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ABSTRACT 
The information needs of search engine users vary in complexity, 

depending on the task they are trying to accomplish. Some simple 

needs can be satisfied with a single query, whereas others require 

a series of queries over a longer period of time. While search 

engines effectively satisfy many simple needs, searchers receive 

little support when their information needs span sessions. In this 

work, we propose methods for modeling and analyzing user 

search behavior that extends over multiple search sessions. We 

focus on two problems: (i) given a user query, identify all related 

queries from previous sessions that the user has issued, and (ii) 

given a multi-query task for a user, predict whether the user will 

return to this task in the future. We model both problems within a 

classification framework that uses features of individual queries 

and long-term user search behavior at different granularity. 

Experimental evaluation of the proposed models for both tasks 

indicates that it is possible to effectively model and analyze cross-

session search behavior. Our findings have implications for 

improving search for complex information needs and designing 

search engine features to support cross-session search tasks. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – search process, selection process 

General Terms 

Algorithms, Experimentation, Human Factors 
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Cross-session search tasks, machine learning, user behavior. 

1. INTRODUCTION 
Web searchers perform a broad range of information seeking 

tasks, from figuring out how to spell a word to researching cancer 

treatment options. Correspondingly, the information needs of 

search engine users vary in complexity. Some simple information 

needs, like finding a person’s home page or navigating to a social 

networking site, can be unambiguously expressed as keyword 

queries and have distinct answers. Other, more complicated needs, 

like planning a wedding or vacation, have multiple aspects and 

cannot be satisfied by the results shown on a single search result 

page. Addressing complex information needs requires a user to 

issue a series of queries, potentially spanning a long period of 

time and multiple search sessions. In doing so, searchers may 

collect, filter, and summarize information from many Web pages. 

In previous work [9], it has been estimated through manual 

analysis of query logs that approximately 10% of search sessions 

include queries on such longitudinal tasks and 25% of the overall 

query volume corresponds to this type of search task. 

While modern search engines effectively serve many of the 

individual queries that correspond to simple information needs, 

users get little or no help when their information needs transcend 

the boundary of a single search session. A search session, as 

defined by Boldi et al. [5], is a sequence of queries issued by a 

single user within a specific time limit. In this work, we model and 

analyze complex, multi-session information needs, which we call 

cross-session search tasks. Cross-session tasks are related to 

research missions and goals [9][16], as we describe in more detail 

below, but we explicitly focus on tasks that extend across 

sessions. We assume that an individual cross-session task consists 

of a series of queries that corresponds to a distinct high-level 

information need. The queries related to the task are not 

necessarily consecutive, and a single search session may contain 

interleaved queries from multiple cross-session tasks, as well as 

shorter, within-session tasks. Cross-session tasks may evolve over 

time, with users starting with only a general idea of what they are 

searching for and progressively refine their need over time. 

During a single session, a user may find some results of interest, 

disregard others and continue exploring, try related queries, or 

interleave one task with other tasks. They may then drop the task 

before returning to it at a later time [17][19][20]. 

Since Web search is currently stateless, the cognitive burden of 

keeping track of complex search tasks is placed on the searcher. 

Incorporating the analysis and prediction of long-term user search 

behavior into search engine infrastructure could improve the 

search experience for searchers in many ways. For example, Web 

search traditionally only considers a user’s current query when 

identifying relevant search results. If a search engine were able to 

identify past queries and interactions related to the searcher’s 

current long-term intent, this information could be used to 

improve search quality. Past information could also be retained 

and displayed to help the user re-establish the context of a long-

term search task, relieving the user from the burden of recalling 

past queries and pages visited (e.g., [9]). Similarly, if a search 

engine could predict that a user was going to return to a task that 

has only been temporarily suspended, the search engine could 

help support future related searches by, for example, pre-

identifying and pre-caching relevant documents, or soliciting user 

assistance to archive the current search session for future use. 

In this paper, we explore how effectively cross-session search 

tasks can be modeled. Specifically, we focus on two related 

problems: (i) identify all previous queries by a user on the same 

search task, and (ii) given a search task for a user, predict whether 

the user will return to this task in the future. After a discussion of 

recent work in modeling user search behavior, we formally define 

the specific aspects of the challenge of modeling and analyzing 

cross-session search tasks that we address. We next discuss the 

formulation of the two research problems as classification tasks, 

and describe the classification models used. We then present the 
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experimental setup and results for both problems. Finally, we 

summarize our findings and discuss future work. 

2. RELATED WORK 
User search behavior has been actively studied in recent years, 

primarily using search logs as a valuable resource to understand 

people’s interactions with Web search engines. Earlier work on 

understanding search behavior focused on methods for classifying 

queries into high-level search goals, such as informational, 

navigational and transactional [8][18][29]. Downey et al. [10] 

studied the relationship between information needs and their 

formulation as search queries. Recent work indicates that, in 

addition to queries themselves, long-term and short-term search 

contexts can be effectively leveraged to predict user interests [34], 

search success [14], and improve search result ranking [1]. 

Search behavior can be analyzed over time to identify queries that 

express the same underlying information need. Most previous 

work has focused on search behavior analysis and prediction 

within a single search session. Related queries within a session 

have been referred to as being part of a query chain [26] or search 

goal [14][16][24]. He et al. [15] proposed an algorithm to 

segment a query stream into sessions by detecting topical shifts 

between the queries. Hassan et al. [14] modeled session-level 

search goals using hidden Markov models. They experimentally 

demonstrated that models that took into account users’ search 

behavior were more predictive of session success than those that 

relied on document relevance. Piwowarski et al. [24] used a 

layered Bayesian network to model a hierarchy of user search 

actions, with the goal of identifying distinct patterns of user 

search behavior that correspond to the latent states of the Bayesian 

network. They used a classifier to learn the mapping from the 

distribution of latent states for a clicked document to the relevance 

assessment of that document in the absence of document content 

models. Mei et al. [21] proposed a general framework to study 

sequences of search activities and focused on simple prediction 

and classification tasks, ranging from predicting if the next click 

will be on an algorithmic result to segmenting the query stream 

into goals and missions. Single-session analyses have also been 

used for various search-related tasks such as query suggestion 

[6][7], interactive feeback [30], and query disambiguation [22]. 

