Click-Through Prediction for News Queries

Arnd Christian Konig
Microsoft Research
One Microsoft Way

Redmond, WA 98052

chrisko@microsoft.com
ABSTRACT

A growing trend in commercial search engines is the display of
specialized content such as news, products, etc. interleaved with
web search results. Ideally, this content should be displayed only
when it is highly relevant to the search query, as it competes for
space with “regular” results and advertisements. One measure of
the relevance to the search query is the click-through rate the spe-
cialized content achieves when displayed; hence, if we can predict
this click-through rate accurately, we can use this as the basis for
selecting when to show specialized content.

In this paper, we consider the problem of estimating the click-
through rate for dedicated news search results. For queries for which

news results have been displayed repeatedly before, the click-through

rate can be tracked online; however, the key challenge for which
previously unseen queries to display news results remains. In this
paper we propose a supervised model that offers accurate predic-
tion of news click-through rates and satisfies the requirement of
adapting quickly to emerging news events.

Categories and Subject Descriptors

H.3.1 [Information Search and Retrieval]: Indexing Methods;
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms, Measurement, Performance, Experimentation

1. INTRODUCTION

Searching for online news is one of the most important user ac-
tivities in the context of the Web. As a consequence, there exist a
number of dedicated news search engines and many of the major
search portals offer a dedicated news search tab. Moreover, some
search engines (such as Google or Live.com) have started to mix
dedicated news search results with the results displayed in the re-
gular search pane (i.e., when the user has not selected the news
tab). This interleaving of different search results introduces chal-
lenges: because news and the “regular” search results compete for
the available space, the display of news results should ideally be
triggered only for queries with news-intent (i.e., queries for which
a significant fraction of the people issuing them are actually looking
for related news), but not for other queries, even if they contain key-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’09 July 19-23, 2009, Boston, Massachusetts, USA.

Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$5.00.

Michael Gamon

Microsoft Research

One Microsoft Way
Redmond, WA 98052

mgamon@microsoft.com giangwu@microsoft.com

Qiang Wu
Microsoft Research
One Microsoft Way

Redmond, WA 98052

words frequent in the news corpus. Hence, we require techniques
that determine for which queries to surface news results.

The approach we use is to utilize the observed click-through rate
(which we will refer to as CTR from here onward) on the news
content as measure of whether news content should be displayed.
If we can estimate this CTR for an incoming query, we can use this
to trigger the display of news. While it is relatively easy to estimate
the CTR for queries for which news results have been displayed a
number of times already, the main challenge of estimating the CTR
for the previously unseen queries remains. In this paper, we address
this problem.

1.1 Characteristics of News CTR Prediction

In order to motivate our approach, we will first illustrate some
properties of CTR prediction for news. First, it is important to note
that this is not simply a task of statically classifying queries into
news and non-news categories. Many queries are inherently ambi-
guous — for example, earlier in 2008 the search query "Georgia”
was typcially either a request about information on the country (or
the US state), or a request on news results regarding the conflicts
on the Georgian border, with the relative frequency of these two
query intents changing (sometimes rapidly) over time. This exam-
ple illustrates the strong dependence between the time a query is
issued and the likelihood of it resulting in a click on news results —
any technique that cannot quickly adapt to events becoming “news-
worthy” is of little value.

Second, we argue that the CTR we observe for a given query
(assuming that somewhat relevant news articles exist in our collec-
tion) is not only a function of the relevance score of the displayed
news article, but also strongly depends on additional factors such as
the current “buzz” around a story, the age of the article itself, etc.
For example, initial experiments on the correlation between CTR
and the BM25 [12] score of an article showed little correlation; mo-
reover, different articles surfaced for an identical news queries on
adjacent days often exhibit very similar CTR, even when the re-
levance scores of the articles themselves differ significantly. Our
approach accounts for this by estimating the CTR at the level of a
query (as opposed to a query-document pair), while using the rele-
vance score of the highest-ranking document(s) as an input feature
to this estimation. It is important to note that this does not mean
that the quality of the returned documents is irrelevant: having a re-
levant result document is still a pre-requisite to surfacing any news
content.

1.2 Applicability of Existing Approaches

In this section we discuss the applicability of several existing
approaches to the problem of news CTR prediction.
Web Document Ranking: Techniques used for document ranking
in the web context cannot directly be applied to our scenario for a
number of reasons. For one, as we illustrated above in the case of
BM25, the predicted click-through rate is not a function of the score
of the highest-rated document for a given query, ruling out these

classes of ranking functions for our purposes. Also, techniques that
leverage explicit relevance judgements (e.g., between a query and
a given news article), which are obtained either directly (e.g., [4])
or implicitly via user-behavior (e.g., [2, 20]) are problematic in this
scenario, because the underlying articles change so quickly. More-
over, as pointed out in [8], newly posted news articles initially have
very few links pointing to them, so techniques that use the linkage
between pages (to, e.g., compute PageRank of an article) have very
limited benefit in the news domain.

Query Classification: Techniques commonly used in query intent
classification cannot directly be re-used either. For one, classifiers
that use the words appearing in the query’s text as main features
(which have been shown to perform well for other query intent clas-
sification tasks, e.g. [15]) are problematic given that news changes
so rapidly. As illustrated in the case of the query *Georgia’ above,
the intent of a set of keywords can change quite rapidly, which in
turn would require constant re-training of the underlying classifier.

