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ABSTRACT retrieval community, at least in part due to an increase in

available resources and to the rising popularity of web Bearc
Evaluating user preferences of web search results is cfocial However, most traditional IR work was performed over
search engine development, deployment, and maintenance. Weontrolled test collections and carefully-selected quety aerd
present a real-world study of modeling the behavior of wetzlsea tasks. Therefore, it is not clear whether these techniquiés wi
users to predict web search result preferences. Accuratdingode work for general real-world web search. A significantidistton
and interpretation of user behavior has important applications tds that web search is not controlled. Individual users may leehav
ranking, click spam detection, web search personalization, andrrationally or maliciously, or may not even be real ssail of
other tasks. Our key insight to improving robustness of this affects the data that can be gathered. But the amoume of t
interpreting implicit feedback is to model query-dependent user interaction data is orders of magnitude larger than agythi
deviations from the expected “noisy” user behavior. We shotv tha gvailable in a non-web-search setting. By usingatygregated
our model of clickthrough interpretation improves prediction behavior of large numbers of users (and not treating eactasiser
accuracy over state-of-the-art clickthrough methods. We an individual “expert”) we can correct for the noise inherent in
generalize our approach to model user behavior beyondindividual interactions, and generate relevance judgments that
clickthrough, which results in higher preference prediction are more accurate than techniques not specifically designed for
accuracy than models based on clickthrough information alonethe web search setting.

We report results of a large-scale experimental evatuatiat Furthermore, observations and insights obtained in laboratory
show substantial improvements over published implicit feedbacksettings do not necessarily translate to real world uséeece,
interpretation methods. it is preferable taautomaticallyinduce feedback interpretation

. . . strategies from large amounts of user interactions. Aatioaily
Categorles and SUbJ ect Descriptors learning to interpret user behavior would allow systemslapa

H.3.3 [Information Search and Retrieval]: Search process, o changing conditions, changing user behavior patterns, and

relevance feedback. different search settings. We present techniques to autotyatica
interpret the collective behavior of users interacting \aitiveb
General Terms search engine to predict user preferences for search re3uits.
Algorithms, Measurement, Performance, Experimentation. contributions include:
e A distributional model of user behavior, robust to noise
Keywords within individual user sessions, that can recover relevance
Interpreting implicit relevance feedback, user behavior moggli preferences from user interactions (Section 3).
predicting relevance preferences « Extensions of existing clickthrough strategies to include

richer browsing and interaction features (Section 4).

1. INTRODUCTION ) ) ¢ Athorough evaluation of our user behavior models, as well
_ Relev_ance r_neasqrement is crut_:l_al to web search e_lnd 0 a5 of previously published state-of-the-art techniques, over
information retrieval in general. Traditionally, searctevance is a large set of web search sessions (Sections 5 and 6).
measured by using human assessors to judge the relevance of

query-document pairs. However, explicit human ratings are
expensive and difficult to obtain. At the same time, milliohs
people interact daily with web search engines, providing valuable
implicit feedback through their interactions with the search 2. BACKGROUND AND RELATED WORK
results. If we could turn these interactions into relevance . . .
Ranking search results is a fundamental problem in

judgments, we could obtain large amounts of data for evalyating. } ) i
2o . A . ; information retrieval. The most common approaches in the
maintaining, and improving information retrieval systems.

- T context of the web use both the similarity of the query to the
Recently, automatic or implicit relevance feedback has .
i . . ; -~ page content, and the overall quality of a page [3, 20]. A&-sfat
developed into an active area of research in the information . .
the-art search engine may use hundreds of features to describe a
Permission to make digital or hard copies of alpart of this work for personal  candidate page, employing sophisticated algorithms to rank

or classroom use is granted without fee provided dopies are not made or  hane5 phased on these features. Current search engines are
distributed for profit or commercial advantage dhdt copies bear this notice commonly tuned on human relevance iudaments. Human
and the full citation on the first page. To coplestvise, or republish, to post on y judg . "

servers or to redistribute to lists, requires psjgecific permission and/or a fee. ~ @nnotators rate a set of pages for a query according ¢eiyed

SIGIR'06 August 6-11, 2006, Seattle, Washington, USA. relevance, creating the “gold standard” against which different
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We discuss our results and outline future directions and
various applications of this work in Section 7, which concludes
the paper.



ranking algorithms can be evaluated. Reducing the dependence am “background” component — users clicking indiscriminately.
explicit human judgments by usirigiplicit relevance feedback Our general idea is to model tdeviationsfrom the expected
has been an active topic of research. user behaviar Hence, in addition to basic features, which we