In this paper we focus on tasks that extend across sessions. There 

has been some work on characterizing such tasks using log or 

survey data, and on automatically identifying queries on the same 

task. Teevan et al. [32] showed, via query log analysis, that nearly 

40% of queries were attempts to re-find previously encountered 

results. Using a survey methodology, Aula et al. [2] studied the 

search and information re-access strategies of experienced Web 

users. They found that people often have difficulty remembering 

the queries they used originally to discover information of 

interest. In a field study of 21 people, MacKay and Watters [20] 

explored a variety of Web-based information seeking tasks. They 

found that information gathering tasks accounted for 13.4% of  

tasks, and that 58.8% of these tasks continued across sessions.  

Information gathering tasks were complex and people used a 

variety of browser tools and actions to help complete these tasks. 

Liu and Belkin [19] examined the structure (parallel or dependent) 

of tasks that extend across different sessions. Jones and Klinker 

[16] proposed methods to partition a query stream into research 

missions and goals, where each mission corresponds to a set of 

related information needs and may include multiple search goals. 

This work is closely related to our problem of identifying previous 

queries on the same search task. However, we do not decompose 

tasks into a hierarchical structure of missions and goals, we 

examine tasks that extend over a longer time period (up to a week) 

and we study an order of magnitude more users. We  also propose 

many new features and experiment with different classification 

models. 

Several algorithms and tools have been  developed to support the 

resumption of search tasks. Morris et al. [23] developed 

SearchBar, a system that proactively and persistently stores query 

histories, browsing histories, and users’ notes and ratings. 

SearchBar supports multi-session investigations by assisting with 

task context resumption and information re-finding. However, 

instead of determining the search tasks automatically, SearchBar  

requires users to  explicitly identify them, thus  creating additional 

user overhead. Donato et al. [9] developed SearchPad, a system 

which automatically identifies research missions and presents a 

search workspace comprising previous queries and results related 

to the mission. SearchPad uses measures of topic coherence 

between pairs of consequtive queries and user engagement to 

identify such research missions. Although Donato and colleagues 

describe a method and architecture for detecting research 

missions, the system evaluation presented in [9] focused primarily 

on systems issues (triggering without influencing latency and 

using online evaluation  to set application-specific parameters). 

They did not compare alternative classification algorithms or 

consider the problem of predicting whether users will return to the 

same task in the future.  

The research presented here addresses two important problems in 

modeling cross-session information needs: (i) identifying all 

previous queries in a user’s search history on the same task as the 

current query, and (ii) predicting whether a user will return to the 

task in future sessions. We formalize these problems as 

classification tasks within a supervised learning framework. Our 
work differs from prior work in several ways: 

• We formalize and evaluate the problem of predicting search 

task continuation. Predicting whether a search task will be 

resumed in the future is new, as far as we know. 
 

• We extend previous work on same-task detection (notably that 

on research missions) by examining tasks that extend over 

longer time periods, studying many more searchers, and 

evaluating new features and classification models.  
 

• We describe a new method for automatically and semi-

automatically creating labeled data sets that can be used for 

both problems addressed in this work. 
 

• We experiment with different feature sets and classifiers to 

identify the most informative features and the best-performing 
classifiers for the two problems addressed here. 

In the following section, we formally define the two problems that 
we address and the context from which they arise. 

3. PROBLEM DEFINITION 
User search behavior has been modeled at different levels of 

granularity, ranging from eye fixations on search results [11] to 

information needs underlying a set of queries [16][26].  Different 

sources of data can be used depending on the particular modeling 

task. An important data source for many high-level modeling 

tasks is search logs, traditionally defined as follows: 

DEFINITION 1 SEARCH LOG   is a temporally-ordered set of 

quintuples                 , associated with user queries, where 

   is the identifier of the user,    is the time of user action,    is 

the query submitted by the user,    is the set of results returned 

for    and    is the set of clicks on results   .  



Queries from the search logs can be aggregated for each user to 

create a user search history: 

DEFINITION 2 SEARCH HISTORY                        for a 

particular user   is a temporally-ordered sequence (       ) 

of pairs of user search actions (such as issuing a query, clicking 

on a search result URL and navigating back to search results) 

and time stamps associated with each action.  

The search history provides rich sequences of observations for 

making inferences about search behavior, including what intent 

motivated the user to search and whether that intent was satisfied. 

In order to simplify the analysis of user search history, it is 
typically partitioned into units, called search sessions: 

DEFINITION 3 SEARCH SESSION                       is a 

maximal subset of user search history     , such that      
                , where   is a threshold for a period of user 

inactivity.  

In query log analysis, sesson timeouts are often used as 

boundaries to demarcate the sessions. The session threshold is 

typically set to 30 minutes [25][26][32]. Since search sessions 

include user actions other than queries, the time interval between 

two successive queries in one session can be more than 30 

minutes. A sequence of queries forms a user query stream: 

DEFINITION 4 QUERY STREAM                        is a 

temporally-ordered sequence of queries, submitted by a particular 

user   during the course of user search history.  

The first two columns in Table 1 show an example of a query 

stream for a fictitious user. In this example, more than 20 queries 

(related to several intents) are issued over the course of four days. 