Moreover, the acquisition of training data itself would be diffi-
cult — humans may be good judges of whether or not a query is
related to news, but they can not estimate a query’s CTR well. To
illustrate this, we use query logs and click-through data obtained
from Live.com for the time interval from November 13-15 2008.
Consider the queries *Caylee Anthony’, voter registration’ and ’oil
price’, all of which are closely related to events receiving signifi-
cant news-coverage during the days the logs were generated, mea-
ning that a reasonable human annotator might label them as “news-
intent”. However, the true click-through rates seen in the log files
with respect to news results differ significantly between queries:
while the query ’Caylee Anthony’ results in clicks on news articles
at rates between 63%-69% (depending on the individual day), the
click-trough rate for the query ’oil price’ lies between 22%-29%
and for ’voter registration’ between 1.6%-5%.

To illustrate the variations in CTR for different news queries, we

have plotted the rates observed for a sample of queries for which
news-results were surfaced on November 7th, 2008 in Figure 1.
Here, the x-axis corresponds to the number of times news results
were displayed for the query in question (in logarithmic scale), and
the y-axis to the observed CTR. The circles in the plot show the
overall distribution, with a number of them labeled with the corre-
sponding query text. Note that not only do the click-through rates
for different news queries vary significantly, but also do some que-
ries (such as “facebook’) which — judging from the query terms —
do not appear to have news intent actually receive some clicks on
news results.
Online Models: Tracking CTR in an online manner via time series
models is a well-studied area (e.g. [25, 1, 9]); however, applying
any of these methods in our problem context would require collec-
ting initial click-through data for queries by displaying news results
for them, which — given that the vast majority of web queries do not
have news-intent — would mean large numbers of irrelevant search
results being displayed. Instead, our aim is to only display news re-
sults for a query when we have high confidence that this will lead
to clicks on the news results.

1.3 Our Approach

The characteristics of the problem scenario described above mean
that any solution has to satisfy a number of properties:

1. Fast adaptation to changing news events.

2. Prediction of actual CTR-values (as opposed to binary news/no-
news classification).

3. Prediction of CTR for queries for which no news results have
been displayed in the past.

08" minnesota senate race

stimulus package
alaska senate race

0.7
change.gov casey anthony
economic stimulus

0. billy graham caylee anthony

=Y

the girls next door

0.

o

2009 presidential inauguration
crude oil prices
michael crichton

14 haiti

o 04 kendra wilkinson

ohio state football schedule
0.3 michelle obama
gemma arterton

0.2 mad men

b8R#EBbama

warren buffett

0.1 daily show craigslist

cnbe
facebook
univision
0.0

Times Displayed

Figure 1: CTR of different news queries

4. Because the CTR has to be predicted online, as queries arrive
at the search engine, the generation of features has to be fast.

Our approach adopts a supervised learning framework to address
these challenges. To generate features for the learning algorithm,
we leverage the following observation: keywords that are associa-
ted with news events are typically reflected in current corpora of
news and blog articles. For example, when a news event occurs,
keywords describing it are frequently found in titles of news artic-
les published around that time. The same holds — to a lesser degree
— for the word combinations in the initial paragraphs of news or
their full text. Moreover, the change in the frequency of keywords
in these corpora over time in itself is of interest; as we will show
later, news events are often associated with spikes in keyword fre-
quency. Finally, the context these words occur in within these cor-
pora can itself give us hints as to whether a query characterizes a
very specific news event or only contains keywords that happen to
occur across many different news stories.

Hence, we will generate the features we use to predict click-
through rates by analyzing the frequency and location of keywords
in large corpora of news articles, blog postings, etc. By keeping
these corpora current, we are able to adopt to breaking news events
and changing levels of interest in older ones. For this purpose, we
leverage dedicated news and blog crawling engines [18]. The corre-
sponding corpora are ordered by time (using the date the individual
articles were posted or crawled), allowing us to detect temporal
trends in the frequency with which query terms occur. Because we
keep only a small window of historic news and blog articles (7 days
in our experiments), the underlying text corpora and required index
structures are small enough to fit into the main memory of a single
server, allowing for fast in-memory feature extraction as queries are
processed.

The remainder of the paper is organized as follows: we first de-
scribe related work in Section 2. We then discuss the specific fea-
tures, their extraction and the required overall architecture in Sec-
tion 3. In Section 4 we then describe the model and training al-
gorithm we use. We evaluate our approach in Section 5 and then
conclude and describe next steps in Section 6.

2. RELATED WORK

The prior work closest to our approach is [9], which studies
the integration of news and web search results by means of click-
through prediction. Unlike our approach, [9] proposes a model that
leverages both online click feedback as well as “contextual” featu-
res quantifying the frequency with which query terms occur in que-
ry logs as well as the news corpus over time. Our approach differs
in both the features and the machine-learning framework proposed
and uses additional corpora (such as a blog crawl and Wikipedia)
to infer information about “buzz” around specific news items and
background frequencies of query terms.

An area related to our problem scenario is distributed informati-
on retrieval [5], where a search query is distributed among a num-
ber of independent text databases. The retrieval of news content
can be thought of as a distributed IR task with only two databases
— the web and the news corpus. However, our scenario differs in a
number of aspects: for one, as discussed earlier, the CTR we seek
to predict is not solely a function of the relevance of the news con-
tent, which is the function optimized by current distributed retrie-
val systems. Moreover, the web and news retrieval systems used in
practice are themselves very different in size, architecture and fea-
tures used for ranking, making it difficult to adopt distributed IR
approaches in our scenario.

There has also been considerable work in the area of event/topic
detection and tracking (TDT) (e.g., [3]); event detection systems
identify stories that discuss an event that has not been seen ear-
lier and track occurrences of the events found across stories. While
TDT cannot be used for CTR prediction directly, it may be possible
to leverage their output for features in CTR predictors.

