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ABSTRACT 
In this paper, we propose Mutualcast, a new delivery mecha-

nism for content distribution in peer-to-peer (P2P) networks. 
Compared with prior one-to-many content distribution ap-
proaches, Mutualcast achieves full utilization of the upload band-
widths of the peer nodes, thereby maximizing the delivery 
throughput. Mutualcast splits the to-be-distributed content into 
many small blocks, so that the more resourceful nodes may redis-
tribute more blocks, and the less resourceful nodes may redistrib-
ute fewer blocks. Each content block is assigned to a single node 
for distribution, which can be a content-requesting peer node, a 
non-content-requesting peer node, or even the source node. The 
throughput of the distribution is controlled by redistribution 
queues between the source and the peer nodes. Furthermore, Mu-
tualcast can be reliable and synchronous. Thus, it can be applied 
to file/software downloading, media streaming, real-time au-
dio/video conferencing, etc.   
Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed Applications; C.2.5 [Lo-
cal and Wide-Area Networks]: Internet.  
General Terms 
Algorithms, Design, Performance 
Keywords 
One-to-many content distribution, file distribution, software dis-
tribution, peer-to-peer networks. 
 

1. INTRODUCTION 
A number of applications such as software distribution, Internet 

TV/video streaming, video conferencing, multiplayer gaming, 
personal media distribution, and P2P web content duplication 
distribute content from one source node to many destination 
nodes (one-to-many content distribution). A network-level solu-
tion to efficiently distribute the content is IP Multicast [1], where 
a single packet transmitted from the source is duplicated at routers 
along a distribution tree rooted at the source node, and is thereby 
delivered to an arbitrary number of receivers. Though IP multicast 
is an efficient solution, its deployment is slow in the real world 
because of issues such as inter-domain routing protocols, ISP 
business models (charging models), congestion control along the 
distribution tree, security and so forth. As a result, the vast major-

ity of traffic in the Internet today is unicast based, where two 
computers directly talk to each other.  

Since IP multicast is not generally feasible, various approaches 
have been developed to let peer computers, instead of routers, 
distribute the content from the source. The general approach is 
application-level multicast (ALM) [4], where a multicast distribu-
tion tree is formed and overlaid on the existing network. Instead 
of using IP multicast, each peer computer in the distribution tree 
implements all multicast related functionalities including packet 
replication, membership management and content delivery on the 
overlaid network. Some sample systems include Scattercast [2] 
and Overcast [3], both of which use a single tree to distribute the 
content. Compared with letting the source node directly send its 
content to all other clients, the distribution tree approach reduces 
the network load of the source, thus achieving more efficient con-
tent distribution. In a distribution tree, the intermediate nodes 
redistribute the content, while the leaf nodes only receive the con-
tent. The upload bandwidths of the leaf nodes are not utilized for 
content distribution. CoopNet [5] and SplitStream [6] overcome 
this inefficiency by splitting the content into multiple stripes and 
distributing the stripes across separate multicast trees with disjoint 
interior nodes. Any peer computer could be an interior node in 
one of the multicast trees, and contribute to forwarding the con-
tent. FastReplica [17] and Bullet [18] investigate the issue of 
efficient and reliable replication of large files. If there are n nodes, 
FastReplica first partitions the file into n subfiles of equal size. 
Each subfile is then transferred to a different peer in the group, 
which is subsequently replicated and transferred to the other 
peers. In Bullet, peer nodes are organized into an overlay tree. 
Each node splits the content received from the parent into a dis-
joint set of blocks, with each set sent to a different child node. 
The child nodes then discover the missing blocks and the nodes 
that hold the missing blocks, and send requests to recover the 
missing blocks. A related scheme, using erasure coded blocks, is 
proposed in [19]. A practical P2P system has been implemented 
by BitTorrent [20] with sharing incentive so that each pair of 
peers roughly sends and receives an equal amount of content.  
These are just a few examples of the many recent schemes for 
application-level multicast. 

Although the above ALM distribution strategies are more effi-
cient than directly sending content from the source to the peers, 
they fail to achieve maximally efficient content distribution in the 
network. None of the above schemes adequately considers the 
differences in bandwidth between the peer nodes. They also fail to 
fully engage the bandwidth resources of all the peer nodes to dis-
tribute the content. 

Furthermore, the above ALM distribution strategies are either 
asynchronous or unreliable.  Systems such as CoopNet and Split-
Stream, which are used for synchronous delivery of content (e.g., 
streaming audio or video), while resilient, are unreliable in the 
sense that they cannot guarantee delivery of every byte.  Con-
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versely, systems such as FastReplica, Bullet, and BitTorrent, 
which are used for reliable file distribution, are asynchronous in 
the sense that content may arrive at each receiver at a different 
time and at a different rate.  Although there are prior multicast 
solutions that are both reliable and synchronous (as typified by 
SRM [21], RMTP [22], and the like [23]), in these prior solutions 
reliability and synchrony are achieved, ultimately, by slowing 
down the transmission to the rate of the lowest bandwidth link, 
which is a very inefficient solution in a heterogeneous environ-
ment. 