 

DEFINITION 5 CROSS-SESSION SEARCH TASK  

                            

is a subset of a query stream     , corresponding to a certain 

high-level intent that motivated search. Each query    is 

automatically or semi-automatically assigned a label   . When a 

labeled task extends over multiple sessions, we designate this as a 

cross-session search task.  

Cross-session tasks typically correspond to high level information 

needs, which may not be directly reflected in the queries. For 

example, queries corresponding to the same task may not have 

any terms in common. Such tasks represent a level of abstraction 

above the stream of queries. For the purpose of modeling, all 

queries about the same cross-session task can be assigned a label, 

representing such a task. The third column of Table 1 provides 

examples of automatic labels, assigned to the queries in the 

second column, according to the method presented in Section 4.2. 

As can be seen from this example, automatic labeling is effective 

when there is significant term overlap between the queries or 

when the inference step needed to relate one query to another 

query is fairly simple. However, our automatic labeling method 

was unable to infer the meaning of the acronym “pb&j” and 

connect it to the task labeled as “peanut butter recipes.” 

In order to identify previous queries on the same task or predict if 

a task is going to continue in the future, we must first define the 

task of interest. Because our search log data covered a limited 

period of time, we chose to focus our labeling efforts on the tasks 

that occurred early in the observation period and thus have the 

potential to be continued in the future. We designated those tasks 
as  early-dominant tasks, and formally define them as follows:  

Time Query Automatic Label 
Labeled Dominant 

Automatically By a Human 

1/22/2011 1:10pm peanut butter recipes peanut butter recipes × × 

1/22/2011 1:13pm peanut butter cookies peanut butter recipes × × 

1/22/2011 1:25pm calories peanut butter cookies peanut butter recipes ×  

1/22/2011 3:10pm weather nyc weather nyc   

1/22/2011 3:11pm nyc 10-day weather forecast weather nyc   

1/22/2011 3:15pm peanut butter sandwiches peanut butter recipes × × 

1/22/2011 3:16pm pb&j   × 

1/22/2011 3:18pm fluffanutter   × 

1/22/2011 3:19pm fluffernutter   × 

1/22/2011 6:15pm sigir 2011 sigir 2011   

1/22/2011 6:17pm sigir 2010 schedule sigir 2011   

1/23/2011 3:17pm nytimes    

1/24/2011 3:00pm flight status united 123    

1/24/2011 3:31pm peanut butter cookies low calorie peanut butter recipes × × 

1/24/2011 3:33pm peanut butter cookies foodtv peanut butter recipes × × 

1/24/2011 4:10pm weather forecast nyc weather nyc   

1/25/2011 3:05pm nytimes    

1/25/2011 3:29pm foodtv   × 

1/25/2011 3:31pm famous pb&j drop recipe   × 

1/25/2011 3:31pm famous pb&j drop cookie recipe   × 

1/25/2011 3:33pm pb&j drop cookie recipe foodtv   × 

1/25/2011 3:43pm peanut butter cookies foodtv peanut butter recipes × × 

Table 1. Example of automatically and manually assigned cross-session and early-dominant tasks labels. 



DEFINITION 6 EARLY-DOMINANT TASK: given a query stream 

 ̂                             , in which the queries are 

labeled with the tasks they correspond to, for a particular user   

over   days, an early-dominant task is the first task that spans at 

least   distinct queries with the same label that occur within the 

first   days of the user search history. When multiple task labels 

meet the threshold criterion, the first such task is taken as the 

early-dominant task.  

The goal of identifying the early-dominant task is to create a data 

set for the problem of predicting whether the user will return to 

the task, given search log data covering a limited period of time. 

Parameters   and   can be set depending on the length of the 

available search history. The fourth column in Table 1 shows the 

queries that were automatically labeled as corresponding to the 

early-dominant task, based on the criteria that there should be at 

least two distinct queries automatically labeled with the same task 

(peanut butter recipes) in the first two days of the observed user 

search history. By requiring two distinct queries on the same task 

we omit most repeat navigational tasks, which are easy to identify 

and have been studied by others [32]. 

Query streams containing automatically-identified early-dominant 

tasks can be post-processed by humans to add additional queries 

that were missed by the labeling method or remove incorrectly 

labeled queries. As can be seen from the fifth column of Table 1, 

human annotators added queries on “pb&j drop cookie recipe,” 

“fluffernutter,” and “foodtv” to the automatically-identified early-

dominant task. 

In this work, we focus on two specific practical problems arising 

in the context of cross-session search tasks:  

  1.  SameTask: Given a user query, identify all previous queries 

on the same early-dominant search task in the query stream 

of the user;  

  2.  TaskContinuation: Given an early-dominant task for a user 

and the last query of the user on the early-dominant search 

task, predict whether the user will return to this task in a fu-

ture session.  

Methods that effectively solve the above two problems can be 

applied in a range of search scenarios. We describe some specific 

application scenarios for cross-session tasks later in the paper. 

Having introduced the two problems in the context of analysis of 

cross-session search tasks addressed in the present work, we now 

discuss our approach to solving them. For both tasks we adopt a 

machine learning methodology by learning a classifier on a 

catalog of features. In the following section we describe the 

experimental setup for both problems. 

4. EXPERIMENTAL METHODOLOGY 
The most important and challenging aspect of an experimental 

evaluation of models for the analysis of cross-session tasks is 

generating a training set, in which the queries are labeled with the 

corresponding long-term tasks. In this section, we discuss the data 

that we used for evaluating the models proposed in this work as 

well as the semi-supervised process for generating training labels. 

4.1 Dataset 
We used a dataset containing the anonymized logs of URLs 

visited by users who consented to provide interaction data through 

a widely-distributed browser plug-in. The data set contained 

browser-based logs with both searching and browsing episodes 

from which we extract search-related data. These data provide us 

with examples of real-world searching behavior that are useful in 

understanding and modeling natural search behavior. Log entries 

include a timestamp for each Web page view, and the URL of the 

Web page visited. To remove variability caused by geographic 

and linguistic variation in search behavior, we only include log 

entries generated in the English-speaking United States locale. 