CTR prediction is an important area of research in computational
advertising, in both the areas of sponsored search as well as con-
textual search. In sponsored search (e.g. [21, 22]), where CTR is
commonly modeled on the level of individual advertisements (un-
like our approach, where the estimation is tied to the query), a si-
gnificant challenge is the CTR estimation and resulting ranking of
ads which have been shown only few times or not at all. The aut-
hors of [22] adopt a supervised framework to address this challen-
ge; both the proposed learning algorithm as well as the features are
very different from our approach.

In contextual search (e.g., [7]) the input to the CTR prediction
is the combination of the page an ad is to be displayed on and the
ad itself (i.e., there is no notion of query); the prediction is typi-
cally made on the basis of word-overlap between the advertisement
(i.e., the bid phrases) and the page itself (in addition to supplemen-
tal features). The approach taken in [7] is similar to our work in
the sense that both ads and pages are divided into different regions
(title, body text, abstract, etc.). Unlike [7], however, nearly all of
the features we propose are aggregates in the sense that they enco-
de the properties of words/phrases relative to a large corpus of text
as opposed to individual documents. Also, as before, the learning
algorithm we adopt is very different.

3. FEATURES

In order to determine whether a query is likely to result in clicks
on news-results, we designed a number of features to produce evi-
dence for or against the news-relatedness of a query. We differen-
tiate three classes of features. First, a small set of features is com-
puted directly from the query text, without consulting any of the
blog or news corpora; we refer to these as query-only features. All
of the remaining features consult various background corpora to
find distributional information about the query terms. We further
differentiate between query-context features that are based on the

textual context the query keywords occur in and corpus frequency
features, which track the number of times query terms occur in the
underlying corpora over time. Finally, we also use the BM25 score
for the top-scoring document as a feature in our classifier.

One important consideration for features is the extraction over-
head they require. Because the features need to be computed online,
as queries are submitted, we restrict our feature set to features we
can compute online without resulting in unacceptable latency.

3.1 Text Corpora

When trying to determine the intent of a query, and specifically
whether it is about current news and events, it is crucial to have a
notion of what the current events are. To capture changes in query-
intent resulting from recent news events, we use different back-
ground corpora to capture the distributions of news events that are
drawing attention at any point in time.

The first corpus we use is a corpus of news articles, extending
from the time the query was issued to several days in the past. As
a second corpus we use a large set of blog posts crawled over the
same period of time. User-generated content in blogs has skyrocke-
ted and continues to grow at a fast pace [23, 24]. By nature, blogs
tend to be about current trends and events and provide information
about the current “buzz” around topics and events, giving us a better
handle on which subset of articles are drawing significant attention.
Finally, we use Wikipedia as a “background corpus” that contains
relevant information, but is not geared towards current events. This
corpus can provide additional evidence when compared to blog and
news data: if query terms are salient in Wikipedia, but not salient in
recent news and blog posts, the query is more likely to be a general
information query than a news-related query.

The news and blog corpora are acquired using dedicated news

and blog crawling code; in case of blogs, the crawler uses the ping/feed

mechanism of blogs to identify new blog posts in a timely manner,
combined with additional parsing and crawling of the permalink
found in the feed to deal with partial feeds. A detailed description
of the blog post acquisition architecture is given in [18].

3.1.1 The Value of Multiple Corpora

Current events are constantly in flux, and temporal changes in the
frequency of terms can indicate the emergence of a news story. We
found in our experiments that news and blog corpora complement
each other in that some emerging news stories will result in “key-
word spikes” in one corpus, but not the other, depending on a given
topic, which makes blog posts an interesting and complementary
source of information.

To give some examples, consider the charts in Figures 2-4. Figu-
re 2 shows the distribution of the word Galveston across news ar-
ticles, news titles and blog posts. As hurricane Ike approached the
Texas coast, there was a strong spike in the frequency of the word
Galveston (an area of the Texas cost hit by the hurricane) across
all three sources. The word Caylee (Caylee Anthony was a missing
child in the news at the time) shows a very pronounced spike in blog
posts on Sep 11, while news articles and titles during the same time
do not exhibit much fluctuation (Figure 3). Upon closer inspection
of the data, a likely explanation is that the news at the time was do-
minated by hurricane stories, and there were relatively few stories
about Casey Anthony’s (the child’s mother) impending re-arrest.
Given the popular interest in the story, however, blog commentary
about this piece of news spiked sharply. A reverse example, where
there is a strong signal in news but not in blogs can be seen in the
distribution of the word Pakistan in Figure 4, where an event gene-
rated significant coverage in news media, but not so much in blogs.

1800
1600 +
1400

1200
1000 === 'Galveston' (news article)

—o— 'Galveston’ (news title)

== 'Galveston' (blog posts)

i
600 y
1
400 4
200 ’}
o T o

31-Aug 2Sep 4Sep 6Sep 8Sep 10Sep 12Sep 14-Sep

Number of occurrences
o
8
8

Date

Figure 2: Occurrences of the term “Galveston” in different corpora

500
X
450
I

'caylee' (news articles)
300 - | =——#==rcaylee' (news titles)
250 | ==pe="caylee’ (blog posts)

Number of occurrences

31-Aug 2Sep 4Sep 6Sep 8Sep 10Sep 12Sep 14-Sep

Date

Figure 3: Occurrences of the term “Caylee” in different corpora

3.2 Corpus Frequency Features

The first set of features we use quantifies the number of docu-
ments that match the query using (a) set containment semantics and
(b) phrase semantics in the news and blog corpus (i.e., how many
documents in the corpora contain all the words in the query and
how many contain the query terms adjacent and in the same order
as in the query): for each corpus, we use both of these counts as
well as their difference as features. For the news data, we further
subdivide each article into the article title and the full text of the
article; for each of these regions we collect the counts separately,
and use them as distinct features. Finally, each of these counts is
broken down by date — we collect separate counts for each date,
going back 7 days into the past.