In this work, we propose Mutualcast, which is a maximally 
bandwidth-efficient mechanism for content distribution in the P2P 
network, and which furthermore is synchronous and can be reli-
able. In contrast to existing approaches, Mutualcast achieves the 
maximum possible throughput for its content by 1) engaging as 
many nodes as possible to distribute the content and 2) fully util-
izing the nodes' available upload bandwidths. Mutualcast also 
adjusts the content sending rate dynamically to match the maxi-
mum throughput under the prevailing network conditions. Mutu-
alcast is simple and flexible, with three distinct features. First, it 
splits the to-be-distributed content, be it a file or media stream, 
into many small blocks, and distributes each block separately.   
The blocks are pipelined for delivery, allowing for overall syn-
chronous communication.  Second, in a Mutualcast group, each 
block of content is assigned to a single peer node for redelivery. 
The assignment and redelivery can be done reliably, allowing for 
overall reliable communication. Third and most importantly, Mu-
tualcast employs an optimal bandwidth allocation strategy, which 
is implemented via redistribution queues between the source and 
the peer nodes. The redistribution queues accommodate the 
bandwidth differences between the peer nodes, and ensure maxi-
mum delivery throughput even if there are packet loss and trans-
mission jitter on network links. This ensures maximum efficiency.  
We have implemented Mutualcast for file/software distribution, 
e.g., distribution of software patches/update. Nevertheless, the 
Mutualcast protocol can be used to distribute other content, such 
as streaming media or multimedia collections. 

2. BACKGROUND AND PRIOR WORKS 
The one-to-many content distribution problem that we are con-

sidering is illustrated in Figure 1. The network consists of a 
source node s, which holds the content to be distributed, and mul-
tiple peer nodes Niti ,,2,1, = , each of which may or may not 
request a copy of the content. The number of peer nodes N is on 
the order of tens. Both the source node and the peer nodes are 
computers connected to the Internet through an internet service 
provider (ISP), using an ADSL, cable modem, campus, or corpo-
rate network link. We do not consider the case that the nodes are 
infrastructure nodes, such as the routers, on the backbone of the 

Internet. Our target is to distribute the content with maximum 
throughput to all the destinations.  

The simplest approach for a source node to distribute content in 
this setting is to let the source node send the content directly to 
the destination nodes. Though straightforward, the throughput of 
the content distribution is bounded by the upload bandwidth of 
the source node, which is usually fairly limited. Naturally, we 
want to enlist the help of the peer nodes, and use their upload 
bandwidths to aid the content distribution.  

Application-level multicast (ALM) [4] has attracted a lot of in-
terest recently. A few ALM systems, such as NICE [8], Scribe [9], 
Bayeux [10] and CAN-multicast [11], are designed for large-scale 
applications. Among them, NICE has its own node management 
mechanism, while Scribe, Bayeux and CAN-multicast are imple-
mented on structured peer-to-peer overlay networks such as Pastry 
[7], Tapestry [12] and CAN [13]. The main objective of these 
large-scale systems is to reduce/balance the link and node stress 
while limiting the delay and duplication [16]. On the other hand, 
when the system scale is relatively small (as shown in Figure 1), 
maintaining the group status is relatively simple. The focus is thus 
to manage the multicast routing such that the system is reliable, 
efficient and has low end-to-end delay.  

We next examine a few prior small-scale ALM approaches that 
are directly related to our Mutualcast framework. Scattercast [2] 
and Overcast [3] each form a single distribution tree. A sample 
distribution tree is shown in Figure 2(a). In this configuration, the 
source node sends the data to node t1, which forwards the data to 
nodes t2 and t3. The ALM distribution tree utilizes the upload 
bandwidth of the intermediate node t1, whereas the upload band-
widths of the leaf nodes t2 and t3 are not utilized. To better utilize 
the bandwidths of the peer nodes, nodes with higher upload 
bandwidths should be placed upstream, while nodes with lower 
upload bandwidths should be placed downstream.  

Both CoopNet [5] and SplitStream [6] stripe the content and 
distribute the stripes using separate multicast trees with disjoint 
interior nodes. CoopNet uses a centralized tree management 
scheme, while SplitStream relies on Pastry [7] to maintain the 
distribution tree. CoopNet further utilizes multiple description 
coding (MDC) and forward error correction (FEC) to protect from 
packet loss and node failure. The CoopNet/SplitStream configura-
tion with two application-level multicast trees is illustrated in 
Figure 2(b). The content is divided into two equal stripes. The 
first stripe is sent to node t1, which forwards the stripe to nodes t2 
and t3. The second stripe is sent to node t2, which forwards the 
strip to nodes t1 and t3. We notice that the system utilizes the up-
load bandwidths of nodes t1 and t2, but fails to utilize the upload 
bandwidth of node t3.  The systems are resilient but not reliable. 

FastReplica [17] is specifically designed for file download. For 
an N node P2P network, FastReplica distributes the file with N 
height-2 multicast trees with intermediate degree N-1. A sample 
FastReplica configuration of three peer nodes is illustrated in 
Figure 2(c). FastReplica distributes the file in two steps: the dis-
tribution step and the collection step. In the distribution step, the 
file is split into three subfiles and sent to nodes t1, t2 and t3 (along 
solid, dashed, and dotted lines), respectively. After the distribu-
tion step, the collection step kicks in. Each peer node forwards its 
subfile to the other peer nodes. All peer nodes are engaged in 
content distribution in FastReplica.  FastReplica is reliable, but 

 
Figure 1 One-to-many content distribution. 



because the distribution is split into two stages, it cannot be ap-
plied to synchronous applications such as streaming media.    