The results described in this paper are based on URL visits during 

the last week of February 2010 representing billions of Web page 

visits from hundreds of thousands of unique users. From these 

data we extracted search sessions that started with a query to Bing 

using a session extraction methodology similar to [35]. After the 

initial query, search sessions include subsequent clicked results 

and queries occurring in the same browser/tab instance, and 

ending after 30 minutes of inactivity. 

4.2 Labeling 
Labeling queries with long-term search tasks is challenging, since 

it requires an abstraction from the query stream to the level of 

information needs. The mapping from queries to information 

needs is perhaps best performed by human annotators, who are 

better able than machines to understand the relationship between 

the queries and visited URLs. However, manual labeling of a 

large data set is cognitively demanding and time consuming. To 

address this, we examine both fully automatic initial labeling (for 

more than ten thousand users) and additional human annotation 

for a subset of these data (more than one thousand users).  

4.2.1 Automatic labeling 
The automatic labeling process comprises four stages:  

In the first stage, a subset of users, who are likely to be involved 

in some long-term task, were selected using a simple heuristic: a 

user must have at least five search sessions with at least 10 queries 

in their search history during the week covered by our log. This 

resulted in a set of 270,470 users. 

In the second stage, queries in the original query stream were 

expanded using two query association resources: 

1. A list of queries, in which each query is associated with a set 

of clusters computed using query reformulation and click 

data via the method described by Radlinski et al. [27]. Each 

cluster is assigned a score, reflecting the frequency of a 

particular intent in the data set; 
 

2. A list of pairs of related queries, with the strength of 

association between the queries derived using query-click 

data in a manner similar to what has been described in 

previous work [4][33]. A query may be part of many pairs. 

The representation of a query was expanded with queries from the 

top-scoring query cluster, and with related queries from the query 

graph. Each expanded query was then divided into terms to create 

a bag-of-words representation for the query. 

In the third stage, in order to automatically identify and label 

queries that are on the same task, all pairs of queries in the user’s 

query steam were enumerated and two similarity measures were 

Number of users 3k 10k Human 

Total 3,376 10,852 1,218 

Return to dominant task 1,688 1,694 701 

Number of queries 3k 10k Human 

Total 66,219 119,814 28,474 

Query pairs 866,860 1,486,492 660,120 

Table 2. Statistics of data set used in experiments. 



calculated for each query pair, using the bag-of-words query 

representations. We used the size of the intersection and the 

Jaccard coefficient between the term sets of two queries as 

similarity measures and experimented with different thresholds 

for both measures. If a similarity measure exceeded a threshold, 

the queries were labeled as belonging to the same long-term task. 

The labels were assigned to the pair of queries exceeding the 

threshold according to the following rules: (i) if one of the queries 

has already been labeled before, the other query is assigned the 

same label; (ii) if neither query has been labeled before, the first 

query in the pair is used as the label for both queries. 

In addition to automatically assigning labels corresponding to 

search tasks, we determined whether there was an early-dominant 

task in each user’s search history. An early-dominant task was 

previously defined as the first task during the first two days of the 

search history that was associated with at least two unique 

queries. The early-dominant task labels were used to evaluate 

predictions of whether a user will return to a task in a future 

session. Focusing labeling efforts on a single task per user 

(namely the early-dominant task) simplifies the human editorial 

task labeling process and, as we show in the next section, leads to 

high inter-judge agreement. 

We experimented with all combinations of query expansion 

strategies and similarity measures and evaluated each combination 

in terms of the proportion of queries with automatically assigned 

cross-session task labels, the total number of users who have 

early-dominant task labels, and the proportion of users who return 

to the early-dominant task. The best performing automatic 

labeling method expanded queries using both the top scoring 

query cluster and a one-step walk on the query graph, and used 

the Jaccard coefficient with threshold 0.5. 

In the fourth stage, from the set of 270,470 users selected in the 

first stage, we selected a subset of 10,852 users who had an early-

dominant task and issued at least one query after the first two 

days. Of these people, 1,694 (15.6%) issued at least one query on 

the dominant task after the first two days and the remaining 9,158 

(84.4%) did not. We will refer to this data set as 10k and it 

represents an 85-15 split between the (automatically labeled) 

negative and positive examples of returning to the dominant task. 

In order to create a training set with a balanced number of positive 

and negative examples, we included all users who returned to the 

early-dominant task and randomly subsampled 1,688 of the 9,164 

users who did not return to the early-dominant task. We will refer 

to the resulting data set with a 50-50 split between the positive 

and negative examples as 3k. 

4.2.2 Human labeling 
From the 3k data set we randomly selected 1,250 users and three 

annotators manually modified the automatic labels. Annotators 

were instructed to start with the automatically-identified early-

dominant task and find other queries by the same user that were 

on the same task. This typically involved identifying additional 

queries that were missed by the automatic algorithm, but 

sometimes also involved removing queries that were not on the 

same task. As a result, 1,218 users had an early-dominant task and 

701 (57.6%) of these users returned to the task in a subsequent 

session. Table 2 summarizes the statistics of the data sets used for 

experiments. The numbers presented for the 3k and 10k data sets 

are for the fully automatic labels, and the Human set represents 

the human augmentation. 

Automatic labeling identified 7,038 queries corresponding to the 

early-dominant task (for the 1,250 users). The human labeling 

process identified more than 7,500 additional queries on the early-

dominant task, for a total of 14,549 such queries. Examples of 

additions include: adding angelcare deluxe to a task about baby 

monitors, and adding princesspeach to a task about mariotoys. 