In order to assess the “salience” of query terms in the three cor-
pora, we use simple ¢ f.idf -based [17] metrics. The ¢ f.idf value of
a token is calculated over the whole corpus as

td.idf (token) = {

where ¢f(token) is the count of the token in the collection,
df (token) is the count of documents containing the token, and
N the total number of documents. For news articles, we calcu-
late ¢ f.idf based on three distinct parts of the articles: news tit-
les, the first 30 words of the news article, and full body of the
news article. The first 30 words are meant to be an approximati-
on of the first paragraph of a news article, which typically con-
tains a synopsis of the content of the article. In one set of fea-
tures, we average the ¢ f.idf values over all terms in a query and
represent it in the following features: AvgNewsBodyTfIdf, AvgNew-
sTitleTfldf, AvgNewsFirstParagraphTfldf, AvgWikipediaTfIdf. In a
second set of features, we sum the ¢ f.idf values for all terms in
the query: NewsBodyTfldfSum, NewsTitleTfldfSum, NewsFirstPa-
ragraphTfldfSum, WikipediaTfldfSum.

3.3 Context Features

One indicator of CTR we found in our experiments was the cohe-
rence among the documents surfaced by a query. Queries that sur-
face a number of very similar documents are more likely to refer to

2500

2000

“pakistan’ (news articles)

—o— pakistan’ (news titles)

1500

1000

== pakistan’ (blog posts)

/N

Number of occurrences

31-Aug 2Sep 4Sep 6-Sep

500 M
0 T T

8Sep 10-Sep 12-Sep 14-Sep

Date

Figure 4: Occurrences of the term “Pakistan” in different corpora

“Specific” queries
(low AvgNewsJS)

“Nonspecific”’ queries
(high AvgNewsJS)

hanna montana

att

obama tax plan

boise state

lehman college

corporation

carol mccain

hcl

filing bankruptcy

kitchen appliances

red hot chili peppers

design services

mega millions lottery

long term care

iphone price

hindi

sarah palin action figure

sheikh

1+ log(tf(token))m : tf(token) >'1
0 : tf (token) =0

Table 1: Examples of phrases with different “context-coherence”.

one specific news event, in turn making high CTRs more likely. On
the other hand, query terms that appear in a large number of very
different news stories (e.g. “NY Times”) are less likely to have high
CTR. In order to measure the coherence of mentions of query terms
in a corpus, we use a modification of the distance measures defined
in [6] to model the difficulty of a given retrieval topic: we define a
context as a text window of 10 tokens to the right and left of a an
occurrence of a query phrase. We then take a sample of 50 contexts
per query, and calculate the overall “cohesion” of these contexts.
A simple but effective measure for cohesion is to look at the term
vectors of the contexts and calculate a distance or similarity metric
between the vectors. We use Jensen-Shannon divergence [16] and
Cosine Similarity as distance measures. The features based on this
notion are AvgNewsJS and AvgBlogJS and similarly, AvgNewsCo-
sine and AvgBlogCosine. To illustrate the effect of this measure
measure of coherence, we provide some examples of queries at the
extreme ends of high and low AvgNewsJS values in table 1.

3.4 Query-Only Features

Query-only features capture information about the makeup of
the query terms themselves. The first and obvious feature is que-
ry length in tokens. The presence of stop words (typically func-
tion words) is addressed by a feature measuring the ratio of stop
words to query length. Some queries contain non-alphabetic cha-
racters, which may indicate a non-news related query. We compute
the count of special characters in a query and the ratio of speci-
al characters. Navigational queries often consist of URLs or frag-
ments of URLs (“www.google”). We therefore determine whether a
query is a URL through a series of regular expressions. In addition,
we simply detect whether the query contains the string “www”.

Finally, capitalization of the terms that appear in a query can in-
dicate named entities ("Casey Anthony”) as opposed to common
nouns. However, when entering queries in a search box, users only
rarely add capitalization; instead, we test whether or not the terms
occurring in a search query are typically capitalized when they oc-
cur in the news corpus. This is done as a pre-computation step, i.e.
as the news corpus is updated, we pre-compute a list of terms and
phrases that are commonly (> 90% of the time) capitalized in the

corpus. This can also be viewed as a very simple approximation to
named entity detection. We use the number of words in the query
that are typically capitalized, the ratio of such words to the que-
ry length, and the presence of a sequence of typically capitalized
words as features in our classifier.

3.5 Overhead of Feature Extraction

In general, all data we use for our approach resides in main me-

mory; for feature extraction we retain the text in the corpora itself,
inverted indices on the corpora, as well as some word-level stati-
stics (which can be encoded as part of the inverted index itself),
plus a small set of pre-computed lists (such as stop-words, etc).
Over time, the inverted indices are updated through a background
process as new documents are crawled. We maintain blog and news
corpora for a window of 7 days into the past.
Corpus Frequency Features: Here, we need to differentiate be-
tween the tf.idf-based statistics for individual words and the word-
set/phrase counts we collect for different corpora. Regarding the
former, we are able to maintain the required term frequency and
document frequency statistics for each word in the vocabulary as
part of the corresponding word’s entry in the inverted index.

