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ABSTRACT

We develop a method to help discover manipulation attacks in pro-
tocol implementations. In these attacks, adversaries induce honest
nodes to exhibit undesirable behaviors by misrepresenting their in-
tent or network conditions. Our method is based on a novel com-
bination of static analysis with symbolic execution and dynamic
analysis with concrete execution. The former finds code paths that
are likely vulnerable, and the latter emulates adversarial actions that
lead to effective attacks. Our method is precise (i.e., no false pos-
itives) and we show that it scales to complex protocol implemen-
tations. We apply it to four diverse protocols, including TCP, the
802.11 MAC, ECN, and SCTP, and show that it is able to find all
manipulation attacks that have been previously reported for these
protocols. We also find a previously unreported attack for SCTP.
This attack is a variant of a TCP attack but must be mounted differ-
ently in SCTP because of subtle semantic differences between the
two protocols.

Categories and Subject Descriptors

C.2.2 [Computer communication networks]: Network protocols—protocol
verification

General Terms
Security, Reliability

1. INTRODUCTION

That network protocols can be vulnerable to attacks is well-known.
By sending unexpected or malformed messages that exploit bugs
or inadequate defenses (e.g., buffer overflows) in protocol imple-
mentations, adversaries can crash or hijack victims. Over time, re-
search has led to a good understanding of such attacks and devel-
oped general tools and techniques to detect and mitigate them [4,
16, 20, 22]. Examples include automatically generating vulnerabil-
ity signatures to filter malicious inputs and tracking the influence
of tainted inputs on critical segments of the code.

In this paper, we consider a different and a more subtle class of
attacks that we call manipulation attacks. In these attacks, the goal
of the adversaries is not to crash or hijack the honest participants
but to induce other behaviors that benefit the adversaries or harm
the honest participants. Such attacks have been identified in several
common protocols. Savage et al. found three different ways (e.g.,
by acknowledging packets even before they are received) in which
an adversarial TCP receiver can manipulate the sender into send-
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ing at a rate faster than that dictated by congestion control dynam-
ics [24]. Ely et al. showed that an ECN (Explicit Congestion Notifi-
cation) receiver can manipulate the sender into ignoring congestion
by simply flipping a bit in the packet headers [11]. Manipulation
attacks that starve the honest participants have been identified for
the 802.11 MAC protocol as well [1].

Instead of relying (only) on implementation bugs in protocols,
manipulation attacks leverage the fact that individual participants
do not have complete knowledge of network conditions (e.g., de-
gree of congestion) or other participants’ intent. Adversaries can
exploit this incomplete knowledge by misrepresenting network con-
ditions or their own intent in their messages to honest participants
and can thus induce undesirable behavior in them. The induced be-
havior may be valid in certain circumstances but incorrect under
current circumstances; for instance, increasing the sending rate is
desirable when there is no congestion but undesirable otherwise.
Often, adversaries may need to repeat such manipulations several
times in order to achieve their goals such as performance gains for
themselves or starving the honest participants.

Our long-term goal is to make protocols robust to manipulation
attacks. In this paper, we focus on developing a method to help de-
velopers (and researchers) (a) identify whether a protocol imple-
mentation is susceptible to manipulation attacks, and (b) compute
the sequence of messages that can be used to mount the attack.
To our knowledge, these capabilities do not exist today; all manip-
ulation attacks mentioned above were discovered through manual
inspection of protocols by researchers. Techniques developed for
other kinds of protocol vulnerabilities are unsuitable for detecting
manipulation attacks. For instance, vulnerability signatures for de-
tecting manipulating messages are hard to develop because such
messages can be valid under certain circumstances.

Discovering manipulation attacks is challenging. Whether a sin-
gle packet is successful in manipulating the honest participant to-
wards a goal (e.g., increasing connection throughput) depends upon
the goal itself, the network topology and traffic, and the internal
protocol state (e.g., connection state, number of outstanding pack-
ets) at the honest participant. A brute force search of the entire
space of packets, goals, topologies, traffic, and protocol states is
clearly intractable. Even worse, successful attacks may require re-
peated manipulations where each input packet must leave honest
participants in a valid state to continue execution, yet steer them to-
wards the adversary’s goal. This requirement significantly increases
the search space.

To reduce the search space, we assume that developers specify
goals as well as topologies and traffic. We posit that developers
can provide these inputs based on their expertise and intuition. For
instance, specifying the goal involves identifying a resource that
may be vulnerable to manipulation (e.g., bandwidth) and protocol
actions at honest participants related to that resource (e.g., sending
a packet). Developers can iteratively explore many possible goals
with varying topologies and traffic.



1 void ack_received(char *buffer) {

2 int num_pkts_to_send;

3 if (num_pkts_in_flight == 0)

4 return;

5 num_pkts_in_flight--;

6 num_pkts_sent++;

7 int ecn_bit = ((packet *)buffer)->ecn_bit;
8

9 //if ecn bit is zero, send two
10 //packets in response else send none
11 if (ecn_bit == 0)

12 num_pkts_to_send = 2;
13 else

14 num_pkts_to_send = 0;

15 if (num_pkts_to_send > 0)

16 send_pkts () ;

(a) ECN Sender

1 void pkt_received(char *buffer)

2 int ecn_bit = ((packet *)buffer)->ecn_bit;
3 packet *ack_buffer;

4 num_pkts_rcvd+t;

5 ack_buffer = create_ack (buffer);
6

7 //if the ecnbit is non-zero,

8 //set it in the ack header

9 if (ecn_bit != 0) {

10 ack_buffer->ecn_bit = ecn_bit;
11 }

13 //send the ACK to the sender

14 send_ack (ack_buffer,

15 ((packet *)buffer)->src);

16 }

(b) ECN Receiver

Figure 1: Code for a simplified version of the ECN protocol

Even with these inputs from developers, the space of possible
manipulation attacks, defined by the space of possible messages
and internal protocol state, is too large to allow for an exhaustive,
blind search. To explore this space in a scalable and precise manner,
we leverage two complementary program-analysis techniques.

The first is symbolic execution [15], a general method for static
analysis of code, which we use to infer conditions on an incoming
message and on the current state that may lead an honest participant
to execute actions consistent with the adversaries’ goals.

Because static analysis of complex code is inevitably imprecise,
we combine it with a form of concrete, system-level testing. We run
the protocol implementation and, based on information from sym-
bolic execution, modify messages such that the honest participant is
repeatedly induced to exhibit the identified behaviors. By compar-
ing protocol runs with and without modifications, developers can
determine if manipulation attacks can succeed. Additionally, the
sequence of modifications provides information on how the attack
was mounted and can guide the development of fixes.

While other researchers have used one or both of these tech-
niques to find software bugs [6, 13, 28, 30], current approaches
aim to identify a single bad input. We combine these techniques in
a qualitatively different way, using symbolic execution to approx-
imate single inputs that can manipulate the honest participant in
its current state, and then using concrete execution to search for a
sequence of inputs that constitutes an effective attack. Further, we
adapt these techniques, sometimes using domain-specific optimiza-
tions and appropriately managing the trade-off between precision
and scalability, to be able to handle full-fledged implementations
of complex protocols such as TCP and SCTP [25].