All of the above one-to-many content distribution approaches 
adapt to the capabilities of the peer nodes, i.e., their up-
load/download bandwidths, by establishing a suitable network 
topology. Nodes with high bandwidth are placed in the center of 
the distribution network, and are in charge of more content distri-
bution. Once the network topology is established, it is often fixed 
throughout the session. Such distribution strategy leaves the dis-
tribution network less flexible to adapt to changes in the network 
conditions, e.g., congestion of certain nodes/links.  

An alternative approach is to constantly update the network to-
pology by measuring the network characteristics during the ses-
sion. For instance, in End System Multicast [14], a protocol called 
Narada is developed to construct an overlay structure among par-
ticipating end systems in a self-organizing and fully-distributed 
manner. End systems gather information of network path charac-
teristics using passive monitoring and active measurements. Na-
rada continually refines the overlay structure as more network 
information is available. ALMI [15] is another protocol that can 
adapt its structure to the network condition. Each ALMI session 
has a session controller which constructs a shared tree. The tree is 
periodically re-calculated based on the end-to-end measurements 
collected by session members. Adapting the network topology to 
network conditions makes Narada and ALMI robust to network 
condition variations. Unfortunately, both Narada and ALMI may 
suffer from inefficiency or turbulence during the adjustment of the 
network topology.  

3. MUTUALCAST DISTRIBUTION  
3.1 Framework 

Mutualcast differs from the previous one-to-many content dis-
tribution approaches in that it uses a fixed network topology, but 
adapts by letting peer nodes with different capabilities distribute 
different amount of content. Mutualcast is simple to implement, 
with several distinct features. First, Mutualcast splits the to-be-
distributed content, be it a file or a media stream, into many small 
blocks. The number of blocks redistributed by a certain node can 
thus be proportional to the resource (upload bandwidth) of the 
node. The node with larger upload bandwidth may redistribute 
more blocks, and the node with smaller upload bandwidth may 
redistribute fewer blocks. Second, in a Mutualcast group, each 
block of content is assigned to a single node for redelivery. The 
node in charge of the redelivery can be a content-requesting peer 
node, a non-content-requesting peer node, or even the source 
node itself. Third, employing redistribution queues between the 
nodes, Mutualcast can effectively deal with dynamic changes in 
the network condition, and copes with variations in the upload 

bandwidth, packet loss and packet jitter on an ongoing basis.  An 
additional feature is that the network topology of Mutualcast is 
generic and fixed. Mutualcast relies on bandwidth reallocation to 
adapt to the network condition variations, which is preferred to 
adapting the network topology itself.   

The basic distribution framework of Mutualcast is as follows. 
The content being distributed is chopped into blocks Bj, 
j=1,2,…,M. For each block Bj, one unique node is selected to dis-
tribute the block to the rest of the peer nodes. Frequently, the 
node in charge of redistributing the block Bj is a peer node ti. In 
such a case, the source node sends one copy of the block Bj to the 
peer node ti, which then redistributes the block Bj by sending a 
copy of the block to the rest of the peer nodes. However, when the 
source node has abundant bandwidth resources, the node in 
charge of distributing the block Bj can be the source node s itself. 
In that case, the source node will directly send one copy of block 
Bj to each peer node ti.  

We show an example Mutualcast distribution network in Figure 
3. In this network, there are one source node s and four peer nodes 
t1, t2, t3 and t4. Among the peer nodes, the nodes t1, t2 and t3 re-
quest a copy of the content from the source node s. The node t4 
does not request a copy of the content. Nevertheless, it contributes 
its upload bandwidth to help distributing the content to the other 
peer nodes. When the block is assigned to the content-receiving 
peer nodes t1, t2 and t3 for redistribution, such as the blocks 1, 2, 3 
and 4, the block is first sent by the source node to the peer node in 
charge, which then forwards the block to the other two peer 
nodes. When the block is assigned to a non-content-receiving peer 
node t4 for redistribution, such as the blocks 5, 6 and 7, the block 
is first sent by the source node to the peer node t4, which forwards 
the block to the other three peer nodes. The source node may also 
choose to directly distribute the block, such as the block 8. In that 
case, the block is sent directly from the source node to the peer 
nodes t1, t2 and t3. 

Mutualcast chops the content into a large number of small 
blocks for distribution. The size of the Mutualcast block is a com-
promise between the granularity of distribution and the overhead 
required for identifying the block. During the implementation, it is 
preferable that the size of the Mutualcast block is a little bit less 
than the maximum transmission unit (MTU) of the network, so 
that each Mutualcast block can be sent as a single packet over the 
network. In the current work, we set the block size as 1KB.   
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Figure 2 Prior one-to-many content distribution schemes: a) Scat-
tercast/Overcast, b) SplitStream/CoopNet, c) FastReplica. 

 
Figure 3 Mutualcast content distribution network: an example.  



