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ABSTRACT

A large amount of popular content is transferred repeatadipss
network links in the Internet. In recent yeapsptocol-independent
redundancy eliminationwhich can remove duplicate strings from
within arbitrary network flows, has emerged as a powerfuhiec
nique to improve the efficiency of network links in the face of
repeated data. Many vendors offer such redundancy elinmat
middleboxes to improve the effective bandwidth of entesgrdata
center and ISP links alike.

In this paper, we conduct a large scale trace-driven stugyaf
tocol independent redundancy elimination mechanismsedrby
several terabytes of packet payload traces collected® alistinct
network locations, including the access link of a large WiSdul
university and of 11 enterprise networks of different sizBased
on extensive analysis, we present a number of findings onehe b
efits and fundamental design issues in redundancy eliromatis-
tems. Two of our key findings are (1) A new redundancy elimina-
tion algorithm based on Winnowing that outperforms the \yide
used Rabin fingerprint-based algorithm by 5-10% on mosegac
and by as much as 35% in some traces. (2) A surprising finding
that 75-90% of middlebox’s bandwidth savings in our entegpr
traces is due to redundant byte-strings from within eacents
traffic, implying that pushing redundancy elimination chitity to
the end hosts, i.ean end-to-end redundancy elimination solution
could obtain most of the middlebox’s bandwidth savings.

Categories and Subject DescriptorsC.2.m [Computer Commu-
nication Networks]: Miscellaneous

General Terms: Algorithms, Measurement.
Keywords: Traffic Redundancy, Traffic Engineering.

1. INTRODUCTION

Network traffic exhibits large amount of redundancy when dif
ferent users on the Internet access same or similar corltéay
diverse systems have explored how to eliminate this rechtrotm-
tent from network links and improve network efficiency. Sevef
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these systems operate at the application- and objectslelvel ex-
ample, Web proxy caches [27] and the more recent P2P caches [6
store frequently accessed objects and serve repeatedstedian
cache. Dictionary-based algorithms such as GZIP [30] renul
plicate bytes from within objects. Numerous studies haydard

the effectiveness of such application-layer and objeatisystems

and have developed algorithms for optimizing their desigee,

for example, [28, 29, 17, 30, 15]).

In recent years, a new classmbtocol-independent redundancy
eliminationalgorithms have been developed that can identify and
remove strings of bytes that are repeated acnegwork packets
First pioneered by Spring et al. [26], and later developed in
“WAN Optimization” middleboxes by multiple vendors [7, 8, B,

5, 4], these approaches operate in a transparent fashiow et
application layer and suppress any repeated strings of bt
appear on a network link. Since these approaches subsurtiplsul
object-level and application-specific techniques theybatd more
effective at removing redundant bytes and also more flexiblese.

Protocol-independent redundancy elimination is beconiirg
creasingly popular [2, 9]. Redundancy elimination middbeds are
being widely deployed to improve the effective bandwidtmet-
work access links of enterprises and data centers alikefcarioh-
proving link loads in small ISP networks. Driven by the hidfee-
tiveness of these systems, recent efforts have also coaditew
to make these systems first-class network entities. Foariest
Anand et al. proposed that protocol-independent redurydelitoi-
nation be deployed on a wider scale across multiple netwarters
enabling an IP-layer redundancy elimination service [T2jis ex-
pands the benefits of redundancy elimination to multiple-tend
end applications. It could also enable new routing pro®¢b2].

Li et al. similarly considered how to modify Web applicatsohy
introducing data markers that help in-network redundarigyie
nation mechanisms to identify and remove redundancy more ef
fectively [19]. Ditto [16] similarly proposes to use apiion-
independent caching at nodes in city-wide wireless mesharks

to improve the throughput of data transfers.

As redundancy elimination techniques become more widely de
ployed and more tightly integrated into network infrasture and
protocols, it becomes crucial to understand the benefédgetoffs
and design issues in these systems. Unfortunately, thererys
little insight into even the basic issues underlying thestens to-
day: What is the optimal level of performance one can expecot f
protocol-independent packet-level techniques? Do ctiyr@opu-
lar techniques [26] perform close to optimal or do betterfqgrening
algorithms exist? When is network-based redundancy eéitron—
which is the currently popular model of deployment and usage
most effective and under what situations do end-to-endcgmbies
offer better cost-performance trade-offs? What fundaaderaffic



redundancy patterns drive the design and bound the eféeeiss
of redundancy elimination systems? Understanding theseess
is central not only for improving the design and ensuringtcos
effective usage of current redundancy elimination techesq but
also in guiding future redundancy elimination-based netwar-
chitectures such as those proposed in [12, 19, 16].

In this paper, we conduct a large scale trace-driven stugyaf
tocol independent redundancy elimination techniques ¢al $ight
on some of the above fundamental issues. Our large-scaleg istu
driven by packet payload traces collected 2distinct network lo-
cations, including the access link of a large US-based wusityeand
of 11 enterprise networks of different sizes (up to 100+ |Fgese
traces, described in 83 and Table 1, span diverse user piomsa
and cover multiple days and terabytes worth of traffic, givirs a
comprehensive view into traffic redundancy and the effectss
of redundancy elimination.

Our study consists of three parts. In the first part, preskeirte
84, we focus on the redundancy elimination algorithms. Wa-co
pare the popular algorithm due to Spring et al. with a new -algo
rithm based on Winnowing [25], as well as with a hypothetial
gorithm that can identify the optimal amount of redundandy.
the second part, presented in 8§85, we study the macroscopic be
efits of redundancy elimination, focusing on whether and hew
dundancy elimination improves the average and peak tiiiza
for different networks’ links. We also examine the impacttem-
poral variations in traffic volumes and compare redundaricy-e
ination against protocol-specific approaches such as HBjécD
compression and caching. Finally, in 86, we take an in-degth
croscopic look into network traffic redundancy. We study &-va
ety of issues which have direct implications on the designeef
dundancy elimination systems. These include various ptiggeof
redundant content ranging from origin of redundant strjigyeva-
lence and importance of partial packet matches, and terhanda
frequency distribution of the redundant strings. In allesswe
study traces from the full set of 12 network locations to eashat
our empirical insights are broadly applicable.

We present a full list of the findings and implications of otwrdy
in 87. Two of our key findings arél) A new redundancy elimina-
tion algorithm that provides more uniform selection of cksiffior
indexing outperforms the widely used fingerprint selectdgo-
rithm proposed in [26] by 5-10% on most traces and by as much as
35% in some traces(2) A surprising finding that 75-90% of mid-
dlebox’s bandwidth savings in our enterprise traces is duedun-
dant chunk matches from within each client’s traffic. Thiplias
that pushing redundancy elimination capability to end fiast.an
end-to-end redundancy elimination solution, could obtaiost of
the middlebox’s bandwidth savings, diminishing the neediés
ployment of expensive middleboxes in enterprsessidestepping
the attendant problems such as encryption. Some of our otirer
servations include: (1) While average bandwidth savinggdfin-
dancy elimination can be as high as 60%, it may not resultmiar
savings in peak usage, and more generally, the burstinessffat
after redundancy elimination is not commensurately redud@)
Redundant segment matches follow a Zipf-like distributigith
the implication that small caches can capture bulk of thelidtth
savings, while it takes increasing amount of cache size rahelxi
ing effort in order to obtain incremental gains.