We implement our method in a tool called MAX (Manipulation
Attack eXplorer) and demonstrate its efficacy by applying it to im-
plementations of TCP, the 802.11 MAC, ECN, and SCTP. For the
first three protocols, we show that MAX is able to find and quan-
tify the impact of all the manipulation attacks that researchers have
discovered manually. We show that SCTP too is vulnerable to a
manipulation attack, a finding that we believe has not been previ-
ously reported in the literature. While this attack is similar to one of
the attacks on TCP, the way it is mounted in SCTP is different be-
cause of different receiver window semantics in the two protocols.
MAX’s analysis recognizes these semantic differences and infers the
correct manipulation method for each protocol. We also show how
MAX can not only find manipulation attacks but can also help de-
velopers gain confidence that their implementations are robust to
certain attacks or that their protective measures are effective.

While these results are promising, our work represents only a
first step towards a general tool for finding manipulation attacks. In
the future, we plan to investigate the generality of MAX and its tech-
niques by applying it to other, less well-explored protocols. Such
an investigation will also help understand the prevalence of vulner-
abilities to manipulation attacks in protocol implementations.

2. DEFINING MANIPULATION ATTACKS

Consider a protocol with two or more participants. The honest
participants correctly follow the protocol, but adversarial partici-
pants may deviate arbitrarily. A manipulation attack has the fol-
lowing two characteristics:

1. Adversaries induce the honest participants to change behav-
ior in a way that benefits adversaries or harms the honest
participants.

2. The induced behavior is actually protocol-compliant under
some circumstances and network conditions.

These characteristics rule out attacks where, for example, a rogue
wireless node unilaterally jams the medium or where crashes are
induced in honest participants. These attacks are important as well
but are not the focus of our work; techniques exist to detect and
mitigate them (e.g., [4, 6, 20, 22]).

Because they are subtle and indirect, most manipulation attacks
have a third characteristic:

3. A single manipulative act is insufficient to mount an effec-
tive attack. Instead, the manipulation must be repeated many
times in order to have a noticeable impact.

We use the ECN protocol as a running example in this paper, to
illustrate a simple manipulation attack and the conceptual ideas be-
hind our approach. ECN enables the network to notify the senders
of congestion. When a packet encounters congestion, the congested
router sets the ECN bit in the header of the packet. The receiver
copies the ECN bit into the acknowledgment packet that it sends
out. The sender becomes aware of the congestion when it receives
an acknowledgment with the ECN bit set, and it can react by reduc-
ing its sending rate.

Figure 1 shows snippets of code for a simplified version of ECN
that we wrote for illustrative purposes. The sender (Figure 1a), on
receiving an acknowledgment from the receiver, checks the ECN
bit in the header. If it is set, the sender does not send out any new



packets. If the ECN bit is not set, which indicates that there is no
congestion in the network, the sender sends two new packets to
the receiver. The receiver (Figure 1b), on getting a packet from the
sender, obediently reflects the ECN bit from the packet header into
the acknowledgment packet that it sends back to the sender.

Ely et al. [11] report a manipulation attack on ECN in which the
receiver is adversarial, while the sender is honest. The adversar-
ial receiver never sets the ECN bit, irrespective of what it receives
from the routers, thus manipulating the sender into believing that
the network is not congested (even if it is). As a result, the sender
sends two new packets upon receiving each acknowledgment. This
behavior results in increased throughput for the receiver at the ex-
pense of other flows traversing the congested router.

The attack above exhibits all three characteristics of a manipula-
tion attack. The adversarial ECN receiver manipulates the behavior
of the honest sender for its own benefit. Further, this manipulated
behavior is protocol-compliant under some circumstances, namely
when there is no congestion. For this reason, the attack is hard for
the ECN sender to detect. Finally, the manipulation must be repet-
itively performed to have a noticeable impact on throughput. Mod-
ifying a single message only causes two extra messages to be sent,
which will not improve the receiver’s throughput by much.

A number of manipulation attacks have been manually discov-
ered in other widely used network protocols as well. For example,
an adversarial TCP receiver can manipulate an honest sender into
sending faster and obtain an unfair share of bandwidth, by send-
ing duplicate acknowledgments (DupACK spoofing), by acknowl-
edging individual bytes rather than whole packets (ACK division),
or by acknowledging packets before they are received (Optimistic
ACKs) [24]. 802.11 implementations have been found to be vulner-
able to manipulation attacks that prevent honest nodes from gaining
access to the channel and thus starve them, by setting large values
in the duration field in packet headers [1].

3. FINDING MANIPULATION ATTACKS

Our goal is to enable systematic exploration of manipulation
attacks in protocol implementations. Although analyzing abstract
protocol specifications is easier, we analyze real implementations
because inadvertent programming errors can produce vulnerable
implementations even if specifications are robust. Further, speci-
fications of complex protocols are typically imprecise and, because
different implementations make different design choices, each may
have a different set of potential vulnerabilities. For instance, not all
manipulation attacks for TCP [24] were successful for all imple-
mentations. Analyzing implementations allows us to uncover both
vulnerabilities in a protocol’s specification and vulnerabilities cre-
ated by specific implementation choices.

3.1 Challenges and Approach

A tool that only takes the protocol implementation as input, and
automatically outputs all possible manipulation attacks on it, would
need to search a very large space. This space includes all possible
goals of manipulation (e.g., starving honest participants or induc-
ing them to send more traffic), all possible network configurations
(i.e., topology and traffic workload) as well as all possible combi-
nations of message contents and internal protocol state (because the
protocol behavior is a function of both these factors).

We reduce this search space in two ways. First, we require the
tool’s user (a developer or a researcher) to specify the manipula-
tion goal. This involves specifying a protocol action (e.g., send-
ing a packet, in the ECN example) whose repeated execution could
lead to a manipulation attack. Second, we require the user to spec-
ify the network configurations under which the potential for a ma-

nipulation attack should be explored. While it may be possible to
automate the search of goals and network configurations, we leave
this to future work. Our approach leverages the intuition and under-
standing that developers have of the likely protocol actions that can
be exploited and the likely network conditions under which manip-
ulations can succeed.

With these inputs, we are left with the problem of exploring the
space of possible packet inputs and protocol internal states. This
problem poses two challenges. The primary one is scalability—the
space of possible manipulations is huge. Adversaries interact with
honest participants by sending packets, and there are in principle
212000 hossible ways of crafting a 1500-byte packet. Even if we
focus only on protocol headers, there are 2'°0 possibilities for a 20-
byte header. Further, the exact contents of a packet that successfully
manipulates an honest participant may depend on the (dynamically
varying) state of the participant.

This intractably large space of possibilities implies that blind ex-
haustive or random search is unlikely to be effective. We thus lever-
age program semantics to efficiently search the space. In particular,
we use symbolic execution, a static program analysis technique, of
the protocol implementation to determine the set of packets that
may induce honest participants to execute actions of interest, as
a function of their current state. This set is determined statically,
without actually running the protocol, and is represented in a con-
cise, symbolic form. Packets that are not in the set are not consid-
ered further in our approach, allowing us to dramatically reduce the
search space for manipulation attacks.

The second challenge is precision. In principle, symbolic execu-
tion alone can identify manipulation attacks. In practice, however,
static analysis of complex code can be imprecise. Real protocol im-
plementations can contain tens of thousands of lines of code with
many low-level constructs. For instance, the Linux implementation
of TCP that we analyze is over 14K lines of C code with many
pointers and loops that are hard for static analysis to handle pre-
cisely. Imprecision in the analysis can lead, for instance, to false
positives (i.e., attack strategies that do not work in practice) that
may render the tool unusable. Further, unlike crash attacks, being
able to reach an action of interest once does not imply that an ef-
fective manipulation attack exists. Instead, the adversary may need
to repeatedly drive honest participants to execute certain actions.
That ability depends on complex, dynamic factors (e.g., network
congestion) that are hard to capture statically. Finally, even if a ma-
nipulation can be successfully repeated, it may or may not have a
significant enough impact compared to an honest run of the proto-
col to be considered a success. It is difficult for static analysis to
quantify the impact of an attack.

