
Traffic Engineering with Forward Fault Correction

Hongqiang Harry Liu Srikanth Kandula Ratul Mahajan Ming Zhang David Gelernter
(Yale University) (Yale University)

Microsoft Research

Abstract— Network faults such as link failures and high switch
configuration delays can cause heavy congestion and packet loss.
Because it takes time for the traffic engineering systems to detect
and react to such faults, these conditions can last long—even tens
of seconds. We propose forward fault correction (FFC), a proac-
tive approach for handling faults. FFC spreads network traffic such
that freedom from congestion is guaranteed under arbitrary com-
binations of up to k faults. We show how FFC can be practically
realized by compactly encoding the constraints that arise from this
large number of possible faults and solving them efficiently using
sorting networks. Experiments with data from real networks show
that, with negligible loss in overall network throughput, FFC can
reduce data loss by a factor of 7–130 in well-provisioned networks,
and reduce the loss of high-priority traffic to almost zero in well-
utilized networks.

Categories and Subject Descriptors: C.2.1 [Computer Commu-

nication Networks]: Network Architecture and Design–Network
communications. C.2.3 [Computer Communication Networks]:
Network Operations.

Keywords: Traffic Engineering; Congestion-Free; Fault Tolerance

1. Introduction

Centralized traffic engineering reduces network congestion and
increases efficiency [1, 2, 3, 4, 5, 6]. In such systems, a TE con-
troller frequently reconfigures the network to match current traffic
demand. These reconfigurations enable the network to carry more
traffic, thus enabling the operators to extract more value from the
expensive infrastructure investment.

While centralized TE can be highly effective, it is unable to
quickly react to faults in both the data and control planes. Data
plane faults occur when a link or switch fails and stops forwarding
packets. Another class of faults, which we call control plane faults,
is where the controller fails to reconfigure a switch in a timely man-
ner, even though the switch continues to forward packets (as previ-
ously configured). This fault can occur due to a host of factors, such
as RPC (remote procedure call) failures, bugs in switch firmware or
software, shortage of memory in the switch, and so forth.

Both classes of faults are common. Several studies have reported
frequent link and switch failures in large networks [7, 8, 9]; in
a wide area network that we study, a link fails every 30 minutes
on average. Google reports both heavy delays and outright fail-
ures in configuring switches [1]. The percentage of configuration

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.

http://dx.doi.org/10.1145/2619239.2626314.

updates that failed was 0.1–1%. For switches from two different
vendors, we observe a similar failure rate in our own experiments.
In a network with a hundred switches, this failure rate implies the
controller will commonly fail to configure at least some of them.

Data and control plane faults can cause heavy congestion and
packet loss. When a data plane fault occurs, switches quickly move
traffic to other available paths, but because this movement does
not account for link capacity constraints, it can severely congest
some links. Similarly, control plane faults cause congestion when a
switch continues sending traffic on a link as per old configuration,
while it was expected to move the traffic away. Our experiments
show that data and control plane faults frequently lead to links get-
ting 10–20% more traffic than their capacity. The resulting packet
loss will hurt congestion-sensitive applications.

Today, relieving congestion due to these faults requires interven-
tion by the TE controller. The downside of this approach is that
interventions happen after congestion has occurred. Worse, they
can take a long time because of the delay inherent to updating a
large network, which stems from factors such as RPC delays, con-
trol load on switches, and the time to change forwarding rules. Up-
dating a single switch rule can take a few seconds [1], and network-
wide updates typically require updating many rules per switch.

We thus argue for proactively handling common fault scenarios.
In particular, TE should spread traffic in the network such that no
congestion occurs as long as the total number of faults is at most
k (a configurable bound). This guarantee should hold for arbitrary
combinations of faults. Our view is inspired by forward error cor-
rection (FEC), in which a transmitted packet stream is modified
such that all original packets can be recovered, without any reac-
tion (e.g., retransmission) as long as the number of losses is up to k.
Analogously, we call our approach forward fault correction (FFC).

