
Incremental Mapping Compilation in an
Object-to-Relational Mapping System (extended version)∗

Philip A. Bernstein
Microsoft Corporation
philbe@microsoft.com

Marie Jacob
Univ. of Pennsylvania

majacob@cis.upenn.edu

Jorge Pérez
DCC, Universidad de Chile

jperez@dcc.uchile.cl
Guillem Rull

Univ. Politècnica de Catalunya
grull@essi.upc.edu

James F. Terwilliger
Microsoft Corporation

jamest@microsoft.com

ABSTRACT
In an object-to-relational mapping system (ORM), mapping ex-
pressions explain how to expose relational data as objects and how
to store objects in tables. If mappings are sufficiently expressive,
then it is possible to define lossy mappings. If a user updates an
object, stores it in the database based on a lossy mapping, and then
retrieves the object from the database, the user might get a differ-
ent result than the updated state of the object; that is, the mapping
might not “roundtrip." To avoid this, the ORM should validate that
user-defined mappings roundtrip the data. However, this problem
is NP-hard, so mapping validation can be very slow for large or
complex mappings.

We circumvent this problem by developing an incremental com-
piler for OR mappings. Given a validated mapping, a modification
to the object schema is compiled into incremental modifications of
the mapping. We define the problem formally, present algorithms
to solve it for Microsoft’s Entity Framework, and report on an im-
plementation. For some mappings, incremental compilation is over
100 times faster than a full mapping compilation, in one case drop-
ping from 8 hours to 50 seconds.

Categories and Subject Descriptors
H.0 [Information Systems Applications]: General; D.2.12 [Soft-
ware Engineering]: Interoperability – Data mapping

Keywords
Object-to-relational mapping; incremental compilation

1. INTRODUCTION
An object-to-relational mapping (ORM) system enables devel-

opers to write object-oriented applications over object-oriented
data stored in a relational database. An ORM supports two essential
features: inheritance, which enables the database schema to match
the structure of application classes; and updates over non-trivial

∗This work was done while Marie Jacob, Jorge Pérez, and Guillem
Rull were working at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

mappings, which enables a flexible choice of relational schemas to
store instances of classes. Generic ORMs in widespread use are
Microsoft’s ADO.NET Entity Framework [1], EclipseLink [17],
Hibernate [18], Oracle’s TopLink [19], and Ruby on Rails [20].

Using an ORM, a developer provides three definitions: an object-
oriented schema that is the application program’s view of the data;
a relational schema that is the database system’s view of the data;
and a mapping between them. The ORM needs to compile the de-
veloper’s schema and mapping definitions into an internal repre-
sentation that supports the translation of queries and updates over
the object-oriented view into queries and updates over the relations.

Applications often require hundreds of classes and tables—
indeed, some require thousands. For such applications, mapping
compilation can be slow, requiring tens of minutes or even hours.
This compilation time is undesirable, but tolerable when compiling
a large application for deployment. But during application devel-
opment, as the mapping becomes large, long compilation time is a
major impediment to programmer productivity. It is especially an-
noying when making a minor change to the object-oriented model,
which has only a minor effect on the relational schema and map-
ping, yet still requires recompiling the entire mapping.

To solve this problem, we have developed an incremental com-
piler for object-to-relational mappings. The technology to do it
turned out to be highly non-trivial, requiring a deep analysis of the
effect of schema and mapping changes. The resulting performance
gains were well worth the effort. Incremental compilation times
were reduced by over 99%, in one case from 8 hours to 50 seconds.

1.1 Query and Update Mappings
A common way for an ORM to support query translation is to ex-

press the mapping as a view definition, where the object-oriented
schema is a view over the relational schema. A query over the
object-oriented schema can be implemented by view unfolding,
which replaces view references in the query by the view definition.

Update translation is more challenging, because it requires a so-
lution to the well-known hard problem of view updating [2]. An
update U expressed on the object-oriented view of data must be
translated into updates on the relational view that have exactly the
effect of U and preserve database consistency. Since relational sys-
tems only allow updating of relatively trivial views, an ORM needs
to provide its own logic for directing the translation of updates from
objects to relations. This logic can be encapsulated in a fixed set of
mapping types, such as templates in Hibernate or type annotations
in Active Record definitions in Rails. It can be expressed procedu-
rally, as custom mappings in an application suite or an INSTEAD-
OF trigger in SQL; though flexible, this approach is brittle since

1

BillAddr

Customer

CredScore

Employee

Department

Person

Name
Id

Entity set: Persons〈Person〉

Name

Name

Dept

Score Addr

HR

Id

EidCid

Client

Emp

Id

Department

Employee

Person

Name
Id

Persons〈Person〉Entity set:

Emp

Id

Id Name

Dept

HR

TPC

TPT

* 0..1

Supports

Association set: Supports set〈Customer, Employee〉

Customer

BillAddr
CredScore

Employee

Department

Id

Name

Person

Entity set: Persons set〈Person〉

Emp

Dept

Addr

Id

Client

Cid Eid

Id Name

HR

Name Score

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id,Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id,Dept
FROM Emp

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id, Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id, Department
FROM Emp

Figure 1: Client and store schema (from Fig. 6 in [12])

simple changes to the logical mapping can break the update logic.
Or, it can be expressed as an update view that expresses the re-
lational schema as a view over the object-oriented schema, as in
Microsoft’s Entity Framework.

Whatever language is chosen for expressing the mapping, an ob-
vious correctness criterion for a mapping is that there is no data loss
when translating updates on the object-oriented view into updates
on the relational database. That is, updates should roundtrip, in the
sense that after an update is propagated to the database, the object-
oriented view of the database reflects the result of that update and
no other changes.

In some ORMs, the mappings have sufficiently limited expres-
siveness that it is easy to see that updates are translated correctly.
However, if more expressive mappings are permitted, then it can be
quite challenging to determine whether all updates roundtrip. For
example, the mapping in Figure 1 between three classes and three
tables generates the 27-line query view in Figure 2, which has two
nested subqueries, a case statement, a left outerjoin, and a union.
(This example is taken from Figures 6 and 7 in [12] and will be
discussed in detail in Section 3.) Even if the corresponding update
views are trivial, manually checking that these views roundtrip is
still quite difficult. Practical mappings involve dozens of classes
and tables, which is surely out of reach for manual validation.

Nevertheless, most ORMs do not automatically check that map-
pings roundtrip. A developer has to take it on faith that they do. To
the best of our knowledge, the only system that automates this task
is Entity Framework. It explicitly checks that mappings roundtrip
in a process called mapping validation.

In addition to addressing the roundtripping problem, mapping
validation in Entity Framework is needed to facilitate program de-
velopment: it supports very expressive query and update views,
which are too complex for developers to code and maintain them-
selves (such as Figure 2). To avoid writing such views manually,
the framework offers a higher-level declarative mapping language
and a compiler that compiles declarative mappings into query and
update views. A mapping consists of a set of mapping fragments,
each of which is an equation QC = QS where QC and QS are
project-select queries over the client schema C and storage schema
S respectively, and where the projected attributes in both queries
include a key. Unfortunately, the rich nature of even this simple
language can enable a developer to express mappings that are not
valid. One solution would be to restrict the language to ensure
that all expressible mappings roundtrip. However, we know of no
syntactic restrictions that would accomplish this and still allow the
expression of the desirable mappings that do roundtrip. Instead, the
Entity Framework mapping compiler includes mapping validation
to check whether the user-specified mappings roundtrip.

To compile and validate mappings, Entity Framework must gen-
erate query and update views from the mapping and then check
roundtripping by checking that the composition of the views is the
identity function. Given a query view Q and update view V com-
piled from the mapping, it needs to check that V ◦ Q ⊆ IC and

People =
SELECT VALUE

CASE
WHEN (T5._from1 AND NOT T5._from2)
THEN Person(T5.Id, T5.Name)

WHEN T5._from2
THEN Employee(T5.Id, T5.Name, T5.Dept)
ELSE Customer(T5.Id, T5.Name, T5.BillAddr, T5.CredScore)

END
FROM (

(SELECT T1.Id, T1.Name, T2.Dept,
CAST (NULL AS nvarchar) AS BillAddr,
CAST (NULL AS int) AS CreditScore,
False AS _from0, T1._from2,
(T2._from2 AND T2._from2 IS NOT NULL) AS _from2

FROM (SELECT T.Id, T.Name, True AS _from1
FROM HR AS T) AS T1
LEFT OUTER JOIN (
SELECT T.Id, T.Dept, True AS _from2
FROM Empl AS T) AS T2
ON T1.Id = T2.Id)

UNION ALL (
SELECT T.Id, T.Name, CAST (NULL AS nvarchar) AS Dept,

T.Score AS CredScore, T.Addr AS BillAddr,
True AS _from0, False AS _from1, False AS _from2

FROM Client AS T)
) AS T5

Figure 2: Query view for mapping of Fig. 1 (from Fig. 7 in [13])

V ◦ Q ⊇ IC , where IC is the identity on client states. Unfortu-
nately, query containment is NP-hard for conjunctive queries and
hence has exponential worst-case running time for Entity Frame-
work’s mapping language, which is even more expressive. This
validation step is one reason why mapping compilation can be slow.

A second reason is that Entity Framework’s mapping compiler
needs to check that the update view V preserves database integrity
constraints. If V does not preserve constraints, then some updates
to objects will not map to a valid database state and hence will
not roundtrip. Integrity constraint maintenance is also encoded as
query containment tests. For example, a foreign key constraint
from table R1 to R2 is expressed as πk(R1) ⊆ πk(R2), where
k is the key of R2.

A third reason why compilation can be slow is the reasoning
required to construct entities of different types. For example, pro-
ducing the CASE statement in Figure 2 requires reasoning over
the client model and the view expressions associated with variables
_from1 and _from2 to decide which types to instantiate. CASE
statement are also used to instantiate attributes restricted by condi-
tions in the mapping and thus typically occur in both query and
update views. In general, the reasoning for constructing CASE
statement can be quite complex.