We address the limitations of symbolic execution above by com-
bining it with adversarial concrete execution. We run the proto-
col implementation and use information from symbolic execution
about possible packet manipulations, along with information about
the current execution state, to perform manipulations that induce
honest participants to execute actions of interest repeatedly. This
produces an end-to-end demonstration of manipulation attacks, a
catalog of one or more sequences of packet manipulations that led
to the attack, and a quantification of the impact of these attacks.
Furthermore, concrete execution ensures that no false positives are
reported. However, as we discuss later, there can be false negatives.

3.2 Method Overview

We now describe our method for systematically exploring ma-
nipulation attacks. We focus on its conceptual elements and leave
to §4 the details of a tool that embodies our ideas.



We assume that one or more adversaries manipulate an hon-
est participant, called the target, through their protocol messages.
While we allow for multiple (possibly colluding) adversaries, we
currently allow only one target and leave to future work extensions
to handle multiple targets. There can be other (non-target) honest
participants in the network.

We also assume that the attack is launched by repeated manipu-
lations of individual messages. To our knowledge, this is true of all
manipulation attacks that have been uncovered to date. In theory,
however, more complicated manipulation attacks are possible. For
instance, they may require a specific sequence of distinct manipu-
lations or may require that a manipulation occur at a specific time.
We leave the exploration of these variants to future work.

The main input that we require from the users of our tool is a
set of vulnerable statements representing the actions of interest for
achieving a manipulation goal. Our approach is agnostic to the spe-
cific actions represented by these statements. We expect that users
would typically first identify a resource (e.g., memory, network
bandwidth, etc.) whose vulnerability they are interested in explor-
ing and then use code points where these resources are allocated
as vulnerable statements. For example, if manipulation of memory
allocation is of interest, statements that allocate memory would be
deemed vulnerable. Similarly, for network bandwidth, statements
where packets are transmitted or where variables that control the
sending rate are updated would be deemed vulnerable. The vulner-
able statements are by themselves benign and are likely executed
frequently even in the absence of attacks. Thus, unlike assertion
failures, their mere reachability does not signify the possibility of a
successful attack.

We test if adversaries can repeatedly drive the target to these
vulnerable statements and if that significantly impacts the proto-
col performance compared to scenarios without manipulation. To
quantify the impact of an manipulation attack, users specify a set
of metrics defined on the resource of interest. For a resource like
network bandwidth, this may simply be the number of times the
vulnerable statement (that transmits a packet) is executed. For a re-
source like memory, this may be the cumulative number of bytes
allocated during the execution.

We accomplish our goal of finding manipulation attacks by using
the two analysis techniques discussed earlier, in a way that exploits
the strengths of each. Symbolic execution prunes the search space
dramatically by providing a set of constraints on network messages
and the target’s state that must be satisfied to reach the vulnerable
statements. Adversarial concrete execution exploits knowledge of
the target’s current state to repeatedly solve these constraints and
observe if an effective manipulation attack can be mounted. We
describe our use of these techniques in more detail below.

3.2.1 Path exploration using symbolic execution

Symbolic execution [15] simulates the execution of code using
a symbolic value Gy to represent the value of each variable x. As
the symbolic executor runs, it updates the symbolic store that main-
tains information about program variables. For example, after the
assignment y = 2*x the symbolic executor does not know the ex-
act value of y but has learned that 6y = 20y. At branches, sym-
bolic execution uses a constraint solver to determine the value of
the guard expression, given the information in the symbolic store.
The symbolic executor only explores the branch corresponding to
the guard’s value as returned by the constraint solver, ensuring that
infeasible paths are ignored. If there is insufficient information to
determine the guard’s value, both branches are explored. In this
way, a tree of possible program execution paths is produced. Each

path is summarized by a path condition that is the conjunction of
branch choices made to go down that path.

We use symbolic execution on the target’s implementation to ex-
plore possible paths that lead from message reception to vulnerable
statements. Consider the ECN sender code in Figure la and as-
sume that statement send_pkts () at line 16 is the sole vulnerable
statement. Of all the possible paths through this code, symbolic ex-
ecution determines that there is only one feasible path that reaches
this statement, with the following associated path condition:

Gnumipktsiiniflight 760 & Gecnﬁbit = 0 & Gnumipktsitoisend > 0

This path is the one that takes the else branch at line 3, the then
branch at line 11, and the then branch at line 15. All other paths
either can never lead to the vulnerable statement (e.g., the then
branch at line 3) or are infeasible. For example, the else branch
at line 11 sets num_pkts_to_send to 0, which prevents the then
branch at line 15 from being taken.

We convert each path condition into an input constraint, a pred-
icate on symbolic values (i.e., on the incoming protocol message
and internal protocol state) that is sufficient for execution to go
down that path. This conversion is straightforward given the sym-
bolic store. For the path condition described above for the ECN
example, the input constraint is:

Gnumipktsiiniflight 7é 0& Obuffer—>ecn_bit = 0

3.2.2  Attack emulation using concrete execution

We use the input constraints derived above to emulate manipu-
lation attacks using concrete execution of the protocol implemen-
tation on a network configuration specified by the user. During this
execution, we intercept each protocol message from an adversary
that is directed to the target. An adversarial module then attempts
to modify the message so as to drive the target to execute a vulner-
able statement. We use a constraint solver to find concrete values
for the message fields that, given the current internal protocol state
of the target, satisfy one of the input constraints.

Per the input constraint above for ECN, whenever the sender’s
internal state has a nonzero value for num_pkts_in_flight, set-
ting buffer->ecn_bit to 0 will drive the sender to execute the
vulnerable statement. The adversarial module performs this mod-
ification and passes it to the target’s message handling function.
The control is then transferred to the protocol implementation to
process this message.

By intercepting every message from the adversary to the target
and using the adversarial module to modify it, our concrete exe-
cution attempts to repeatedly drive execution to a vulnerable state-
ment. The user can determine, using the output values of the spec-
ified impact metrics and by comparing with a non-adversarial run,
whether the implementation is vulnerable to a manipulation attack.

4. MAXDESIGN AND IMPLEMENTATION

We now describe our tool, called MAX, which uses the approach
above to find manipulation attacks in protocol implementations writ-
ten in C. Program analysis in C is challenging since the language
has many low-level constructs, but we choose it because it is widely
used in real-world protocol implementations.

MAX consists of three main components (Figure 2). The path ex-
plorer uses static analysis to find feasible paths and constraints that
lead to vulnerable statements. The adversarial module generator
uses the results from the path explorer to generate an adversarial
module, which mimics the behavior of an adversary attempting to
launch a manipulation attack. The attack emulator runs the proto-
col implementation using the adversarial module.
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Figure 2: Overview of MAX. The dashed inputs are optional.

4.1 Path Explorer

The path explorer takes as input the protocol implementation of
the target and along with the vulnerable statements and the func-
tion(s) that represents the starting point for handling incoming mes-
sages. Protocol implementations typically have a few, easily recog-
nizable places where the processing of incoming messages begins
(e.g., the message_rcv () function in our TCP implementation).
An optional input is a set of functions in the protocol implemen-
tation that should be explored. This input can be used to focus
the analysis on a subset of the code when the user is interested in
(faster) exploration of specific aspects of the protocol. The default
is to consider the entire implementation.