Practically realizing FFC requires addressing two intertwined
challenges—minimizing throughput loss and computational scala-
bility. Just as FEC has overhead in terms of redundant information
that is transmitted, FFC will have overhead in terms of link capacity
set aside to tolerate faults. This overhead must be low for FFC to
be acceptable. The computational challenge is that with n potential
faults, the number of combinations of up to k faults is

∑k
i=1

(

n
i

)

.
With n=1000, a plausible number of links in a large network, and
k=3, this number over 109. Thus, enumerating all possible faults
and considering their impact is intractable. Approximations may
help reduce computational effort, but unless one is careful, they
may result in high capacity overhead.

We address these challenges by first formulating FFC require-
ments as a linear program. This formulation is precise, which min-
imizes overhead, but has an intractably large number of constraints
because of possible fault combinations. We then observe that these
constraints can be transformed, with minimal loss in precision, to
a "bounded M-sum" problem: the sum of any M out of N vari-
ables is bounded. Finally, we develop a method based on sorting
networks [10], to efficiently encode this problem as O(kn) linear
constraints. For control plane FFC, our approach is optimal with

respect to overhead; for data plane FFC, it is optimal if the multiple
paths that carry traffic between two switches are disjoint.

Our approach is flexible and applies to many TE scenarios. We
show how it accommodates multiple traffic priorities, multi-step
network updates [2], different TE objectives (e.g. fairness, maxi-
mizing throughput, and minimizing maximum link utilization), and
handles control faults in traffic rate limiters [11, 12].

We evaluate FFC in a testbed and using simulations based on
traffic and fault data from real networks. We find that it is valuable
in a range of scenarios. In well-provisioned networks, as is com-
mon for ISPs today, FFC has negligible throughput overhead and
reduces data loss by a factor of 7–130. In well-utilized networks
that use multiple traffic priorities, as is common for inter-datacenter
networks [1, 2], FFC protects high-priority traffic from almost all
loss, again with negligible loss in total network throughput.

Fundamentally, FFC provides a novel control knob to network
operators. Today, operators must either conservatively over-provision
the network to guarantee the absence of congestion under faults or
aggressively utilize the network [1, 2] at the risk of severe fault-
induced congestion. FFC enables operating points that trade-off
provisioning and congestion-risk in an informed manner, based on
network characteristics and desired protection level.

2. Motivation

Many applications (e.g., Web search queries, online retail, multi-
player games) are sensitive to congestion, and packet drops or long
queuing delays hurt the user experience of these applications. FFC
is motivated by the observations that data and control plane faults
cause congestion and that reacting to these faults is slow. We il-
lustrate these observations below. As is prevalent [1, 2, 3, 4] in
networks with TE, we assume tunnel-based forwarding. One or
more tunnels carry traffic between each ingress-egress switch pair;
we call this traffic a flow. Relative weights configured at the ingress
switch determine how the flow’s traffic is split across tunnels.

2.1 Impact of data plane faults

When a link or switch fails, it impacts all tunnels traversing it.
Upon detecting tunnel failures, ingress switches rescale traffic to
the remaining tunnels in proportion to configured weights. Suppose
a flow has 3 tunnels with splitting weights (0.5, 0.3, 0.2) . When the
third tunnel fails, weights of (0.5

0.8
, 0.3
0.8

, 0) are used to split traffic.
OpenFlow group tables can implement such rescaling [13].

Rescaling quickly restores connectivity but can leave the net-
work in a congested state. For example, Figure 2(a) shows an
initial traffic distribution with two flows: {s2, s3}→s4. Dashed
curves represent tunnels and numbers represent traffic volume they
carry. When link s2-s4 fails and s2 rescales, the traffic distribution
of Figure 2(b) emerges, in which link s1-s4 is heavily congested.
Such congestion will persist until the TE controller can compute
a new solution and configure the network, which can take tens of
seconds (see below).