3.2 Mutualcast: distribution routes 
Mutualcast assigns each block to a certain node for redistribu-

tion. The number of blocks assigned to the peer node is propor-
tional to its capacity, which is evaluated by its upload bandwidth. 
The reason is the following. In terms of the contribution of a peer 
node to the network, it is the upload bandwidth of the peer node 
that counts. Thus, to efficiently distribute content in a Mutualcast 
network, we should make use of the upload bandwidths of the 
peer nodes as much as possible. We also notice that for a file dis-
tribution session, the primary parameter that governs the speed of 
the distribution is the throughput of the network link. If a client 
can choose multiple servers to serve it the file, it should choose 
the server that provides the fastest network throughput between 
the two. The other network parameters, such as round trip time 
(RTT), packet loss ratio, network jitter, are less relevant. In a 
networks composed of the end-user nodes, we may characterize 
the network by assigning an upload bandwidth constraint on each 
node, a download bandwidth constraint on each node, and a link 
bandwidth constraint between any two nodes or any two group of 
nodes.  However, the bottleneck is usually the upload bandwidths 
of the nodes. This is because in Mutualcast, a peer node sends 
content to multiple destinations. The output of the peer node thus 
splits among multiple receivers. As a result, the link bandwidth 
required between the two peer nodes is only a fraction of the up-
load bandwidth of the sending node, which usually does not be-
come the bottleneck. The required download bandwidth for a 
node to receive the content is always less than the total available 
upload bandwidths of all the nodes in the network divided by the 
total number of receiving nodes. In increasingly common net-
works, such as cable modem and ADSL networks, the total upload 
bandwidths of the end-user nodes are much smaller than the total 
download bandwidths. Even for user nodes on the campus net-
works or the corporate networks, the download bandwidth can 
still be much larger than the available upload bandwidth because 
the user may cap the upload bandwidth to limit participation in 
the P2P activity. In the following discussion, we will assume that 
the receiving nodes have enough download and link bandwidths 
to receive content from the Mutualcast. We will briefly discuss 
nodes of limiting download and link bandwidths in Section 3.7.  

Table 1 Link bandwidth and download bandwidth requirement for 
Mutualcast network of Figure 3. 

In the example of Figure 3, let us assume that the upload band-
widths of the peer nodes t1 and t2 are B; that of the peer node t3 is 
2B; that of the peer node t4 is 3B; and that of the source node is 
4B, where B is a unit of bandwidth. An optimal strategy of fully 
utilizing the upload bandwidths of the source and peer nodes is 
shown in Table 1. We will discuss the bandwidth allocation prob-
lem in the next section.  

If the Mutualcast group includes a source node, N1 content-
requesting peer nodes (N1>1 as otherwise the problem is trivial) 
and N2 non-content-requesting (but willing to participate) peer 

nodes, the Mutualcast network will distribute the content through 
N1 height-2 trees with intermediate degree N1-1 (with the interme-
diate node being one of the content-requesting nodes), N2 height-2 
trees with intermediate degree N1 (with the intermediate node 
being one of the non-content-requesting nodes), and one height-1 
tree with degree N1, all rooted at the source node. The network 
topology employed by Mutualcast bears some resemblance to the 
FastReplica scheme of [17]. Nevertheless, there are a number of 
distinct features of Mutualcast. First, Mutualcast does not separate 
the distribution and the collection steps. Instead, the content 
blocks are distributed continuously by the source and the peer 
nodes. Second, in Mutualcast, the amount of content being redis-
tributed by a particular peer is not fixed, but varies according to 
the capabilities (the upload bandwidths) of the peer nodes. Fi-
nally, Mutualcast may involve the source node and non-content-
requesting peer nodes in the redistribution of content.  

The Mutualcast network distributes the content through three 
routes: 1) through content-requesting peer nodes, 2) through non-
content-requesting peer nodes, and 3) directly from the source 
node. Each distribution method demands different amounts of 
network resource from the participating nodes. Again, the network 
resource of chief concern is the upload bandwidth consumed. To 
distribute a portion of content having bandwidth B in a Mutual-
cast network of N1 content-requesting peer nodes, the first distri-
bution route demands upload bandwidth B from the source node, 
and upload bandwidth (N1-1)B from each content-requesting peer 
node. The second distribution route demands upload bandwidth B 
from the source node, and upload bandwidth N1·B from each non-
content-requesting peer node. The third distribution route de-
mands upload bandwidth N1·B from the source node. In the first 
and the second routes, Mutualcast uses the upload bandwidths of 
the peer nodes (including the content-requesting peer nodes and 
the non-content-requesting peer nodes) to alleviate the upload 
bandwidth burden on the source node.  This has the effect of 
speeding up the maximum rate of content distribution.  

It is interesting to notice that for the same route, the amount of 
network resource consumed is independent of the individual up-
load bandwidth of each peer node. Thus we may consider the 
bandwidth allocation problem with respect to each route category 
instead of each peer node.  

3.3 Mutualcast: bandwidth allocation 
In the Mutualcast network, the most precious resource is the up-

load bandwidth of the source node, where the content originates. 
If the upload bandwidth of the source node is used up, we cannot 
further speed up content distribution, even if there are still peer 
nodes with available upload bandwidths. It is apparent that if the 
source node sends content blocks at rate B through the delivery 
links to all N1 content-requesting peer nodes, it will consume N1·B 
of the upload bandwidth of the source. On the other hand, if the 
source node sends content blocks at rate B to a peer node ti, which 
in turn distributes the blocks to the rest of the content-requesting 
peer nodes, only an amount B of the upload bandwidth of the 
source node is needed. Apparently, as long as there are more than 
one content-requesting peer nodes, the source node should for-
ward as many content blocks as possible to the peer nodes for 
redelivery. Between the content-requesting and non-content-
requesting peer nodes, the content-requesting peer nodes have a 
slight edge in efficiency, as the content blocks sent to the nodes in 

Receiving  Sending node, and Link Bandwidths Download 
node s t1 t2 t3 t4 Bandwidth

t1 0.83B - 0.5B B B 3.33B 
t2 0.83B 0.5B - B B 3.33B 
t3 1.33B 0.5B 0.5B - B 3.33B 
t4 B - - - - B 

Upload BW 4B B B 2B 3B  



the forward links are not wasted. As a result, among the three 
distribution routes outlined above, the most preferred route is 
route 1, followed by the route 2. Only when the source node still 
has upload bandwidth left, it may choose route 3 to distribute 
content directly to the peer nodes. 