The path explorer operates in three steps. First, it parses the
source code and build a control flow graph (CFG) for each func-
tion; nodes in a CFG are statements, and edges represent the order
of execution of statements. From these individual CFGs, it builds
a composite CFG, rooted at the protocol’s message reception func-
tion, where there is an edge from a statement in one CFG to the root
of another CFG if that statement calls the function corresponding to
the target CFG. We use the CIL infrastructure for C program analy-
sis [21] for this task. Second, to reduce the complexity of symbolic
execution and improve scalability, the path explorer uses a stan-
dard reachability analysis to identify and remove nodes that do not
reach vulnerable statements. Finally, it uses our symbolic execu-
tion engine (described below) on the pruned CFG. Whenever one
of the vulnerable statements is reached during this execution, we
convert the associated path condition into an input constraint. After
we store this information, execution continues, until the entire CFG
has been explored.

4.1.1 Symbolic execution engine

We implement our own symbolic execution engine rather than
using an existing one [5, 30] in order to manage the tradeoff be-
tween precision and scalability, which is critical for handling real
protocol implementations. Further, most existing engines work only
on whole programs, while we wanted the flexibility of analyzing a
subset of the implementation if desired by the user.

MAX’s symbolic execution engine is implemented as an inter-
procedural analysis in CIL and uses the Z3 constraint solver [10].
It is multi-threaded, to take advantage of multi-core architectures.

As mentioned previously, symbolic execution converts program
statements into relationships (or constraints) among symbolic val-
ues. Much of this processing is fairly standard except for some
types of program constructs that we describe below.

Function calls: We first check if the body of the function being
called is included in the user’s set of functions to explore and if it is

part of the pruned CFG for the implementation. If both conditions
are true, the function needs to be analyzed. For such functions, the
symbolic executor adds its formal parameters to the symbolic store,
mapping them to the arguments specified in the function call, and
starts traversing the function body.

If the function need not be analyzed, the symbolic executor as-
signs fresh symbolic values to variables that might be modified by
the call and continues with the statement following the function
call. This approach is conservative, essentially assuming that the
variables can take on any value after the call, and it can cause the
tool to treat some infeasible paths as possibly feasible. However,
our attack emulation step weeds out any such false positives, thus
maintaining precision.

Loops: A naive treatment of loops would require the symbolic exe-
cution engine to consider an unbounded number of paths, since the
actual number of loop iterations cannot always be known statically.
To address this problem, the symbolic execution engine partitions
the possible paths through a loop into two cases: i) when the loop
guard is false and the body is never entered; and ii) when the loop
body in entered at least once [12]. We invoke Z3 (constraint solver)
to evaluate the loop guard, and if the guard is known to be false,
we consider only the first case. If the guard is known to be true, we
consider only the second case. Otherwise, we consider both cases.

For the false case, the loop body is simply skipped and simu-
lation continues at the subsequent statement. For the true case, the
engine conservatively simulates the effect of an arbitrary number of
iterations of the loop. It first invalidates information in the symbolic
store about any variable that may be modified by the loop body,
similar to what is done for calls to un-analyzed functions. Then, the
loop body is symbolically executed once. Finally, the loop guard is
assumed to be false, its negation is added to the path condition, and
symbolic execution continues after the loop.

Low-level constructs: Network protocol implementations make
heavy use of features such as pointer manipulation, type casting,
and arrays. One option for handling such features uniformly is to
model all variables as byte arrays [5]. While highly precise, this
approach dramatically increases the complexity (and thus reduces
scalability) of symbolic execution. Instead, we use a single sym-
bolic value for most variables. For compound types like structs and
arrays, we use a symbolic value per field and introduce these sym-
bolic values lazily as each field is encountered.

In order to retain precision, we employ domain knowledge about
how network protocols use low-level features in order to devise
precise ways of simulating their execution. For example, consider
a statement of the form x = (struct_b *)y, where y is of type
struct_a *. In general, it is difficult to deduce the relationship
between the two struct types, which is necessary to transfer any
knowledge in the symbolic store about y and its fields to x. We
leverage the fact that when these structs represent packet headers,
typically one of the two structs is embedded as a field of the other.
We thus search for such an embedding in the struct definitions. If
found, it is straightforward to update the symbolic store with infor-
mation about x. If we cannot determine the relationship between the
two structs, we conservatively learn nothing about x and its fields.

We use a few other simple heuristics to improve the precision of
symbolic execution in the presence of other low-level features. For
example, when trying to resolve a function pointer, we only con-
sider functions having the same signature as the function pointer,
whose addresses were stored somewhere in the protocol code.

In the implementations that we study, we find that symbolic exe-
cution retains precision for 75-80% of the analyzed statements that
update state. Because our analysis approach is conservative, most



of the imprecision leads to false positives (which are later elimi-
nated). However, there is one source of imprecision that may lead to
false negatives. We are sometimes unable to link header fields of an
incoming message to the corresponding variables in the target. For
instance, bits 33-64 in the TCP header correspond to the sequence
number. The target may parse these bits to obtain the value of a vari-
able called seqno. If the complexity of the parsing code prevents us
from correctly determining how the value of seqgno is instantiated,
we would not be able to analyze the impact of an adversary manip-
ulating the sequence number field. In our experiments, we find that
this is not a significant limitation because for all attacks that we
study, we are able to link the relevant header fields to internal vari-
ables. To accommodate implementations where this does not hold,
our analysis can be extended to accept this linkage as an input.

4.1.2 Emulation-driven optimization

For highly complex protocols, the path explorer may need to ex-
plore an extremely large number of paths (on the order of billions).
Inspired by symbolic execution engines that use a mix of symbolic
and concrete execution [13], we handle this challenge by introduc-
ing a profiling step before path exploration. We run an instrumented
version of the protocol implementation on the network configura-
tion that is used during attack emulation (see below) and automat-
ically record the set of internal states encountered at the target. We
seed the path explorer with this information, which explores only
paths consistent with at least one of these concrete states and deems
other paths as infeasible. In this way, the path explorer focuses on
the network conditions likely to be encountered during concrete
execution, improving scalability without sacrificing precision.

4.2 Adversarial Module Generator

The adversarial module generator analyzes input constraints for
the paths discovered by the path explorer to generate an adversarial
module. As mentioned in §3, this module computes message con-
tents that, when received by the target in it’s current state, are likely
to cause it to execute a vulnerable statement.

By default, we assume that the adversary knows the values of all
internal state variables of the target and can use them for crafting
messages that lead to vulnerable statements. This adversary model
ensures that MAX can find manipulation attacks that might be pos-
sible with an omniscient adversary that can infer all state variables
through inference based on protocol dynamics or out-of-band in-
formation. However, users can explore weaker adversary models
by specifying the subset of state variables that are known and a
subset of message fields that can be manipulated.

The adversarial module resides at the target, where it intercepts
and modifies incoming messages from adversaries. It is compiled
with the protocol implementation and includes a function for mod-
ifying messages. A call to this function is inserted in the protocol
code where message handling begins, enabling interception. This
function first reads the current (visible) state of the target and then
invokes the Z3 constraint solver to find an assignment of values for
message fields that satisfy an input constraint provided by the path
explorer. The message is then overwritten by these values and re-
turned. From the target’s perspective, it appears that the adversary
itself had crafted and sent this message.

Given input constraints for multiple feasible paths and multiple
satisfying assignments for the same input constraint (and thus pos-
sibly multiple ways to modify the message), there are many ways
to explore the space of adversarial executions. Our current strategy
is quite simple. We consider input constraints in an arbitrary order
and use the first satisfiable one. To reduce the time spent searching
for a satisfiable constraint, we cache this satisfiable constraint and,

for future messages, first check if it still satisfiable. We use the de-
fault solution returned by the solver for the satisfiable constraint,
rather than explore all feasible solutions.