Several research groups have evaluated the relationshiwill describe in detail in Section 3.2, we compulerived
between implicit measures and user interest. In these studiedeatures that measure the deviation of the observed featiue v
both reading time and explicit ratings of interest are daltec  for a given search result from the expected values fosultre
Morita and Shinoda [14] studied the amount of time that userswith no query-dependent information. We motivate our
spent reading Usenet news articles and found that reading timéntuitions with a particularly important behavior feature,utes
could predict a user’s interest levels. Konstan et al. [i8jved clickthrough, analyzed next, and then introduce our general
that reading time was a strong predictor of user interegtair model of user behavior that incorporates other user actions
GroupLens system. Oard and Kim [15] studied whether implicit (Section 3.2).

feedback could substitute for explicit ratings in recommenders 1A CaseStudy in Click Distributions
systems. More recently, Oard and Kim [16] presented a As we discussed, we aggregate statistics across many use

framework for characterizing observable user behaviors tsing . :
. . : . essions. A click on a result may mean that some user fband t
dimensions—the underlying purpose of the observed behavior an ST
result summary promising; it could also be caused by people

the scope of the item being acted upon. clicking indiscriminately. In general, individual user behavior,

Goecks and Shavlik [8] approximated human labels by ~. ] - ; .
. -2 . clickthrough and otherwise, is noisy, and cannot be relied upon
collecting a set of page activity measures while usenwded the . : . .
for accurate relevance judgments. The data set is described i

World Wide Web. The authors hypothesized correlations between S - . )
a high degree of page activity and a user’s interest. \Whde more detail in Section 5.2. For the present it suffices t® that

results were promising, the sample size was small and the'® focus on a random sample of 3,500 queries that were

implicit measures were not tested against explicit judgmeints randomly sa_mpled from query logs. For these queries we
user interest. Claypool et al. [6] studied how several @itpli aggregate click data over more than 120,000 sear(_:h_es performed
measures related to the interests of the user. They destedope over a three week period. We also have explicit relevance
custom browser called th@urious Browserto gather data, in a Judgimjrrg[s?)folr tgﬁot\,?,g ﬂerefelfgﬁ\/fggiﬁh?gs% frequency as a
computer lab, about implicit interest indicators and to probe fo 9 ) o gn 1req y
explicit judgments of Web pages visited. Claypool et al. found function of result position. The aggregated click frequency at
that the time spent on a page, the amouﬁt of scrolling oﬁea pag resu_lt positiorp is calculated _by first computin_g the frequency_of
and the combination of time and scrolling have a strong pesitiv a click atp for each query (i.e., approximating the probability

relationship with explicit interest, while individual scrolling that_ a randomly chosen (?IICk for that query would land on
methods and mouse-clicks were not correlated with explicit positionp). These frequencies are then averaged across queries

interest. Fox et al. [7] explored the relationship between aitpli and normalized so that relative frequency of a click at e t

and explicit measures in Web search. They built an instrumented©S!tion 1S 1. The res”'“Fg distribution agrees with previous
browser to collect data and then developed Bayesian models t b_servatlons that users click more often on top-ranked res_ults.
relate implicit measures and explicit relevance judgmentisdir hls_reflects the fact that S(_earch engines do a reasormbté_j
individual queries and search sessions. They found thatrank'ng results as well as biases to click top fesu“s arse nel
clickthrough was the most important individual variable but that we attempt to separate these components in the analysis that
predictive accuracy could be improved by using additional follows.

variables, notably dwell time on a page.

Joachims [9] developed valuable insights into the collection of
implicit measures, introducing a technique based entirely on
clickthrough data to learn ranking functions. More recently,
Joachims et al. [10] presented an empirical evaluation of
interpreting clickthrough evidence. By performing eye tracking
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studies and correlating predictions of their strategies &xHicit 22

ratings, the authors showed that it is possible to accurately o1 H H H H H ”

interpret clickthrough events in a controlled, laboratoryiregtiA s E [ E [ lﬂs ! IA0AAnAReRA A"
more comprehensive overview of studies of implicit measise result position

described in Kelly and Teevan [12]. Figure 3.1: Relative click frequency for top 30 result

Unfortunately, the extent to which exist_ing research app_lies topositions over 3,500 queries and 120,000 sear ches.
real-world web search is unclear. In this paper, we build on

previolusf reiearchl to develophrobu_st user behavior interpretatio First we consider the distribution of clicks for the relevant
models for the real web search setting. documents for these queries. Figure 3.2 reports the aggregated