We assume that the Mutualcast network consists of a source 
node of upload bandwidth Bs, N1 (N1>1) content-requesting peer 
nodes with average bandwidth B1, and N2 non-content-requesting 
peer nodes with average bandwidth B2. Applying the distribution 
route selection strategy above, the distribution throughput of the 
Mutualcast network, which is defined as the amount of content 
sent to the content-requesting peer nodes per second is: 
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This shows that before the upload bandwidths of all the peer 
nodes have been exhausted, the distribution throughput is limited 
only by the upload bandwidth of the source node. All N1 content-
requesting peer nodes receive content at the rate of the upload 
bandwidth of the source node. After the upload bandwidths of all 
the peer nodes have been exhausted, the distribution throughput 
becomes (1/N1)th of the sum of the upload bandwidths of the net-
work (N1B1+N2B2+ Bs) minus a small portion (N2B2/N1) wasted in 
the distribution through non-content-requesting peer nodes.  

3.4 Mutualcast: distribution route selection 
through redistribution queue 

With the priority outlined in Section 3.3, if we know the avail-
able upload bandwidths of the source and all the peer nodes, we 
may explicitly calculate the bandwidth allocated between any two 
peer nodes, and distribute content blocks accordingly. However, 
there is an even simpler method that works in a distributed fash-
ion. We may use a queue to estimate the bandwidth on any con-
nection link, and govern the selection of the distribution routes of 
the content blocks based on the status of the queues, thus achiev-
ing implicit bandwidth allocation without knowing the band-
widths of the network.  

The key idea is to establish a queue to buffer content being sent 
from one node to another, and to use the queue to control the 
speed of distribution between any two nodes. In our implementa-
tion of Mutualcast, the links between nodes are established via 
TCP connections. The redistribution queues are thus simply the 
TCP send and receive buffers. An additional advantage of using 
TCP is that the flow control, reliable data delivery and node leave 
events are all automatically handled by TCP.  Reliable data deliv-
ery in Mutualcast is inherited through these reliable TCP connec-
tions.  Congestion control in Mutualcast is likewise inherited. 

We call the TCP connection carrying blocks to be redistributed 
the forward link, and the TCP connection that carries blocks not 
to be further redistributed the delivery link. We establish one TCP 
connection (the delivery link) from each peer node to every other 
content-requesting peer node. We establish one TCP connection 
(the forward link) from the source node to every non-content-
requesting peer node, and two TCP connections (the forward and 

the delivery links) from the source node to every content-
requesting peer nodes. The selection of the distribution routes 
becomes finding available slots in the TCP connections. 

Let us now examine the workflow of the Mutualcast source and 
peer nodes. Each content-requesting Mutualcast peer node con-
sists of two threads, where one thread receives the content blocks 
from the delivery link, while the other thread receives the content 
blocks from the forward link and redistributes them to the rest of 
the content-requesting peer nodes through their delivery links. For 
the non-content-requesting peer nodes, only the forward link 
thread is operated. 

The operational flow of the forward link thread of a Mutualcast 
peer node (both content-requesting and non-content-requesting) is 
shown in Figure 4. In each iteration loop of the forward link 
thread, the peer node removes one content block from the incom-
ing forward link, and copies the block onto the outgoing delivery 
links of all the other content-requesting peer nodes. The thread 
does not remove another content block from the incoming forward 
link until it has successfully copied the last content block onto all 
the delivery links. That way, if the outgoing delivery links are 
blocked, possibly resulted from reaching the limit on the upload 
bandwidth of the peer node, the peer node will stop removing the 
content blocks from the incoming forward link, thus effectively 
regulate the receiving rate of the forward link to be 1/Mth of the 
upload bandwidth of the peer node, where M is the number of 
nodes that the content block is redistributed to, which is N1-1 for 
content-requesting peer node and N1 for non-content-requesting 
peer node.  

 
Figure 4 The forward link thread of the peer node. 

 
Figure 5 The delivery link thread of the peer node. 



The operational flow of the delivery link thread of the content-
receiving peer node is shown in Figure 5. For the content blocks 
arriving on delivery links from nodes other than the source node, 
the operation is simply to remove the content blocks from the link 
as soon as they arrive. For content blocks arriving on the delivery 
link from the source node, we put an additional constraint that we 
only remove content blocks from the delivery link when the re-
ceiving buffer length1 of the forward link from the same source 
node is above a certain threshold. The rationale is that the delivery 
link and the forward link are two separate TCP connections shar-
ing the same network path from the source to the peer node. The 
content blocks sent through the forward link have higher priority, 
as they are to be redelivered to the other content receiving peers. 
The receiving buffer length policy guarantees that the bandwidth 
of the forward link to be at least 1/Mth of the upload bandwidth 
before the delivery link from the source node to the peer node is 
activated. 

The operational flow of a Mutualcast source node is shown in 
Figure 6. For each content block, the source node selects one of 
the distribution routes based on the status of the redistribution 
queue. The route selection is based on the following order of pri-
orities. The redistribution by a content-requesting peer node has 
the highest priority. The redistribution by a non-content-
requesting peer node has the second highest priority. The distribu-
tion directly from the source node to all the content-requesting 
peer nodes has the lowest priority.  