2. RELATED WORK

Several papers have looked at various aspects of redundancy
network traffic. Some of the approaches have focused on redun
dancy at the object level, while the more recent ones exangine
dundancy at the packet level. Next, we compare these pars w

our work.

Object-level approaches. Object-level caching and its effect on
wide-area performance has been extensively studied. &estad-
ies have examined that user accesses of Web objects arenZipfia
in nature [14]. Other studies have considered the impachese
access patterns on caching and the effectiveness of cacking
instance, Wolman et al. considered the sharing of Web dontsne
among users at the University of Washington [29]. They slibwe
that users are more likely to request objects that are strerexs
departments than objects that are only shared within a tiepat.

In follow-up work, Wolman et al. [28] showed that while shar-
ing of Web objects across departments or divisions in oggdiun
can improve Web object hit rates, there is a strong evidefcdé o
minishing returns when the population of clients sharirg¢hche
crosses a certain limit. Redundancy elimination duringdib/n-
loads has also received a large amount of attention [21, PR
basic idea behind these approaches is to divide files inttentn
based chunks and download only those chunks that are natglre
present locally. In contrast with these object-level apptes, our
work takes a more information centric view by focusing onrtye-
etition in content within packets. We study the popularitgtings
contained in packets, how the packet level content is sharetif-
ferent pools of users, and whether similar evidence of dshing
returns exists when we consider greater amounts of cachidg a
sharing of packet level content.

Packet-level approaches.As mentioned in 81, Spring et al. de-
veloped the first protocol independent approach for idwintif re-
dundant bytes in network traffic [26]. We describe this appgto
and other candidate approaches in more detail in 84. Applyin
this approach to traces collected at an enterprise netv@pking
et al. found that, on average, 20% of the bytes were redunidant
the inbound direction, and 50% were redundant in the outthoun
direction [26]. They also showed that protocol-independenh-
niques are more effective than object level caching. In ooirky
we consider a much broader data set including both direstda
University access link and 11 enterprise networks of varisizes.
Our work also goes beyond just identifying the amount of redu
dancy identified by a specific packet-level algorithm andcheras
several fundamental issues. These include: what is the @nodu
redundancy that a packet-level approach can identify inbbet
case? How close to optimal do practical algorithms get? \Weat
efits do packet level techniques offer in managing link |@adéhat
trade-offs do they impose? What are the fundamental crexisct
tics of the duplicate strings? How do these characterigtigmct
the design of practical redundancy elimination mecharnfsms
More recently, Anand et al. [12] explored the benefits of dgpl
ing Spring et al.'s mechanism on all Internet routers. Suclea
ployment would enable redundancy elimination as a primiser-
vice that is accessible to all end-to-end flows. They showed t
such a service can improve the performance of end-to-endsflow
improve link loads everywhere and also enable new routirgdy an
traffic engineering mechanisms. Our work informs the desifjn
such wide-spread redundancy elimination services. |niquéat,
our work shows where middleboxes are beneficial, how to desig
those caches and how much cache to provision to obtain rekson
redundancy elimination. Our observations regarding theces of
redundancy and the temporal and spatial variations coulevag-
aged when designing new “redundancy-aware” protocols ssch
the ones outlined in [12].

WAN Optimization. Bandwidth requirements of network entities
such as small ISPs and enterprise networks have seen steep in
creases in recent years. However, augmenting WAN capaity t



meet the growing demand can be an expensive proposition. Toshall use terntniv-In-60sto refer to the inbound traffic traces, and

meet these requirements, small ISPs and enterprises agasic
ingly turning toward WAN optimization middleboxes whichrca
simultaneously improve the effective capacity of netwank$ and
lower link usage costs. Different vendors like Riverbedsddi
Juniper etc. are involved in this increasingly competitinarket
(see [7, 8, 3, 1, 5, 4] for descriptions of the products, anonaér
list of products at [10]). The core techniques used by thgde o
mizers are similar to those in packet-level redundancy iaktion
such as the ones we describe in 84. In addition, some produoets
ploy domain-specific data compression by effectively repnging
known data patterns, protocol specific optimizations liket@col
spoofing by bundling multiple requests of chatty appligadito one
etc. While these products are presumed to offer substdveiat-
fits at the locations where they are deployed, very littleriswn
in the open literature about the quantitative extent of bienehe
underlying tradeoffs involved in using these approaches, the
challenges and design considerations in implementing WatH o
mization. Our measurement observations shed light on tinese
portant issues.

3. DATA SETS

Our empirical study is based on full packet traces colleaed
several distinct network edge locations. One is from a largeer-
sity’s access link to the commercial Internet, while theeoshare
from access links of enterprises of various sizes. The keyath
teristics of our traces are shown in Table 1.

Enterprise Traces. We monitored access links at 11 corporate en-

terprise locations and collected several days worth ofitrgbing

into and out of these sites. We classify the enterprises adl,sm
medium or large based on the number of internal host IP aselses

seen (less than 50, 50-100, and 100+, respectively) in aaypi
hour trace at each of these sites. While this classificaicGoine-
what arbitrary, we use this division to study if there areurdancy

properties that are dependent on the size of an enterprisge N

that the total amount of traffic in each trace is also appraxaty

correlated to the number of host IP addresses, though teeae i

large amount of variation from day to day. Typical incominaffic
numbers for small enterprises were about 0.3-3GB/day, tatiom
enterprises were about 2-12GB/day and for large entegpebeut
7-50GB/day. The access link capacities at these sitescdverdm a
few Mbps to several tens of Mbps. Note that even the largest-en

prise site in our trace is one or more orders of magnitude lemal

than the University site in terms of number of IPs, traffic ocess
link capacity. Finally, the total volume of enterprise netlwtraffic
collected and analyzed is about 3TB.

University Traces. We monitored the access link of a large Univer-

sity located in the US. The University has a 1Gbps full-dymen-
nection to the commercial Internet and has roughly 50,0@0sus
We logged entire packets (including payloads) going inegitti-
rection on the access link. Due to some limitations of oufecsl
tion infrastructure (our disk array was unable to keep uphwffic
rate at peak utilization), we were only able to log trafficifr@ne
direction at a time. Thus, we alternatively logged a few rtegwof
traffic in each direction.

the termUniv-out-60sfor the outbound traffic traces.

Second, during Jan 23-25, 2007, we collected 1.1TB worth of
traffic during different hours between 10am and 7pm. Agaaaly
ternated between the incoming and outgoing directiond) #ace
spannedy 600 seconds on average. Henceforth, we shall use the
termsUniv-In-longandUniv-Out-longto describe these traces.