3. LEARNING USER BEHAVIOR MODELS click distribution for queries with varying Position of Top
As we noted earlier, real web search user behavior can bdrelevant document (PTR). While there are many clicks above
“noisy” in the sense that user behaviors are only probabdistic  the first relevant document for each distribution, there are
related to explicit relevance judgments and preferences. Henceglearly “peaks” in click frequency for the first relevansut.
instead of treating each user as a reliable “expert”, \yecggte For example, for queries with top relevant result in posi#ipn
information from many unreliable user search session tr@ngs.  the relative click frequency at that position (second barigiser
main approach is to model user web search behavior aséfét w than the click frequency at other positions for these queries.
generated by two components: a “relevance” component — queryNevertheless, many users still click on the non-relevanitses
specific behavior influenced by the apparent result relevance, andh position 1 for such queries. This shows a stronger property o



the bias in the click distribution towards top results — usésk ¢l background distribution (i.e., the expected clickthrough for a

more often on results that are ranked higher, even when they areesult at a given position) from the observed clickthrough

not relevant. frequency at a given position, we can approximate the relevance
component of the clickthrough vafueln order to reduce the

: — effect of individual user variations in behavior, we average
“ mPTR=2 observed feature values across all users and search sdesions
2 orTR=s each query-URL pair. This aggregation gives additional
g oo ® PTR=10 robustness of not relying on individual “noisy” user interactions
§ os O Background In summary, the user behavior for a query-URL pair is
. represented by a feature vector that includes both the directly
L observed features and the derived, “corrected” feature szalue
01 Fﬁ W We now describe the actual features we use to represent user
o " 5 . .jILm behavior.
result position

Figure 3.2: Relative click frequency for queries with varying

PTR (Position of Top Relevant document). 3.3 Featuresfor Representing User Behavior

Our goal is to devise a sufficiently rich set of featuttest
allow us to characterize when a user will be satisfieti wiveb
search resultOnce the user has submitted a query, they perform
many different actions (reading snippets, clicking results,
navigating, refining their query) which we capture and
summarize. This information was obtained via opt-in cliedé-si
instrumentation from users of a major web search engine.

This rich representation of user behavior is similar in many

respects to the recent work by Fox et al. [7]. An important
ii:iii difference is that many of our features are (by destgrery
006 specific whereas theirs was (by design) a general, query-
result position independent model of user behavior. Furthermore, we include
Figure 3.3: Relative corrected click frequency for relevant derived, distributional features computed as described above.
documents with varying PTR (Position of Top Relevant). The features we use to represent user search interacteons ar
summarized in Table 3.1. For clarity, we organize the featur
If we subtract the background distribution of Figure 3.1 from the into the groupQuery-text Clickthrough andBrowsing
“mixed” distribution of Figure 3.2, we obtain the distribution in ) ) o
Figure 3.3, where the remaining click frequency distribution can QuUery-text features: Users decide which results to examine in
be interpreted as the relevance component of the resultstidote ~ More detail by looking at the result title, URL, and sumrmaity

the corrected click distribution correlates closely with actual SOMe cases, looking at the original document is not even
result relevance as explicitly rated by human judges. necessary. To model this aspect of user experience we defined
features to characterize the nature of the query and iteoreta

. the snippet text. These include features such as overlap between
3.2 Robust User Behavior M odel the words in title and in query (TitleOverlap), the fractidn o

Clicks on search results comprise only a small fractioth®f  \yords shared by the query and the result summary
post-search activities typically performed by users. We NOW (SummaryOverlap), etc.
introduce our techniques for going beyond the clickthrough
statistics and explicitly modelingpst-searctuser behavior.

0.16
0.14 1
0.12 1
0.1
0.08 -
0.06 -
0.04
0.02 +
o

corrected relative dlick frequency

Browsing features. Simple aspects of the user web page
Although clickthrough distributions are heavily biased towards Intéractions can be captured and quantified. These features are
top results, we have just shown how the ‘relevance-driveck cl used to characterize interactions with pages beyond the results

distribution can be recovered by correcting for the prior, P2g€. For example, we compute how long users dwell on a page

background distribution. We conjecture that other aspects of usekTimeOnPage) or domain (TimeOnDomain), and the deviation

behavior (e.g., page dwell time) are similarly distort@ur of dwell time from expected page dwell time fqr a query.sEhe
general model includes two feature types for describing user€atures allows us to model intra-query diversity of page
behavior:direct and deviationalwhere the former is the directly l?rowsmg behavior (e.g., nawgatlona_l queries, on average, a
measured values, and latter is deviation from the expectaeesva !lkely to_ have sh(_)rter page dwell time than_ transactional or
estimated from theverall (query-independent) distributions for |nforma_t|onal queries). Wg include both the direct features and
the corresponding directly observed features. the derived features described above.