As shown in Figure 6, the source node first checks if there is 
space available for the content block in any TCP connection of 
the forward link from the source node to the content-requesting 
peer node. If the send buffer of one of the TCP connections is not 
full, the content block is put into that TCP buffer to be sent to the 
corresponding content-requesting peer node, which then redis-
tributes the content block to the other content-requesting peer 
nodes through the corresponding delivery links. If no space on the 
forward links to the content-requesting peer nodes can be found, 
the source node checks the forward links to the non-content-
requesting peer nodes. If space is found available on a link, the 
content block is put into the TCP buffer for the corresponding 
link. If there is still no space available even on the links to the 
non-content-requesting peer nodes, the source node pursues the 
final distribution route, and checks if there is space for one block 
available in all the delivery links to all the content-requesting peer 
nodes. Combined with the receiving buffer length policy in Figure 
5, this ensures that the bandwidth of the forward link does not get 
squeezed by the traffic of the forward link, If space is found, the 
content block is replicated and put into the delivery link to each 
content-requesting peer node.  If there is no space on any of the 
distribution routes, the source node will wait for a short amount of 
time before it will retry to find an available route for the content 
block again. 

3.5 Operational analysis of Mutualcast: role 
of the redistribution queue 

Using redistribution queues and the above operational strategy 
for the peer and source nodes, Mutualcast handles anomalies such 

                                                                 
1 In socket programming, the receiving buffer length may be ob-

tained through ioctl() function call with parameter FIONREAD. 

as packet loss and network congestion during content distribution 
by adjusting the upload bandwidths of the nodes to achieve the 
maximum content distribution throughput by fully utilizing the 
upload bandwidth resources of the source and peer nodes. We 
explain the optimality of the Mutualcast in the following. 

The content blocks between any two nodes are distributed 
through a redistribution queue, which in our current implementa-
tion is a TCP connection with a certain size sending and receiving 
buffer. We notice from Section 3.4 that the Mutualcast source and 
peer nodes push as many content blocks as possible into the TCP 
connections, until the TCP sending buffer is full. The content 
blocks that are pending in the sending buffers of the TCP connec-
tions ensure that the network paths between any two peer nodes 
are fully utilized, even considering network anomalies such as 
packet loss and network congestion. If there are no packet losses, 
new content blocks will be sent to the destination peer nodes 

 
Figure 6 The operation flow of the source node. 



through the TCP connections. If there are packet losses or other 
network anomalies, TCP will try to recover from the network 
errors through retransmissions, and the content blocks that are 
pending in the TCP sending buffers will not be sent out. The con-
tent blocks that are pending in the TCP receiving buffer of the 
forward link ensures that the upload bandwidth of the correspond-
ing peer node is fully utilized. After the peer node pushes the last 
content block into the TCP sending buffer of the delivery links, it 
can retrieve the content block pending in the TCP receiving 
buffer, thus continue the activity of pushing blocks into the deliv-
ery links, and not wasting the upload bandwidth.  

In addition, the operational flows of Figure 4-6 ensure that the 
upload bandwidths of the source node and peer nodes are fully 
utilized, and the content distribution routes are selected in favor of 
the distribution through content-requesting peer nodes, then the 
distribution through non content-requesting peer nodes, and fi-
nally the direct distribution from the source node.  

When we use Mutualcast to distribute content to N1 content-
requesting peer nodes, if the upload bandwidth of the source node 
is low and the delivery links from the source to the peer nodes are 
not activated, then the content distribution throughput of Mutual-
cast will be the upload bandwidth Bs of the source node. In this 
case, the content is sent out of the source node at rate Bs, where 
the peer nodes have sufficient upload bandwidth to send content 
to all content-requesting peer nodes. Each content-requesting peer 
node is receiving content at the rate of Bs, as if the source node is 
only sending the content to it alone. If the upload bandwidth of 
the source node is high, and the delivery links from the source to 
the content-requesting peer nodes are activated, then the content 
distribution throughput of Mutualcast will be the sum of the up-
load bandwidths of the source and peer nodes, minus a small por-
tion of bandwidth wasted by sending content blocks to the non-
content-requesting peers for redelivery, all divided by the number 
N1 of content-requesting nodes. As a result, Mutualcast achieves 
the maximum content distribution throughput calculated in equa-
tion (1), no matter what the network resource (upload bandwidth) 
configuration of the network is. Mutualcast also easily adapts to 
the changes in network bandwidth through the redistribution 
queues of the TCP links. If a certain peer node slows down, the 
content blocks in its delivery links will move slowly, prompting 
the peer node to retrieve fewer content blocks from its forward 
link. This in turn causes the source node to send fewer content 
blocks to this now slowed down peer node, and to redirect the 
content blocks to other faster peer nodes. Alternatively, if a cer-
tain peer node speeds up, Mutualcast can likewise adjust by send-
ing more content blocks to it.  

3.6 Theoretical analysis of Mutualcast: maxi-
mizing content distribution throughput 

In this section we prove that Mutualcast is optimal for peer-to-
peer networks with constrained upload bandwidths.  Mutualcast 
achieves the maximum possible throughput in such networks; no 
other system can do better. 

Let the graph (V,E) represent the network, with V being the set 
of nodes and E being the set of links (directed edges).  Let s in V 
denote the source node and let T denote the subset in E of con-
tent-requesting nodes.  Let the remaining nodes be non-content-
requesting nodes.  Consider two types of capacities.  Let c(e) be 

the capacity of each edge e in E, and let cout(v) represent the up-
load bandwidth (output capacity) of each node v in V, such that 
for each node v, the sum of the capacities of the edges leaving v is 
at most cout(v). 