Other uses of the tracesWe also focus on the subset of the Uni-
versity traces involving traffic to and from a certain highwoe
124 prefix owned by the University. Several of the most popula
Web servers in the University are located on this /24. We hesd
University trace-subsets as potential logs for evaludtiog redun-
dancy suppression may help data centers.
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Figure 1: Protocol distribution over five days at the incomirng
link of a large enterprise (starting with HTTP at the bottom)
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Figure 2: Protocol distribution at University outgoing lin k

In order to provide a flavor of these traces, we show the trace
composition by protocols across five week days for a largerent
prise trace in Figure 1. These protocols were identifiedgi3iGP

We collected two sets of traces at the University access link port numbers. This figure highlights the significant diffezes in

First, we collected several 60s-long traces between 6antiday;

network access link traffic since the 1999 enterprise tréegsvere

Dec 15 and 9pm on Saturday Dec 16, 2006. On average, we col-analyzed by Spring et al. in [26]. First, while [26] observad

lected 3 traces per hour for either direction, resulting itotal of
147 traces for each direction. We alternated between irbaumal
outbound traffic, with a gap of 30s between the traces forwe t
directions. The total size of these traces is 558GB. Hemttefwe

dominant fraction of traffic comprised of HTTP (64% of incom-
ing traffic), we see HTTP traffic is significant but not domihan
today, with large variations seen from day to day (20-55%§c-S
ond, while [26] hardly observed any file transfer traffic (FI.B%),



[ Trace name | Description [ Dates/Times [ Spanof eachtrace | Number of traces | Total Volume (GB) |
Small Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 100
( 3 sites, 0-50 IP) to 7PM on 08/08/08
Medium Enterprise | Inbound/Outbound 1PM on 07/28/08 24 hours 8 400
( 5 sites, 50-100 IP) to 7PM on 08/08/08
Large Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 500
(2 sites, 100+ IP) to 7PM on 08/08/08
Large Research Lalj Inbound/Outbound 10AM on 06/16/08 24 hours 17 2000
(1 site, 100+ IP) to 10AM on 07/03/08
Univ-In-60s Inbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 253
at university access lind to 9:00 PM on 12/16/06

Univ-Out-60s Outbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 305
at university access lin to 9:00 PM on 12/16/06

Univ-In-long Inbound traffic 10:00 AM to 7:00 PM, ~600s worth of traffic| 27 550
at university access lind between 01/23/07 and 01/25/07

Univ-Out-long Outbound traffic 10:00 AM to 7:00 PM, ~600s worth of traffic | 27 550
at university access lin between 01/23/07 and 01/25/07

Table 1: Characteristics of the data traces gathered from 13ites

the traffic over our enterprise access links comprise a fogmit
amount (25-70%) of file transfer traffic (SMB, NetBios, Sairc
Code Server, etc.). These file transfer traffic were diretieather
branch offices around the globe. This is likely due to a sigaift
shift in enterprise management approach in the last fensyehere
increasingly servers are centralized in a few locatiorts/danters
in order to save administrative expenses. Finally, Figush@vs
protocol composition at a university outgoing link, and thegfic
characteristics here are quite different from the entsgorHTTP is
significant at 36% and a large portion of traffic, likely peepeer,
is classified as others (note that the edonkey control triaédf is
significant and identified separately).

4. ALGORITHMS FOR REDUNDANCY
ELIMINATION

Broadly speaking, redundancy in network packets can be-elim
nated in two ways: 1) detection and removal of redundangsri
across different packets, also callediundancy suppressicand
2) redundancy elimination within a packet usitata compressian
We first discuss algorithms for performing redundancy sapgion,
and then briefly discuss compression.

4.1 Redundancy Suppression

To date, middlebox-based techniques for redundancy ssppre
sion [12, 26] rely on the approach proposed by Manber [20], in
the context of identifying similar files in a file system. Wesfir
describe this approach, referred to as MODP, and then thesari
alternative approach called MAXP. We then describe a teglai
for estimating the performance of an optimal redundancypseg
sion algorithm and present performance comparisons of MODP
and MAXP with respect to the optimal.

Before we describe the MODP and MAXP algorithms, we first
describe the overall approach behind redundancy suppressi
network traffic, first proposed in [26]. Given a cache/dintoy
of past packets, redundancy suppression techniques negernto
tify contiguous strings of bytes in the current packet that @so
present in the cache. This is accomplished by identifyingtaof
representative “fingerprints” for each packet and then cmng
these fingerprints with a “fingerprints store” that holds fimger-
prints of all the past packets in the cache. The fingerprietgesas
“random hooks” into portions of the packet payload and aedus
to find redundant content. For each fingerprint of the padhat t
is matched against the store, the matching packet is rettiand
the matching region is expanded byte-by-byte in both divestto

obtain the maximal region of redundant bytes. Once all nextch
are identified, the matched segments are replaced with fized-
pointers into the cache, thereby suppressing redundanogllys
the cache and fingerprint store are updated with the new paltke
the packet cache is full, the earliest packet in the storeitesl
and all its fingerprints are freed. The key difference betwide
MODP and MAXP algorithms is simply in how the representative
fingerprints are computed, which we describe next.

4.1.1 MODP

In this algorithm, Rabin fingerprints [23] of sliding windsvof
w contiguous bytes of each packet payload are computed. Param
eterw represents the minimum match size of interest. Smailer
would help identify more matches at a potential cost of migsi
larger matches. Typical values forrange from12 — 64 bytes.

For a packet with S bytes of payloa#l,> w, a total ofS — w
fingerprints are generated. SinSe>> w, the number of such
fingerprints is approximately the same as the number of byptes
the packet.

Since it is impractical to store all these fingerprints, afi@n
1/p of fingerprints are chosen whose valuedisnod p (p can be
chosen as a power of two for ease of computation). In this firay,
gerprints are chosen independent of their position andisthbust
to reordering and insertions/deletions. In cases wherédVito®P
selection criteria does not choose even a single fingerfront a
given packet, we explicitly enforce that at least one fingatps
chosen per packet.

Parameterp controls the memory overhead of the fingerprint
store with typical values op ranging from 32 to 128. For exam-
ple, in [12], using 16 fingerprints per 1500 byte packet{ae 90)
results in indexing memory overhead of 50% the cache size.

4.1.2 MAXP

One shortcoming with the MODP approach is that the finger-
prints are chosen based owglabal property, i.e., fingerprints have
to take certain pre-determined values to be chosen. Whige th
would result in the desired fraction of fingerprints beingosén
across a large packet store, on a per-packet basis, the nahbe
fingerprints chosen can be significantly different and naiugi
sometimes.

In order to guarantee that adequate number of fingerprirs ar
chosen uniformly from each packetlazal technique such as win-
nowing [25] is essential. Winnowing, similar to the work byakt
ber [20], was also introduced in the context of identifyinigitar
documents and can be easily adapted to identifying redaydan



network traffic. The key idea behind winnowing is to choosasth
fingerprints that aréocal-maxima (or minima) over each region

of p bytes thus ensuring that one fingerprint is selected over every
segment of a packet.

Our MAXP fingerprint selection algorithm is based on the leca
maxima based chunking algorithm designed for remote diffeal
compression of files [13]. This algorithm is similar to winmiag
but has the advantages of imposing a lower bound on chunkheng
and lower computational overhead since the local-maxincaris-
puted using the bytes directly as digits (rather than coimpua
hash first before the minima computation in winnowing). Tiee d
tails of the algorithm can be found in [13].

While the authors of winnowing show that, in the case of web
files, the MODP approach can result in no hashes being piaked f
approximately30 K of non-whitespace characters, itis not immedi-
ately clear whether similar deficiencies of MODP will be tisiin
our setting, where the network traffic comprises a mix of pcots.