While this example was illustrative, Figure 1(a) characterizes
congestion due to data plane faults for L-Net, a real network on
which we provide more information in §8. This experiment uses
topology and traffic data from the network, and it uses a stan-
dard TE algorithm (§4.1) to spread traffic every interval (5 min-
utes) across six tunnels per-flow. We fail randomly selected links
or switches in each time interval and measure the maximum link
oversubscription rate, i.e., the amount of traffic above capacity that
arrives at the link. The graph plots the CDF of the oversubscription
rate for the cases of 1–3 link failures and 1 switch failure. Even
with a single link failure—which occurs every 30 minutes on aver-
age in this network—the link oversubscription rate is over 20% a
quarter of the time (75th %-ile). For a 100 Gbps link, 20% over-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

C
D

F

Link Over-Subscription (%)

1 link
2 links
3 links

1 switch

(a) Data plane faults

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Link Over-Subscription (%)

1 fault
2 faults
3 faults

(b) Control plane faults

Figure 1: Congestion due to faults in L-Net.

subscription means that 120 Gbps traffic will arrive soon after a
failure. Even with 100 MB buffer capacity, the switch will be un-
able to buffer even 50 ms of this traffic and applications will suffer
a burst of high loss rate.

2.2 Impact of control plane faults

We now illustrate how a delay or failure in configuring a switch
can cause congestion. Figure 3(a) shows a simple network with 4
flows: s1→{s2, s3} and {s2, s3}→s4. Assume that the controller
wants to change the network configuration to Figure 3(b), to ac-
commodate a new flow s1→s4. This change requires updating s2
and s3, to modify traffic split weights for their flows. If s2 does
not update and continues to split traffic as before, link s1-s4 will
be congested, as in Figure 3(c).

Figure 1(b) characterizes congestion in L-Net due to control
plane faults. This experiment simulates a network update every
interval based on the same TE algorithm as above. For each up-
date, we inject control plane faults at randomly selected switches
and measure the maximum link oversubscription rate. We see from
the graph that, though control plane faults are less damaging than
data plane faults, even a single fault—which can occur every 5 min-
utes if the fault rate is 1% and the network has 100 switches—can
lead to an oversubscription of 10% a tenth of the time.

The example above assumes that all updates are sent to the switches
in one shot; in another method, updates are sent in multiple steps
to avoid transient congestion due to switches applying updates at
different times [2]. To transition from Figure 3(a) to 3(b), possi-
ble steps are: 1) update traffic splitting ratios at s2 and s3; and
2) if that succeeds, update the rate of flow s1→s4. This way, no
congestion will occur if s2 (or s3) fails to update. However, con-
figuration failures will stall network updates because Step 2 cannot
proceed until Step 1 finishes. They will also lower throughput since
flow s1→s4 cannot start if Step 1 fails. FFC handles control plane
faults for multi-step updates as well.

While this section focuses on switch configuration faults, in net-
works that control traffic rate [1, 2], a similar problem arises for
rate limiter configuration as well. Congestion will occur if a rate
limiter continues to send traffic at the older, higher rate. We show
that FFC handles such faults as well.

2.3 Slow reaction to faults

Reactive approaches suffer from the fact that they start after con-
gestion and loss has already started, and they can take a long time
in large production networks. Figure 6(a) shows the distribution
of rule update times in B4, based on Figure 12 and Table 4 of the
paper [1]. It excludes switches for which configuration completely
fails. It shows both RPC delays and the time to update a single for-
warding rule. Typically, many rules per switch are updated during
a network update; this number is commonly over 100 for L-Net.

While B4 is a complex system with many sources of delay and
variability, we also quantify update delays in a controlled, lab en-
vironment using commodity switches. We issue rule update com-
mands, while the switches have moderate background control load
such as reading counters and running tunnel liveness detection pro-

Figure 2: Congestion due to a data plane fault.

