, F.
Senseweb: An infrastructure for shared sensing. IEEE
Multimedia 14, 4 (2007).

[13] L1, F., HADJIELEFTHERIOU, M., KOLLIOS, G., AND
REYZzIN, L. Dynamic authenticated index structures
for outsourced databases. In ACM SIGMOD (2006).

[14] MYKLETUN, E., NARASIMHA, M., AND TSuUDIK, G.
Signature bouquets: Immutability for
aggregated /condensed signatures. In ESORICS
(2004).

[15] MYKLETUN, E., NARASIMHA, M., AND TSUDIK, G.
Authentication and integrity in outsourced databases.
ACM Trans. Storage 2, 2 (2006), 107-138.

[16] NARASIMHA, M., AND TsuDIK, G. DSAC: Integrity of
outsourced databases with signature aggregation and
chaining. In CIKM (2005).

[17]) NATH, S., GIBBONS, P. B., SESHAN, S., AND
ANDERSON, Z. Synopsis diffusion for robust
aggregation in sensor networks. ACM Transactions on
Sensor Networks (TOSN) 4, 2 (2008).

[18] NaTH, S., GIBBONS, P. B., SESHAN, S., AND
ANDERSON, Z. R. Synopsis diffusion for robust
aggregation in sensor networks. In ACM SenSys
(2004).

[19] NuckoLLs, G. Verified query results from hybrid
authentication trees. In Data and Applications
Security (DBSec) (2005).

[20] PaNG, H., JAIN, A., RAMAMRITHAM, K., AND TAN,
K.-L. Verifying completeness of relational query
results in data publishing. In ACM SIGMOD (2005).

[21] PaNG, H., AND TAN, K. Verifying completeness of
relational query answers from online servers. ACM
Transactions on Information and System Security
(TISSEC) 11, 2 (2007).

[22] PANG, H., AND TAN, K.-L. Authenticating query
results in edge computing. In ICDE (2004).

[23] RIVEST, R., SHAMIR, A., AND ADLEMAN, L. A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21, 2
(1978), 120-126.

[24] SIMMONS, G. J. A weak privacy protocol using the
RSA crypto algorithm. Cryptologia 7, 2 (1983),
180-182.

[25] SION, R. Query execution assurance for outsourced
databases. In VLDB (2005).

[26] WAGNER, D. Resilient aggregation in sensor networks.
In 2nd ACM workshop on security of ad hoc and
sensor networks (2004).

[27] Yu, H. Secure and highly-available aggregation
queries in large-scale sensor networks via set sampling.
In ACM/IEEE IPSN (2009).