The smallest mappings we know of where query compilation
runs for hours have 32 to 35 entity types. Their object model con-
sists of N entity types in a “hub and rim" arrangement (see Fig-
ure 3) where (i) entity type N inherits from entity type N -1, which
inherits from entity typeN -2, etc., (ii) each entity type has a foreign
key to M other distinct entity types, and (iii) the entire hierarchy
of N + (N ∗M) entity types is mapped into one table with a dis-
criminator column that identifies the entity type of each row. When
N + (N ∗M) > 32, compilation is very slow. For example, with
N=4 and M=8, compilation takes 5 hours on an HP xw6400 work-

2

Connects to
M entity types

Connects to
M entity types

N entity types
in the

inheritance
hierarchy

Figure 3: “Hub and rim" model

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

m
p

ila
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of foreign keys M at each level of the hierarchy

Depth N=1

Depth N=2

Depth N=3

Depth N=4

Depth N=5

Figure 4: Compilation time of “hub and rim" model

station with an Intel Core Duo E6850 @ 3.00 GHz with 4GB of
RAM running Windows 7 64-bit (see Figure 4). Compilation speed
is sensitive to both schema size and mapping complexity. For ex-
ample, for the same entity schema, if each entity type is mapped to
a separate table, mapping compilation is under 0.2 seconds for all
of the cases reported in Figure 4. Other examples of slow mappings
are in Section 4.

1.2 Incremental Compilation to the Rescue
The goal of incremental mapping compilation is to reduce map-

ping compilation time by reducing the size of the schemas and map-
pings that need to be compiled and validated. It does this by lever-
aging the interactive nature of program development. While devel-
oping an application, a programmer typically makes small changes
to a model that has already been validated and compiled into query
views and update views. Since the given mapping and compiled
views were correct before the change, it does not need to validate
and recompile the entire mapping. Rather, it can limit its attention
to the “neighborhood” of the modified part of the schema and map-
ping, which is the only part of the mapping that might affect the
compiled views. Since the input includes generated query and up-
date views for the pre-evolved model, the incremental compiler can
reuse or modify these views in order to generate new views for the
evolved model much faster than a full mapping recompilation.

Performing an incremental compilation requires a formal notion
of a schema or model change. Our approach uses schema modifi-
cation operations (SMOs)—operations that define a small change
to the client schema, plus a directive on how the change maps to
tables. Examples of SMOs are adding an entity type and map-
ping it to a new store table, or adding an association between two
types and mapping the relationship to existing tables. While there
are many ways to map a client schema change to tables, we fo-
cus on ones that are commonly used in ORMs, such as Table-per-
type (TPT), Table-per-concrete class (TPC) and Table-per-hierachy
(TPH). These mapping types are used in the ORMs Entity Frame-
work, Hibernate and EclipseLink, among others. We define the
semantics of these mapping types in more detail in Section 3.

In general, the development environment can make SMOs di-
rectly available to developers. Or a developer can simply edit the

model and then invoke a tool that generates a sequence of SMOs
from a diff of the old and new models. For example, the tool can
generate drop-operations of all model elements that were deleted,
and then generate add-operations for elements that were added.

Our solution template for incremental compilation is comprised
of four new algorithms for each type of SMO. For a particular
SMO, the first algorithm generates query views for any newly
added parts of the model and modified views for existing parts
that are affected by the change. The second one does the same for
update views. The third algorithm generates a modified mapping.
And the fourth algorithm performs validity-checking.

Validity-checking of a complete mapping is defined by Algo-
rithm 1 in [12], which has five steps. Step (1) of the algorithm
checks that the left side of the mapping fragments is one-to-one.
Step (5) checks that the composition of the mapping and update
views is the identity. We define SMO’s in such a way that if the
mapping was valid before applying the SMO, then these two checks
are guaranteed to hold and therefore do not have to be explicitly
checked. Steps (2)-(4) of the algorithm check that update views
preserve all integrity constraints. As we explained in the previ-
ous section, these constraints are not guaranteed to be preserved by
the update views generated by the incremental compiler and there-
fore have to be checked to ensure that all updates roundtrip. These
tests involve query containment checks, which are expensive in the
worst-case. But since we need to focus only on the neighborhood
of schema changes, the containment tests are smaller than those
to validate the whole mapping. Hence, the incremental compiler
usually runs much faster than a full mapping recompilation.

1.3 Contributions and Outline
In the rest of this paper, we describe algorithms that can incre-

mentally compile mappings, and an implementation of those algo-
rithms. The algorithms apply to schemas and mappings expressed
in the language supported by Entity Framework, an ORM that has
been shipping with Microsoft’s .NET Framework since 2007.

Like any compiler, our incremental mapping compiler is neces-
sarily specific to the language it compiles. However, we hope that
the paper offers a template for how one would go about developing
algorithms for other schema and mapping languages. Moreover,
our implementation was done using public interfaces of the Entity
Framework and without modifying Entity Framework source code,
thereby showing that at least in this case, such a compiler can be
developed as an add-on to an existing ORM.

We report on performance experiments of incremental compila-
tion on both synthetic and customer mappings. In all cases, incre-
mental compilation was at least 300 times faster than full compi-
lation, reducing compilation time of hours or tens of minutes to at
most one minute and often much less.

The main contributions of this paper are as follows:

• We introduce and formalize the problem of incremental com-
pilation of object-to-relational mappings to circumvent the
expensive validation of large and complex mappings.

• We present an algorithm to solve the problem for mappings
expressed in the language of Microsoft’s Entity Framework.

• We report on an implementation of the algorithm and show
it has excellent performance on large test cases.

The paper is organized as follows. Section 2 formalizes the prob-
lem of incremental compilation and describes the schema and map-
ping languages we consider in the rest of the paper. Section 3
presents algorithms for incremental compilation. Section 4 de-
scribes our implementation of the algorithms and reports on its per-

3

BillAddr

Customer

CredScore

Employee

Department

Person

Name
Id

Entity set: Persons〈Person〉

Name

Name

Dept

Score Addr

HR

Id

EidCid

Client

Emp

Id

Department

Employee

Person

Name
Id

Persons〈Person〉Entity set:

Emp

Id

Id Name

Dept

HR

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id,Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id,Dept
FROM Emp

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id, Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id, Department
FROM Emp

BillAddr

Customer

CredScore

Employee

Department

Person

Name
Id

Entity set: Persons〈Person〉

Name

Name

Dept

Score Addr

HR

Id

EidCid

Client

Emp

Id

Department

Employee

Person

Name
Id

Persons〈Person〉Entity set:

Emp

Id

Id Name

Dept

HR

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id,Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id,Dept
FROM Emp

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id, Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id, Department
FROM Emp

Figure 5: Example of client schema, store schema, and map-
ping fragments (example from [12])

formance. Section 5 summarizes related work. Section 6 presents
the conclusion and future work.

2. PROBLEM FORMALIZATION
In Entity Framework (EF), the client schema C is expressed in

EDM [3], an extended entity-relationship model comprised of en-
tity types organized in an inheritance hierarchy. Instances of en-
tity types, called entities, can be grouped into persistent collections
called entity sets. An entity set of typeE contains entities of typeE
or any entity type that inherits fromE. Each entity typeE has a set
of attributes, denoted att(E), which includes a primary key. Two
entity types E1 and E2 can be related by an association type. Each
of its instances, called an association, connects entities of types
E1 and E2. An association can have cardinality 1:1, 1:n, or m:n.
For simplicity, we omit the use of EDM complex types; all of our
results are easily extended to cover them.

We assume the store schema S is relational. It consists of a set
of tables. Each table T has attributes, denoted att(T), which in-
cludes a primary key. It may also have foreign keys, each of which
maps one or more attributes of T to the key of another table. A re-
lational schema can be considered a restricted EDM schema, with
no inheritance or associations.

Mappings and views are expressed in Entity SQL, a SQL dialect
where queries can range over entity sets or associations. Relevant
details of Entity SQL are described below.

2.1 Mapping fragments
EF’s mapping language is composed of constraints of the form

QC = QS , called mapping fragments, where QC and QS are
project-select queries over the client and store schemas, respec-
tively, with a relational output and a limited form of disjunction and
negation. An example of a mapping given by mapping fragments
in Entity SQL is shown in Figure 5. More precisely, a mapping
fragment is an expression of the form

πα (σψ (E)) = πβ (σχ (R)) . (1)

In the above expression, E is the name of an entity set in the client
schema, α is a sequence of attribute names containing key attributes
of entities in E , and ψ is an AND-OR combination of expressions of
the form IS OFE, IS OF (ONLYE), A IS null, A IS NOT null,
and A θ c, where E is an entity type, A is an attribute name, c
is a constant value, and θ is a comparison operator (=, ≤, etc.).
An expression of the form IS OFE is satisfied by all entities of
type E and derived types. For example, in Figure 5, the expres-
sion IS OF Person is satisfied by Person and Employee entities.
An expression IS OF (ONLYE) is satisfied by E entities but not by
entities of derived types. Moreover, in (1), R is the name of a rela-
tional table in the store schema, β is a sequence of attribute names
containing the key of R, and χ is an AND-OR combination of ex-
pressions of the form A IS null, A IS NOT null, and Aθ c.

For example, in Figure 5, the first mapping fragment specifies
that ids and names of entities of type Person (including derived

types) are mapped to table HR(Id,Name). In our abstract notation,
this mapping fragment is

πId,Name
(
σIS OF Person(Persons)

)
= πId,Name(HR).

Mapping fragments can also map associations, in which case
they are of the form πα1α2 (A) = πβ (σχ (R)), where A is an
association set, α1 and α2 are the key attributes of the entity types
participating in the association, and β, χ and R are as in (1). EF
assumes that every association set is mentioned in a single mapping
fragment. We make the same assumption in this paper.

A set Σ of mapping fragments specifies a mappingM⊆ C × S
given by the set of pairs (c,s) that satisfy the fragments. Here, we
overload the symbols C or S to also represent the set of instances
that the schemas C or S allow. Formally, a set Σ of mapping frag-
ments defines the mapping

M = {(c, s) | QC(c) = QS(s)

for every mapping fragment QC = QS ∈ Σ}.

2.2 Mapping compilation
The notion of roundtripping was introduced in [12] to ensure that

client data can be losslessly stored in the store schema. A mapping
M ⊆ C × S roundtrips if M ◦ M−1 = IC , where IC is the
identity relation over the client schema. Whenever a mappingM
roundtrips we say thatM is valid. For every valid mappingM one
can construct query view Q : S → C and update view V : C → S
that together roundtrip the data. These views are constructed such
that V ⊆ M ⊆ Q−1, which ensures that V ◦ Q = IC [12]. Q
is expressed as a set of views for each entity and association set in
the client schema, while V is a set of views for every store table
mentioned in a mapping fragment. The process of validating M
and constructing Q and V is called mapping compilation.