Figure 3: Congestion due to a control plane fault.

tocol. (Forwarding load has no visible impact on rule update time.)
The number and type of updates are drawn from those issued in
L-Net. Figure 6(b) shows that the rule update time is still sub-
stantial. The median is 10 ms and the worst case is over 200 ms.
For updating R rules, the total update delay will be RPC delay +
R× per-rule delay; we have confirmed this behavior experimen-
tally. Ignoring RPC delay, for updating 100 rules, the median up-
date delay for a switch will be 1 second and the worst case over 20
seconds. We will show that FFC provides significant benefit even
when switch update characteristics mimic this simplified setting.

It may be possible to make reaction times faster, but it is funda-
mentally limited by factors such as network path latencies, over-
loaded switch CPUs, time to update forwarding tables,1 and noise
inherent to any production environment. We thus advocate an ap-
proach where common faults are handled proactively, and only big,
rare faults are handle reactively.

3. FFC Overview and Challenges

Our goal is to develop proactive methods to handle data and con-
trol plane faults. Inspired by FEC, we develop the concept of FFC,
which guarantees that no congestion will occur as long as the num-
ber of faults is at most (a configurable bound) k. Explicit fault
detection or any reaction from the TE controller is not needed.

As the primary controls in FEC are the number of packets sent
and their encoding, the primary controls in FFC are the amount of
traffic entering a network and its spread. (Assume for now traffic
injection is controlled; we consider networks without rate control
later.) We illustrate below how these controls, with some overhead
in terms of lower throughput, can proactively protect against faults.

3.1 FFC for control plane faults

We start with control plane faults because they are unique to
centralized TE and have not been studied before. Control plane
FFC guarantees that no congestion occurs as long as the number
of switches that experience a configuration fault is up to k. To
see how this guarantee may be achieved, let us revisit Figure 3, in
which we wanted to update switches s2 and s3 to accommodate a
new flow. If we try to update the network from Figure 3(a) to 3(b),
in which flow s1→s4 sends 10 units of traffic, it is impossible to be
robust against configuration failure of s2 or s3. However, the net-
work configuration of Figure 5(a), in which s1→s4 sends 4 units
of traffic, is robust to either one or both switches failing to config-
ure. Thus, this traffic distribution is an example of FFC with k=2,
where no congestion will occur if up to two switches fail to update.

1
Being based on TCAMs (ternary content addressable memory), forwarding tables

are optimized for fast lookups, rather than fast updates [4]

Figure 4: FFC for link failures (k = 1)

Figure 5: FFC for control plane faults.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

Latency (sec)

Per-rule Update
RPC

(a) Measurement in B4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Latency (sec)

Per-rule Update

(b) Controlled experiments

Figure 6: Switch update latencies.

The downside is that the network throughput is lower than what
would have been in the absence of faults and FFC. However, this
throughput overhead will be temporary if no further changes in traf-
fic demand (or network topology) occur. In the example, once s2
and s3 are successfully configured, the flow s1→s4 will be allowed
to increase its rate to 10 units in the next period. Even if temporary,
lowered throughput is an overhead of robustness provided by FFC.

As with FEC, FFC overhead is lower for lower protection levels.
In the example above, if robustness to the configuration failure of
up to one switch (k=1) is desired, we can safely install the configu-
ration of Figure 5(b), which supports 7 units of flow s1→s4. There
will be no congestion if s2 or s3 (not both) fail to configure.

3.2 FFC for data plane faults

Data plane FFC guarantees no congestion occurs after rescaling
when up to k links or switches fail. To see how to achieve this,
we revisit Figure 2, where congestion occurs when link s2-s4 fails.
However, if we spread traffic as in Figure 4(a), any single link fail-
ure (k = 1) will not cause congestion. For example, if link s2-s4
fails, the traffic distribution after rescaling is shown in Figure 4(b).

Like control plane FFC, data plane FFC can also lower through-
put. However, while the overhead of control plane FFC is borne
only when the network is updated, the overhead of data plane FFC
is persistent. The difference in the two cases is that when a link
or switch fails, network capacity is reduced. To not congest after a
failure, we must leave spare capacity to absorb the traffic that was
being carried by the failed element.