More formally, we postulate that the observed vatuef a Clickthrough features: Clicks are a special case of user
featuref for a queryg and resultr can be expressed as a mixture interaction with the search engine. We include all the features
of two components: necessary to “learn” the clickthrough-based strategies descri

in Sections 4.1 and 4.4. For example, for a query-URL pair we
o(a.r, f) =C(f) +rel(q,r, f) (1) provide the number of clicks for the result (ClickFrequency), as

where C(f) is the prior “background” distribution for valuesfof

aggregated across all queries, aelfq,r.f) is the component of 1 of coyrse, this is just a rough estimate, as the observed
the behavior influenced by the relevance of the resulfs background distribution also includes the relevance
illustrated above with the clickthrough feature, if we subttiaet component.




well as whether there was a click on result below or ablse
current URL (IsClickBelow, IsClickAbove). The derived featur

vectors of feature values corresponding to URLs judgedaetev
or non-relevant by human annotators become our training set.

values such as ClickRelativeFrequency and ClickDeviation areRankNet has demonstrated excellent performance in learning to
computed as described in Equation 1.

Query-text features

TitleOverlap Fraction of shared words between query and title
SummaryOverlap Fraction of shared words between query and summary
QueryURLOverlap Fraction of shared words between query and URL
QueryDomainOverlap  |Fraction of shared words between query and domdin
QuerylLength Number of tokens in query

QueryNextOverlap Average fraction of words shared with next query
Browsing features

TimeOnPage Page dwell time

CumulativeTimeOnPage|

Cumulative time for all subsequent pages afteickegr

TimeOnDomain

Cumulative dwell time for this domain

TimeOnShortUrl Cumulative time on URL prefix, dropping parameters
IsFollowedLink 1 if followed link to result, 0 otherwise
IsExactUrIMatch 0 if aggressive normalization used, 1 otherwise
IsRedirected 1 if initial URL same as final URL, 0 otherwise
IsPathFromSearch 1 if only followed links after query, O otherwise

ClicksFromSearch

Number of hops to reach page from query

AverageDwellTime

Average time on page for this query

DwellTimeDeviation

Deviation from overall average dwell time on page

CumulativeDeviation

Deviation from average cumulative time on page

DomainDeviation

Deviation from average time on domain

ShortURLDeviation

Deviation from average time on short URL

Clickthrough features

Position

Position of the URL in Current ranking

ClickFrequency

Number of clicks for this query, URL pair

ClickRelativeFrequency

Relative frequency of a click for this query anRlU

ClickDeviation

Deviation from expected click frequency

IsNextClicked

1 if there is a click on next position, O otherwise

IsPreviousClicked

1 if there is a click on previous position, O otkise

IsClickAbove

1 if there is a click above, 0 otherwise

IsClickBelow

1 if there is click below, 0 otherwise

Table 3.1: Features used to represent post-sear ch interactions
for a given query and search result URL

3.4 LearningaP

redictive Behavior M odd

rank objects in a supervised setting, hence we use RankNet for
our experiments.

4. PREDICTING USER PREFERENCES

In our experiments, we explore several models for predicting
user preferences. These models range from using no implicit
user feedback to using all available implicit user feedback.

Ranking search results to predict user preferences is a
fundamental problem in information retrieval. Most traditional
IR and web search approaches use a combination of page and
link features to rank search results, and a representatieeo$ta
the-art ranking system will be used as our baseline ranker
(Section 4.1). At the same time, user interactions withagich
engine provide a wealth of information. A commonly considered
type of interaction is user clicks on search results. Buswvork
[9], as described above, also examined which results were
skipped (e.g., ‘skip above’ and ‘skip next’) and other related
strategies to induce preference judgments from the users’
skipping over results and not clicking on following results. We
have also added refinements of these strategies to take int
account the variability observed in realistic web scenarite.
describe these strategies in Section 4.2.

As clickthroughs are just one aspect of user interaction, we
extend the relevance estimation by introducing a machine
learning model that incorporates clicks as well as otheecs
of user behavior, such as follow-up queries and page dwell time
(Section 4.3). We conclude this section by briefly describing our
“baseline” — a state-of-the-art ranking algorithm used by an
operational web search engine.