In this paper we assume that a query view for an entity type E
is an expression of the form (QE | τE) where QE is a relational
query and τE is an expression that states how to construct entities
from the relational output of QE . For instance, for the mapping in
Figure 5, a query view for entity type Person can be specified as:

QPerson : πId,Name(HR) 1 πId,Dept AS Department,true AS from_Emp(Emp)

with τPerson the expression

if (from_Emp = true) then Employee(Id,Name,Department)
else Person(Id,Name)

Notice that the query view constructs entities of type Person and
of derived type Employee. Since this information is obtained from
two tables, the query view uses a special attribute (from_Emp) to
track from which table the data came. Even in this simple scenario
the query view needs outer join and if-else statements to construct
entities. Similarly, we assume that an update view for a table T is
an expression (QT | τT). For example, for table Emp, QEmp is

πId,Department AS Dept

(
σIS OF Employee(Persons)

)
and τEmp is simply Emp(Id,Dept).

2.3 Problem Statement
We are now ready to formalize the incremental mapping compi-

lation problem.

PROBLEM (INCREMENTAL COMPILATION). Assume that we have
a client schema C, a store schema S, and a mappingM ⊆ C × S
specified by a set Σ of mapping fragments, such that

• mappingM roundtrips, and

4

• M has been compiled into a set of query and update views.

Given an SMO describing an incremental change to C, adapt map-
ping M into a new valid mapping M′, and compute query and
update views forM′.

The new mappingM′ in the Incremental Compilation problem
should also satisfy a soundness restriction. To formalize it we need
some terminology. Let C′ be the new client obtained from C af-
ter the incremental change. We can associate to every client state
c ∈ C a corresponding client state f(c) ∈ C′ such that c and f(c)
coincide in all the components that C and C′ share, and any new
components introduced in C′ are empty in f(c). For instance, if
the incremental change adds a new entity type E, then for every
c ∈ C, f(c) is a state in C′ that is equal to c in all components of
C and has no entities of type E. Thus, the soundness restriction is
formalized as follows: for every client state c ∈ C, mappingsM
and M′ should be equivalent, that is, (c, d) ∈ M if and only if
(f(c), d) ∈ M′. This ensures that the mapping adaptation phase
is not arbitrary, preventing the incremental compiler from dropping
the mappingM and constructing a new mappingM′ from scratch.

3. INCREMENTAL COMPILATION
In this section, we present our solution for the incremental com-

pilation problem. We consider in detail two classes of SMOs:

• AddEntity: create a new entity type as a leaf in a type hierar-
chy.

• AddAssociation: create a new association between two ex-
isting entity types.

Each of the above classes describes a change to the client schema.
Naturally, there are many other evolution classes that one can con-
sider such as dropping entity types, adding properties to existing
types, and transforming an association into an inheritance relation-
ship. Our work includes algorithms for these SMOs, but due to lack
of space, we describe them only briefly in Section 3.4.

3.1 Adding entity types: the TPT/TPC case
We start by describing an SMO that adds an entity type using the

most common strategies for mapping entity types to tables, namely,
Table per Type (TPT) and Table per Concrete Type (TPC) [7]. Let
E be an entity type to be added to the client schema. In the TPT
strategy, the primary key and the non-inherited attributes of E are
mapped into a single table, say T . To construct entities of type E,
data from T are joined with the tables that store the ancestors of E
in the type hierarchy. The mappings shown in Figure 5 illustrate a
TPT mapping. On the other hand, when one follows TPC, all the
attributes of E are mapped into a table, say R. Thus, in TPC, to
construct entities of type E we only need to use data from table R.

The language of mapping fragments allows more general vari-
ations of TPT and TPC. We capture all of them in the follow-
ing carefully-crafted SMO that maps an arbitrary subset of the at-
tributes of E (along with its primary key) to some table.

AddEntity(E,E′, α, P, T, f), where:

• E is the new entity type to be added and E′ is the parent of
E in the type hierarchy,

• α is a subset of the attributes att(E) that contains the pri-
mary key of E (PKE),

• P is an ancestor ofE in the hierarchy such that α∪att(P) =
att(E),

• T is a table in the store schema that is not mentioned in any
mapping fragment,

• f : α→ att(T) is a 1-1 function that maps the primary key
of E to the primary key of T .

We require that for every A ∈ α, dom(A) ⊆ dom(f(A)), to
ensure that all attribute values of the new entity can be stored in
table T . Moreover, all attributes in the set difference att(T)rf(α)
must be nullable.

The semantics of AddEntity(E,E′, α, P, T, f) is given by the
following mapping fragment:

ϕE : πα(σIS OF E(E)) = πf(α)(T). (2)

where E is the entity set to which E was added.
Example 1 Consider the scenario in Figure 1 and suppose the

client schema is initially composed only of the entity type Person

with mapping fragments Σ1 = {ϕ1} where

ϕ1 : πId,Name(σIS OF Person(Persons)) = πId,Name(HR).

(Types Customer, Employee and association Supports are not ini-
tially in the client schema.) Suppose that we have computed query
view (Q1

Person | τ1Person) = (πId,Name(HR) | Person(Id,Name)) and
update view (Q1

HR | τ1HR) = (πId,Name(σIS OF Person(Persons)) |
HR(Id,Name)) for Σ1. Σ1 is valid and the views roundtrip.

We now want to add an entity type Employee(Id, Name,
Department) that derives from Person, and map it as TPT to ta-
ble Emp, as in Figure 1. For this we use the SMO

AddEntity(Employee,Person,(Id,Department),Person,Emp,fE),

where fE(Id) = Id and fE(Department) = Dept. Following Eq. 2,
its semantics is

ϕ2 : πId,Department(σIS OF Employee(Persons)) = πId,Dept(Emp).2

The mapping fragment ϕE in Eq. 2 only specifies how attributes
α are mapped into table T . The reference to ancestor P of E in
AddEntity states that all the attributes ofE that are not mapped to
T should be mapped as attributes of P . This distinction between at-
tributes mapped to T and those mapped like attributes of P is what
gives the SMO the power to express a range of mapping strategies.

TPT and TPC can be obtained as special cases of AddEn-
tity. To map a new entity E via the TPC strategy one should
use AddEntity(E,E′, att(E), NIL, T, f), which maps all E at-
tributes (inherited and non-inherited) to table T . To map the new
entity E via TPT, one should use AddEntity(E,E′, (att(E) r
att(E′))∪PKE , E

′, T, f), which maps only the non-inherited at-
tributes ofE plus its primary key to table T . The reference to entity
type E′ states that the remaining attributes of entities of type E are
mapped in the same way as the parent E′ of E in the hierarchy.

As we explained in Section 1.2, we need four new algorithms to
implement an SMO: adapt and create query views, adapt and create
update views, adapt the previous mapping fragments, and validate
the new mapping. We describe these in the next four sections.

3.1.1 Incrementally computing query views
Algorithm 1 incrementally computes query views when adding a

new entity type by using AddEntity. In the algorithm, we assume
that (Q−F | τ

−
F) is the query view for entity type F before the incre-

mental compilation. When constructing queries we use expression
(f(α) AS α) to denote a renaming of a sequence of attributes.

The algorithm is based on a somewhat involved case analysis of
entity typesE and P and those in between them in the hierarchy. In
lines (3)-(10) the algorithm constructs the query view QE depend-
ing on whether a reference to an ancestor P has been specified. If

5

Algorithm 1 Query Views for AddEntity(E,E′, α, P, T, f)

1: For every entity type F with F 6= E, let (Q−F | τ
−
F) be the

query view for F before the addition of E
2: let tE be a fresh attribute name
3: τE := E(att(E))
4: if P = NIL then
5: QE := π(f(α) AS α)(T)
6: Qaux := π(f(α) AS α, true AS tE)(T)
7: else
8: QE := Q−P 1 π(f(α) AS α)(T)

9: Qaux := Q−P 1 π(f(α) AS α, true AS tE)(T)
10: end if
11: anc := {F | F is an entity type which is an ancestor of P in

the type hierarchy}
12: for all entity type F in anc do
13: QF := Q−F 1 π(f(α) AS α, true AS tE)(T)

14: τF := if (tE = true) then τE else τ−F
15: end for
16: p := {F | F is a proper ancestor ofE and a proper descendant

of P in the type hierarchy}
17: for all entity type F in p do
18: QF := Q−F ∪ Qaux

19: τF := if (tE = true) then τE else τ−F
20: end for
21: for all entity type F not in p ∪ anc ∪ {E} do
22: (QF | τF) := (Q−F | τ

−
F)

23: end for
24: return query views (QF | τF) for all entity types F

P 6= NIL, the query view for E is constructed by joining the previ-
ous query view for P and table T (line (8)); otherwise, if P = NIL

only table T is used in the query view (line (5)).
Lines (12) to (20) incrementally compute the new query views

for all ancestors of E in the type hierarchy, which are the only
types affected by the addition, since query views for these ances-
tors now need to consider entities of type E too1. The algorithm
constructs these new query views using left-outer-joins for ances-
tors of P (lines (12)-(9)) and unions for entity types in between E
and P (lines (16)-(20)). In both cases, a new attribute tE is used
to test the provenance of tuples: whenever tE is true, the entity
created by the query view should be of type E (expression τE).
Otherwise, the entity should be created as before (using expression
τ−F for entity type F). Note how the algorithm leverages previously
computed views, thus avoiding full mapping recompilation.

Example 2 Continuing with Example 1, let us walk through Al-
gorithm 1 to compute the new query views generated by AddEn-
tity. Notice that Person is playing the role of P . Thus, line (8)
constructs the query view for Employee as follows:

Q2
Employee : Q1

Person 1 πId,Dept AS Department(Emp) =

πId,Name(HR) 1 πId,Dept AS Department(Emp)

and line (3) constructs τ2Employee as Employee(Id,Name,Department).
To reconstruct the query view for Person we follow lines (12)-

(9) of the algorithm. Thus, the new query view for Person is ob-
tained by using (Q1

Person | τ1Person) as follows:

Q2
Person : Q1

Person 1 πId,Dept AS Department,true AS tE(Emp) =

πId,Name(HR) 1 πId,Dept AS Department,true AS tE(Emp)

1For simplicity, in this and subsequent algorithms we assume that every
entity type in a hierarchy is a descendant of NIL.

and τ2Person is (if (tE = true) then τ2Employee else τ
1
Person). 2

3.1.2 Incrementally computing update views
The process to construct update views is shown in Algorithm 2.

The SMO AddEntity(E,E′, α, P, T, f) states that attributes α of
entity type E should be mapped to table T ; thus, the update view
for T is very simple and is constructed in lines (2)-(3). The ex-
pression f(α) pad att(T) states that all attributes from T that are
missing in f(α) are padded with null values.