3.3 Applying FFC

Operators use FFC by choosing the value of k, which can be dif-
ferent for the two types of faults. This choice allows them to make
an informed trade-off between the risk of congestion due to faults
and network throughput. For a fixed network capacity, higher val-
ues of k may lower throughput but also lower the risk of congestion
that can hurt congestion-sensitive applications.2

2
Throughput is lowered by rate limiting at end hosts [1, 2], not by dropping pack-

ets in the network, which to applications is indistinguishable from congestion. Packets
dropped in the network generally hurt congestion-sensitive applications more than lim-

Throughput loss with FFC is not a given. First, in well-provisioned
networks with ample spare capacity and in networks that do not
rate control traffic, network throughput with and without FFC will
be similar. The difference will be that FFC will strategically spread
traffic in a way that guarantees protection against faults. Second, in
networks that carry multi-priority traffic, the spare capacity that is
needed to protect high-priority traffic can be used to carry lowest-
priority (congestion-tolerant) traffic. Doing so leads to negligible
loss in total throughput while protecting high-priority traffic (§8.4).

Finally, our FFC techniques have another use case. For a given
traffic demand, they can precisely determine the link capacities
needed for a desired level of protection from fault-induced conges-
tion. Today, operators that want to minimize the risk of congestion
tend to heavily over-provision the network, and even that does not
provide any guarantee. We do not explore this use case in this pa-
per, but enabling it requires straightforward modifications to the
FFC constraints that we outline in the following sections.

3.4 Challenges and overview of techniques

Practical realization of FFC for arbitrary topologies and traffic
demands poses two challenges. The first is the scalability with
which robust traffic distributions can be computed. If there are
n network entities, and we want to be robust to up to k of them
failing, FFC has to deal with

∑k

j=1

(

n

j

)

failure cases. Thus, naive,
enumeration-based approaches are computationally intractable for
large networks. We must meet the computational challenge while
meeting the second challenge of minimizing the loss in network
throughput. If network throughput were not a concern, a trivially
robust solution is to not carry any traffic.

We address these challenges by first formulating the conditions
on traffic quantity and spread as linear constraints. While this for-
mulation is precise, it has a large number of constraints. We then
reduce these large number of constraints to a much smaller num-
ber by observing that the constraints can be transformed to what
we call the "bounded M-sum" problem and all constraints in such
a problem can be reduced to a single constraint on the largest (or
smallest) M variables. Finally, we encode these variables using ef-
ficient linear expressions with the aid of sorting networks [10]. The
result is an FFC formulation with O(kn) constraints.

Our techniques exploit two properties of our setting. First, the
impact of a fault is easy to model. If switch configuration fails, it
sticks to its old configuration; if a link fails, ingress switches de-
terministically rescale traffic. This simplicity allows us to capture
the conditions imposed by FFC using efficient, linear constraints.
Second, while faults are common, the fault ratio (i.e., the fraction
of elements that fail) is low. Thus, it suffices to guard against a
small number of faults (k). Solving for high values of k would be
computationally intensive and impose a high throughput overhead.

4. Basic FFC Formulation

We now describe how to formulate and solve FFC for a basic TE
setting. Our formulation is highly flexible, and in §5 we extend it
to a range of other TE settings.

4.1 Basic TE (without FFC)

The basic TE problem can be formulated as follows, with key
notations summarized in Table 1. The input is a graph G=(V,E),
where V and E are sets of switches and directed links between
switches. Each link e ∈ E has a capacity ce. The traffic demand
is a set of flows, where each flow f is (aggregated) traffic from an
ingress to an egress switch. The bandwidth demand of f in a TE

iting their sending rate at source (to which they can adapt). For instance, detecting and
recovering from a dropped TCP SYN takes time, which magnifies flow completion
time for short transfers.

TE G Network graph with switches V and links E.
Input F = {f} Flows aggregated by ingress-engress switches.

df The bandwidth demand of f in a TE interval.
ce The bandwidth capacity of link e.
Tf The set of tunnels that are set up for flow f .