The labelers also removed 232 of the queries that the automatic 

method had identified as dominant.  Examples include: removing 

map of south carolina from a task about visiting haiti which 

included the query map of haiti, and correcting some labeling 

errors.  Overall the agreement was 96.7% for automatic postive 

labels and 79.2% for automatic negative labels. 

All annotators also labeled queries from 100 additional users 

which we used to measure inter-labeler agreement. Cohen’s kappa 

showed high inter-annotator agreement, ranging from 0.86 to 0.92 

for the three pairs of annotators. 

4.2.3 Task characteristics 
Recall that we required two distinct queries on the early-dominant 

task in an effort to omit simple repeat navigational tasks.  In order 

to verify this, the query sessions used to assess inter-labeler 

agreement were also annotated as to whether the early-dominant 

task was navigational or informational. The majority (88%) of the 

tasks identified by the method described above were indeed in-

formational.  The remaining 12% of the tasks were navigational 

and were included because of spelling errors, word boundary dif-

ferences (mc gilvery oil vs. mcgillvery oil), or different query 

formulations to find items of interest (drudgereport com, matt 

drudge report, drudge report).  As intended, the vast majority of 

tasks identified were informational needs such as research, school 

work, shopping, travel planning, and general topic search [20]. 

4.3 Classifiers 
We used two different classifiers to address the two problems of 

multi-session search tasks outlined earlier: (i) identifying all pre-

vious queries on the same early-dominant task (SameTask), and 

(ii) given an early-dominant task for a user, predicting whether the 

task will be continued in subsequent sessions (TaskContinuation). 

The two classifiers that we used were Logistic Regression (LR) 

and Multiple Additive Regression Trees (MART) [13]. MART is 

a boosted tree algorithm that uses gradient descent for regression 

and classification. Logistic regression has previoulsy been used 

for similar task-modeling problems [16]. MART allows us to 

model conditional interactions so that we can evaluate the im-

portance of richer feature combinations. 

For all experiments, we used  -score normalization for feature 

values and performed 10-fold cross validation. 

4.4 Performance measures 
To compare the performance of the classification methods we 

look at the standard performance measures of accuracy and F1 

[28]. We also display precision, recall, and the contingency tables 

for each method. By analogy to topic classification, we look at 

both the macro average of F1 which weights the F1 for each query 

equally and micro average which weights each binary prediction 

(for the current query to all previous queries) equally 0. We look 

at only the micro averages for the problem of predicting whether 

the user will return to the task, as there is only one example per 

user and thus macro and micro are the same. Significance between 

approaches is calculated using two-tailed independent samples t-

tests. 

In the following sections, we discuss in detail our approaches to 

solve the SameTask and TaskContinuation problems in the context 

of modeling cross-session tasks. 



5. SAME-TASK QUERY IDENTIFICATION 
We begin by addressing the first problem of detecting queries on 

the same long-term task. Specifically: for a given query, find all 

previous queries in the user's search history that are on the same 

long-term task. We formulated this as a classification problem. 

Given a set of users, whose queries have been manually or 

automatically labeled with the early-dominant task, train a 

classification model that will classify each pair of user queries as 

either on the same task or not. 

5.1 Formal definition 
Formally, given a history of automatically or manually labeled 

queries                              , where           is 

a label that indicates whether the query is part of the early-

dominant task, we create a set of all possible pairs of queries:  

                                                  

in which each pair is labeled as either a positive or negative 

example as follows:  

      {
                   

                   
 (1) 

A query pair is labeled as a positive example if both queries are 

related to the early-dominant task, and as a negative example if 

one of the queries is not related to the early-dominant task. We do 

not consider instances where neither query is labeled as being 

related to the early-dominant, since the queries might be on the 

same long-term task (but not labeled as the early-dominant task). 

The numbers of query pairs given in Table 2 were calculated after 

dropping such pairs. Because queries are only compared with 

queries that occur earlier in the user’s history, the later in time that 

a query occurs, the more pairs it will be involved in. 

5.2 Features 
Since the SameTask problem involves predicting the similarity 

relationship between pairs of queries, we extracted pair-wise 

features as well as features for the individual queries. Individual 

query features are computed at different levels of granularity for 

historical information of a user: ranging from the session in which 

a query occurred, to the entire search history of a user. The 18 

single-query and nine pair-wise features extracted to identify 

queries on the same long-term task are summarized in Table 3. 

As a baseline (BASE), we use logistic regression to learn a model 

using only Levenshtein edit distance between the current (given) 

query and all previous queries. This is a reasonable baseline under 

the assumption that an intelligently-chosen threshold applied to 

the dissimilarity between two queries could provide an accurate 

prediction of whether two queries are on the same task. 

Query-Based Features 

NUMQUERYCHARS The number of characters in the query. 

NUMQUERYTERMS The number of terms in the query. 

NUMTOP10CLICKS The number of clicks on the top 10 search results for the query. 

MINCLICKPOS The minimum position of a clicked result for the query. 

MAXCLICKPOS The maximum position of a clicked result for the query. 

SPELLSUGGEST Whether a spelling suggestion was shown for the query. 

Session-Based Features 

NUMQUERIESSESS The number of queries since the beginning of the session. 

NUMCLICKSSESS The number of clicks on search results since the beginning of the session. 

TIMESINCESESS The amount of time from the beginning of the session to the query. 

SAMEQUERYSESS Whether the same query appeared earlier in the same session. 

SUBQUERYSESS Whether a query with a subset of the query’s terms appeared in the same session. 

SUPQUERYSESS Whether a query with a superset of the query’s terms appeared in the same session. 

History-Based Features 

NUMSESSHIST The number of sessions in the user’s search history. 

NUMQUERIESHIST The number of queries in the user’s search history. 