Computing the word-set counts (for multi-keyword queries) re-
quires answering partial match queries (also known as containment
queries), which are inherently expensive (e.g. [11]); in fact, the
count features for word-sets or phrases are the only features who-
se computation induces non-negligible overhead. To compute the
counts for sets of query terms, we use the inverted index intersecti-
ons for the indices corresponding to the query terms. Because in our
scenario all required corpora can fit into main memory on a single
server, the cost of these queries is orders of magnitude lower than
for disk-based indices; however, if the resulting latency is still too
large, it can be reduced further by approximating the intersection
sizes (see [14]) or simply using a smaller sample of the documents
in each corpus. We evaluate the effect of using a subset of docu-
ments on the accuracy experimentally in Section 5.4. By encoding
positional information together with the postings within the inver-
ted index, we also compute the phrase counts using the inverted
index intersections.

Query Context Features: Once we have computed the phrase count
features, we can compute a sample of the contexts each phrase oc-
curs in using the result of the inverted index intersection and ex-
tracting the context directly from the corresponding articles/posts.
Because the corpora are kept in main memory, this extraction does
not cause significant additional overhead. Moreover, we only use
a small number of contexts (50 in our current implementation) for
these features.

Query-Only Features: Most of these features can be derived quick-
ly from the query itself; the only exceptions are the stop-word fea-
tures for which we match the individual words in the query against
a small hash-table of stop-words and the features dealing with ca-
pitalization. For the latter, we periodically compute a list of capita-
lized words or phrases via a background process that iterates over
the current corpus. Because the capitalization of terms does not
change quickly over time, this process does not need to be trigge-
red frequently and does not constitute a performance issue. Once
we have computed all such phrases, we need to match all subsets
of words in a query against this phrase table, which corresponds to
an common indexing problem in advertisement matching and can
be addressed efficiently via the data structures described in [13].

3.5.1 Main Memory Requirements

The number of documents in our news crawl for a single day va-
ries between 103K and 184K documents, with an average of 146K

documents. We retain a window of 7 days of news into the recent
past and retain only the news text from each article. For the blog
corpus, we use blog documents posted on the same range of dates;
the number of documents crawled for a single day vary between
31K and 97K, with an average of 75K documents.

Both the blog and news corpora are divided into separate sub-
corpora, each of them containing articles/posts that were publis-
hed/posted on a specific day; the news corpus is further subdivided
into headlines, first paragraphs and complete text of the articles.
We maintain separate inverted indices for each corpus; in additi-
on, global statistics on word/document counts are maintained on
a single-word basis (for the current 7-day window). Given that the
news articles average slightly over 3K characters per document (the
blog articles are shorter), a 7-day window of articles can easily fit
in main memory on a 16GB server. As was shown in [19], inver-
ted indices that uses a simple (and standard) gap-encoding scheme
require space proportional to the size of the compressed text of the
underlying corpora, which implies that the index structures requi-
red for feature extraction typically require significantly less space
than the text corpora themselves.

4. LEARNING MODEL

In this section we will a give short overview of the learning mo-
del used in our approach; a more detailed description can be found
in [26]. The learning method we use for CTR-prediction is based
on Multiple Additive Regression-Trees (MART). MART is based on
the Stochastic Gradient Boosting paradigm described in [10] which
performs gradient descent optimization in the functional space. In
our experiments, we used the log-likelihood as the loss function
(optimization criterion), used the steepest-decent (gradient descent)
as the optimization technique, and used binary decision trees as the
fitting function - a “nonparametric” approach that applies numeri-
cal optimization in functional space.

In an iterative boosting (or residue-learning) paradigm, at the be-

ginning of every iteration, the click probabilities of the training da-
ta are computed using the current model. The click prediction is
compared with the actual click outcome to derive the errors (or
residuals) for the current system, which is then used to fit a resi-
due model — a function that approximates the errors — using MSE
(Mean Square Error) criteria. In MART, we compute the derivatives
of the log-loss for each training data point as the residual and use
the regression tree as the approximation function-residual model. A
regression tree is a binary decision tree, where each internal node
splits the features space into two by comparing the value of a cho-
sen feature with a pre-computed threshold; once a terminal node
is reached, an optimal regression value is returned for all the data
falling into the region. Finally, the residual model is added back to
the existing model so that the overall training error is compensa-
ted for and reduced for this iteration. The new model — the current
plus the residual model — will be used as the current model for the
next boosting/training iteration. The final model after M boosting
iterations is the sum of all M regression trees built.
Properties of MART: MART does have a number of important
properties that are crucial for our scenario. In addition to providing
accuracy superior to all other models we tried, MART is able to
handle the diverse sets of features we have proposed in the previous
section. For one, it does not require transformations to normalize
the inputs into zero mean and unit variance which is essential for
other algorithms such as logistic regression or neural nets. More
importantly, by its internal use of decision trees, which are able to
“break” the domain of each feature arbitrarily, it is able to hand-
le the non-linear dependencies between the feature values and the
CTR and without using explicit binning as a preprocessing step.

MART also computes the importance of a feature by summing
the number of times it is used in splitting decisions weighted by
the MSE gain this split has achieved. The relative importance of a
feature is computed by normalizing its importance by the import-
ance of the largest feature, i.e., the most important feature will have
the relative importance of 1 and and other features will have rela-
tive importance between 0 and 1. The relative importance of input
features makes the model interpretable - helping us gain an under-
standing of the input variables that are most influential to the final
decision and the nature of the dependency on these features.

In addition to MART, we also tested different learning algo-
rithms (using Logistic Regression and Averaged Perceptron mo-
dels) on the same data, none of which produced comparable accu-
racy. We omit the details of this study due to space considerations.