4.1 Basdline M odd

A key question is whether browsing behavior can provide
information absent from existing explicit judgments used tatrai
an existing ranker. For our baseline system we use a $ithte-o
art page ranking system currently used by a major web search
engine. Hence, we will call this syste@urrent for the

Having described our features, we now turn to the actualSubsequent discussion. While the specific algorithms used by the
method of mapping the features to user preferences. We attemg€arch engine are beyond the scope of this paper, the algorithm
to learn a general implicit feedback interpretation strategy ranks results based on hundreds of features such as query to
automatically instead of relying on heuristics or insights. We document similarity, query to anchor text similarity, and
consider this approach to be preferable to heuristic strategie intrinsic page quality. The Current web search engine rankings
because we can always mine more data instead of relying (onl Provide a strong system for comparison and experiments of the
on our intuition and limited laboratory evidence. Our general NEXt two sections.
approach is to train a classifier to induce weights for uber

behavior features, and consequently derive a predictive model of

4.2 Clickthrough Model

If we assume that every user click was motivated byienat

user preferences. The training is done by comparing a wide ranggrocess that selected the most promising result summaganve

of implicit behavior measures with explicit user judgmentsafor

set of queries.

then interpret each click as described in Joachims et alB%0].
studying eye tracking and comparing clicks with explicit

For this, we use a large random sample of queries in thehsea judgments, they identified a few basic strategies. We digbess
query log of a popular web search engine, the sets of resultswo strategies that performed best in their experiments, Skip
(identified by URLs) returned for each of the queries, and anyAbove and Skip Next.

explicit relevance judgments available for each query/resuit pa
We can then analyze the user behavior for all the instances whe

these queries were submitted to the search engine.

To learn the mapping from features to relevance preferences,

Strategy SA (Skip Above): For a set of results for a query
and a clicked result at positiop, all unclicked results
ranked abovep are predicted to be less relevant than the
result atp.

we use a scalable implementation of neural networks, RankNet
[4], capable of learning toank a set of given items. More In addition to information about resultbove the clicked

specifically, for each judged query we check if a result link ha result, we also have information about the result immediatel
been judged. If so, the label is assigned to the query/URlapdir  following the clicked one. Eye tracking study performed by
to the corresponding feature vector for that search reBudse Joachims et al. [10] showed that users usually consider thi¢ res



immediately following the clicked result in current ranking. ifhe
“Skip Next” strategy uses this observation to predict thegsalt
following the clicked result ap is less relevant than the clicked
result, with accuracy comparable to tBA strategy above. For
better coverage, we combine tBAstrategy with this extension to
derive theSkip Above + Skip Nestrategy:

Strategy SA+N (Skip Above + Skip Next): This strategy
predicts all un-clicked resultdmmediately following a

of clicked results, making it more appropriate to noisy user
behavior.

CDiff and CD are complimentary. CDiff is a generalizatas
the clickthrough frequency model of CD, but it ignores the
positional information used in CD. Hence, combining the two
strategies to improve coverage is a natural approach:

Strategy CD+CDiff (deviation d, margin m): Union
of CD and CDiff predictions.

clicked result as less relevant than the clicked result, and

combines these predictions with those of the SA strategy

above.

Other variations of the above strategies were considéned,
these five methods cover the range of observed performance.

We experimented with variations of these strategies, and founa4-3 General User Behavior M odel

that SA+N outperformed both SA and the original Skip Next
strategy, so we will consider the SA and SA+N strateiehe
rest of the paper. These strategies are motivated andieafipir
tested for individual users in a laboratory setting. As vk w
show, these strategies do not work as well in real welrlsea

The strategies described in the previous section generate
orderings based solely on observed clickthrough frequencies. As
we discussed, clickthrough is just one, albeit important, aspec
of user interactions with web search engine results. We now
present our general strategy that relies on d@htomatically

setting due to inherent inconsistency and noisiness of individualderivedpredictive user behavior models (Section 3).

users’ behavior.

The general approach for using our clickthrough models

directly is to filter clicks to those that reflect highaan-chance

click frequency. We then use the same SA and SA+N strategies,
but only for clicks that have higher-than-expected frequency

according to our model. For this, we estimate the relevanc
componentel(q,r,f) of the observed clickthrough featuras the
deviation from the expected (background) clickthrough
distribution C(f).

Strategy CD (deviation d): For a given query, compute the
observed click frequency distributiaqr, p) for all resultsr

in positionsp. The click deviation for a resultin positionp,
dev(r, p)is computed as:

dey(r, p) =o(r, p) -C(p)

where C(p) is the expected clickthrough at positipn If
dev(r,p)>d, retain the click as input to the SA+N strategy
above, and apply SA+N strategy over the filtered setick cl
events.