A cut between two nodes v1, v2 in V is a partition of V into two 
sets V1, V2 such that vi is in Vi, i=1,2.  The value of the cut is the 
sum of the capacities c(e) on the edges e from V1 to V2. 

It is well known that the maximum flow between s and any sink 
t in T achieves the minimum value over all cuts between s and t.  
Let Ct be the value of the maximum flow (the maxflow) between s 
and t.  Note that Ct = Ct(c) depends on the edge capacity function 
c:E→[0,∞). 

Definition.  The broadcast capacity between s and T is the 
minimum maxflow between s and any t in T, that is, C = mint Ct.  
Note that like Ct, C = C(c) depends on the edge capacity function 
c. 

Clearly, the broadcast capacity C is an upper bound on the 
maximum rate at which common information can be broadcast 
from s to all nodes in T.  Unfortunately, C is not achievable in 
general using multicast routing, as the example in Figure 7 illus-
trates. Although C can always be achieved using network coding 
[25], network coding requires the intermediate nodes to code, not 
merely route, their input packets to produce output packets. If 
only routing is used, the maximum throughput C0 from s to T via 
multiple multicast trees can be a factor of log N lower than C [26]. 
Moreover, determining the optimal collection of multicast trees 
(achieving C0) is NP-hard, while the tightest known bound on the 
gap between C0 and the throughput C00 ≤ C0 achievable in poly-
nomial time is relatively loose [27].  On the other hand, if there 
are no Steiner nodes in the network (a Steiner node is a node v for 
which Cv < C) then the broadcast capacity C can be simply 
achieved by greedily packing multiple multicast trees, as implied 
by Edmonds’ theorem [28]. 

Mutualcast, which is a particularly structured collection of mul-
tiple multicast trees, achieves the broadcast capacity C = C(c) for 
some edge capacity function c(e).  Furthermore, it achieves the 
maximum such broadcast capacity, as the following theorem 
shows. 

Theorem.  The Mutualcast throughput θ achieves the maximum 
possible broadcast capacity subject to the node output capacity 
constraints, that is, θ = maxc C(c) over all edge capacity functions 
c:E→[0,∞) such that for all nodes v, the sum of c(e) over all edges 
e leaving v is at most cout(v).  

Proof.  We have separate proofs for networks in which Bs ≤ Bs1 
+ Bs2 and networks in which Bs ≥ Bs1 + Bs2.  We prove the former 
with a cut separating s from V–s and we prove the latter with cuts 
separating V–t from t. 

 
Figure 7  Edges have unit capacity.  Broadcast capacity is two 
units.  Multicast can achieve only one unit of throughput. 



First assume Bs ≤ Bs1 + Bs2.  For any edge capacity function c, 
the broadcast capacity C(c) can be at most equal to the value of 
the cut separating s from V–s.  Since this is at most Bs ≡ cout(s), we 
have maxc C(c) ≤ Bs.  Of course, a throughput θ must satisfy θ ≤ 
maxc C(c).  On the other hand, according to (1), Mutualcast 
achieves throughput θ = Bs.  Hence  θ = maxc C(c) = Bs. 

Now assume Bs ≥ Bs1 + Bs2.  For any edge capacity function c, 
the sum of c(e) over all edges entering nodes in T must be at least 
N1 times the broadcast capacity C(c).  Thus we have (denoting U 
= V–T–s as the set of non-content-receiving nodes): 
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On the other hand, from (1) we have (denoting Bv = cout(v)): 
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Of course, θ ≤ maxc C(c), so N1 θ ≤ N1 maxc C(c) = N1 C(c*), 
where c* is an optimizing capacity function.  Thus 
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We are done if we can show that the inequality holds with equal-
ity.  Certainly this is true if U is empty.  To show this when U is 
not empty, we argue that for each u in U, .)(*

)(1
∑
∈

≤
uIne

u ec
N
B  Other-

wise, any flow through u to the N1 content-receiving nodes would 
be insufficient to use up the upload bandwidth Bu, whence we 
could achieve a higher throughput by re-allocating some capacity 
from edges between s and T to edges between s and U.  □ 

Corollary.  In a file download scenario, Mutualcast minimizes 
the maximum download time experienced by any content-
receiving peer node, and in a streaming media scenario, Mutual-
cast maximizes the minimum quality experienced by any content-
receiving peer node. 

Thus Mutualcast is ideal in situations where a distributed group 
of friends wishes to experience downloaded or streamed content 
at the same time with the same quality.  

3.7 Mutualcast: throughput under download 
bandwidth or link bandwidth constraints 

The above sections assume that the only bottleneck in Mutual-
cast is the upload bandwidths of the peer nodes. Here we give a 

brief discussion on the Mutualcast throughput under link band-
width or download bandwidth constraints.  

Consider a peer node i with upload bandwidth Bu
i. Let its link 

bandwidth to the content-receiving peer node j be Bl
ij, j=0,…,M-1, 

where M is the number of content-receiving nodes other than 
itself. The link bandwidth between node i and j will not be the 
bottleneck as long as:  / MBB i

u
ij

l ≥ . If the above inequality is not 
satisfied, the upload bandwidth of node i cannot be fully utilized 
in the current Mutualcast scheme. The effective upload bandwidth 
of node i becomes:  min' ij

l

j
i

u BMB = . This effective upload band-

width can be used in equation (1) to obtain the new Mutualcast 
throughput.  