1: F0($) =0
2: form = 1to M do do

{Ry;n}¥ = L — Terminal node tree

Tim = Z?}z/ Zwi

Ti€Rym @i €Rypy,

10: Fm(asl) = mel(mi) +4 UZ ’I‘lmI(CL‘i c le)
l

11: end for

3: fori=1to N dodo

4. pi = 1/(1 +e” ’"*1(“))
5: Ql =Yi — Di

6: wi = pi - (1 —pi)

7: end for

8:

9:

Algorithm 1: The MART Algorithm

The MART Algorithm: The above pseudo-code summarizes the
MART algorithm; it assumes there are N total query-impressions
(i.e., there were a total of N results shown) in our training set and
that we wish to train M stages (trees). The training data is a set
of input/output pairs {z;,y;},i = 1... N, where x; is the feature
vector of a query and y; is 1 if a query impression resulted in a click
on news results and 0 otherwise. M rounds of boosting are perfor-
med, and at each boosting iteration, a regression tree is constructed
and trained on all queries. Step 1 initializes the functional value of
all data points to 0. Step 4 computes the probability of the query
being clicked from its functional value. Step 5 calculates the log-
likelihood gradients for query. Step 6 calculates the second-order
derivative. A regression tree with L terminal nodes is built in step
8, using the Mean Squared Error to determine the best split at any
node in the regression tree. The value associated with a given leaf
of the trained tree is computed first as the mean of the gradients for
the training samples that land at that leaf. Then, since each leaf cor-
responds to a different mean, a one-dimensional Newton-Raphson
line step is computed for each leaf (Step 9). Finally, in Step 10, the
regression tree is added to the current boosted tree model, weigh-
ted by the shrinkage coefficient v, which is chosen to regularize the
model. MART has three main parameters: M, the total number of
boosting iterations, L, the number of leaf nodes for each regression
tree, and v, the “shrinkage coefficient” - the fraction of the optimal
line step taken. Using a shrinkage coefficient with value less than
one is a form of regularization [10].

We further injected randomness in MART to improve the robust-
ness of the resulting model. In our experiments, the most effective
method is to introduce randomness at the node level. Before each
node split, a sub-sample of training data and a sub-sample of fea-
tures are drawn randomly. Then, the two randomly selected sub-
samples, are used to determine the best split.

S. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our
techniques. First, we describe the characteristics of the training and
test data sets we used in our experiment (Section 5.1). Subsequent-
ly, we describe the overall accuracy of our approach and the import-
ance of different classes of features (Section 5.2). We assess how
well our CTR-prediction generalizes to a corpus of general web
queries (as opposed to the corpus of mostly news-related queries
for which we were able to observe click-through rates) in Secti-
on 5.3. Because the size of the underlying news and blog corpora is
the deciding factor in the cost of feature extraction, we analyze the
effect of reducing their size through sampling in Section 5.4.

5.1 Training/Test Data

To evaluate our approach, we use CTR data obtained from Li-
ve.com. The data contains web search queries for which news re-
sults were displayed and — for each individual impression the in-
formation whether a click on the news result occurred or not. By
aggregating this data for each query, we can derive the observed
CTR for each query and compare it to the estimate given by our
technique. Obviously, the value of the “observed” CTR depends on
at which granularity we aggregate the data; for our experiments we
measure the CTR at the level of days, corresponding to the 24-hour
news cycle. We remove any queries for a given day from the da-
ta set for which there were not at least 50 impressions during the
day, since the small number of impressions makes it impossible to
assess the underlying “true” CTR with any degree of confidence.
This may bias our initial results towards popular queries; we will
discuss experiments on general web traffic in Section 5.3.

The training/test data we collected contains a total of 2.7 million
impressions, covering 5 days in September 2008. All of the news
results shown for the queries in our data set were shown in the same
position within the search engine, i.e., we do not have to adjust for
the effect of result position on CTR. Note that this training set exhi-
bits bias towards news queries: because it only contains queries for
which the search portal surfaced news results, it does not reflect the
overall distribution of web queries. In particular, it contains very
few queries that have no news intent (and hence would have zero
or almost zero CTR), which, however, is common in normal search
traffic. To address this, we adopt two approaches: (1) We use manu-
al analysis of a web search query log to identify a set of queries for
which there was no news intent; these were then added to the trai-
ning and test sets with a CTR of 0 (we will refer to these queries as
the 0-CTR queries subsequently). These queries account for a total
of 2.6 million impressions, meaning that our training and test da-
ta contain about half non-news queries and half queries for which
news results were shown by the search engine. (2) In addition, we
explicitly evaluate how our estimator performs on a large sample of
web-queries obtained from a search query log in Section 5.3.

To avoid any test/training contamination, we keep the test and
training sets strictly separate with respect to queries (i.e., no instan-
ce of a query/day combination can appear in both). When training
MART, we used the parameter settings of the number of iterations
M = 600, the number of leaf nodes in an individual decision tree L
=5, and the shrinkage coefficient v = 0.1.

5.2 Accuracy

In this section we evaluate the overall accuracy of CTR estima-
tion and the contributions of individual groups of features. As a
measure of performance we will use the log-loss on the held-out
test set. In addition, to give a better intuition for the quality of our
approach in practice, we measured the accuracy of our approach
when used to estimate whether a given query’s CTR (in the test

set) exceeds a certain threshold ¢. This is a key metric for a sce-
nario where we only surface news results whose CTR exceeds this
threshold. We have plotted the resulting precision/recall curves for
t = 10%,t = 15% and t = 20% in Figure 5. For larger target
thresholds the precision is very high; for example, for a threshold
of t = 20%, the precision over the entire test set is 90.9%; trading
off precision against recall, we can achieve 99.1% precision at 61%
recall and 99.7% precision at 50% recall. Given that the perceived
penalty for a “false positive” (i.e., showing irrelevant news results
for a non-news query) is much larger than for a “false negative”
(i.e., not showing news results for a query with news-intent), tra-
ding off recall for precision is important in practice. Overall, we
observe that the proposed technique already achieves sufficient ac-
curacy on the test data to be relevant for practical use. To put these
numbers in perspective, the baseline probability for predicting CTR
> 20% is 81.8%, the baseline for predicting CTR > 15% is 75.9%
(our predictor is correct 87.9% of the time) and for predicting CTR
> 10% is 70.1% (our predictor is correct 82% of the time).