The use of inheritance in update views introduces a subtle issue.
The semantics of AddEntity states that the attributes ofE not in α
should be mapped like entities of type P . Thus, every update view
that considered data from P entities, should now also include data
from E entities. An expression IS OF P in an update view refers to
entities of the (new) derived type E, which is what we want. The
issue is that expressions of the form IS OF (ONLY P) incorrectly
exclude E entities. Thus, line (7) of the algorithm replaces every
expression IS OF (ONLY P) by IS OF (ONLY P) ∨ IS OF E.

Example 3 Continuing with Example 2, we construct update
views. Lines (2) and (3) of Algorithm 2 generate the update view
(Q2

Emp | τ2Emp) for table Emp where τ2Emp is just Emp(Id,Dept) and

Q2
Emp : πId,Department AS Dept(σIS OF Employee(Persons)).

The only previously computed update view is the view for HR. But
since it does not mention an expression IS OF (ONLY Person), it is
unchanged by the algorithm. That is, (Q2

HR | τ2HR) = (Q1
HR | τ1HR). 2

Line (13) of the algorithm makes a complementary adaptation
for entity types in between E and P . Consider an update view that
includes a condition of the form IS OF F where F is a proper an-
cestor of E and a proper descendant of P in the hierarchy. Entities
of type E satisfy the condition IS OF F . However, all attributes
of E should be mapped either to table T or to the tables to which
attributes of P are mapped. Thus, line (14) replaces the expression
IS OF F by an expression that rules out entities of type E.

Example 4 To illustrate the issues with inheritance clauses, we
now add an entity type Customer(Id,Name,CredScore,BillAddr) that
derives from Person, and map the new entity type as TPC to table
Client as shown in Figure 1. For this we use the SMO

AddEntity(Customer,Person,

(Id,Name,CredScore,BillAddr),NIL,Client, fC),

where fC(Id) = Cid, fC(Name) = Name, fC(CredScore) = Score,
and fC(BillAddr) = Addr. Notice that NIL plays the role of P .

Now we compute the query and update views for the new en-
tity, and recompute the previous queries. Since P = NIL, line (5)
of Algorithm 1 constructs the query view for entity Customer by
considering only Client. Thus Q3

Customer is:

πCid AS Id,Name,Score AS CredScore,Addr AS BillAddr(Client),

and τ3Customer is Customer(Id,Name,CredScore,BillAddr). Person is
a proper ancestor of Customer and a proper descendant of P =
NIL. Thus, lines (17)-(19) of Algorithm 1 incrementally compute
the query view for Person as Q2

Person ∪ Qaux, where Qaux is
Q3

Customer but with the attribute cast (true AS tC); that is, Q3
Person is(

πId,Name(HR) 1 πId,Dept AS Department,true AS tE(Emp)
)
∪

πCid AS Id,Name,Score AS CredScore,Addr AS BillAddr,true AS tC(Client),

with τ3Person the expression

if (tC = true) then Customer(Id,Name,CredScore,BillAddr)
else if (tE = true) then Employee(Id,Name,Department)
else Person(Id,Name)

6

Algorithm 2 Update Views for AddEntity(E,E′, α, P, T, f)

1: For every table R, with R 6= T , let (Q−R | τ
−
R) be the update

view for R before the addition of E
2: QT := π(α AS f(α)) pad att(T)

(
σIS OF E(E)

)
3: τT := T (att(T))
4: for all update view (Q−R | τ

−
R) with R 6= T do

5: QR := Q−R
6: τR := τ−R
7: for all expression γ = IS OF (ONLY P) in QR do
8: replace γ by

(
IS OF (ONLY P) ∨ IS OF E

)
in QR

9: end for
10: p := {F | F is a proper ancestor of E and a proper descen-

dant of P in the type hierarchy}
11: for all entity type F in p do
12: dp(F) := {F ′ | F ′ is a descendant of F and F ′ ∈ p}
13: for all expression γ = IS OF F in QR do
14: replace γ in QR by∨

F ′∈dp(F)

(
IS OF (ONLY F ′) ∨

∨
F ′′∈chp(F ′)

IS OF F ′′
)

where chp(F
′) are the children of F ′ not occurring in

p ∪ {E}
15: end for
16: end for
17: end for
18: return update views (QR | τR) for every relation R

This view is equivalent to the one in Figure 2 (in Entity SQL nota-
tion) for the same mapping, but we have compiled it incrementally.
The query view for Employee does not change.

Line (2) of Algorithm 2 computes the update view of Q3
Client as

πId AS Cid,null AS Eid,Name,CredScore AS Score,BillAddr AS Addr

(
σIS OF Customer(Persons)

)
Lines (7)-(9) obtain Q3

HR from Q2
HR by replacing IS OF Person by

IS OF (ONLY Person) ∨ IS OF Employee. 2

3.1.3 Incrementally computing mapping fragments
Now consider the generation of mapping fragments. It is tempt-

ing to think we can just add ϕE in Eq. (2) to the set of mapping
fragments. However, it is not that simple since it might produce an
invalid mapping.

Let Σ− be the set of mapping fragments before executing
AddEntity. Before adding ϕE to Σ− we need to adapt the pre-
vious fragments to make them consistent with the semantics of
AddEntity, in particular with the fact that only α attributes are
mapped to T and the rest are mapped as entities of type P . The
adaptation process is essentially the same as for update views.
We generate a set Σ∗ from Σ− replacing every occurrence of
IS OF (ONLY P) by IS OF (ONLY P) ∨ IS OF E, and every oc-
currence of IS OF F with F an entity type in between E and P ,
by an expression that rules out entities of type E. The new set is
Σ = Σ∗∪{ϕE}. It is not difficult to see that Σ− and Σ are equiva-
lent under the constraint that entity type E is empty, thus satisfying
our soundness restriction on the adaptation of mapping fragments.

Example 5 In Example 1, the SMO AddEntity of Employee is
applied to a model whose mapping has one fragment, ϕ1. Since
ϕ1 has no expression IS OF (ONLY Person), it is not changed and the
new set of mapping fragments is Σ2 = {ϕ1, ϕ2} with ϕ2 as in

Example 1:

ϕ2 : πId,Department(σIS OF Employee(Persons)) = πId,Dept(Emp).

In Example 4, the SMO AddEntity of Customer is applied
to a model whose mapping is Σ2. In this SMO, Person is
a proper descendant of P (NIL in this case) and a proper an-
cestor of Customer. Since mapping fragment ϕ1 mentions the
expression IS OF Person, we replace it by IS OF (ONLY Person) ∨
IS OF Employee. Thus, the new set of mapping fragments is Σ3 =
{ϕ′1, ϕ2, ϕ3}, where ϕ′1 is the mapping fragment

πId,Name
(
σIS OF (ONLY Person)∨IS OF Employee(Persons)

)
= πId,Name(HR)

ϕ2 is as before, and ϕ3 is the mapping fragment

πId,Name,CredScore,BillAddr(σIS OF Customer(Persons))

= πCid,Name,Score,Addr(Client).2

3.1.4 Incrementally validating the mapping
Validating an incrementally modified mapping requires a modi-

fied version of Algorithm 1 in [12] that checks that (1) all possible
new entity values are covered by the mapping, and (2) these new
values can be mapped to a valid store state. Part (1) is ensured
by the condition att(E) = att(P) ∪ α and the fact that the map-
ping was valid before the addition, thus ensuring that all possible
values of P entities are covered by the mapping. For part (2), we
must ensure that no integrity constraint in the store is violated when
mapping data of the new entity type. This requires some analysis.

Besides domain constraints, which are validated in the appli-
cation of AddEntity, our store schema considers only key and
foreign-key constraints. It is easy to see that adding entities of
type E cannot violate key constraints. There are two cases, E’s
target table T and all other tables. Table T is not previously used
so only primary keys of E entities are stored in the key of T . All
other tables that store data of E entities already store data of entity
types from which E inherits, and these mappings did not violate
any key constraint before adding E. Formally, suppose that data of
some entity e of type E violates a key constraint when stored in a
table R. Data from e is stored in R because of an update view that
considers entity types of some ancestor F of E. Consider a state
in which e has been replaced by an entity f of type F , which is
identical to e in all the attributes that both share. Storing f in R
would also violate the key, which contradicts the assumption that
the mapping was valid before adding E.

By contrast, adding new entities can violate foreign key con-
straints. Such a scenario is shown in Figure 6. Assume first that
only entity typeE′ and associationA are mapped such that the key
attributes ofE′ are mapped to attributes γ in S, attributes ofA cor-
responding to keys of E′ are mapped to attributes β inR, and table
R has a foreign key constraint β → γ to table S. In the absence
of entity type E, β → γ is always satisfied, because the set of pos-
sible values of attributes β in R comes from A, and thus are key
values of entities of type E′. Now consider entity type E which
inherits from E′ and is mapped as TPC to table T . Association A
may relate entities of the new type E and store the corresponding
key values in table R. Notice that all attributes (including keys) of
entities of type E are stored in table T . Thus, keys of these en-
tities are not stored in table S. This implies that the foreign key
constraint β → γ is violated whenever an entity e of type E par-
ticipates in association A, since e’s key is stored in R but not in S.
Another type of violation can occur when table T has a foreign key
to a table that was previously mentioned in mapping fragments.