4.1.3 Optimal

For a given minimum match size, the optimal algorithm for re-
dundancy elimination would require that every fingerpriatitored
for potential future matches. Since the number of fingetprig of
the order of number of bytes in the packet store, the memoey-ov
head of indexing every fingerprint is simply impractical.

We devise an alternate approach based on bloom filters im orde
to estimate the upper bound of the optimal algorithm. Irstela
indexing every fingerprint, we store the fingerprints in aprapri-
ately sized bloom filter. We then identify fingerprint matstvehen
the bloom filter contains the fingerprint. Given all the maidhe-
gions in the packet, we can identify the optimal set of matchat
maximizes redundancy elimination.

While bloom filters are susceptible to false positives, weoste
8 hash functions and a bloom filter size (in bits) thatégimes the
number of bytes in the packet store so that the false pogititee
is under0.1% [17]. One drawback of using a bloom filter is that
even though we know a match exists with high probability, we d
not know the location of the match. This is problematic in¢hse
of overlapping matches of two or motebyte strings, since we are
unsure whether the overlapping matches correspond to the ka
cation in the packet store (resulting in maximum redundagiitg-
ination) or not. We optimistically assume that overlappingtches
in the bloom filter would also overlap in the packet store dngst
the resultant computation provides an upper bound in therred
dancy suppression performance of the optimal algorithm.

Finally, if we need to model packet eviction from a full cache
counting bloom filter can be used instead of a simple bloowrfilt

4.1.4 Comparison

In this section, we present a comparison of the bandwidth sav
ings of the MODP and the MAXP algorithms with respect to the
upper bound of the Optimal algorithm. Given the high computa
tional requirements for obtaining the results presentetthim sec-
tion, we use only small representative subsets (averagedsev-
eral GBs/hours worth of traffic) of the overall traces. While
present extensive trace evaluations of MODP and MAXP in the
next section, here our goal is to evaluate their performahegac-
teristics relative to the optimal.

We define bandwidth savings as the ratio of number of bytes
saved due to redundancy elimination as compared to thenatigi
network traffic. While computing savings, we take into aatoail
overheads including packet header overheads and the skidi he
ers [12] necessary to encode the pointers in the MODP/MAXP al
gorithms.
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Figure 3: Comparison of MODP, MAXP, and Optimal

We use a minimum match window size, of 32 bytes (the im-
pact ofw is discussed in §6) and vary the sampling peniddom
128 to 4. Results from two enterprise traffic traces are shiown
Figure 3(a) and (b), respectively.

First, notice that in Figure 3(a), the gap between MODP and
MAXP narrows as we decrease the sampling period, because we
are indexing more and more fingerprints and their perforream:
proaches the upper bound of the optimapat 4. Second, we
see that MAXP outperforms MODP by up to 10% (2% absolute)
in Figure 3(a) while we see a much wider performance gap of up
to 20% (10% absolute) between MAXP and MODP in Figure 3(b).
In both traces, the selection of fingerprints by MODP is mdus-c
tered while that of MAXP is much more uniform; in the case of
MODP, the next fingerprint is selected within 10 bytes of tast |
selected fingerprint's location in more than 30% of the cdses
p = 32. In contrast, MAXP gives much more uniform selection;
the gap is less than 10 bytes in less than 2% of the cases. The
clustering impacts MODP more in the second trace than in tie fi
trace; that is, the number of redundant string matches aechge
match size is similar in trace 1 between MAXP and MODP but
quite different in trace 2. This highlights the trace driveature
of MODP’s performance and the advantage of uniform fingetpri
sampling approach of MAXP. As we shall see in the next section
there are traces where MAXP outperforms MODP by up to 35%.

Finally, we choosep = 32 as the default sampling period in
the rest of the paper. While = 4 delivers the best performance,
the indexing memory overhead @at= 4 is approximately 10X the
cache size and is not a desirable operating point. A choige-of
32 delivers performance within 10% @f= 4 (10-20% of optimal
upper bound) and has a memory overhead roughly comparable to
the cache size.

4.2 Compression

Clearly, irrespective of whether redundancy suppresssober
ing implemented or not, each packet can be compressed by-a com
pression algorithm such as the deflate algorithm used in Jip
deflate algorithm replaces repeated strings with pointadsfar-
ther uses huffman coding to efficiently encode commonly ooyl
symbols. While the authors in [26] compared redundancy i=sp
sion with deflate, they did not consider a) the benefits of egafr
ing packets within a small time window, say 10ms, before wppl
compressiohand b) the benefits of applying compression after re-

LItis well-known that deflate does not compress very smalketsc
well as it needs to build a dictionary before the benefits ofijpes-
sion kick in. However, note that neither MODP nor MAXP bene-
fits from aggregation since the minimum match size<< S, the
packet size.



Site | #IP | Tracesize(GB) [ GZIP | GZIP+10ms | MODP | MAXP | MAXP@4xCACHE | MAXP+GZIP+10ms | MAXP-outgoing
Small Enterprise
1 44 5.8 19 25 35 37 39 41 61
2 31 21.7 7 10 40 54 59 61 54
3 18 0.2 15 21 37 38 38 41 41
Medium Enterprise
1 54 7.7 6 8 15 16 17 19 51
2 72 7.1 13 18 33 35 39 41 43
3 79 10.6 12 16 25 27 30 34 44
4 79 14.3 9 12 18 19 21 24 25
5 61 4.4 9 13 27 28 31 32 44
Large Enterprise
1 122 | 17.5 6 8 15 16 20 19 54
142 | 3 8 12 23 24 26 27 44
3 160 | 31 10 13 22 23 31 27 34
Table 2: Bandwidth savings across different enterprise sés in percentage
Traffic Type #IP Trace size(GB) | GZIP | GZIP+10ms | MODP | MAXP | MAXP@4xCACHE | MAXP+GZIP+10ms
Incoming 9360 | 22 4 5 9 9 12 10
Outgoing - 22 3 4 11 12 15 14
Outgoing /24 | 29 2.3 2 3 33 41 48 43

Table 3: Bandwidth savings across University traffic in perentage

dundancy suppression and whether there are any completpenta gorithms. Second, while aggregating packets helps imp&x#

gains. We evaluate these aspects in the next section.

5. MACROSCOPICVIEW: CORE BENEFITS

In this section, we explore the core benefits of deployingined
dancy elimination on either end of the WAN access link to the
enterprise/university. Our analysis across diversersgtgives a
comprehensive view of when (and to what extent) redundality e
ination techniques help.

gains, an aggregation latency tims still does not provide sub-
stantial gains. Third, MAXP outperforms MODP by 5-10% on
most of the traces (1-2% absolute bandwidth gains) and, imeso
traces such as small enterprise 2, performs as much as 35% bet
ter than MODP (14% absolute). This highlights the imporeanc
of the uniform sampling approach of MAXP since one could very
well hit a large stream of bytes where the MODP algorithm esss
out on significant redundancy elimination opportunitiesouih,
increasing the cache size by 4X provides incremental gdifs o

We first evaluate the average bandwidth savings due to redun- 3594 (0-8% absolute), with large enterprises benefiting tiostm

dancy elimination using the various algorithms described4,
individually, and in combination. We then examine the terabo
variability of the savings. Finally, we examine redundamtyar-
acteristics for different protocols and then focus on HTm®Ider
to answer the following question: how does protocol-inaef@at
redundancy elimination compare with protocol-specifihteéques

Fifth, applying GZIP with 10ms aggregation after MAXP proes
gains of 8-26% (3-7% absolute) over MAXP alone, deliveriimg,
most cases, comparable savings as using MAXP alone at 4X the
cache size. Thus, compression can be effective in complémgen
the gains obtained via redundancy suppression. Sixth, tee a
age savings are generally higher for the small/medium prisas

such as compression of HTTP objects and the use of web caches? 55 compared to large enterprises. Finally, the savings tyomg

5.1 Bandwidth Savings

Tables 2 and 3 present the average bandwidth savings using th

different redundancy elimination algorithms describe84rfor the
enterprise and university traces, respectively.