NUMCLICKSHIST The number of clicks on search results in the user’s search history. 

SAMEQUERYHIST Whether the same query appeared in the user’s search history. 

SUBQUERYHIST Whether a query with a subset of the query’s terms appeared in the user’s history. 

SUPQUERYHIST Whether a query with a superset of the query’s terms appeared in the user’s history. 

Pair-Wise Features 

NUMTERMSOVER The number of overlapping terms between the two queries. 

QUERYTERMSJAC Jaccard coefficient between the term sets of two queries. 

LEVENDIST Levenshtein edit distance between the two queries. 

TIMEBETWEEN The time between the two queries. 

SAMESESS Whether the two queries occurred in the same session. 

QUERIESSAME Whether the two queries are identical. 

QUERYSUBSET Whether one query’s terms are a subset of the other’s. 

HAVECOCLICKURLS Whether the two queries have co-clicked URLs. 

HAVECOCLICKDOM Whether the two queries have co-clicked URLs with the same domain. 

Table 3. Features for identifying whether two queries relate to the same long-term task. Except for the pair-wise features,  

every feature is calculated individually for each query in a pair and thus occur twice. Session and history features are  

computed over all actions before the current query. 

 



5.3 Results 
The results of classification experiments with features specified in 

Table 3 on three experimental data sets are reported in Table 4. 

Several conclusions can be made from the findings presented in 

Table 4. First, both classifiers (LR and MART) consistently 

outperform the baseline (BASE), which is not surprising. The two 

classifiers show similar levels of accuracy especially for the 

automatically-labeled data. Second, for the automatically-labeled 

data, classication results improve as more data is observed, but 

this is difficult to interpret since the ratio of positive to negative 

examples changed from 50-50 to 15-85. Third, classification 

performance decreases on the task labels that have been assigned 

by human annotators. This suggests that the human-labeled data 

provides a more challenging learning problem. This is expected 

since the human labels were intended to capture task structure that 

was not already captured automatically, and this often involved 

identifying related queries that were not lexically similar. 

The micro precision-recall curves for the two classifiers for the 

task of identifying queries on the same cross-session task on 

different data sets are shown in Figure 1 (aggregated over all test 

splits). Performance at default thresholds is indicated by markers.  

Both classifiers show good performance. However, for all three 

dataets, LR dominates at the low recall/high precision end of the 

curves.  This suggests that the LR model might be more 

applicable for high-precision tasks such as suggesting related 

queries. As in Table 4, LR has notably better micro performance 

over the human-labeled data in the area of optimal F1 (upper 

right) although this does not translate to higher macro 

performance.  Understanding the relationship between micro and 
macro performance for this domain is an area of future work. 

5.3.1 Feature Importance Analysis 
Feature weights from the logistic regression model for the 

identification of queries on the same long-term task, trained on the 

manually annotated data, are summarized in Table 5. Both single 

and pair-wise features are important in identifying queries on the 

same task. But, pair-wise features are more prevalent, meaning 

that understanding the relationship between the queries is more 

valuable than understanding either query in isolation. This is not 

surprising given that the goal is to understand if both queries are 

on the same task. Similarity features, such as whether the queries 

are identical and term overlap measures between the bag-of-words 

representations for a pair of queries (NUMTERMSOVER and 

Feature  Feature Type Weight 
QUERYTERMSJAC  Pair-wise 1.44 
NUMQUERYCHARS1  Query-based 1.05 
NUMTERMSOVER  Pair-wise 0.93 
QUERYSUBSET  Pair-wise 0.88 
NUMCLICKSHIST2  History-based 0.81 
NUMQUERYCHARS2  Query-based 0.79 
SAMESESS  Pair-wise 0.52 
HAVECOCLICKDOM  Pair-wise 0.40 
NUMCLICKSHIST1  History-based 0.39 
NUMQUERIESSESS1  Session-based 0.31 
SUBQUERYSESS2  Session-based -0.30 
NUMQUERYTERMS2  Query-based -0.47 
NUMQUERIESHIST1  History-based -0.52 
NUMQUERYTERMS1  Query-based -0.68 
LEVENDIST  Pair-wise -0.84 

Table 5. The top 15 (absolute magnitude) feature weights 

for the logistic regression model to identify queries on the 

same cross-session task. Features related to the first query 

are marked with a 1 and to the second query with a 2. 

 3k 10k Human 
 BASE LR MART BASE LR MART BASE LR MART 

Micro statistics 

TP 57,273 86,673 97,870 66,175 112,081 126,369 78,084 194,126 166,438 
FP 14,262 20,913 23,260 16,582 25,293 28,971 52,322 52,032 65,310 

TN 717,120 710,469 708,122 1,298,996 1,290,285 1,286,607 309,972 310,262 296,984 

FN 78,205 48,805 37,608 104,739 58,833 44,545 219,742 103,700 131,388 

Recall 0.4157 0.6431 0.7258 0.4300 0.6693 0.7556 0.3267 0.6067 0.5617 
Precision 0.8382 0.8135 0.8183 0.8240 0.8268 0.8233 0.6138 0.7857 0.7325 

Accuracy 0.8970 0.9227 0.9331 0.9245 0.9646 0.9534 0.6104 0.7629 0.7118 

F1 0.5495 0.7160 0.7681 0.5520 0.7383 0.7876 0.3957 0.6670 0.6156 

Macro statistics 

Recall 0.8520 0.9243 0.9440 0.8205 0.9288 0.9507 0.7329 0.8440 0.8277 
Precision 0.8746 0.9134 0.9218 0.8406 0.9183 0.9284 0.6661 0.7781 0.7944 
Accuracy 0.9540 0.9569 0.9597 0.9612 0.9646 0.9661 0.7139 0.8196 0.8133 
F1 0.8419 0.8904 0.9063 0.8131 0.8982 0.9146 0.5676 0.7164 0.7265 

Table 4. Experimental results for identifying queries on the same cross-session task. The best result for F1 and accuracy in 

each dataset is in bold. Significant differences relative to BASE are indicated by underline (p < .01).  