We now explain how we check the validity of foreign key con-
straints after AddEntity(E,E′, α, P, T, f). If there is an entity

7

α

E′A

E

S

R

T

γ

β

TPC

Department

Employee

Person

Name
Id

Persons〈Person〉Entity set:

Emp

Id

Id Name

Dept

HR

TPC

TPT

* 0..1

Supports

Association set: Supports set〈Customer, Employee〉

Customer

BillAddr

CredScore

Employee

Department

Id

Name

Person

Entity set: Persons set〈Person〉

Emp

Dept

Addr

Id

Client

Cid Eid

Id Name

HR

Name Score

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id,Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id,Dept
FROM Emp

SELECT p.Id,p.Name
FROM Persons p
WHERE p IS OF Person

=
SELECT Id, Name
FROM HR

SELECT e.Id,e.Department
FROM Persons e
WHERE e IS OF Employee

=
SELECT Id, Department
FROM Emp

Figure 6: Violation of foreign key constraints

type F that is a proper ancestor ofE and a proper descendant of P ,
and an association A that has F as endpoint, we do the following.
Assume that A is mapped to table R and the key attributes PKF

of F are mapped to attributes β in R. We need to check two cases.

1. First check the query containment

πPKF AS β(A) ⊆ πβ(QR),

using the update view QR generated in the previous section.
This tests whether we can store associations of entities of the
new entity type E (that derives from F) in the same table R.

2. If there is a foreign key β′ → γ where β ∩ β′ 6= ∅ from
R to some table S, then we check that the foreign key is not
violated by testing the query containment

πβ′ AS γ(QR) ⊆ πγ(QS),

whereQR andQS are the update views forR and S, respec-
tively, generated in the previous section.

We also have to check that existing foreign keys in T are not vio-
lated as follows.

3. If T has a foreign key constraint β → β′ to a table T ′ with
β ∩ f(α) 6= ∅, then check the query containment

πβ AS β′(QT) ⊆ πβ′(QT ′),

where QT and QT ′ are the update views for T and T ′.

If any of the containments above fails, the incremental compilation
is aborted since the mapping is not valid after the addition of E.

Example 6 To validate the mappings in Example 5, first consider
the mapping for AddEntity of Employee. There are no associations
(it has not been added yet), so we only need to check that the for-
eign key constraint Emp.Id→ HR.Id is not violated (check 3 in the
previous section). Thus, we have to test πId(Q2

Emp) ⊆ πId(Q2
HR). By

unfolding the update views in the previous expression we obtain

πId(σIS OF Employee(Persons)) ⊆ πId(σIS OF Person(Persons))

which holds since Employee inherits from Person. Thus, the map-
ping is valid.

Next consider the mapping for AddEntity of Customer. Here,
we do not need to check validity of the foreign key constraint
Client.Eid → Emp.Id since none of the attributes of the new entity
type is mapped to attribute Eid. 2

3.2 Adding associations
We now consider incremental compilation when adding an as-

sociation set between existing components. This is considerably
simpler than the addition of entity types. Recall that association
sets are sets of tuples (α1, α2) corresponding to key attributes of
the entities participating in the association. We describe in this sec-
tion the addition of associations mapped to a key/foreign-key table
in the store schema. For this case we consider the SMO

AddAssocFK(A, E1, E2,mult, T, f), where:

• A is the name of the new association set,

• E1 and E2 are the endpoints of the association,

• mult is an expression that denotes the multiplicity of the as-
sociation, such that the endpoint corresponding to E2 is not
∗ (many),

• T is a table in the store schema previously mentioned in map-
ping fragments,

• f is a 1-1 function f : PK 1 ∪ PK 2 → att(T), where PK 1

and PK 2 are the key attributes of E1 and E2, respectively,
and such that f(PK 1) is the key of T .

For simplicity and without loss of generality, we assume that names
of key attributes of E1 and E2 are disjoint (otherwise they can be
renamed or aliases can be used). The semantics of the addition is
given by the following mapping fragment

ϕA : πPK1,PK2(A) = πf(PK1),f(PK2)(σf(PK2) IS NOT null(T)).

Let Σ− be the set of mapping fragments before adding the new
association. In this case the adaptation is simple: we just add ϕA to
Σ−, that is, the new set of mapping fragments is Σ = Σ− ∪{ϕA}.

To ensure that the new set Σ is valid we need to verify that the ad-
dition does not violate the key and foreign key constraints in which
table T participates. We need to check three scenarios:

1. Check that attributes f(PK 2) in table T have not been previ-
ously used to map data from the client schema by inspecting
the mapping fragments.

2. Check the containment

πPK1(σIS OF E1(E)) ⊆ πf(PK1) AS PK1
(Q−T),

withQ−T the update view for table T before the addition, and
E the entity set to which entity type E1 belongs. This en-
sures that the endpoint E1 of the association can be entirely
mapped to the primary key attributes of T .

3. If T has a foreign key of the form f(PK 2) → β to a table
T ′ with primary key β, then check

πPK2 AS β(σIS OF E2(E)) ⊆ πβ(Q−T ′),

with Q−T ′ the update view for table T ′ before the addition,
and E the entity set containing E2 entities.

If any of the checks above fails, the incremental compilation is
aborted since the mapping is not valid after the addition of A. No-
tice that case (1) is necessary since the semantics of ϕA states that
whenever f(PK 2) is not null, then it is considered to be part of
association A.

3.2.1 Constructing views when adding associations
The construction of query views is also simple. All existing

query views remain unaltered, and the query view (QA | τA) for
the new association set is defined as

QA : πf(PK1) AS PK1,f(PK2) AS PK2
(σf(PK2) IS NOT null(T)),

τA : A(PK 1,PK 2).

That is, to construct the associations we just consider the attributes
f(PK 1), f(PK 2) of T . Similarly, for update views we only have
to incrementally recompute the update view for table T . Let (Q−T |
τ−T) be the update view for T before the addition. The new update
view is given by

QT : πatt(T)rf(PK2)(Q
−
T) 1 πPK1 AS f(PK1),PK2 AS f(PK2)(A)

8

with τT = τ−T . Notice that data stored in T now comes from
the previous view Q−T without considering attributes f(PK 2) (all
the data stored in attributes att(T) r f(PK 2) is still stored in T)
and using an outer join to store values for f(PK 2) whenever an
association between PK 1 and PK 2 exists in the client schema.

Example 7 Continuing with our previous example, suppose we
want to add association Supports between Customer and Employee,
as shown in Figure 1. Thus we use the SMO

AddAssocFK(Supports,Customer,Employee,[∗−0..1],Client,fS),

where fS(Customer.Id) = Cid, and fS(Employee.Id) = Eid. We
obtain then the mapping specified by Σ4 = {ϕ′1, ϕ2, ϕ3, ϕ4},
where ϕ4 is the fragment πCustomer.Id,Employee.Id(Supports) =
πCid,Eid(σEid IS NOT null(Client)). We now check that key and for-
eign key constraints in Client are not violated. First, it is clear
that attribute Eid of table Client is not previously mentioned in the
mapping fragment (check 1). Now, in order to check that the iden-
tifiers of entities of type Customer can be stored in table Client

we have to check the containment πId(σIS OF Customer(Persons)) ⊆
πCid AS Id(Q

3
Client) (check 2). By unfolding the definition of

Q3
Client (and simplifying the expression) we obtain

πId(σIS OF Customer(Persons)) ⊆ πCid AS Id(σIS OF Customer(Persons)),

which clearly holds. Finally, we have to check the constraint
Client.Eid → Emp.Id (check 3). So we have to test the following
containment:

πId(σIS OF Employee(Persons)) ⊆ πId(Q3
Emp).

By unfolding the view Q3
Emp it is easy to see that the containment

holds. Thus we have a valid mapping fragment. As an example of
query and update views that are computed in this case, the update
view for table Client is incrementally computed from Q3

Client. In
this case we have that Q4

Client is

πCid,Name,CredScore,BillAddr(Q
3
Client) 1

πCustomer.Id AS Cid,Employee.Id AS Eid(Supports).

3.3 Entity types partitioned across tables
The SMO AddEntity assumes that the new data is stored in a

single table. We developed a relaxed version of AddEntity in which
one can use client-side conditions to specify that different tables are
used to store data of different entities of the same type. For the sake
of space, we do not describe all the details of the algorithms in this
case, but just the main additional issues that need to be considered.

The SMO that we consider for adding entities in this case is
AddEntityPart(E,E′, P,Γ), similar to AddEntity, but in which
Γ is a set {(α1, ψ1, T1, f1), . . . , (αn, ψn, Tn, fn)}, where for ev-
ery i ∈ {1, . . . , n} we have that αi is a subset of the attributes of
att(E) (containing the primary key of E), ψi is a satisfiable con-
junction of conditions over att(E) and constant values, Ti is a table
in the store schema, and fi : αi → att(Ti) is a 1-1 function that
maps entity properties to table attributes. Since we do not consider
disjunctions in ψi, checking satisfiability can be done efficiently if
the conditions in ψi are equalities and inequalities. The semantics
of this addition is given by the set of mapping fragments

πα1

(
σ(IS OF E)∧ψ1

(E)
)

= πf(α1)(T1), (3)
· · ·

παn

(
σ(IS OF E)∧ψn(E)

)
= πf(αn)(Tn).

As an application scenario consider adding an entity type
Person(name, age) to entity set Persons, mapping entities to a
table Adult(name, age) or Young(name, age) depending on the

value of attribute age. Thus, we would use AddEntityPart
with parameter Γ = {(α1, ψ1, Adult, f1), (α2, ψ2, Young, f2)} in
which α1 = {name, age}, ψ1 = (age ≥ 18), α2 = {name, age},
ψ2 = (age < 18) (and f1, f2 identity functions). In this case the
mapping fragments are

πname,age
(
σ(IS OF Person)∧age≥18(Persons)

)
= πname,age(Adult),

πname,age
(
σ(IS OF Person)∧age<18(Persons)

)
= πname,age(Young).

As for the case of the addition of entity types that we introduced
in Section 3.1, the reference to the ancestor P is used to cover at-
tributes of E that are not mapped by the above mapping fragments,
by mapping them as the attributes in P . In fact if we consider a set
Γ with a single tuple (α, true, T, f) we obtain exactly the SMO of
Section 3.1. The adaptation process for the mapping fragments is
essentially the same as in Section 3.1.

The verification process in this case is a bit more complex. In
Section 3.1, to ensure that the data corresponding to E entities can
be losslessly stored in the database, it was enough to require that
att(P) ∪ α = att(E) plus that constraints in the store are not vi-
olated when storing the new data. In this case, where entities are
partitioned across several tables, we have to check a more complex
condition to test whether the pairs (ψi, αi) cover all the possibili-
ties for E entities and thus no data is lost. We do this as follows.
For every attribute A in att(E) we consider all formulas ψi such
that either A ∈ αi or the equality A = c (with c a constant value)
is a logical consequence of ψi. Then we check that the disjunction
of all the selected formulas is a tautology.