Let us first focus on the enterprise results in Table 2. Wesiflas
enterprise sites as small, medium, and large based on thieamah
host IP addresses seen within the enterprise. While thettate
size is mostly proportional to the number of IP addressescare
see several outliers such as small enterprise site 2 with20@&B
of traffic while large enterprise site 2 with only 3GB of traffiEx-
cept for the last column which presents savings on outgaaftia,
the rest of the results are for traffic incoming to the entemgrsince
this is the dominant portion of traffie{ 80-90% of trace size). We
usew = 32, p = 32 and a default cache size 250M B (plus ap-
proximately250M B for indexing overhead), which corresponds to
roughly 2 to 10 minutes of traffic at peak utilization for théerent
sites. We later show that even such a small cache size isisnffic
to achieve reasonable benefits.

We make several observations from the table. First, white pe
forming GZIP compression per packet provides some gaires, th
gains are only half or less of the gains from the MODP or MAXP al

links (last column) are generally higher than the savinggoom-
ing links.

Examining the results for the university traces in Tablet® t
broad observations made earlier for the enterprise tramelsgood.
Here, we only highlight a few salient points. Note that theniming
and outgoing traffic are roughly similar, in size, unlike glewed
incoming dominant case for the enterprise. Thus, we pregent
sults for incoming and outgoing separately. Overall, théres
are in the 10-15% range, continuing the trend seen earliergér
sites resulting in lower average savings. Focusing spadifion
the outgoing traffic from high volume /24 prefix that hosts plap
web servers, we see that the trace demonstrates signifenangs
of over 40%. Finally, note that MAXP significantly outpenfos
MODP by 22% in this trace, again illustrating the advantage o
uniform sampling of the MAXP algorithm.

In summary, results from this section demonstrate thatmredu
dancy elimination can bring down the average utilizatiomodess
links substantiallyThe benefits range from 10% to 60% in average
bandwidth savings, with smaller sites generally achieviigher
savings. The MAXP algorithm outperforms the MODP algorithm
sometimes substantially by up to 35%, and applying packet le
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Figure 4: Volume, in Mbps, of original and compressed data

gzip compression with 10ms aggregation after MAXP provides
ther gains of up to 26%

5.2 Temporal variations

While average savings provide a good measure of the ovédrall e
fectiveness of redundancy elimination, it can hide sigaifidem-
poral effects. In this section, we study the temporal valitgtof
savings due to redundancy elimination.

In Figure 4(a) and 4(b), we plot the volume in Mbps of all bytes
for the Univ-In-60s and Univ-Out-60s traces (y1-axis). Wertay
the fraction of redundancy in the same figure as well (y2)a¥ie
see a slight negative correlation between the fractionaddimeancy
and the volume of traffic for inbound traffic (Figure 4(a)). dan-
trast, there is a slight positive correlation for the outhduraffic
(Figure 4(b)). We also observed a slight positive correlatbe-
tween link utilization and redundancy fraction in the outgp/24
trace (not shown). The correlation between traffic load athlin-
dancy can play a vital role in terms of bandwidth savings akpe
traffic periods. In order to quantitatively study the impattem-
poral variability with respect to bandwidth savings, we defiwo
metrics:

e Peak and 95th-percentile savingSince links are sometimes
charged and/or provisioned based on peak or 95th-pereéraft
fic load [18, 24], we compare the peak and 95th percentile sav-
ings with the average savings available in the trace. We ctenp
these measures over a range of time buckets starting frore-1 se
ond to 5 hours, and study how they vary both with respect to
these time buckets as well as compared to the average savings

based multiresolution analysis (MRA) [11] to study how nedu
dancy elimination impacts traffic burstiness at varioustoales.
MRA-based energy plots depict the variance or burstiness of
traffic at different timescales and, in general, one woulpeex
compression to help reduce burstiness in traffic.

In Figure 5(a) and (b), we plot the mean, median, 95th peiteent
and peak savings over buckets of different timescales ¢rstale)
from a 24 hour trace for a large-sized and medium-sized prisey;
respectively. Examining the figure for the large enterpribe re-
sults are not very encouraging — the median savings is signifi
cantly higher than the mean savings while the peak savinggsris
erally lower than the mean savings, for almost the entirgeai his
implies that redundancy elimination is negatively corretawith
load, i.e., at peak hours there is less redundancy thanirhears.
The 95th-percentile savings measure is somewhat betterthea
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Figure 5: Savings in median, 95-percentile and peak usage

peak measure and approaches the mean savings for time finits o
100-600 seconds. The results for the medium-sized enserpri
while also broadly similar to the large enterprise casegetsd with
95th-percentile savings outperforming mean savings overge
range of time values. In case of University, we used Unidurtt

60s traces for this evaluation as indicative of few 60 seczard-
ples. We observed that peak savings and 95th-percentilagsav
were better than mean savings for 60 second samples. For Univ
outbound trace, peak savings and 95th percentile savings1686

and 14.5% as compared to mean of 12%, supporting earlier-obse
vation of slight positive correlation of redundancy sadngth uti-
lization. For incoming trace, the differences were not gigant
from mean savings of 10%. In conclusion, examining the aeera
savings over an interval does not depict a true measure aéthe

BurstinessWe use the burstiness metric as computed using wavelghrg) variations in savings and we find that redundancy elition

may be negatively correlated with load, resulting in loweak sav-
ings as compared to average savings.

We now examine the burstiness metric derived from wavelet-
based multiresolution analysis using an energy plot, whigpbicts
base-2 log of the energy (variance) against the base-2 |dheof
time scale. Figures 6(a) and (b) depict the energy plot ferottig-
inal traffic, the compressed traffic and a hypothetical trabere
the original traffic is compressadiformlyusing the average com-
pression savings value for a large enterprise and the wgilyeut-
going /24 traces, respectively. Note that the time scalgeafrom
10 milliseconds to 1 hour (1 minute) for the enterprise (ersity)
traces. The differences between the two curves are quit@abv
— we notice that the compressed traffic does not reduce thstibur
ness of original traffic significantly for most of the range tbe
time scales depicted in enterprise case (the two curvesigaly
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Trace Object-GZIP | MAXP | MAXP+GZIP+10ms
Univ-In-long 7.69 10.94 14.93
Univ-Out-long 10.1 20.52 23.75
Univ-Out/24 6.25 53.49 54.69
Large Enterprisg 24.45 29.45 34.1
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Figure 6: Burstiness of original and compressed traffic

overlap compared to the uniform compression curve) whilstdu
ness is reduced significantly in the university trace, esfigan
the 1 minute timescale. This lack of reduction in burstirieshe
enterprise trace is not surprising, given our observatian the me-
dian (peak) savings are generally higher (lower) than theamsav-
ings across different timescales in the traces. On the bitued, as
mentioned earlier, the positive correlation between litikaation
and redundancy in the outgoing /24 trace, helps reduce @satv
burstiness.