TP = Num. true positives, FP = Num. false positives, TN = Num. true negatives, FN = Num. false negatives. 

 

Figure 1. Micro precision/recall curves for LR and MART for 

identifying queries on the same task. 



QUERYTERMJAC) are among the strongest signals. The high 

negative weight of the LEVENDIST feature shows that most queries 

on the same task are morphologically similar. Features related to 

the length of each individual query in characters 

(NUMQUERYCHARS) receive high positive weights, while features 

related to the length in terms (NUMQUERYTERMS) receive 

negative weights. This suggests that long, descriptive query terms 

are particularly indicative of cross-session tasks. This seems 

reasonable since longer terms may be associated with complex 

information needs spanning multiple search sessions. 

6. TASK CONTINUATION PREDICTION 
We next consider the second problem of predicting whether a user 

will return to a task.  Specifically: given an early-dominant task 

for a user and the user’s last query on the early-dominant task, 

predict whether the user will return to this task in a future session. 

6.1 Formal definition 
Given a stream of user queries and a target date, features are 

computed up to the end of the session containing the last early-

dominant query on the target date. The feature vector is assigned a 

positive label, if there are queries on the early-dominant task after 

the target date, and a negative label if there are no such queries. 

6.2 Features 
The nature of the TaskContinuation problem suggests that the 

most predictive features should reflect two aspects of a cross-

session task: (i) user satisfaction with the presented search results, 

and (ii) the difficulty of the task itself. The most frequently-used 

feature to capture user satisfaction is click-through rate on search 

results (e.g., [1]). The intuition behind this is that if a user issued a 

series of queries and clicked on at least one search result for most 

or all of these queries, she is likely to have obtained useful 

information that allowed her to make progress on the task and, 

hence, is less likely to return to it. Similarly, the dwell time on 

results has been shown to reflect satisfcation (e.g., Fox et al. [12]). 

The difficulty of the task can be reflected by several patterns of 

user behavior including the number of queries issued, the time 

between successive queries, etc. [3][17]. Individual query 

features, reflecting these interaction patterns, are computed at 

different levels of granularity (ranging from the session where a 

query occurred to the entire search history of a user). Features 

summarizing the user’s history with the early-dominant task are 

also included. These additional features are shown in Table 6. The 

features in Tables 3 and 6 are used together to predict whether the 

user will return to the early-dominant task. 

As a baseline (BASE), we use logistic regression to learn a model 

using the number of queries in the user’s history before the cutoff 

date (NUMQUERIESHIST). This is a reasonable baseline under the 

assumption that an intelligently-chosen threshold applied to the 

level of user activity in a short window of time around the task 

could provide an accurate prediction of task continuation. 

 3k 10k Human 
 BASE LR MART BASE LR MART BASE LR MART 

TP  680 1,112 1,106 14 470 523 569 514 489 
FP  477 360 327 12 226 211 391 169 141 

TN  1,211 1,328 1,361 9,146 8,932 8,947 126 348 376 

FN  1,008 576 582 1,680 1,224 1,171 132 187 212 

Recall  0.4038 0.6593 0.6546 0.0084 0.2777 0.3096 0.8154 0.7342 0.6971 
Precision  0.5906 0.7555 0.7708 0.675 0.6784 0.7219 0.5961 0.7538 0.7766 
Accuracy  0.5601 0.7228 0.7308 0.8441 0.8664 0.8726 0.5706 0.7074 0.7100 
F1  0.4775 0.7029 0.7072 0.0166 0.3933 0.4305 0.6844 0.7428 0.7326 

Table 7. Experimental results for predicting whether the user will return to the early-dominant task. The best result for 

F1 and accuracy in each dataset is in bold. Significance relative to BASE indicated by underline (p < .01). 

Session-Based Features 

AVGINTERQTIMESESS   The average time between all sequential pairs of queries in the session. 

AVGINTERDOMQTIMESESS   The average time between sequential pairs of dominant queries in the session. 

NUMDWELL30SESS   The number of queries in the session with a dwell time more than 30 seconds.  

AVGNUMQTERMSSESS   The average number of unique terms per query within the session.  

NUMDOMQUERIESSESS   The number of queries on the dominant task in the session.  

PCTDOMQUERIESSESS   The number of queries on the dominant task divided by the number of queries in the session.  

PCTCLICKQUERIESSESS   The number of the queries with clicked results divided by the number queries in the session. 

NUMCOCLICKDOMSESS   The number of co-clicked URLs with the same domain in the session. 

History-based features 

AVGINTERQTIMEHIST   The average time between all sequential pairs of queries in the user's search history.  

AVGINTERDOMQTIMEHIST   The average time between sequential pairs of dominant queries in the user's search history.  

NUMDWELL30HIST   The number of queries with dwell time more than 30 seconds in the user's history.  

AVGNUMQTERMSHIST   The average number of unique terms per query in the user's search history. 

NUMDOMQUERIESHIST   The number of queries on the dominant task in the user's search history.  

PCTDOMQUERIESHIST   The number of queries on the dominant task divided by the number of queries in the user's history.  

PCTCLICKQUERIESHIST   The number of queries with clicked results divided by the number of queries in the user's history. 

NUMCOCLICKDOMHIST   The number of co-clicked URLs with the same domain in the user's search history.  

Table 6. Additional features to those shown in Table 3 that are used for predicting whether a user will return to the early-

dominant long-term task. The pair-wise features from Table 3 are not relevant for this task. 