The choice ofd selects the tradeoff between recall and
precision. While the above strategy extends SA and SA+NIlit s
assumes that a (filtered) clicked result is preferred alker
unclicked results presented to the user above a clicked positio
However, for informational queries, multiple results mbag
clicked, with varying frequency. Hence, it is preferable to
individually compare results for a query by considering the
difference between the estimated relevance components of th

click distribution of the corresponding query results. We now

define a generalization of the previous clickthrough intergostat
strategy:

Strategy CDiff (margin m): Compute deviatiomev(r,p)for
each resulty...rn in position p. For each pair of resuttsand
rj, predict preference of overr; iff dev(g,p)-dev(f,p)>m.

As in CD, the choice ofm selects the tradeoff between recall
and precision. The pairs may be preferred in the original arder
in reverse of it. Given the margin, two results might tiecgvely

n

The UserBehavior Strategy: For a given query, each
result is represented with the features in Table 3.1.
Relative user preferences are then estimated using the
learned user behavior model described in Section 3.4.

Recall that to learn a predictive behavior model we used the
features from Table 3.1 along with explicit relevance judgments
as input to RankNet which learns an optimal weighting of
features to predict preferences.

This strategy models user interaction with the search engine,
allowing it to benefit from the wisdom of crowds interagti
with the results and the pages beyond. As our experiments in the
subsequent sections demonstrate, modeling a richer set of user
interactions beyond clickthroughs results in more accurate
predictions of user preferences.

5. EXPERIMENTAL SETUP

We now describe our experimental setup. We first describe
the methodology used, including our evaluation metrics (Section
5.1). Then we describe the datasets (Section 5.2) and the
methods we compared in this study (Section 5.3).

5.1 Evaluation M ethodology and Metrics

Our evaluation focuses on thpairwise agreement between
preferences for results. This allows us to compare toiquev
work [9,10]. Furthermore, for many applications such as tuning
ranking functions, pairwise preference can be used directly for
training [1,4,9]. The evaluation is based on comparing

epreferences predicted by various models to the “correct”

preferences derived from the explicit user relevance judgments.
We discuss other applications of our models beyond web search
ranking in Section 7.

To create our set of “test” pairs we take each query and
compute the cross-product between all search results, returning
preferences for pairs according to the order of the asedcia
relevance labels. To avoid ambiguity in evaluation, we disca
all ties (i.e., pairs with equal label).

In order to compute the accuracy of our preference predictions
with respect to the correct preferences, we adapt the stindar
Recall and Precision measures [20]. While our task of computing

indistinguishable, but only one can possibly be preferred over theyajrwise agreement is different from the absolute relevance

other. Intuitively, CDiff generalizes the skip idea aboventbude

ranking task, the metrics are used in the similar way.

cases where the user “skipped” (i.e., clicked less than expectedgpecifically, we report the averaggiery recall and precision.

on u; and “preferred” (i.e., clicked more than expected)upn
Furthermore, this strategy allows for differentiationhivitthe set

For our task, Query Precision and Query Recall for a quearg
defined as:



¢ Query Precision: Fraction of predicted preferences fortesul -«
for g that agree with preferences obtained from explicit
human judgment.

¢ Query Recall: Fraction of preferences obtained from explicit

UserBehavior: We order predictions based on decreasing
highest score of any page. In our preliminary experiments
we observed that higher ranker scores indicate higher
“confidence” in the predictions. This heuristic allows us to

do graceful recall-precision tradeoff using the score of the

h j fog th i . ) . )
uman judgment faq that were correctly predicted highest ranked result to threshold the queries (Section 4.3)

The overall Recall and Precision are computed as the avefag
Query Recall and Query Precision, respectively. A drawbéck o
this evaluation measure is that some preferences may k&= mor
valuable than others, which pairwise agreement does not capture.
We discuss this issue further when we consider extensions to the
current work in Section 7. Training/Test Split: The only strategy for which splitting the
5.2 Datasets datasets into training and test was required was the

For evaluation we used 3,500 queries that were randomlyUserBehawor method. To evaluate UserBehavior we train and

) 0 . 2
sampled from query logs(for a major web search engineeda validate on 75/o_0f labeled queries, and t(_ast on the remaining

25%. The sampling was done per query (i.e., all results for a
query the top 10 returned search results were manually rated on . . :

; . . - chosen query were included in the respective dataset, and there
6-point scale by trained judges as part of ongoing relevance - . o
. o . was no overlap in queries between training and test sets).
improvement effort. In addition for these queries we alsousad : -