One caveat with this analysis is that we simply compute burst

ness of the original and compressed traces, assuming &aitrital

process does not change. However, redundancy eliminatagn m
impact TCP’s congestion control behavior which can chatge t

arrival process and result in different burstiness valespecially
at the smaller timescales. We plan to study this issue in metal
by replaying the traces using TCP over a testbed and re-atiady
the burstiness metric.

In conclusion, our temporal variability analysis presemtsixed
picture of the benefits of redundancy suppressi@vhile the av-

Table 5: Redundancy in HTTP traffic

network protocols that traverse the WAN access link in thigem
sity and a large enterprise trace. For each protocol, we gshew
fraction of total bytes that belong to the protocol, and tleetion

of redundancy in the protocol’s payload. Our observaticsre lare
different from Spring et al. [26] in a few key ways. For exampl
Spring et al. found HTTP traffic to be highly redundart 0%
after excluding web cachingy 54% overall) and SMTP traffic to
be modestly redundant(20%). In contrast, we see that the redun-
dancy in SMTP traffic is much higher (70% in the outgoing t)ace
while the redundancy in HTTP traffic is lower (16% and 32% in
university and enterprise traces, respectively, usingghteid in-
coming+outgoing bytes). The reduction in HTTP redundaasy,
compared to the results reported in [26], is likely due toittoeeas-

ing usage of port 80 for all types of traffic such as media stiag,
games, etc. We also note that 5% of all bytes belong to HTTPS
and since the HTTPS payload is encrypted, it shows minimal re
dundancy. Also, note the mix of protocols in the enterpniaed is
quite different from what was observed in the enterprisedsan
[26], where the top three protocols were HTTP (64%), RTSP)(7%
and Napster (3%).

The changing composition of protocols and also the evaiutio
what comprises traffic over a well-known port such as porte80,
gues for a protocol-independent redundancy eliminatidatiem,
assuming it performs as well or better than alternative quoit
specific solutions. We next focus on redundancy in HTTP anatco

erage savings of up to 60% are significant, peak savings can be pare protocol-independent redundancy elimination wifeclevel

significantly lower than the average savings. We do find that t

95th-percentile savings is closer to mean savjrgdeast over cer-
tain time scales, which may be helpful in curtailing usagst€n
certain situations. Finalljthe overall traffic burstiness is not sig-
nificantly reduced in the enterprise casmplying that redundancy
elimination is not too helpful in making traffic more predibte
or enabling more effective traffic engineering on entemascess
links.

5.3 Redundancy in protocols

Port # | Protocol Univ-In-60s Univ-Out-60s
% of [ % redundancyf| % of [ % redundancy
bytes bytes
20 ftp-data 0.04 [16.93 1.1 |75
25 smtp 0.02 [22.69 0.08 |70.63
53 dns 0.22 [21.39 0.14 | 47.99
80 possibly http || 58.10[ 12.49 31.69| 20.37
443 | https 0.60 [2.00 3.59 |2.08
554 | rtsp 3.38 [1.99 1.34 [ 24.40
Large Enterprise-In [| Large Enterprise-Out
445 | SMB 45.46( 21.40 45.44]17.18
80 HTTP 16.8 | 29.45 14,41 76.31
139 | NetBios 2.88 [7.98 0.8 |36.52
389 | LDAP 4.85 [44.33 12,5 [71.68
- Src Code Crtl[| 17.96( 50.32 0.1 [7231

Table 4: Redundancy in key protocols

compression and caching.

5.3.1 Redundancyin HTTP

In order to estimate the performance of HTTP with objectlev
compression, we reverse-engineer HTTP object-level ceagion
from the network-level traces. We first parse each netwaker
to extract different flows, and then use simple pattern matcto
identify the start of HTTP objects within each flow. We areeatal
extract most of the HTTP objects into separate files in thismea
We then apply gzip compression on each of the objects and com-
pare the compression savings against the savings from dedag
elimination using the MAXP algorithm. The results are shawn
Table 5.

Note that the compression savings for GZIP represents an op-
timistic scenario since many objects may be dynamicallyegen
ated or composed of latency sensitive parts and thus mayenot b
amenable to GZIP compression over the entire object. Evém wi
this optimistic assumption, we find that redundancy elirigrede-
livers at-least 5-10% additional savings in all the traces @sults
in significant out-performance (almost 50% additional sgs) in
the case of university outgoing/24 trace (a popular web,dite-
cause of its ability to exploit redundancy across traffierrdiffer-
ent users.

Finally, we examined if HTTP object-level caching could el
in bandwidth savings. We analyzed cache control headeagnm
responses and other metadata as in [26] to identify the eddhe
ity of HTTP objects. We found that many of the HTTP objects

In Table 4, we show the redundancy that we observe in popular were deemed non-cacheable and only about 5% bandwidthgsavin



would be accrued due to the deployment of a web proxy in the en-

terprise trace. 1007 -

Note that, the authors in [26] did not compare their approach % Hintersrc
against HTTP object-level compression and while they caostba 2 80
against web caching, the cacheable percentage in our casesis '% O internode
This is likely due to a combination of higher percentage afaiy- N 60
ically generated web pages and the advertising-relateghtives o .
for web sites to serve pages directly to clients. S 40 ® interdst

. . L o

In conclusion, protocol-independent redundancy eliniamais o
an effective techniqu.e for supprg;sing redundancy andtignmo 5 20 B interflow
pacted by the changing composition of the protocols thaetse =
the access links of universities and enterprises. Furtbermn S
the case of HTTP, we found thadundancy elimination performs O o- . ——m ntraflow
better than both object-level compression and cachings thmnin- § 8 % qg)v % g
ishing the need for deploying protocol-specific solutions 8 D s g 1]

)
6. MICROSCOPIC VIEW: UNDERSTAND-
ING REDUNDANCY Figure 7: Composition of redundancy (intra/inter-flow/user)

In this section, we perform in-depth empirical analyseste u
derstand various redundancy characteristics. Our goal liever- classifications: (a) intraflow (match was from a packet with t
age these empirically observed properties to design efee@dun- same four-tuple), b) interflow (match from same source-tesut
dancy elimination techniques. different ports), c) interdst (match from same source |Pdiifier-