6.3 Results 
Experimental results for predicting whether the user will return to 

the early-dominant task with features specified in Tables 3 and 6 

on three data sets are reported in Table 7. Several major 

conclusions can be drawn from Table 7. First, again we see that 

both classifiers improve over the baseline in all datasets and 

perform similarly to each other overall. Additionally, recall and 

precision substantially decrease when moving from a smaller 

balanced dataset (3k) to a larger unbalanced one with more 

negative examples (10k). However, both LR and MART still 

classify a large number of negative examples correctly, as 

evidenced by the fact that the accuracy increases for both 

classifiers. Next, recall significantly improves for both classifiers 

on manually corrected labels, which can be attributed to the fact 

that this data set is less sparse. There are more positive examples, 

because human annotators assign the missing early-dominant task 

labels to some queries. 

Precision-recall curves for the classifiers for TaskContinuation are 

shown in Figure 2 (aggregated over all test splits). Performance at 

default thresholds is indicated by markers.  Both models perform 

very similar for each dataset. There are some differences across 

datasets, with overall performance being worse on the 10k set.   

MART has a slight advantage over LR for the low recall/high 

precision region of the curves for the human dataset. 

6.3.1 Feature Importance Analysis 
Weights of the LR model for predicting whether the user will 

return to the early-dominant task, trained on the editorially-

corrected data set, are summarized in Table 8. From the table, it 

appears that the most important feature is whether the query has 

ever occurred in the user’s history (SAMEQUERYHIST). All 

identical queries were labeled as being from the same task, both 

automatically and by human labelers. The importance of this 

feature is consistent with previous research that suggests re-

finding is very common [32].  Although most of the early-

dominant tasks are informational (as described in 4.2.3), queries 

are sometimes repeated as part of such tasks. 

Features of the user’s history with the dominant task were also 

important. If many of their past queries (NUMDOMQUERIESHIST) 

or a high proportion of them (PCTDOMQUERIESHIST) were related 

to the dominant task, they appeared particularly likely to return to 

the task again at a later date. This suggests that intense interest in 

a topic at one point in time is likely to lead to returning to the task 

at a later point (during the week). 

In the previous section we observed that past queries on the 

dominant task could be identified in part by complex queries. 

Here again we see that the complexity of the user’s dominant 

information need, as indicated by the high weight on longer 

queries (NUMQUERYCHARS) and deeper examination in result lists 

(NUMTOP10CLICKS), suggests that it is more likely that the user 

will return to the task. The predictive value of NUMTOP10CLICKS 

provides evidence to support similar claims by Donato et al. [9].   

Features related to the user’s intensity of search engine use (e.g., 

AVGINTERQTIMEHIST, NUMSESSHIST) are among the most 

important. This is not surprising, since people who search more 

are more likely to search again on all tasks, including both the 

early-dominant task and other tasks. However, not only the 

absolute frequency of searches, but also the deeper engagement 

with past search results (NUMDWELL30HIST) appear to be 

important, suggesting that people who use search deeply may also 

use search for more extended tasks. 

7. CONCLUSIONS AND FUTURE WORK  
As the importance of a deeper understanding of user search 

behavior continues to grow, it becomes necessary to develop 

models that consider complex long-term information needs and 

effectively incorporate them into existing search engine 

infrastructures. In this work, we introduced and addressed the two 

problems in the context of analysis of cross-session search tasks: 

(i) identifying queries from earlier sessions on the same task, and 

(ii) predicting whether a user will return to the same task during a 

later session, formulating both problems as supervised machine 

learning tasks. We proposed a method for creating a semi-

automatically labeled data set that can be used for both problems 

and developed feature sets, tailored for each of the individual 

problems. Experimental results using two classifiers (logistic 

regression and MART) for both problems indicate that we can 

effectively model and analyze cross-session information needs.  

Our research is an important first step in helping searchers more 

effectively manage long-term information needs. Knowledge of 

previous user queries on the same long-term task enables a search 

engine to provide support for task resumption. For example, if it is 

known that a user has previously been undertaking a vacation-

planning task and has issued queries about airline tickets, 

Feature  Feature Type Weight 
SAMEQUERYHIST  History-based 1.11 
NUMSESSHIST  History-based 0.60 
NUMDOMQUERIESHIST  History-based (Table 6) 0.39 
AVGINTERQTIMEHIST  History-based (Table 6) 0.24 
FREQDOMQUERIESHIST  History-based (Table 6) 0.24 
NUMDWELL30HIST  History-based (Table 6) 0.22 
NUMQUERYHIST  History-based 0.21 
NUMTOP10CLICKS  Query-based -0.16 
AVGINTERQTIMESESS  Session-based (Table 6) -0.17 
NUMCLICKSHIST  History-based -0.18 
NUMQUERYCHARS  Query-based -0.21 
SUBQUERYHIST  History-based -0.23 
SUPQUERYSESS  Session-based -0.40 
SUPQUERYHIST  History-based -0.40 
SUBQUERYSESS  Session-based -0.49 

Table 8. Top 15 (absolute magnitude) feature weights for 

the logistic regression model which predicts return to the 

early-dominant task. 

 

Figure 2. Precision/recall curves for LR and MART for 

predicting return to the early-dominant task. 



whenever the user comes back to this task, a search engine can 

show pertinent updates in the time since the last query (e.g., ticket 

price drops) or suggest queries to re-find useful past results. By 

using a model that can accurately predict continuation of a cross-

session task, a search engine can determine whether it is necessary 

to retain the task context, start monitoring Web content (e.g., 

during Web crawls or others’ queries) for information pertaining 

to the task, and use the task model for query suggestions or search 

result suggestions. 

There are several directions for future work, including using 

richer prediction models and alternative feature sets, exploring 

new prediction and classification problems in the context of cross-

session information needs, and incorporating our models into 

commerical search engines.  
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