We approximate the CTR of 82.5% of all queries within an “error-
band” of +/-10% of their true CTR (i.e. the absolute difference in
true CTR and estimated CTR is less than 0.1) and 59.8% of all
queries within +/-5% of their true CTR.

100%

08% e e cnden e o= e @b - p
6
96% -
94%
c 92% -\‘ \
S 9oy — \
@ ° —— Predicting CTR > 10%
o 88% -
& = <= Predicting CTR > 15%
86%
84% —#— Predicting CTR > 20%
82% 2 4
80% T T T T |
0% 20% 40% 60% 80% 100%

Recall
Figure 5: Precision/Recall for predicting different CTR threshholds

To measure the importance of different corpora and sets of featu-
res we conducted ablation experiments in which we removed some
corpora (and hence the features based on them) from considera-
tion. For this experiment, we considered the overall log-loss on the
test data for (a) removing the news-based features, (b) removing
the blog-based features, (c) removing the Wikipedia-based featu-
res and (d) removing the context features from the full feature set.
The results are shown in Figure 6; the Wikipedia-features have the
least impact on accuracy, whereas the news and blog features have
the most. Moreover, both the news and blog corpus detect different
underlying trends and appear to complement each other.

-0.106

-0.105

-0.104 -+

-0.103 +

-0.102 +

Log-loss per example

-0.101
-0.1

all features no Wikipedia no context no news no blog
features features features features

Figure 6: Accuracy for different feature-sets

5.2.1 Feature Importance

We also measured the relative importance of different features
directly using the measure of feature importance described in Sec-
tion 4. The top-ranking feature was the binary encoding of whe-
ther a query corresponded to a URL; this was mainly due to the
fact that our 0-CTR contained a large number of navigational que-
ries. The next-most important features were (in order): the averaged
tf.idf scores of the query terms relative to the Wikipedia corpus, the
BM25 score of the top-ranking document, the sum and average of
the #f.idf scores of the query terms relative to the news corpus, the
number of times the query terms occurred in news titles one and
two days prior to the query being issued and finally the Jensen-
Shannon divergence of the query term’s context in the blog corpus.
Features leveraging all 3 corpora (Wikipedia, news and blogs) were
present among these top-ranked ones. Also, while the BM25 score
is in itself not sufficient to predict click-through rates, it did turn
out to be a very important feature when combined with the corpus-
based ones. We also found that context-features based on Jensen-
Shannon divergence consistently ranked higher than ones based on
Cosine similarity.

5.3 Generalization to Web Query set

As we pointed out earlier, the training/test data sets we used
in the previous evaluation are biased towards news-related queries
(when compared to general web search traffic), even after we manu-
ally added the 0-CTR data. However, since our CTR-prediction is
aimed at general web search traffic, it is crucial that it also performs
well for non-news queries. In order to assess how well our approach
generalizes to this type of queries, we first trained a CTR predictor
using only the part of training data based on observed click-through
data (i.e., without the batch of 0-CTR data). Then we took the 10K
search queries most frequently issued against Live.com on Septem-
ber 9th, 2008, and ranked the queries by the estimated CTR. The
resulting CTR-estimation was then (because of the absence of any
observed CTR for nearly all queries) manually evaluated.

To give a quick overview of the result, we have plotted the top
and bottom 15 queries in Table 2. All of the top queries refer to an
event that generated significant news coverage at the time, whereas
none of the bottom 15 do. In fact, every single one of the top 50
queries in the log corresponded to a “news event” or the name of a
person generating news coverage on that day. To contrast this with
the remainder of the search query distribution we manually analy-
zed 100 queries each starting at the rank-positions (according to the
estimated CTR) 1000, 3000 and 5000. Among these 300 queries,
we found only 3 queries referring to a recent news event (2x in the
block starting at 1000 and 1x in the block starting at 3000) and 5
further mentions of names from the area of entertainment for which
we were unable to determine if they had been involved with a news
event around the date the logs was taken.

Overall, it appears that our CTR prediction does indeed genera-
lize to the distribution of frequent web queries we studied. Given
the difficulty human annotators face in predicting click-through ra-
tes, this evaluation can naturally only serve as an indicator, but was
the best we could do in absence of any observed click-through da-
ta. We performed the same experiment for two additional subsets
of the query log, using the queries ranked (by their frequency) bet-
ween 20K-25K and the queries ranked between 100K-105K. The
results were similar to the ones described above.

5.4 Varying the Corpus Size

In this experiment we examined the need for using the entire
news and blog corpus; here we ran experiments using features sets
which were extracted from random, document-level samples of va-

[Top Queries [Bottom Queries |

hurricane in texas msn
palin doll learn from users just like
natalie dylan learn
caylee aol
casey anthony verizon
caylee anthony walmart
super lice craigslist
ike hotmail
tropical storm josephine environmental
evan tanner yellow pages
hurricane ike projected path you tube

kanye west arrested yahoo
greatest american dog travelocity
eric mclean corporation
palin gibson interview white pages

Table 2: Queries with most/least estimated CTR in web query log.