We first focus on the origins of redundancy: is the observed re entdestination IPs), d) intersrc (match from same destina® but
dundancy mostly due to content common to different users or i different source 1Ps), and e) internode (match from diffiefeur-

it mostly content from within each user’s protocol/traffi¢Pit is tuples). In [26], since the clients in the traces were andrgth
mostly content from within each user’s protocol/traffic, weuld they were unable to correlate redundancy by four-tupleseyTh
simply employ redundancy elimination at each client-sesmd- found that redundant traffic is mostly (78%) from the sameeser
points, and argue for an end-to-end solution instead ofoyémg (interdst) and hypothesized that a server to proxy redurydatim-
expensive middleboxes. We then examine spatial charstitsri ination would be advantageous as compared to a pure emto-e
of redundant chunks in order to answer the following questio ~ solution.
is most of the savings from full packet matches or partialkpac Figure 7 presents the match origin classification for vasien-
matches? More generally, what is the distribution of sizethe terprise (incoming-only) and university traces. Basedhanfigure,
identified redundant chunks? Next, we evaluate the temgbeat we make the following observations. First, in the case oflsma
acteristics of matches: are matches mostly from recentgiadk and medium enterprises, approximately 90% of savings aee du
the cache, or, more generally, what is the temporal digiobuof to intraflow and interflow matches (same source-dest IP)Jyimp
matches? Finally, we study the hit characteristics of reldni ing that a pure end-to-end solution would capture the vagorma
chunks: is redundancy suppression due to a few popular effunk ity of the middle-box savings. In fact over 90% of the interflo
Does chunk hits have zipf-like characteristics that are seaveb matches (not shown) also had the same source port number, in-
page requests? dicating that the flows are likely part of the same protocokc-S
One important caveat to note with respect to redundancyachar ~ ond, while the large enterprise does leverage traffic aciie-
teristics studied in this section: these characteristiesdentified ent users, it still has about 75% of savings due to matches fro
in the context of packet-level redundancy elimination apghes, flows with the same source-dest IP addresses. Third, in the ca
that use caches limited by DRAM sizes (GBs) and history in the of university traces, we see only 10-40% contribution to due
order of minutes/hours; these results may not be applidatfiée- traflow/interflow with a large contribution due to interdstspe-
level redundancy elimination approaches such as [21, 22]tyip- cially in the case of the outgoing/24 trace, representatfiee busy
ically store and index terabytes (days/months) of datadhjis web server. While we do see variations of these contribatioulif-
ferent traces (the enterprise results are averages overaseays),
6.1 Redundancy: Origins these results were generally not sensitive either to caizeeused
Given that one of the major claims/advantages of middlebox- for the redundancy elimination or to time of day, i.e., pézdd
based redundancy elimination devices is the ability toreye re-  hour (results not shown).
dundancy across traffic from different users and flows, itripar- In summary, the key takeaways ar&) An end-to-end redun-
tant to understand the composition of redundancy due tohatc ~ dancy elimination solution could provide significant portiof the
between traffic from different users. In general, given a-fuiple middlebox savings in small/medium enterprises, and to &mex
of source/destination IP addresses and ports, it would teeeist- large enterprises too, diminishing the need for deploying:apen-

ing to know, for each match, how many of these four-tuplesewer sive middlebo_x-based solut?on. 2) A middlebox-based isalus
common between the current packet and the matched packet., FoMore compelling at access links to busy web servers
example, if most of the savings are due to matches betweée{sac . .

with the same source and destination IP addresses, a pudipe 6.2 Redundancy: Spatial view

end solution would suffice, diminishing the need for middbeds In this section, we seek to understand if the contributiothto
that are being deployed today. observed redundancy comes mainly from full packet matcbes,
In this section, we quantify the contribution of matches aod- partial packet matches. If the former is true, one can design

width savings by dividing up the matches into the followinggfi pler techniques to index a packet than Spring et al.’s pralpdor



instance, rather than store multiple fingerprints per packe can consider the first metric now. In order to have a normalized- me

store a single hash for the entire packet's content. If thiches ric that works both during peak and lean traffic periods, wethe
are due to partial packet matches, understanding the megcjth percent of cache size between the current packet and théeaatc
will help advise on the appropriate minimum match size patem packet as the normalized temporal metric.
w, used by the redundancy elimination algorithms.
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70 & 70
= 60 g 60 ) ) .
S 50 & so In Figure 9(a), we plot the redundancy match contribution to
% ‘3‘2 g ;g overall savings as a percentage vs the recency of match (¢echp
z 0] 3 201 as a percentage of cache size). We use a default cache size of
il £ 10 M 250MB. The curves rise steeply for all the traces with 60-88%
ol A e e n 3 S oL mmm il . . .
28838888888 g88888888¢8 the savings due to matches with packets in the most recentof0%
Y'sg38882¢2s ‘8388838 ¢ 2 o the cache. This characteristic implies that a) adding pgadkethe
Bytes o Byes o cache in a FIFO manner and evicting the oldest packet is a good
o ) o strategy and b) small cache sizes can provide bulk of theigawif
(c) Matches distribution (d) Savings contribution a Iarggiache ) P g
) o o Let us now consider the time difference between the final ime
Figure 8: Match length distribution and contribution to tot al specific chunk was matched and the first time the same chunk was
savings. (a) and (b) are for large enterprise. (c) and (d) aréor matched. This metric captures the duration for which a chisnk
University inbound traces useful. Note that the time difference can be much larger than

In Figure 8(a), we show the percent of matches for chunksmfva holding time of the cache since popular chunks can recuugiro
ious sizes for a large enterprise. We see that over 70% oftreatc ~ out the trace and the time difference can be as large as tbe tra
are for chunks of size less than 150 bytes and less than 10% oflength (24 hours). In Figure 9(b), we plot the CDF of the time
matches are from full 1500 byte packet matches. On the otiret,h difference in log scale between the final and first matchesofi e
Figure 8(b) shows the savings contribution of chunks byrtsiees unique chunk. Note that for 60% of the chunks, the time diffiee
and we see that nearly half of the savings are due to large, ful is less than 100 seconds and for approximately 80% of thekshun
packet matches and with approximately 20% due to matches of the time difference is less than 1000 seconds. This agaltiigigs
size less than 150 bytes. Examining at an even finer gratylari  thehigh degree of temporal locality of matches that a small each
we found that approximately 4% of savings was due to 50 bytes o would be able to accommodate
smaller matches (not shown).

Similar results are seen in the University trace as well. igr F 70 T T 70 T T
ure 8(c) for Univ-Incoming trace, we see that around 70% ef th go | Small e - 60 |, Small - 1
matches are for chunks of size less than 150 bytes and fud 150 5 5 _Mﬂ';]gn; - _ S 50 Mﬂ%{g ;{:AA__A_A_,A..A.A.'_x
byte packet matches are less than 5% of the matches. Figdle 8( S 4| . S0 A.A-A'""A"A" ' _
shows that less than quarter of the savings are due to lathe fu g 4, :,A'“‘A": _ 2
packet matches, while 20 % of the savings are due to matches of 3 2 ) 3
size less than 150 bytes. ’ w0l | ’

Thus,while full packet matches provide 20-50% in overall sav- 0 ) ) 0
ings, in order to get the maximum benefit of redundancy etimin 0 500 1000 1500 0 500 1000 1500
tion, we need to index the vast majority of small packet nestcti Cache size (MB) Cache size (MB)
size less than 150 bytes (a) Enterprise (b) University

6.3 Redundancy: Temporal view

In this section, we would like to understand the temporadlibg
of matches, i.e., when a redundant chunk is matched betwreen t  Figure 10 plots the savings versus cache size for the eigerpr
current packet and a packet in the cache, how far in the péis¢is  and university traces, respectively. We can see that smaahe
matched packet? We consider two temporal metrics: 1) time be sjzes do indeed provide significant percentage of the sayimith
tween current packet and matched packet and 2) time betwieen t  the “knee” of the savings curve between 100-250MB.
final most recent match and the first match for a given chunks Le

Figure 10: Redundancy vs Cache size



Counts | Length | Protocol description
268K 128 various | string of zeros
30K 42 SMB | content fragmen
28K 68 HTTP | content fragmen|
24K 50 SMB | content fragmen
21K 8 Kerberos|  full packet

Table 6: Characteristics of popular chunks

6.4 Redundancy: Hit Distribution

We now examine if the redundancy in network traffic is primar-
ily due to a few pieces of content repeated multiple times oF-m
tiple pieces of content repeated a few times each. If the doim
true, then a small packet store would suffice to identify aificant
fraction of the redundancy. If the latter is true we may havstore
many more chunks of data in a much larger packet store.