When a content-receiving peer node has download bandwidth 
less than the throughput given in equation (1) (which is based 
only on the upload bandwidths), such a node will also be a bottle-
neck of Mutualcast. In such scenario, the overall Mutualcast 
throughput will be the minimum download bandwidth of all the 
content-receiving peer nodes. This is because all nodes have to 
wait for the slowest node to finish before they can resume deliv-
ery.  

An alternative strategy to the current Mutualcast implementa-
tion is to let the slow peer nodes skip certain content blocks, so 
that they will not slow down the receiving operation of the re-
maining peer nodes, which can still proceed at full speed. In a file 
download scenario, the slow peer nodes may be able to receive the 
skipped content after all the remaining nodes have finished 
downloading. In a streaming media scenario, the slow peer nodes 
may be able to receive their content with lower quality, if layered 
media coding is used. In comparison to the alternative approach, 
the current Mutualcast implementation maximizes the throughput 
of common information to all content-receiving peer nodes. It 
maximizes the minimum quality experienced by any content-
receiving peer node in a streaming media scenario, or minimizes 
the maximum download time experienced by any content-
receiving peer node in a file download scenario (for example, if a 
distributed group of friends wishes to experience downloaded or 
streamed content at the same time with the same quality).  We 
believe in most applications, this is the preferred solution.  

4. EXPERIMENTAL RESULTS 
A Mutualcast file distribution solution has been implemented. 

The solution includes a sender module run by the source node and 
a receiver module run by each of the peer nodes. To verify the 
performance of Mutualcast, we set up a Mutualcast content deliv-
ery network with one source node and four content-receiving peer 
nodes. Each node is attached with an upload bandwidth gag which 
may control its upload bandwidth. A media file of size 16MB is 
then broadcasted via Mutualcast from the source to all the peer 
nodes.  

In the first experiment, we evaluate the overall effectiveness of 
the Mutualcast system. The upload bandwidths of the source and 
the content-receiving peer nodes are kept constant throughout the 
entire experimental session. We then compare the theoretical 
broadcast capacity versus the actual Mutualcast throughput, which 
is measured by dividing the size of the distributed content by the 
time of distribution. A total of four different experiments have 
been conducted with difference source and peer node bandwidths, 



and the results are shown in Table 2.  With just the simple imple-
mentation of the Mutualcast sender and receiver components ac-
cording to Figure 4-6, the actual Mutualcast throughput is re-
markably close to the analytical broadcast capacity of the peer-to-
peer network. 

Table 2 The throughput of content distribution: the analytical 
broadcast capacity vs. actual Mutualcast throughput 

No.  Upload Bandwidths (kbps) Throughput (kbps) 
 S t1 t2 t3 t4 Analyti-

cal 
Mutual-

cast 
1 500 1000 1000 750 500 500 500.08 
2 1000 1000 1000 750 500 1000 999.43 
3 500 250 1000 750 500 500 499.95 
4 1000 750 1000 750 500 1000 1001.2 

In the second experiment, we further demonstrate the capability 
and the flexibility of the Mutualcast network in response to net-
work change. In the experiment, the upload bandwidths of the 
source and the peer nodes may randomly adjust every second with 
one of three modes: 50% upward, 33% downward, or constant, all 
with a 1/3 probability. The instantaneous upload bandwidths of 
the source node and the four content-receiving peer nodes are 
shown in Figure 8 a)-e), where the horizontal axes denote elapsed 
time in seconds, and the vertical axes denote the upload band-
widths in kbps. In Figure 8f), we again compare the theoretical 
broadcast capacity (shown with a solid line) versus the actual 

Mutualcast throughput (shown with an ‘x’), which is measured by 
counting the number of bytes delivered every second. The hori-
zontal axis is again the timeline, and the vertical axis is the 
throughput in kbps. It is clearly demonstrated that the Mutualcast 
not only can achieve the analytical broadcast capacity, but also 
can achieve the capacity under complex and varying network 
conditions. By using the TCP sending and receiving buffer as a 
redistribution queue, Mutualcast can adapt to changing network 
conditions by flexibly assigning more content blocks to nodes 
experiencing better network conditions at the time. It achieves the 
broadcast capacity throughout the content distribution session. 

5. CONCLUSIONS 
A simple yet flexible content distribution approach called Mu-

tualcast is developed in the paper. Mutualcast splits the to-be-
distributed content into many small blocks, and assigns the distri-
bution of each content block to a single node, which can be a 
content-requesting node, a non-content-requesting node or the 
source node. Nodes with more upload bandwidth can distribute 
more blocks, and nodes with less upload bandwidth can distribute 
fewer blocks. TCP connections with their sending and receiving 
buffers are used by Mutualcast to control the throughput of the 
distribution, and ensure that the upload bandwidths of the all the 
peer nodes and source node are fully utilized even with network 
anomalies such as packet losses and delivery jitters. Though sim-
ple, Mutualcast achieves the broadcast capacity of the peer-to-
peer network.  
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Figure 8 Mutualcast throughput analysis. The horizontal axis records the time (in seconds), and the vertical axis records the bandwidth 
(in kbps). The figures are: a) throughput of the source node s, b)-e) throughput of the content-receiving peer nodes t1-t4, and f) the ana-
lytical  throughput (marked with a solid line) and the actual  throughput (marked with an ‘x’).  
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