-1.105

-1.104 -+

-1.103

-1.102
- j i
11 L L L

Full Corpus 10% of corpus 5% of corpus 1% of corpus

Log-loss per example

Figure 7: Accuracy for different corpus sizes

rying size of the underlying corpora. The results are shown in Fi-
gure 7. Retaining only 10% of the document corpus has limited
impact on accuracy (even less than e.g., removing the Wikipedia-
based features), but in turn means a reduction of approximately 10x
in the main memory requirement and also a significant decrease in
the feature computation costs. Any further reduction in size does,
however, significantly impact accuracy.

6. CONCLUSION AND OUTLOOK

In this paper we describe a new approach for deciding when to
surface news context as part of “regular” search results. We propo-
se a supervised framework based on decision trees and boosting,
which leverages features that characterize properties such as con-
textual coherence, temporal spikes and occurrence frequency of the
query keywords relative to large text corpora. By continuously up-
dating the underlying news and blog corpora via dedicated craw-
lers, this framework allows us to keep up with and adapt to emer-
ging news stories. We found that this framework allows for highly
accurate CTR prediction. Here, the use of both news as well as so-
cial media data (i.e., blogs) is important to the overall accuracy;
both corpora have significant impact and complement each other.

As next steps, we intend to examine the importance of additional
data sources as well as further differentiation of the existing corpo-
ra; for example, we currently view blogs as a single corpus, without
differentiating between news, entertainment and IT blogs/posts. Al-
s0, it remains to be seen how much more complex features, which
require more computational overhead (such as context-features le-
veraging occurrences of multi-word sub-phrases), can improve ac-
curacy further and which index structures are needed to support
them efficiently.

7. ACKNOWLEDGEMENTS

We are very grateful for the help and advice of Mikhail Bilenko,
Nick Lester, Roger Menezes and Momo Jeng.

8. REFERENCES

[1] D. Agarwal, B. Chen, P. Elango, R. Ramakrishnan, N. Motgi, S. Roy,
and J. Zachariah. Online Models for Content Optimization. In NIPS,
2008.

[2] E. Agichtein, E. Brill, and S. Dumais. Improving Web Search

Ranking by Incorporating User Behavior Information. In ACM

SIGIR, pages 19-26, 2006.

J. Allan, R. Papka, and V. Lavrenko. On-line New Event Detection

and Tracking. In ACM SIGIR, 1998.

[4] C.Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to Rank using Gradient
Descent. In ICML, 2005.

[5] J. Callan. Distributed Information Retrieval. In Advances in
Information Retrieval, pages 127-150, 2000.

[6] D. Carmel, E. Yom-Tov, A. Darlow, and D. Pelleg. What makes a
Query Difficult? In ACM SIGIR, 2006.

[7]1 D. Chakrabarti, D. Agarwal, and V. Josifovski. Contextual
Advertising by Combining Relevance with Click Feedback. In WWW
Conference, 2008.

[8] G.M.D. Corso, A. Gulli, and F. Romani. Ranking a Stream of News.
In Proceedings of the 14th international conference on World Wide
Web, pages 97-106, 2005.

[9] F. Diaz. Integration of News Content into Web Results. In WSDM
Conference, 2009.

[10] J. Friedman. Greedy Function Approximation: a Gradient Boosting
Machine. Annals of Statistics, 29(5), 2001.

[11] T.Jayram, S. Khot, R. Kumar, and Y. Rabani. Cell-Probe Lower
Bounds for the Partial Match Problem. In STOC, 2003.

[12] K. S.Jones, S. Walker, and S. E. Robertson. A probabilistic model of
information retrieval: Development and comparative experiments.
Information Processing and Management, 36(6), 2000.

[13] A.C. Konig, K. Church, and M. Markov. A Data Struture for
Sponsored Search. In JEEE ICDE Conference, 2009.

[14] P. Liand K. W. Church. Using Sketches to Estimate Two-way and
Multi-way Associations. Computational Linguistics, 33, 2007.

[15] X.Li, Y.-Y. Wang, and A. Acero. Learning Query Intent from
Regularized Click Graphs. In In Proc. ACM of SIGIR, 2008.

[16] J. Lin. Divergence Measures based on the Shannon Entropy. IEEE
Trans. on Information Theory, 37(1), 1991.

[17] C. Manning and H. Schiitze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[18] A.Maykov and M. Hurst. Social Streams Blog Crawler. In M3SN
Workshop at IEEE ICDE Conference, 2009.

[19] G. Navarro and V. Mikinen. Compressed full-text indexes. ACM
Comput. Surv., 39(1), 2007.

[20] F. Radlinski and T. Joachims. Active Exploration for Learning
Rankings from Clickthrough Data. In ACM SIKDD, 2007.

[21] M. Regelson and D. Fain. Predicting Click-through Rate using
Keyword Clusters. In 2nd Workshop on Sponsored Search Auctions,
2006.

[22] M. Richardson, E. Dominowska, and R. Ragno. Predicting Clicks:
Estimating the Click-Through Rate for New Ads. In WWW
Conference, pages 521-529, 2007.

[23] Technorati. State of the Live Web.
http://technorati.com/weblog/2007/04/328.html, April 2007.

[24] Technorati. State of the Blogosphere 2008.
http://technorati.com/blogging/state-of-the-blogosphere/, 2008.

[25] M. West and J. Harrison. Bayesian Forecasting and Dynamic
Models. Springer-Verlag, 1997.

[26] Q. Wu, C.J. Burges, K. M. Svore, and J. Gao. Ranking, Boosting,
and Model Adaptation. Technical report, Microsoft Research, 2008.

3

—