More generally, we would like to understand the distribotad
frequency of unique chunk matches. Given that researchams h
shown that web page access frequency exhibits a zipf-|geiloli-
tion [14], it would be interesting to see if the same phencaaso
holds for chunk matches. Zipf-like distributions will haxeative
probability of a hit for thei'" most popular chunk proportional to
1* for somea close to—1.
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Figure 11: Chunk match distribution and their contribution to
total savings

In order to answer this question, we keep track of each mdtche
chunk and count how many times the identical chunk is matched
in the entire trace. In Figure 11(a), we plot the frequencghafnk
hits versus the chunk rank, sorted by the number of hits, oga |
log scale for a large enterprise trace. The linear distidouin the
log-log plot confirms the zipf-like nature of the chunk hit§e also
fit a zipf-distribution for the bulk of the data points, ignuy the
top 100 chunks and chunks with exactly 1 hit, and find that g b
fit results inae = —0.97 (a fit over all the data points results in
a = —0.9). Similar zipf-like characteristics are also seen in other
traces (not shown).

Figure 11(b) shows the contribution of the chunk hits to thed
width savings versus the percentage of chunks sorted bydbei
tribution. Itis clear from the figure that about 80% of sa\sregme
from 20% of the chunks. On the other hand, in order to obtagn th
remainder 20% of savings, we need to retain 80% of the chunks.
This implies that a small cache should be able to capturedfuhie
savings but capturing the full savings would require a lag®unt
of cache. Thezipf-like chunk hit distribution thus explains the di-
minishing returns of the large caclsize seen in Figure 10.

Table 6 lists some of the characteristics of popular chumnks i
the enterprise trace. Most of these chunks are less thanyié8 b
long and are content fragments of a packet except for onekchun

of 8 bytes that represents a full packet. The small chunlsseen
motivate the need for using a small minimum match size pateme
w.

7. FINDINGS AND IMPLICATIONS

Protocol-independent redundancy elimination technicuege
become increasingly popular in recent years and are poispléy
an important role in the current and future Internet arctiiee.
Our goal in this paper was to conduct an in-depth measurement
based study of the fundamental issues pertaining to thefitene
trade-offs and design issues underlying these techniques.

In this section, we summarize our empirical findings and iden
tify important implications on the design and usage of reiunty
elimination and the role it can play in network infrastrugtand
protocols.

e Protocol composition: Protocol composition over the access
link has changed significantly since the work by [26]. Specif
ically, enterprise traffic (25-70%) has significant amouifile
access traffic (SMB, NetBios, etc.) due to the likely shifeim
terprise management approach towards use of centraliregtse
in data centers. The changing composition of protocols over
time makes a strong argument for the sustained relevance of
protocol-independent redundancy elimination techniques

Algorithm: While network traffic redundancy suppression pro-
posals [12, 26] rely on a fingerprint selection algorithnipted
MODP in this paper, we find that an algorithm that ensures more
uniform selection of fingerprints using a local property s@s
local-maxima, termed MAXP, outperforms MODP by 5-10% on
most traces and as much as 35% in some traces.

Packet-level compression\We find that packet-level compres-
sion can be effectively applied after redundancy suppoessie-
livering incremental gains of up to 26%.

Object-level compression: Protocol-independent redundancy
elimination outperformed both HTTP object-level compiess
as well as caching, with significant out-performance in thgec
of the University /24 trace.

e Temporal variability: We find that redundancy elimination does
not reduce traffic variability commensurately. While Oftbrcentile
savings deliver close to average savings over some time inte
vals, peak savings are generally lower than average sauings
many of the traces. The burstiness of traffic, as measureleby t
energy metric derived using wavelet-based multiresotuginal-
ysis, is typically not commensurately lower due to reduregan
elimination.

e Origins: In the enterprise traces, we found that 75-90% of sav-
ings were due to intra-user matches between packets that had
the same source and destination IP addresses. This argues fo
a pure end-to-end redundancy elimination solution, digfiimig
the need for the deployment of middleboxes in most entexgris
On the other hand, based on our university traces, we fouatd th
a middlebox solution is beneficial in busy web server segting
where significant portion of redundancy is due to inter-usaF
fic matches.

e Spatial view: We find that most matches (70%) are small in size
(less than 150 bytes) while only about 10% of matches are full
packet matches. In terms of contribution to savings, futliea
matches contribute to (25-50%) of total savings while ptxké
size less than 150 (50) bytes contribute to about 20% (4%)eof t
savings. Thus, simple techniques like indexing only futtkets
can provide up to half of the total savings, while capturihg t
full savings involves a significant amount of indexing of dma



packet fragments.

e Temporal view: We find that most matches are from recent
packets in the cache. Thus, a FIFO-based approach for gtorin
packets in the cache would work well.

e Match Distribution: We find that the chunk match hit follows
a zipf-like distribution, with a few chunks that extract aga
number of hits and vast majority of chunks with one or two .hits
This implies that smaller caches can provide bulk of the gain
redundancy elimination and increasing cache size wouldgeo
diminishing returns in terms of bandwidth savings.

8. CONCLUSION

Following the work of Spring et al. in 2000, a slew of commer-
cial WAN optimization middleboxes have emerged which atiem
to improve network link performance by suppressing repkstengs
of bytes in network packets. Today, there are many deploysrahn
these protocol-independent redundancy elimination tecies at
enterprise and data center access links and across comd8éte
links. Based on the perceived benefits of these technigaesnt
efforts have argued for integrating redundancy eliminaiiao net-
work infrastructure and protocols [12, 19, 16].

Despite the increasingly important role of redundancy &lan
tion in the network infrastructure, very little is known alicthe
range of benefits and trade-offs these approaches offey,tadd
the fundamental issues underlying their design. Usinggiacices
collected at twelve distinct network vantage points, wergktbthat
packet-level redundancy elimination techniques can eeéiverage
bandwidth savings of 15-60% for enterprise and universityeas
links as well as the links connecting busy web servers. Hewev
in the case of enterprise traffic, we found that the overaitiness
of traffic was not significantly reduced and the savings dupaak
traffic periods was variable.

We found several interesting characteristics of redunglanc
network traffic, summarized in the previous section. On@issH
ing implication of our findings was that a client-server redancy
elimination solution could provide approximately simikavings
as a middlebox in small/medium, and to an extent, large prises,
obviating the need for deploying an expensive middlebcsebae-
dundancy elimination solution. Designing such an endrio-e-
dundancy elimination system that is scalable and efficeatopic
for future work.
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