For instance, in the Person/Adult-Young example, attribute
name appears in α1 and α2, so we have to check that formula
ψ1 ∨ ψ2 is a tautology. In this case, the formula that we have to
check is (age ≥ 18)∨(age < 18), which is clearly a tautology. To
show the necessity of considering equalities A = c, consider a sce-
nario in which one adds an entity type Person(id, name, gender),
where gender is either M or F, mapped as follows. Ids are mapped
to table Men(id) if gender = M or to table Women(id) if gender =
F, and all names are mapped to table Name(id, name). Even though
gender is not mapped to the store, we still have to check that its
associated formula is a tautology. In this case the formula associ-
ated to attribute gender is (gender = M) ∨ (gender = F) which
is actually a tautology since the only possible values for gender
are M and F.

After checking coverage of attributes, we also have to check that
foreign key constraints in the store are not violated. The strategy
for checking that, as well as the construction of update views, is
essentially the same as in Section 3.1. In contrast, to construct the
query view for entity type E we have to consider data stored in
all tables Ti. The query view is the full outer join of all Ti’s thus
putting together all the pieces to create E entities. We also have to
consider attribute values that are fixed by the client-side constraints.
For instance, for the Person/Men-Women-Name example above, the
new query view for Person would be

πid,name(Name) 1 πid,M AS gender(Men) 1 πid,F AS gender(Women)

Notice that the view has to set attribute gender to M when the data
comes from Men, and to F when it comes from Women. In general,
we also need to use the reference to entity type P to construct E
entities as in Algorithm 1. Query views for other entity types can
also be reconstructed as in Algorithm 1, using the full outer join of
the Ti’s instead of the single reference to table T .

3.4 Other SMOs
We have developed algorithms for some other natural SMOs. In

this section we briefly describe some of them, focusing on ones

9

that have “interesting” compilation algorithms. Details on the al-
gorithms can be found in the appendix.

We do not claim this set is able to generate all possible schemas
and mappings. At least, one would like SMOs that can add and
drop every feature of the client model (e.g., entity, association, and
property) and modify some facets (e.g., data type and cardinality).
Covering all possible object-to-relational mappings is more chal-
lenging, and we have deferred it to future work.

Section 3.1 described incremental compilation algorithms for
adding an entity type via TPT and TPC. We also have algorithms
for AddEntityTPH (for Table per Hierarchy), where data of all en-
tities of a type hierarchy are stored in one table. A special discrim-
inator column in the table is used to identify which type of entity is
stored in each row. To add entity type E to table T , the query view
of each ancestor F of E has to be unioned with a select-project
query that retrieves rows containing entities of E; query views of
other entity types are unaffected. The update view of T needs to
be modified by changing experessions of the form IS OF E′ by
IS OF (ONLY E′), where E′ is the parent of E, and unioning it
with a select-project query that selects entities of type E from the
hierarchy’s entity set. To validate the mapping fragments, besides
checking that foreign key contraints are not violated, we need con-
tainment tests that check that the discriminator value that identifies
E can be used as a valid discriminator value. Notice the symme-
try of AddEntityTPH, which does a selection on the discriminator
on the right side of mapping fragments, and AddEntityPart, which
does the selection on the left side of mapping fragments.

In Section 3.2 we described how incremental compilation works
when adding an association mapped to a key/foreign-key constraint
in the store. Another way that associations can be mapped is to a
new join table. This SMO is able to cover many-to-many associa-
tions which are not covered by the SMO in Section 3.2. We imple-
mented associations mapped to join tables and we include them in
our experiments in Section 4.

We also considered an SMO to add properties to an existing en-
tity type E. In this case, the SMO states that the new property
can be mapped to a table where E attributes were already mapped,
or to a completely new table. In any case, we need to reconstruct
query views not only for E but also for descendants of E in the
type hierarchy.

Another SMO that we consider is refactoring. Let A be an as-
sociation with cardinality 1 to 0..1 between entity types E1 and
E2, respectively. In the refactoring process we delete A and make
E2 a derived type of E1 (adding all attributes of entities of E1 to
E2). The process implies that whenever an entity e2 of type E2

was associated with e1 of type E1 in the original schema, in the
new schema we have a single entity of type E2 containing attribute
values from e1 and e2. The incremental compilation in the case of
refactoring is a bit more complicated than for adding entities, as in
this case not only query views for the ancestor of E1 are affected
but also query views for descendants ofE2 need to be transformed.

Finally, we also consider an SMO to drop an entity type E. In
this case, we need to eliminate all references to E from mapping
fragments and views. Notice that if E is not a leaf in the hierarchy,
then references to E cannot just be deleted but have to be replaced
by expressions that now consider all descendants of E.

4. EVALUATION

4.1 Implementation
We implemented a standalone incremental mapping compiler in

C# using libraries from Microsoft’s Entity Framework (EF) V4.5.
Its high-level architecture is shown in Figure 7. The incremental

Change	
 schemas	

&	
 mappings	

Modify	
 update	

views	

Modify	

query	
 views	

New	
 mappings	

roundtrip?	

Abort	

Output	

new	

model	
 +	

views	

Yes?	
 No?	

Input	
 model	
 (client,	
 store	

schemas,	
 mapping	
 fragments)	
 Query	
 and	
 update	
 views	

Convert	
 to	

query	
 trees	

Incremental	

compiler	

(Query	
 containment)	

MoDEF	

SMO	

Figure 7: Architecture of the incremental mapping compiler.
Light-colored components initialize the compiler. Dark-colored
components perform the compilation.

compiler requires two inputs: the pre-evolved model containing the
client schema, store schema and mapping fragments, and the query
and update views given as Entity SQL queries.

The Entity SQL queries are embedded in a C# file that is gener-
ated by EF’s mapping compiler. Our incremental compiler extracts
the query and update views from that C# file and uses .NET func-
tions provided by EF to translate the views into an internal object
representation called canonical query trees—a published format
that Microsoft supports with various library functions. It is simi-
lar to an abstract query tree or logical query plan, but is adapted for
the additional constructs of Entity SQL. Our incremental compiler
maintains these trees in memory for the duration of its operation.

After our compiler has taken the schemas, mapping, and views
as input, the user can issue a command to make an incremental
change in the client model, such as adding a new entity or associa-
tion type. To determine appropriate changes to the store model and
mapping fragments, we use the MoDEF system [15]. It examines
existing mapping fragments in the neighborhood of the changes to
determine its mapping style: TPC, TPT, or TPH. It then generates
an SMO that is consistent with that mapping style. Once the SMO
has been determined, the compiler proceeds to change the client
and store schemas and then validate the new mappings.

To perform validation, the compiler first evolves the canonical
query tree representation of the update views using one of the al-
gorithms described earlier in Section 3, such as Algorithm 2 for
AddEntityTPC/TPT. It then invokes a query containment checker,
built for Entity SQL queries, to perform validation and ensure that
the new mappings roundtrip. The query containment checker uses
the algorithm described in [8]. If validation fails, the compiler
undoes its changes to the schemas and update views and returns
an exception. If it succeeds, then it evolves the canonical-query-
tree representation of the query views, generates the new evolved
model, and generates the Entity SQL query and update views from
the evolved query trees, which it stores back in the C# file.

We implemented six SMOs in the current version of the com-
piler: three for AddEntity (TPT-TPC, TPH, Partitioned), two for
AddAssociation (JT, FK) and one for AddProperty. In the next sec-
tion, we show that these primitives offer substantial performance
benefits compared to the baseline of full recompilation.

4.2 Experimental evaluation
Our experiments seek to address two main questions: (1) Does

incremental compilation provide any benefits compared to full re-

10

…

Entity3

Id

EntityAtt2

EntityAtt3

EntityAtt4
…

Entity2

Id

EntityAtt2

EntityAtt3

EntityAtt4
…

Entity1

Id

EntityAtt2

EntityAtt3

EntityAtt4

…

Entity1002

Id

EntityAtt2

EntityAtt3

EntityAtt4

…
…

Entity4

Id

EntityAtt2

EntityAtt3

EntityAtt4

1 0..1

1
*

1 0..1

1
*

1

1

0..1

*

0..1

*
1

1

…

EntityK

Id

EntityAtt2

EntityAtt3

EntityAtt4

…

Figure 8: Chain model

compilation in EF? (2) How does the execution time of incremental
compilation change with respect to different SMOs and different
types of client models and mappings?
Methodology: All times quoted in this section are on a worksta-
tion running Windows 7 with a 3.0 gigahertz 64-bit Intel Core Duo
processor and 8 gigabytes of memory.

We evaluated our incremental compiler over two large and di-
verse client models. The first is a synthetically generated model
that has 1002 entity types with no inheritance relationships ar-
ranged in a chain, where each entity type is related by two asso-
ciations with the next entity type in the chain. Mapping fragments
consist of simple one-to-one mappings, where each entity type is
mapped to its own table on the store side and each association is
mapped to a key-foreign key relationship. Figure 8 shows a partial
representation of this model. A full compilation of this model using
the EF compiler takes 15 minutes.

In contrast to this simple, large model, the second model is a real
customer model that consists of 230 different entity types over 18
non-trivial hierarchies. The deepest has four levels, and the largest
has 95 entity types. They are mapped either TPT or TPH, with
associations mapped to non-junction tables. A full compilation of
the customer model takes 8 hours.

For each model, we chose entity types randomly as inputs to our
SMOs. For SMOs that performed a TPT mapping, we added for-
eign key constraints for newly added tables on the store side. For
each SMO, we measured the wall clock time to perform the evo-
lution operation and averaged results across three runs. Figures 9
and 10 show the results of various SMOs. We use AE-x and AA-x
to denote the AddEntity and AddAssociation primitives using map-
ping type x, and AEP-np-x to denote AddEntityPart with the en-
tity set horizontally mapped across 2n tables and vertically through
mapping type x.