. . - . It is worth noting that both the ad-hoc SA and SA+N, as well
interaction data for more than 120,000 instances of these queries, o . ) )
. - as the distribution-based strategies (CD, CDiff, and CDHEDif
The “user interactions were harvested from anonymouS 4, ot require a separate training and test set, since taey ar
browsing traces that immediately followed a query submitted t q a sep . g .o y
. . . based on heuristics for detecting “anomalous” click frequencies
the web search engine. This data collection was part of esjunt for results. Hence. all strateqies except for UserBehavere
opt-in feedback submitted by users from October 11 through ' ' g P

October 31. These three weeks (21 days) of user interaction dattaeSted on the full set of queries and associated relevance

was filtered to include only the users in the English-U.Sketa preferences, while UserBehavior was tested on a randomly

In order to better understand the effect of the amount of userChosen hold-out subset of the queries as described above. To

interaction data available for a query on accuracy, wetedea g;ﬁz? itli;?ewiifrfnnt?]tefas\éorggghgéiif?::t'osré;’sve r?:;?%
subsets of our data (Q1, Q10, and Q20) that contain dif‘ferentsame accurgcy results as testing over the compléte tatase
amounts of interaction data:

* QL Human-rated queries with at least 1 click on results § RESULTS

recorded 8500 queries, 28,093 query-URL pairs)

¢ QI10: Queries in Q1 with at least 10 click4300 queries,
18,728query-URL pairs).

¢ Q20: Queries in Q1 with at least 20 clickk0Q0 queries total,

Current: Current search engine ranking (section 4.1). Note
that the Current ranker implementation was trained over a
superset of the rated query/URL pairs in our datasets, but
using the same “truth” labels as we do for our evaluation.

We now turn to experimental evaluation of predicting
relevance preference of web search results. Figure 6.1 shews
recall-precision results over tifgl query set (Section 5.2). The
results indicate that previous click interpretation stratedsA
- and SA+N perform suboptimally in this setting, exhibiting

12,922 query-URL pairs). precision 0.627 and 0.638 respectively. Furthermore, there is no
These datasets were collected as part of normal user @xgeri  mechanism to do recall-precision trade-off with SA and SA+N,
and hence have different characteristics than previously relporte as they do not provide prediction confidence. In contrast, our
datasets collected in laboratory settings. Furthermore déta clickthrough distribution-based techniques CD and CD+CDiff
size is order of magnitude larger than any study reported in theexhibit somewhat higher precision than SA and SA+N (0.648
literature. and 0.717 at Recall of 0.08, maximum achieved by SA or
5.3 Methods Compared SA+N).

We considered a number of methods for comparison. We
compared our UserBehavior model (Section 4.3) to previously| ©°

X SA O SA+N
published implicit feedback interpretation techniques and some| o —e-—cp —=—Cif
. . —e— CD+CDiff —A— UserBehavior
variants of these approaches (Section 4.2), and to the curren o Current

search engine ranking based on query and page features alon
(Section 4.1). Specifically, we compare the followingtsmees:

0.72 1

e SA: The “Skip Above” clickthrough strategy (Section 4.2) ig 07
¢ SA+N: A more comprehensive extension of SA that takes * o6
better advantage of current search engine ranking. 066 1
«  CD: Our refinement of SA+N that takes advantage of our | °*]
mixture model of clickthrough distribution to select “trusted” 062
clicks for interpretation (Section 4.2). 06

T T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45|
Recall

e  CDiff: Our generalization of the CD strategy that explicitly
uses the relevance component of clickthrough probabilities toFigure 6.1: Precision vs. Recall of SA, SA+N, CD, CDiff,
induce preferences between search results (Section 4.2).  CD+CDiff, UserBehavior, and Current relevance prediction

¢ CD+CDiff: The strategy combining CD and CDiff as the methods over the Q1 dataset.
union of predicted preferences from both (Section 4.2).




Interestingly, CDiff alone exhibits precision equal to SA

human-designed clickthrough-interpretation strategies described

(0.627) at the same recall at 0.08. In contrast, by combining CDearlier. For example, the clickthrough-trained classifaieves

and CDiff strategies (CD+CDiff method) we achieve the best
performance of all clickthrough-based strategies, exhibiting

0.67 precision at 0.42 Recall vs. the maximum recall of 0.14
achieved by the CD+CDiff strategy.

precision of above 0.66 for recall values up to 0.14, and higher at Our clickthrough and user behavior interpretation strategies

lower recall levels. Clearly, aggregating and inteHide
interpreting clickthroughs, results in significant gain forlisti&
web search, than previously described strategies. Howexer, e
the CD+CDiff clickthrough interpretation strategy can be
improved upon byautomatically learning to interpret the
aggregated clickthrough evidence.