The strategy above can in theory lead MAX to miss some manip-
ulation attacks (i.e., a false negative). For instance, we would miss
an attack that relied on sending the target down paths P1, P2, P3
in that order if we emulated a different order. We would also miss
attacks that required a different assignment of values than the one
returned by Z3 for the same input constraint. In practice, however,
we find that this simple strategy is quite effective (§5) at finding
manipulation attacks (perhaps because such attacks do not require
a high degree of sophistication). In the future, we will extend the
adversarial module with more exhaustive search strategies of the
type used by model checking tools [14, 19, 31].

We find that in some cases the attack goals are more conveniently
expressed not as vulnerable statements, towards which emulation
should be driven, but as “not-vulnerable” statements, which should
be avoided (§5.5). For example, it may be useful to explore ma-
nipulations of TCP that work by avoiding statements that reduce
the congestion window. We thus allow users to specify such state-
ments. The path explorer treats them just as vulnerable statements
and generates input constraints for them. However, the adversarial
module solves for the negation of those constraints.

4.3 Attack Emulator

The goal of the attack emulator is to find a sequence of manipu-
lations that constitute an effective manipulation attack. The inputs
to the emulator include the impact metrics and network configura-
tion. The user specifies impact metrics using variables in the tar-
get whose values capture the impact of the manipulation attack. If
such variables do not already exist, users can instrument the code
to introduce new variables. One instrumentation that we provide
by default is a variable that counts the number of times vulnera-
ble statements are executed. In many cases, this instrumentation
measures the cumulative resource usage for the resource of interest
(e.g., when bandwidth is the resource and send_pkt () is a vulner-
able statement). In our current implementation, the user is required
to manually configure the network topology and traffic to be used
for emulation. It is, however, straightforward to automate this pro-
cess by having users specify the desired topology and traffic in a
configuration file, which we can use to configure the emulation ex-
periment.

The attack emulator runs unmodified protocol implementations
for all participants except the target. For the target, it uses the proto-
col implementation, compiled with the adversarial module, so that
the incoming messages can be intercepted and modified.

The attack emulator performs two sets of runs: an adversarial run
in which messages from adversaries to the target are modified and
an honest one in which the messages are not modified. For complex
protocols with many paths, interception of messages can introduce
noticeable delay in message processing, which can slow protocol
dynamics. For instance, for TCP this delay translates to participants
observing higher round trip times and thus slower growth in send-
ing rate. For a fair comparison between the two runs, the adversar-
ial module is executed for the honest run as well, but without the
modification step, to introduce comparable delays. For multi-party
protocols, messages received by the target from non-adversaries are
delayed similarly (during both adversarial and honest runs).

After completing the runs, the emulator outputs the impact met-
rics for both runs, a trace of the manipulations used by the adversar-
ial module, their success in reaching the vulnerable statements, and
symbolic constraints on the selected paths. The impact metrics let
users determine whether the manipulation attack was effective. The



Paths Feasible | Avg. path | Avg. compute
LoC | explored paths length time / path
X X X (#conds) (s)

TCP 14.2 7,147 6,163 83 0.59
SCTP | 125 2,124 359 134 10.11
802.11 | 11.0 7,288 237 63 15.26

ECN 7.6 2 1 28 0.58

Table 1: Complexity of the protocols that we analyze

other pieces of information can be used to infer the attack method.
This process currently requires manual inspection of the constraints
and manipulations. In theory, this inspection can be tedious. For the
attacks that we find in §5, however, even though the attack emulator
chooses multiple different paths to reach the vulnerable statements,
the paths have similar constraints on the inputs (header fields) and
protocol state variables. In such cases, manual inspection sufficed
for inferring the header manipulations needed for mounting the at-
tack. We emphasize that this inspection is not required to establish
whether or not the manipulation attack was successful, but only to
find the manipulations required to recreate the attack. Developing
tools to help with the inference of attack strategy from emulator
traces is an interesting avenue for future work.

S. EVALUATION

We use MAX to analyze implementations of four diverse proto-
cols: TCP, 802.11, ECN, and SCTP. Before describing its efficacy
in finding manipulation attacks in these protocols, we quantify their
complexity and the performance of MAX when analyzing them.

5.1 Benchmarks

Table 1 shows different measures of protocol complexity. Each
implementation has thousands of lines of C code. These lines rep-
resent the core protocol logic and do not include header files.

The statistics related to paths are based on running the path ex-
plorer for each of these protocols. While the symbolic execution ran
to completion for ECN, for the other protocols, we ran it for two
weeks before collecting these statistics. We used the emulation-
driven optimization (§4.1.2) only for TCP. We see that for each
protocol, over 2K distinct paths are explored, with over 7.7M paths
being examined for TCP. Handling such complex code is challeng-
ing for any software analysis tool.

Scaling benefits of symbolic execution. Two measures shed light
on the value of static analysis in our method. The first is the fraction
paths that it can recognize as infeasible, so that they need not be
analyzed further. Table 1 shows that this fraction ranges from 21-
97%. This fraction is exceptionally low for the case of TCP (21%)
because a large number of infeasible paths were pruned out before
symbolic execution by using emulation-driven optimization.
Another measure stems from contrasting with a strategy pro-
posed in prior work [29] for finding similar attacks without sym-
bolic execution. This work proposes that, rather than exploring all
possible bit patterns in the header, users restrict the search to header
fields that likely impact the resource being manipulated, based on
expert knowledge of the protocol. For example, in TCP, restricting
the exploration to the sequence number field may suffice, which
would yield 232 possible inputs instead of 240%8_ Even if we ignore
the error prone nature of manually identifying important fields,
the value of symbolic execution is impressive. For TCP, we get
6M feasible paths, which is over three orders of magnitude lower
than blindly manipulating the 32-bit sequence number. The scal-
ing for SCTP is even better, where the number of feasible paths
is 359K, but the attacks we find below require manipulating two

header fields with 32 bits each. Even if we assume that these two
fields can be independently explored [29], this represents a scaling
factor of over five orders of magnitude (23?2152 .

The scaling benefits computed above are an underestimate be-
cause a packet’s ability to manipulate and reach the vulnerable
statement depends on not only the header values but also the inter-
nal state of the target. While a blind search would have to explore
all possible internal states, MAX compactly represents each path
predicate in terms of the header values and internal state needed to
traverse the path. A single packet from this set, sent when the inter-
nal state has the appropriate values, suffices to exercise this path.

Computational complexity of symbolic execution. Table 1 also
shows the average time taken to compute a feasible path for all
protocols. This time ranges from 0.6 seconds for ECN and TCP,
to 10-15 seconds for SCTP and 802.11. This disparity arises for
different reasons for ECN and TCP. Firstly, ECN is a much sim-
pler protocol, and the average number of conditions that need to be
solved (path length in Table 1) is much lower than that for other
protocols. In TCP, since a large number of infeasible paths have
already been pruned by emulation-driven optimization, the num-
ber of paths that need to be explored before finding a feasible path
is much lower. Using emulation-driven optimization for SCTP and
802.11 would have likely lowered their computation time as well.

5.2 Case Study I: TCP

We now report on what MAX finds for each protocol, starting
with TCP, which is one of the most complex network protocols
and thus represents a good stress test. Our TCP implementation
is Daytona [23], a user-space port from the Linux 2.3.29 kernel.!
As shown above, it has 14K lines of code and over 7M paths. We
wanted to check if, in this complex implementation, MAX can find
attacks that have been previously discovered using manual inspec-
tion. We show that it is not only able to find vulnerabilities that
exist but also helped confirm robustness to those that do not.