During testing, there were some SMOs where validation failed.
Most were cases of AddEntityTPC similar to the one in Figure 6.
Results: Figure 9 shows runtimes of the SMOs on the synthetic
model. Note that the y-axis is log-scale. The figure shows that in-
cremental compilation is more than two orders-of-magnitude faster
than full recompilation. We also see that all SMOs have roughly
the same performance, except for AEP-np-TPT. As expected, AEP-
np-TPT tends to scale exponentially with n (linearly with the num-
ber of tables) since the compiler has to validate 2n new foreign
key constraints, one for each new table. While the total runtime for
each operation was 5-10 seconds, validation took only 1-2 seconds;
the remaining time was taken to reload the evolved schemas using
EF’s object model; we found this to be a necessary step in making

1

10

100

1000

Ti
m

e
 (

se
cs

)

Figure 9: Results on synthetic model

a standalone compiler since the object representations of mappings
and schemas in EF are only internally mutable. If integrated within
EF, this step could easily be skipped, thus decreasing the overall
running time significantly.

Figure 10 shows the running times for SMOs on the customer
model. Most operations completed within 50 seconds, with the
majority of time spent on query containment checks for mapping
validation. We noticed high variability between different runs, as
the update views of some entity types turned out to be more com-
plex than others. Such cases occurred when association sets and
entity sets were mapped to the same table, thus generating joins in
the update views, which increase the time for containment check-
ing. For the chosen entity types, AE-TPH overall took less time,
as in some cases, the entire hierarchy was not wholly mapped to
a single table (i.e the original mapping was not TPH, and failed
validation could easily be reported).

0.1

10

1000

100000

Ti
m

e
 (

se
c)

Figure 10: Results on customer model

5. RELATED WORK
The programming language community has worked on incre-

mental compilation of program code for many years [14, 16]. It
embodies a tradeoff between speed (by recompiling only a portion
of a potentially much larger code base) and the efficiency of the
product (because optimization decisions are frequently better when
one considers larger windows of the code base).

A related technology from the programming language commu-
nity is Lenses [9], which is a tool to establish updatable mappings
between potentially different models A lens is an atomic transfor-
mation comprised of two functions, each describing one direction
of data transformation; one constructs a mapping through compo-
sition of primitive lenses. In the classical definition of a lens, one
must often have the entire state of both the source and target of
the mapping to successfully propagate updates. Recent work has
examined ways to instead propagate an incremental update speci-
fication only through a lens, namely Delta Lenses [4, 5] and Edit
Lenses [10]. Edit Lenses in particular have some similarity with the

11

incremental Entity Framework in that the language of incremental
updates is tailored to the target domain; lenses over lists, for exam-
ple, operate on primitives that look like “insert element at index”
and “reorder elements”.

Despite copious amounts of research on schema evolution
(enough that it merits its own bibliography [13]), there is rela-
tively little work done on client-driven evolution scenarios in an
ORM setting. One notable exception is MeDEA, which consumes
schema evolution primitives against an Extended Entity Relation-
ship model and propagates them to structural changes against a
database [6]. These primitives are paired with directives on how
those primitives should affect the mapping to relational storage,
similar to some of the parameters to our SMOs (for example, the α
parameter to AddEntity). In MeDEA, one primarily has the choice
of directive from the three major mapping patterns (TPC, TPT, and
TPH), and so does not necessarily have the same level of flexibility
as our SMOs. In addition, MeDEA primarily concerns itself with
structural changes, and thus does not need to worry about the data-
level mappings and query translation for which Entity Framework
compiled views are needed.

Client-driven schema evolution through a mapping is similar in
spirit to the Demeter method and adaptive programming, in partic-
ular in the presence of a database [11]. Like in adaptive program-
ming, our work allows the developer greater flexibility in design
and to facilitate changes. With Demeter, one wites programs at a
higher level of abstraction and employs an encapsulation of opera-
tions called propagation patterns. One can evolve the structure or
behavior of a program by authoring refinements to those patterns,
and the mapping to code objects automatically adjusts itself.

6. CONCLUSION AND FUTURE WORK
This paper introduced the problem of incremental compilation of

object-to-relational mappings, to circumvent the NP-hard problem
of mapping validation. We presented algorithms to solve the prob-
lem for mappings expressed in the language of Microsoft’s Entity
Framework. And we reported on their implementation, showing a
huge speedup over full mapping re-compilation.

One area of future work is optimization of generated views. The
full Entity Framework compilation algorithm has several optimiza-
tion steps that it can consider [12]; e.g., it can leverage schema con-
straints to reduce costly operations like full outer joins into cheaper
operations, such as UNION ALL and left outer joins. Incremental
compilation already includes several of these optimizations inline;
for instance, it directly produces left outer joins and UNION ALL
operations without going through an intermediate step. It would
be worth exploring whether other optimizations are possible. In
our experiments, views generated by incremental compilation are
identical or very similar to those generated by a full compilation.
A carefully-designed comparative study of the differences between
these views for different types of mappings and SMOs, and their
effect on query and update performance, would be beneficial.

Another open problem is the expressiveness of the SMOs that
we are considering. As we mentioned in Section 3.4, it would be
interesting to develop a provably complete set of SMOs, one that
can generate all schemas and mappings supported by Entity Frame-
work. Ideally, it should be accompanied by an algorithm that, given
a schema and mapping, generates a sequence of SMOs that pro-
duces the same result. Usually, many such sequences are possible.
Does it matter which sequence it chooses? In particular, do some

sequences complete successfully while others do not, because an
SMO fails to validate? Is the efficiency of the resulting views af-
fected by the order of SMOs? Answers to these questions affect the
design of a solution and its implementation.

Acknowledgements
We are grateful for all the help we received from many members
of the EF team, too numerous to mention, but especially Alexander
Mineev, David Obando Chacon, Asad Khan, Tim Mallilieu, and
Adi Unnithan. Jorge Pérez is funded by Fondecyt grant 11110404
and VID grant U-Inicia 11/04 Universidad de Chile.

7. REFERENCES
[1] A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar. Anatomy of

the ADO.NET Entity Framework. In SIGMOD Conference, pages
877–888, 2007.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM TODS, 6(4):557–575, 1981.

[3] J. A. Blakeley, S. Muralidhar, and A. Nori. The ADO.NET Entity
Framework: making the conceptual level real. In ER Conference,
pages 552–565, 2006.

[4] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta- based
bidirectional model transformations: the asymmetric case. Journal
of Object Technology, 10:6: 1–25, 2011.

[5] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and
F. Orejas. From state- to delta-based bidirectional model
transformations: The symmetric case. In MoDELS, pages 304–318,
2011.

[6] E. Domínguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving
the implementation of isa relationships in eer schemas. In ER
(Workshops), pages 237–246, 2006.

[7] D. W. Embley and W. Y. Mok. Mapping conceptual models to
database schemas. In Handbook of Conceptual Modeling, pages
123–163. Springer, 2011.

[8] C. Farré, E. Teniente, and T. Urpí. Checking query containment with
the cqc method. Data Knowl. Eng., 53(2):163–223, 2005.

[9] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transformations: a
linguistic approach to the view update problem. In POPL, pages
233–246, 2005.

[10] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In POPL,
pages 495–508, 2012.

[11] L. Liu, R. Zicari, W. L. Hürsch, and K. J. Lieberherr. The role of
polymorphic reuse mechanisms in schema evolution in an
object-oriented database. IEEE Trans. Knowl. Data Eng.,
9(1):50–67, 1997.

[12] S. Melnik, A. Adya, and P. A. Bernstein. Compiling mappings to
bridge applications and databases. ACM TODS, 33(4), 2008. Best
Paper at SIGMOD 2007.

[13] E. Rahm and P. A. Bernstein. An online bibliography on schema
evolution. SIGMOD Record, 35(4):30–31, 2006.

[14] S. P. Reiss. An approach to incremental compilation. In SIGPLAN
Conference, pages 144–156, 1984.

[15] J. F. Terwilliger, P. A. Bernstein, and A. Unnithan. Automated
co-evolution of conceptual models, physical databases, and
mappings. In ER, pages 146–159, 2010.

[16] D. M. Ungar. The design and evaluation of a high performance
smalltalk system. Technical report, Berkeley, CA, 1986.

[17] EclipseLink. http://www.eclipse.org/eclipselink/.
[18] Hibernate. http://www.hibernate.org/.
[19] Oracle TopLink. http://www.oracle.com/

technology/products/ias/toplink/index.html.
[20] Ruby on rails. http://rubyonrails.org/.

12

APPENDIX
A. OTHER SMOS

In this section we describe in detail some SMOs that we only
mentioned in the body of the paper, and provide algorithms for
incremental compilation in every case.

A.1 Adding entity types: the TPH case
We consider the case in which we add a new entity type to a

hierarchy which is completely mapped as TPH (Table per Hierar-
chy). We assume that the entire hierarchy is stored in a single table.
The SMO for adding entities according to the TPH strategy is the
following:

AddEntityTPH(E,E′, T,Disc, dE , f),

where:

• E is the new entity type to be added, and E′ is the parent of
E in the hierarchy.
• T is a table in the store schema storing the full hierarchy to

which E′ belongs.
• Disc ∈ att(T) is an attribute in T that is used to store a

discriminator value for entity type E.
• dE a value used to identify entity type E (dE ∈ dom(Disc))
• f : att(E)→ (att(T)r{Disc}) is a 1-1 function that maps

the primary key of E to the primary key of T .

We require that the for every attribute A ∈ att(E) it holds that
dom(A) ⊆ dom(f(A)). Moreover, all the attributes in the set
att(T) r (f(att(E)) ∪Disc) must be nullable.

The semantics of AddEntityTPH(E,E′, T,Disc, dE , f) is
given by the following mapping fragment:

πatt(E)(σIS OF (ONLY E)(E)) = πf(att(E))(σDisc=dE (T)). (4)

Notice that all the attributes of E are mapped to the same table T .

A.1.1 Incrementally computing views
Algorithm 3 is used to compute the new query views for the new

entity type and incrementally recompute query views for the previ-
ous entity types. Algorithm 4 is used to incrementally recompute
update views.

A.1.2 Incrementally computing mapping fragments
To incrementally compute the mapping fragments we proceed as

follows. Let Σ− be the set of mapping fragments before the addi-
tion of the new entity, and let ϕE denote the mapping fragment (4).
For every mapping fragment ψ in Σ−, if the expression IS OF E′

occurs in ψ, then we replace it by IS OF (ONLY E′). Let Σ∗ be
the resulting set of mapping fragments. The new set of mapping
fragments is Σ = Σ∗ ∪ {ϕE}.