But first, we consider the best performing strategy,
UserBehavior. Incorporating post-search navigation histary i
addition to clickthroughs (Browsing features) results in the
highest recall and precision among all methods compared.sBrow
exhibits precision of above 0.7 at recall of 0.16, signifiyant
outperforming our Baseline and clickthrough-only strategies.
Furthermore, Browse is able to achieve high recall (ak h&y
0.43) while maintaining precision (0.67) significantly higher than
the baseline ranking.

To further analyze the value of different dimensions of intplic
feedback modeled by the UserBehavior strategy, we considbr e
group of features in isolation. Figure 6.2 reports Precis&n
Recall for each feature group. Interestingly, Query-tesalhas
low accuracy (only marginally better than Random). Furthezmor
Browsing features alone have higher precision (with lower
maximum recall achieved) than considering all of the features
our UserBehavior model. Applying different machine learning
methods for combining classifier predictions may increase
performance of using all features for all recall values.

—— All Features
—=— Clickthrough
—=— Query-text

—=— Browsing

Precision

0.13 0.17 0.21 0.25

Recall

0.29 0.33 0.37 0.41 0.45

Figure 6.2: Precision vs. recall for predicting relevance with
each group of featuresindividually.

—=— CD+CDiff:Q1
—=— CD+CDiff:Q10
—*— CD+CDiff:Q20

—— UserBehavior:Q1
—=&— UserBehavior:Q10
—><— UserBehavior:Q20

001 005 008 013 017 021 025 029 033 037 041 045 049
Recall

Figure 6.3: Recall vs. Precision of CD+CDiff and

UserBehavior for query sets Q1, Q10, and Q20 (queries with

at least 1, at least 10, and at least 20 clicks respectively).

Interestingly, the ranker trained over Clickthrough-only

rely on extensive user interaction data. We consider theteffe
of having sufficient interaction data available for a queffpree
proposing a re-ranking of results for that query. Figure 6.3
reports recall-precision curves for the CD+CDiff and
UserBehavior methods for different test query sets witleastt

1 click (Q1), 10 clicks (Q10) and 20 clicks (Q20) available per
query. Not surprisingly, CD+CDiff improves with more clicks
This indicates that accuracy will improve as more user
interaction histories become available, and more queries fro
the Q1 set will have comprehensive interaction histories.
Similarly, the UserBehavior strategy performs betterqgieeries
with 10 and 20 clicks, although the improvement is less dramatic
than for CD+CDiff. For queries with sufficient clicks, CDB(Ef
exhibits precision comparable with Browse at lower recall.

0.2 —@— CD+CDiff
—A— UserBehavior
0.15
2 o1
g o

0.05
0

7 12 17 21

Days of user interaction data harvested

Figure 6.4: Recall of CD+CDiff and User Behavior strategies
at fixed minimum precision 0.7 for varying amounts of user
activity data (7, 12, 17, 21 days).

Our techniques often do not make relevance predictions for
search results (i.e., if no interaction data is availdbtethe
lower-ranked results), consequently maintaining higher precision
at the expense of recall. In contrast, the current searcheengi
alwaysmakes a prediction for every result for a given query. As
a consequence, the recall of Current is high (0.627) at the
expense of lower precision As another dimension of acquiring
training data we consider the learning curve with respect to
amount (days) of training data available. Figure 6.4 repbgs t
Recall of CD+CDiff and UserBehavior strategies for yirg
amounts of training data collected over time. We fixed mimm
precision for both strategies at 0.7 as a point substartigther
than the baseline (0.625). As expected, Recall of both strategies
improves quickly with more days of interaction data examined.

We now briefly summarize our experimental results. We
showed that by intelligently aggregating user clickthroughs
across queries and users, we can achieve higher accuracy on
predicting user preferences. Because of the skewed distribution
of user clicks our clickthrough-only strategies have high
precision, but low recall (i.e., do not attempt to predittvance
of many search results). Nevertheless, our CD+CDiff
clickthrough strategy outperforms most recent state-o&the-
results by a large margin (0.72 precision for CD+CDiff§4
for SA+N) at the highest recall level of SA+N.

Furthermore, by considering the comprehensive UserBehavior
features that model user interacti@iter the search and beyond
the initial click, we can achieve substantially higher preaisi
and recall than considering clickthrough alone. Our

features achieves substantially higher recall and precision tha yserBehavior strategy achieves recall of over 0.43 wigkigion
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