Finding the Optimistic ACK attack. In this attack, an adversar-
ial TCP receiver sends ACKs with sequence numbers for packets
that it is yet to receive. These Optimistic ACKs fool the sender into
believing that more packets have been received and thus sending
faster than with honest ACKs. If the traffic goes over a shared bot-
tleneck, such an adversary would receive better performance at the
expense of others. For this attack to work, however, the ACK num-
bers need to be within a range that represents the current window
of unacknowledged sequence numbers.

In this experiment, we used a topology consisting of one tar-
get and one adversary communicating on the same LAN. We em-
ulated a shared bottleneck by setting up background TCP traffic.
The sender was deemed as the target. The relevant sender-side state
variable that determines when new packets should be sent is the
number of outstanding bytes (sent but not acknowledged). We spec-
ify as vulnerable statements places in code that decrease this vari-
able, and thereby increase transmission opportunities. We ran the
attack emulator for two hours and used the number of bytes trans-
mitted (throughput) as the impact metric.

MAX successfully discovered the Optimistic ACK attack on the
TCP sender by modifying the ACK sequence numbers. In partic-
ular, it automatically inferred the range of sequence numbers for
which an ACK would reduce the number of outstanding packets.
Even when a packet was dropped and a duplicate ACK was sent,
MAX was able to automatically modify it such that its sequence

'We picked a user-space implementation for ease of experimenta-
tion. MAX can be applied to kernel-space protocols as well.



Honest Run

*+-Adversarial Run

i
o

2 ' .
P lad Py
>éal‘l ' E E
=20 i I
Q H i :
1o i} i
3 :
o 8 .
= 4
= &
8,4 ARt
R | 1R LY

o M ATt H;gﬁﬂ.s igl E‘B"’j i

0 1000 2000 3000 4000 5000 6000 7000
Time (s)
(a) Throughput

Figure 3: TCP behavior for the adversarial and

number was in the queue of outstanding packets. MAX’s modifica-
tions did not result in connection termination (§6).

Studying MAX’s behavior in more detail, we see that it success-
fully manipulated the sender into executing the vulnerable state-
ments for all but 22 times out of 11,480 packets. The 22 packets
were received when the number of outstanding packets was zero,
so MAX (correctly) found no feasible path that led to the vulnerable
statement. This ability to determine if modifications would lead to
vulnerable statements and compute the correct modifications when
they can exemplifies the precision of MAX’s analysis techniques.

Figures 3a depicts the impact of the attack by plotting the through-
put for the adversarial and honest runs of the attack emulator. The
average throughput in the honest run is 2.9 KBps. Manipulation
increases it to 4.1 KBps, for a gain of over 40%.

Figure 3b illustrates the progression of the ACK sequence num-
bers. The middle curve shows a slow increase for the honest run.
The other two curves show the sequence numbers before and after
modification by the adversarial module. We see that modifications
causes a faster growth than the honest run, which fools the sender
into sending more packets. The sharp decrease in the sequence
number in certain places is for the ACKs that were not modified.

Confirming robustness to attacks. Two other manipulation at-
tacks have been reported earlier for TCP. These involve inducing
the sender into quickly increasing the congestion window by ac-
knowledging individual bytes instead of whole packets and by send-
ing duplicate ACKs [24]. Fooling the sender into increasing the
congestion window will give the receiver more throughput. These
attacks do not work for all TCP implementations.

To determine if our implementation is vulnerable, we conducted
an experiment similar to the Optimistic ACK attack above except
that we specified statements that increase the congestion window
as vulnerable. In this case, MAX was unable to repeatedly force the
sender into executing the vulnerable statements. Sporadic manip-
ulations of the congestion window did occur but did not lead to a
noticeable increase in the adversary’s throughput.

Manual inspection confirmed that the Daytona implementation
indeed has safeguards [24] against these attacks. Because it is highly
error-prone, manual inspection by itself is a weak indicator that an
implementation is robust to certain attacks. The more systematic
exploration of MAX provides a stronger safeguard.

5.3 Case Study II: SCTP

SCTP is a new transport protocol designed for reliable delivery
and targets multi-homed environments [25]. To our knowledge, no
manipulation attacks have been reported for SCTP [27]. We show
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honest runs for the Optimistic ACK attack.

that SCTP is vulnerable to attacks that are similar to those in TCP,
though the exact mechanics of the attacks differ.

SCTP supports multiple independent streams within a connec-
tion and ensures sequenced, reliable delivery with each stream. This
makes SCTP headers different (and richer) that those of TCP and
some of the fields have different semantics. For instance, SCTP has
two sequence numbers, the stream sequence number (SSN) used
for ordering messages in a stream, and the transmission sequence
number (TSN) used for reliable delivery. Given such differences, it
was unclear to us if SCTP had vulnerabilities similar to TCP.

In these experiments, we used a complete user-level implemen-
tation of SCTP [26], with over 12K lines of code. The setup was
similar to the one for the Optimistic ACK attack in TCP. That is,
we deemed as vulnerable statements that decrease the number of
outstanding bytes.

During attack emulation, MAX manipulated the SCTP sender into
executing the vulnerable statement by modifying the cumulative
TSN ACK field in all ACKs received at the target. This field rep-
resents the largest TSN of a packet received at the receiver, such
that all packets before it have been successfully received. MAX in-
creased the value of this field such that it was always less than
or equal to the TSN for the last packet sent by the target (Fig-
ure 4a). This manipulated the SCTP sender into reducing the num-
ber of outstanding bytes and into sending faster than the honest run,
for nearly 200s. (We explain the period after 200s below.) Within
this time, this manipulation enabled the adversarial receiver to ob-
tain almost 5 times more throughput than the honest receiver. (Fig-
ure 4b). Thus, for moderate sized transfers at least, we find that
SCTP is susceptible to a manipulation attack in which the receiver
optimistically increases the TSN ACK field. While such an attack
has been reported previously for TCP, that SCTP is also vulnerable
was not previously known.

However, for longer flows, SCTP’s vulnerability to manipulat-
ing the number of outstanding bytes appears reduced, as shown
in Figure 4b. Within a stream, when a data packet is lost (around
200s mark), subsequent packets are buffered at the receiver and
the receiver window decreases significantly, preventing the sender
from sending more packets. This loss is never recovered because
MAX manipulates the TSN ACK to cover the lost sequence number
and the situation persists. Because of the vulnerable statement that
we use, which does not directly control the resource of network
throughput and is not impacted by the receiver window, MAX does
not infer that this window can limit network usage.

To evaluate if SCTP is vulnerable to longer-term Optimistic ACK
manipulations, we experimented with specifying as vulnerable state-
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Figure 4: SCTP behavior with two vulnerable statements: decreasing outstanding bytes (top) and sending packets (bottom)

ments that send packets, which directly impacts network usage. We
found that MAX now manipulates both the cumulative TSN ACK
field as well as the receiver window, correctly inferring the val-
ues that lead to packet transmissions. Figures 4c and 4d show the
results for the TSN ACK field and the throughput obtained. The
impact of manipulating both fields is that even after a packet is
dropped (around the 250s mark), the adversary is still able to ob-
tain a higher throughput than the honest receiver, unlike in the pre-
vious experiment. This occurs because MAX increases the receiver
window values as well, which are very low prior to the manipula-
tion. Overall, the adversarial run achieves a 10x throughput over
the honest case. (We do not fully understand the reasons behind the
jump in throughput around the 500s mark, which was present in
each of the many trials that we conducted to rule out experimental
and measurement artifacts. This jump is consistent with the faster
growth rate of the TSN ACK field around the same time. It may
stem from constants in the SCTP implementation that trigger faster
transmissions under certain conditions.)