A.1.3 Incrementally validating mapping fragments
In order to validate the mapping fragments we need to perform

two checks. First we check that the addition of the new entity does
not violate foreign key constraints as follows:

1. if T has a foreign key constraint β → β′ to a table T ′ with
β ∩ f(att(E)) 6= ∅, then we check the query containment

πβ(QT) ⊆ πβ′(QT ′)

using the update viewsQT andQT ′ generated in the previous
sections.

Moreover we need to check that the value dE can be used as valid
discriminator value for E in attribute Disc, as follows:

2. Check that the query π∅(σDisc=dE (Q−T)) is unsatisfiable (al-
ways return the empty set).

A.2 Adding associations mapped to a
join table

For this case we consider the following SMO

AddAssocJT(A, E1, E2,mult, T, f)

where

• A is the name of the new association set.

• E1 and E2 are the endpoints of the association.

• mult is an expression that denotes the multiplicity of the as-
sociation.

• T is a table not previously mentioned in mapping fragments.

• f is a 1-1 function that satisfies the following. Assume that
α is the set of primary key attributes of E1 and β is the set
of primary key attributes of E2. Then either f(E1.α) is the
primary key of T , or f(E1.α) ∪ f(E2.β) is the primary key
of T , and both f(E1.α) and f(E2.β) are non-nullable sets
of attributes in T . Moreover, if T has foreign key constraints,
then these foreign keys are of the form f(E1.α) → α′ or of
the form f(E2.β)→ β′.

The semantics of the addition of the new association using the
above primitive is given by the following mapping fragment:

ϕA : πE1.α,E2.β(A) = πf(E1.α),f(E2.β)(T)

Let Σ− be the set of mapping fragments before the addition of the
new association. In this case the adaptation of mapping fragments
is simple: we just add ϕA to Σ−, thus the new set of mapping
fragments is Σ = Σ− ∪ {ϕA}.

In order to ensure that the new set of mapping fragments is valid
we essentially have to check that if T has associated foreign key
constraints, these constraints are not violated. We do this by check-
ing three conditions. In every condition Q−T ′ represents the update
view for table T ′ before the addition of the association.

1. If f(E2.β) is not part of the primary key of T , then check that
the multiplicity of the E2 end is not ∗.

2. If T has a foreign key of the form f(E1.α) → α′ to a table
T ′ with primary key α′, then check the containment

πα AS α′(σIS OF E1(E)) ⊆ πα′(Q−T ′).

3. If T has a foreign key of the form f(E2.β) → β′ to a table
T ′ with primary key β′, then check the containment

πβ AS β′(σIS OF E2(E)) ⊆ πβ′(Q−T ′).

A.2.1 Incrementally computing views
The construction of query views is simple. All existing query

views remain unaltered, and the query view (QA | τA) for the new
association set is defined as

QA : πf(E1.α) AS E1.α,f(E2.β) AS E2.β(T)

τA : A(E1.α, E2.β).

Similarly, for update views we only have to incrementally re-
compute the update view for table T . Let (Q−T | τ

−
T) be the update

view for T before the addition. The new update view is given by

QT : π(E1.α AS f(E1.α),E2.β AS f(E2.β)) pad att(T)(A)

τT : T (att(T)).

13

Algorithm 3 Query Views for AddEntityTPH(E,E′, T,Disc, dE , f)

1: For every entity type F with F 6= E, let (Q−F | τ
−
F) be the query view for F before the addition of E

2: let tE be a fresh attribute name
3: τE := E(att(E))
4: QE := πf(att(E)) AS att(E)

(
σDisc=dE (T)

)
5: anc := {F | F is a proper ancestor of E in the type hierarchy}
6: for all entity type F in anc do
7: QF := Q−F ∪ πf(att(E)) AS att(E), true AS tE

(
σDisc=dE (T)

)
8: τF := if (tE = true) then τE else τ−F
9: end for

10: for all entity type F not in anc ∪ {E} do
11: (QF | τF) := (Q−F | τ

−
F)

12: end for
13: return query views (QF | τF) for all entity types F

Algorithm 4 Update Views for AddEntityTPH(E,E′, T,Disc, dE , f)

1: For every table R, let (Q−R | τ
−
R) be the update view for R before the addition of E

2: for all expression γ = IS OF E in Q−T do
3: replace γ in Q−T by IS OF (ONLY E′)
4: end for
5: QT := Q−T ∪ π(att(E) AS f(att(E)),dE AS Disc) pad att(T)

(
σIS OF (ONLY E)(E)

)
6: τT := T (att(T))
7: for all update view (Q−R | τ

−
R) with R 6= T do

8: QR := Q−R
9: τR := τ−R

10: end for
11: return update views (QR | τR) for every relation R

E

E2

E1

=⇒E1

A
E2 0..1 1

E ′

E

Figure 1: RefactoringFigure 11: Refactoring

A.3 Refactoring
A diagram of the general case that we consider is shown in Fig-

ure 11. We want to go from the schema in the left where we have
entity types E1 and E2 and an association A between them, to the
schema in the right in which E2 is a subtype of E1. Although en-
tity type E2 has the same name in both sides of the figure, type E2

actually changes; in the schema at the right of the figure entity type
E2 should also contain the attributes of entity type E1. And the
same change happens with all the entity types that derive from E2.
We call all this process refactoring.

To formalize the process, assume that initially entity type E1 is
part of an entity set E , entity type E2 is part of an entity set E ′ and
that E2 is the root of the hierarchy of types to which it belongs (as
shown in Figure 11). To avoid confusions, for every type E that
is a descendant of E2 (including E2) we denote by att−(E) the
set of attributes of E before the refactoring, and by att+(E) the
set of attributes after the refactoring. Since after the refactoring E2

is a descendant of E1 we have that for every descendant E of E2

it holds that att+(E) = att−(E) ∪ att(E1). We assume in this
section that the name of the key attributes of E1 and of E2 are the
same. If that was not the case, the refactoring process should also
consider renaming the key attributes of E2 and its derived types.

For the refactoring process we consider the SMO

Refact(E1, E2,A)

where:

• A is an association between E1 and E2 given by a referential
constraint in the client side2 from the key attributes of E2 to
the key attributes of E1.

• The multiplicity of E1 in the association is 1 and the multi-
plicity of E2 is 0..1.

• E2 is the root of a hierarchy of entity types.

We assume that the application of Refact(E1, E2,A) has exactly
the effect shown in Figure 11 over the client schema. That is, after
Refact(E1, E2,A) we have that E2 is a descendant of E1 and all
the hierarchy is part of the entity set E (entity set E ′ is no longer
part of the client schema).

A.3.1 Adapting the mapping fragments
Before giving the details, let us show some of the particularities

of this case. Assume that before the refactoring Refact(E1, E2,A)
the set of mappings contains a mapping fragment of the form

πE1.α,E2.α(A) = πβ,γ(T), (5)
2Client-side referential constraints are similar to the foreign-key
constraint used in the store schema and are similarly enforced in
the client side.

14

Algorithm 5 Reconstruct Query Views for Refact(E1, E2,A)

1: For every entity type E, let (Q−E | τ
−
E) be the query view for

E before the refactoring.
2: desc := {E | E is descendant of E2 in the type hierarchy}
3: for all entity type E in desc do
4: descE := {F | F is a descendant of E}
5: for all expression γ = F (att−(F)) in τ−E with F ∈ descE

do
6: replace γ by F (att+(F)).
7: end for
8: τE := τ−E
9: QE := Q−E 1 Q−E1

10: end for
11: let tE be a fresh attribute name
12: anc := {E | E is an ancestor of E1 in the type hierarchy}
13: for all entity type E in anc do
14: QE := Q−E 1

(
Q−E2

× {true AS tE2}
)

15: τE := if (tE2 = true)then τE2else τ
−
E .

16: end for
17: for all entity type F not in desc ∪ anc do
18: (QF | τF) := (Q−F | τ

−
F)

19: end for
20: return query views (QE | τE) for all entity types E

where α is the set of key attributes of E1 and E2, and T is an arbi-
trary table in the store. Notice that after the refactoring association
set A is no longer part of the client schema. Thus, to deal with the
deletion of A we need to replace the mapping mapping fragment
(5) by

πE2.α,E2.α(σIS OF E2(E)) = πβ,γ(T).

Notice that the reference to A has been replaced by a single refer-
ence to entity typeE2, and both endpoints ofA have been replaced
by references to the key attributes of E2. Similarly, since after the
refactoring entity set E ′ in no longer part of the client schema, the
algorithm replaces in Step 1b) any reference to E ′ by E .

In general, the adaptation after Refact(E1, E2,A) works as fol-
lows. Assume that Σ− denotes the set of mapping fragments before
the refactoring. For every mapping fragment ψ in Σ− we have to
do the following:

1. Replace every occurrence of association setA in ψ by the ex-
pression σIS OF E2(E) and treat both endpoints of association
set A in ψ as the key attributes of entity type E2.

2. Replace every occurrence of entity set E ′ in ψ by entity set E .

3. Replace every occurrence of an expression IS OF (ONLY E1)
in ψ, by the expression

IS OF (ONLY E1) ∨ IS OF E2

Let Σ∗ be the resulting set, then Σ∗ is the set of mapping fragments
after the refactoring. The adaptation face does not need any addi-
tional validation. Since the mapping was valid before the refactor-
ing, it can be proved that the form in which we adapt the mapping
fragments gives a valid mapping.

A.3.2 Incrementally computing views
Algorithm 5 shows how query views should be recomputed. As

usual, for an entity type E we denote by Q−E | τ
−
E the query view

for E before the refactoring. For recomputing update views we es-
sentially have to follow the same strategy as for adapting mapping
fragments. That is, for every update view Q−R we construct QR
from Q−R as follows:

1. Replace every occurrence of association set A in Q−R by the
expression σIS OF E2(E) and treat both endpoints of associa-
tion set A in Q−R as the key attributes of entity type E2.

2. Replace every occurrence of entity set E ′ in Q−R by entity set
E .

3. Replace every occurrence of an expression IS OF (ONLY E1)
in Q−R , by the expression

IS OF (ONLY E1) ∨ IS OF E2.

15