Thus, SCTP is susceptible to the Optimistic ACK attack for long
flows as well, but both the receiver window and cumulative ACK
fields must be manipulated. This behavior differs from TCP, for
which we confirmed that the receiver window modification is not
required, because of a subtle difference in the receiver window se-
mantics between the two protocols. In TCP, packets received out-
side the sequence number space demarcated by the advertised win-
dow are dropped. Thus, during the Optimistic ACK attack the re-
ceiver window is always open and the adversary does not need
to manipulate it. In SCTP, however, receivers store any received
packet and discard packets only when there is no available buffer
space—this behavior is necessary to support multiple streams in a

connection. The adversary cannot mount a sustained attack without
also manipulating the receiver window.

Finally, MAX was able to highlight a different vulnerability in our
SCTP implementation. This implementation does not check that the
cumulative TSN ACK value is less than or equal to the largest TSN
transmitted. In the absence of this check, if a buggy proxy or a man-
in-the-middle attacker sends a high TSN ACK value, inconsistent
state will occur between the sender and receiver. (The ACK should
contain the correct verification tag [25] for the connection to be ac-
cepted by the sender.) There is no recovery when that happens and
the connection will eventually terminate. The experiments above
use a version of SCTP with this bug fixed.

5.4 Case Study III: 802.11 MAC

We next used MAX on the 802.11 MAC protocol, which differs
significantly from TCP and SCTP. It is a link-layer protocol and is
broadcast-based. As for TCP, manipulation attacks have been re-
ported for the 802.11 MAC [1]. By deeming as vulnerable state-
ments that impact how a node uses air-time, the primary resource
in 802.11, we show that MAX succeeds in finding these attacks.

We used the 802.11 MAC implementation in the Qualnet simu-
lator. Qualnet is implemented in C++, but the core of the 802.11
code is written using the C idiom. We were able to analyze this
code after removing bindings to the Qualnet scheduler and redefin-
ing a few C++-specific data structures. Our ability to focus program
analysis on a relevant subset was a key enabler. Symbolic execution
engines that perform whole program analysis would not have been
able to do a similar analysis of the 802.11 code.

Finding the NAV attack. In this attack the adversary sets an ab-
normally high value in the duration field of the 802.11 header. The
receiving nodes use this field to compute the Network Allocation
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Figure 5: Impact of the NAV attack in the 802.11 MAC.

Vector (NAV) which dictates how long they should consider the
medium as busy before they can transmit they own packets. High
duration field values can starve honest participants and enable ad-
versaries to gain an unfair share of the medium.

In this experiment, we considered the statement that sets the state
of the 802.11 protocol to WF_NAV (i.e.,, waiting for the Network
Allocation Vector value to expire) as vulnerable. A node cannot
transmit any data while the NAV value has not expired, so forcing
the NAV value to not expire can potentially induce a DoS attack.

We used as network configuration a simple topology with one ac-
cess point (AP), one target client, and one adversarial client, with
each client sending an infinite demand flow to the AP. We also in-
cluded five other honest participants, to see if the use of MAX in a
broadcast setting creates side-effects that hinder its abilities (§6).
‘We used the number of frames transmitted as the impact metric and
allowed the modification of all header fields except for FrameType.
Modifying this field leads to another attack (see below).

We found that MAX successfully finds the NAV attack by repeat-
edly setting an abnormally high value in the duration field of the
packet sent by the adversary, resulting in the the target using this
high value to compute its NAV. Figure 5 shows the impact of this
attack. It plots the frames sent by the nodes in the adversarial and
honest runs. We see a dramatic difference; the target is shut out
almost completely in the adversarial run.

Finding the RTS attack. In this attack, the adversary sends an RTS
frame to the target with a high duration field value. The target re-
sponds with a CTS frame with a high duration value. Any node
that hears either the RTS or the CTS frame updates its NAV value
and stays silent for a long time. The target too stays silent, await-
ing a (long) data to arrive. Thus, by sending a single packet, the
adversary can impact multiple participants, some of them not even
within its broadcast range. This attack is akin to virtual jamming,
since the sender effectively prevents others from using the channel
without sending at a high rate itself.

In this experiment, we considered statements that set a sleep
timer as vulnerable. By sleeping, the target is deprived of band-
width, which makes it vulnerable to the attack above. We used
an ad-hoc network, which enables nodes to transmit to each other
without an AP, with eight nodes: one adversary, one target, and six
other honest participants. There was a flow from the adversary to
the target that transmits a low rate of one packet per second. We
also instantiated an infinite demand flow from the target to an hon-
est participant and another between two honest participants. We
allowed modification of all fields in the header.
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Figure 6: Impact of the RTS attack in the 802.11 MAC.

We found that MAX can successfully discover the RTS attack.
The frames sent by the adversary are modified in two ways: the
FrameType is set to RTS and the duration is set to a large value.
Figure 6 shows the impact of this attack. It plots the frame rate
the adversary (configured to be low), the target, and another honest
participant. We see that the adversary succeeds in reducing the rate
for both of the other participants, with a bigger impact on the target.

During analysis, we also found an interesting bug in Qualnet. In
a few places in the code, there is no verification for sleep timer val-
ues being non-negative. Therefore, the input constraints that MAX
creates for paths to those timer settings do not require non-negative
values. During emulation, MAX sometimes chose a negative value,
which caused Qualnet to crash. Thus, MAX’s techniques may also
help find implementation bugs that cause crashes.

5.5 Case Study IV: ECN

While ECN is logically a rather simple protocol, it is unique from
an implementation perspective. Bits relevant to the protocol are car-
ried in both the network layer (IP) and the transport layers (TCP).
‘We show that this does not prevent MAX from finding the manipula-
tion attack in ECN that we mentioned earlier (§2). We also illustrate
the utility of MAX as a design tool by patching the implementation
using a known fix and then using MAX to check that the patched
implementation is indeed robust. Due to space constraints, we omit
detailed impact graphs in this section.

Finding the manipulation attack. We used the ECN-enabled TCP
implementation in Qualnet. Because the value of the received ECN
bit directly determines if the TCP congestion window should be
reduced, we deem as “not vulnerable” (§4.2) any statement that re-
duces the congestion window. Intuitively, an adversary can increase
its throughput by continually forcing the target to avoid reducing
the congestion window.

MAX correctly deduces that in order to avoid reducing the con-
gestion window, the adversary should not reflect the ECN bit in its
ACKs when the bit is set.

Confirming the robustness of the patch. We modified the Qualnet
ECN implementation to protect against this attack using nonces [11].
The sender inserts a randomly-generated nonce in its packets, and
congested routers delete the nonce to indicate congestion. When
the sender receives an ACK, it reduces the congestion window if
the nonce is deleted or differs from the original. To fool the sender
that there was no congestion along a congested path, the adversar-
ial receiver needs to guess the deleted nonce correctly, which is
difficult to do often enough to substantially alter protocol behavior.



We used MAX on this modified version of ECN, after hiding the
nonce state at the target to emulate an adversary that does not know
the nonce values. The path explorer found the same code paths as
before. However, during emulation, MAX was unable to reliably
force execution down these paths because it could not reconstruct
the nonce value. The honest and adversarial runs yielded similar
throughputs. Hence the attack was not successful, and MAX was
able confirm that the fix and its implementation are effective.

6. DISCUSSION AND FUTURE WORK

Our work represents a first effort to build a practical tool for find-
ing manipulation attacks. It opens avenues for future investigation
towards improving MAX and mitigating such attacks.

Extending MAX. The current design of MAX has several limita-
tions that we plan to address in the future. These include extend-
ing it to handle multiple targets, incorporating a more exhaustive
search over feasible paths, and allowing an adversary to send multi-
ple messages or no message at all when an honest participant would
have sent a single message.

Another limitation involves protocol implementations where the
vulnerable actions are not executed immediately after receiving a
manipulated message, but at a later point in time. For instance,
imagine a protocol where manipulated messages update a data struc-
ture at the target, and later when a timer fires, this data structure is
read and the vulnerable statement is executed. Such a programming
paradigm makes it hard to link an incoming message to vulnerable
actions. We are exploring if such behaviors can be handled by using
taint analysis to infer that link.

In MAX, we place the adversarial module at the target, which has
two advantages that we plan to exploit in the future. This placement
can assess the worst-case effects of an attack because it gives access
to the target’s exact internal state. It can also accommodate multiple
adversaries, allowing us to explore collusion between adversaries.

However, two mismatches occur due to this placement. First, it
does not naturally handle link-layer broadcast protocols, in which a
manipulation message from an adversary is visible to other partici-
pants. Our approach instead (logically) allows an adversary to send
a manipulated message to the target while hiding the manipulation
from others. Second, it introduces a possible mismatch between the
protocol state at the target and the adversaries. The target assumes
that the modified messages come from the adversary and updates its
state accordingly, when in reality the adversary’s implementation
never sent the message. In our experiments thus far, we have not
experienced significant side effects from these mismatches (even
though we analyze broadcast-based 802.11 MAC), but we plan to
explore methods that place the adversarial module at the adversary.

Finally, we plan to explore mechanisms that can reduce the amount
of input required from the user. For instance, we may be able to use
program analysis to automatically identify vulnerable statements
from high-level descriptions of resources (e.g., throughput, mem-
ory, etc.); and we may be able to find most manipulation attacks by
running the protocol over a set of common network topology and
traffic configurations.

Mitigating Manipulation Attacks. While this paper focuses on
finding manipulation attacks, our eventual goal is to make protocols
robust to these attacks. We conjecture, however, that it is impossi-
ble to completely prevent all manipulations unless we can enforce
correct protocol execution by all participants (e.g., using trusted
hardware). The main reason is not code complexity (as for buffer
overflow vulnerabilities) but partial information—each participant
has a partial view of the state of the network (e.g., presence of con-
gestion) or of other participants (e.g., if it received a packet). If all

participants had complete knowledge, they would not need to ex-
change any information in the protocol headers. The need for infor-
mation exchange opens the door to manipulation. (The role of MAX
is to help identify which information can be exploited and how.)

While we cannot prevent all manipulations, we can certainly mit-
igate their impact. One approach is to verify received information
and take protective action if discrepancies are detected. Sometimes,
verification can be done by simply retaining historical information.
For instance, ACK division in TCP can be detected by remember-
ing where packet boundaries occurred in the byte stream. In pro-
tocols with more than two participants, verification can be done
by comparing information from different participants (e.g., OSPF
nodes check if link-state reports from the two ends of a link are con-
sistent). It may also be possible to verify information by observing
a participant’s future behavior. For instance, NAV manipulations
in 802.11 MAC can be detected post-facto by observing if nodes
actually occupy the medium for the claimed duration.

Verification may be infeasible in some cases, however (e.g., ver-
ifying if a participant received a packet). Here, a second approach
that relies on explicitly considering adversaries’ incentives can help.
In particular, we can modify the protocol exchange such that adver-
saries can only hurt themselves by manipulation. Examples are the
use of nonces in ECN or anonymous packets in Catch to prevent
wireless relays from dropping packets [17].

7. RELATED WORK

While we adapt and combine symbolic and concrete execution
in a novel way, we build on work that uses these general techniques
to detect other kinds of software vulnerabilities. The inspiration for
MAX comes from the work of Stanojevic et al. [29], who defined
the notion of protocol gullibility that is similar to, but broader than,
our notion of manipulation attacks. They also present a preliminary
tool to detect protocol gullibility based on concrete execution alone.
To reduce the search space they require the user to input a set of
attack strategies (e.g., only manipulate certain header fields). This
tool could find the gullibility in a simplified version of the ECN
protocol. In contrast, by using symbolic execution as well, we do
not require that users input attack strategies and can also scale to
complex protocol implementations.

Other relevant prior work can be divided into three categories.
The first category uses static analysis alone to protect against (other
types of) network attacks. For example, SAFER [7] uses taint anal-
ysis to identify inputs that can cause DoS attacks; and Elcano [4]
uses symbolic execution to generate signatures that filter out inputs
known to exploit protocol vulnerabilities, given an initial exploit
that exposes the vulnerability.

To eliminate or reduce false positives inherent in this first cat-
egory, the second category combines static analysis with concrete
test generation [13, 28, 30]. For example, EXE [6] generates “in-
puts of death” that cause a program to crash, Brumley et al. present
atechnique to automatically generate exploits from software patches
that target input validation vulnerabilities [3], and Bouncer [9] uses
a combination of static and dynamic analysis to create filters that
block bad inputs during program execution. These approaches aim
to identify a single bad input. However, a single input is insufficient
to mount an effective manipulation attack, which requires the abil-
ity to repeatedly induce honest participants into performing certain
actions. Further, for manipulation attacks, a “bad” input can be per-
fectly valid under different conditions, which renders input filtering
invalid. MAX thus first uses symbolic execution to approximate sin-
gle inputs that can manipulate the target in a given state and then
uses adversarial concrete execution to search for a sequence of in-
puts that constitutes an effective attack.



The third category uses concrete execution alone and is exempli-
fied by several model checking systems. For example, CMC [18,
19] identifies generic errors and invariant violations in protocol im-
plementations, and MaceMC detects violations of liveness prop-
erties for protocols [14]. More recently, CrystalBall [31] adapted
model checking to an online setting by check-pointing a running
system and using the checkpoints as the starting point for the model
checker. Unlike the first two categories, model checking can find er-
rors triggered by a sequence of events. However, model checking
aims to identify errors in a setting where participants run the proto-
col implementation faithfully. In manipulation attacks adversaries
can arbitrarily deviate from the protocol implementation in order
to induce undesirable behavior. This possibility leads to a dramat-
ically larger search space which makes a concrete execution-only
approach intractable. MAX uses information from symbolic execu-
tion to help steer its adversarial concrete execution towards code
paths that are likely lead to manipulation attacks.

Finally, Bethea et al. [2] recently described an approach and as-
sociated tool to perform online verification that a sequence of in-
puts received at the server could have been generated by an hon-
est client. Like MAX, their tool combines the results of symbolic
execution with state information derived from concrete execution.
However, their tool cannot be used to detect manipulation attacks,
because the sequence of inputs generated by an adversarial client
may be perfectly valid under the right network conditions.

8. CONCLUSIONS

We presented a method and a tool to find manipulation attacks in
which adversaries induce honest participants into undesirable be-
haviors. A novel combination of symbolic and concrete execution,
and their adaptation to network protocol code, allows our tool to
scalably and precisely analyze complex protocol implementations
and find a diverse set of attacks.

We believe this combination is useful beyond finding manipula-
tion attacks and opens the door to other forms of semantic analysis
of protocols. For instance, a similar approach may be able to an-
alyze how state flows across a network, with symbolic execution
inferring what parts of a node’s internal state are carried in outgo-
ing messages and concrete execution observing how messages flow
between nodes. The resulting analysis could enable, among other
things, an automatic quantification of protocol complexity [8].
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