L[t, e] 1 if tunnel t uses link e and 0 otherwise.
S[t, v] 1 if tunnel t’s source is switch v and 0 otherwise.

TE bf The granted bandwidth to flow f .
Output af,t The bandwidth allocated for flow f on tunnel t.

TE βf,t The upper-bound of flow f ’s traffic.
Others wf,t The traffic splitting weight of flow f on tunnel t.

FFC pf & p The max number of f ’s tunnels traverse a link.
qf & q The max number of f ’s tunnels traverse a switch.
kc, ke,
kv

The number of configuration, link and switch
failures that FFC protects the network against.

τf
The min number of f ’s residual tunnels with up
to ke link and kv switch failures.

Table 1: Key notations in FFC formulation.

interval is df and its traffic can be carried on a set of pre-established
tunnels Tf .

The TE output is bandwidth allocation {bf |∀f} of each flow and
how much of the flow can traverse each tunnel {af,t|∀f, t ∈ Tf}. In
networks where the flow rate cannot be controlled, the TE output is
only the latter (and bf = df).

The TE problem can be solved based on path-constrained multi-
commodity flow problem [14], as follows:

max
∑

f∈F bf (1)

s.t.∀e ∈ E :
∑

f∈F,t∈Tf
af,tL[t, e] ≤ ce (2)

∀f ∈ F :
∑

t∈Tf
af,t ≥ bf (3)

∀f ∈ F, t ∈ Tf : 0 ≤ bf ≤ df ; 0 ≤ af,t (4)

where the binary indicator L[t, e] denotes if tunnel t traverses link
e. The TE objective in this formulation is to maximize network
throughput (Eqn. 1). We consider other objectives in §5.3. Eqn. 2
states that no link should be overloaded, and Eqn. 3 states that the
sum of the allocation of a flow across all its tunnels should not be
less than its allocated rate.3 Eqn. 4 states that the rate allocated to a
flow should not exceed demand, and all variables are non-negative.

The formulation above captures TE for both wide area networks
and data center networks (DCN). One difference is that in DCNs,
given the larger scale, TE focuses only on large flows (elephants)
and link capacity refers to what is not used by small flows (mice).

To implement the computed solution, the TE controller updates
the flow’s rate limiters to {bf} and ingress switches to use traffic
splitting weights of wf,t = af,t/

∑

t∈Tf
af,t.

4.2 Modeling control plane faults

For control plane faults, the goal of FFC is to compute the new
configuration ({bf}, {af,t}) such that no congestion will occur as
long as kc or fewer switches fail to update their old configuration
({b

′

f
}, {a

′

f,t
}). Another type of control plane fault is a failure to

configure a rate limiter, which we will consider in §5.5. Let λv=1

denote a configuration failure for at least one of the flows with v

as the ingress switch; λv=0 denotes that configuration for all flows
starting at v succeeds. An individual case of control plane faults
in the network can be represented by a vector λ=[λv |v ∈ V] that
indicates the status of each switch. Thus, FFC that is robust to kc
faults requires that the network have no overloaded link under the
set of cases Λkc

= {λ|
∑

v∈V λv ≤ kc}.
This requirement can be captured as:

3
Using ‘≥’ instead of ‘=’ in Eqn. 3 simplifies the exposition of FFC for data plane

faults. For TE without FFC, given the goal of maximizing bf , using ‘≥’ is equivalent
to using ‘=’.

∀e ∈ E,λ ∈ Λkc
:
∑

v∈V

{(1− λv)âv,e + λvβ̂v,e} ≤ ce (5)

where âv,e is the total traffic that can arrive at link e from flows
starting at v if there is no configuration fault. That is:

∀v ∈ V, e ∈ E : âv,e =
∑

f∈F,t∈Tf
af,tL[t, e]S[t, v] (6)

where indicator S[t, v] denotes if tunnel t’s source switch is v.
In Eqn. 5, β̂v,e is the upper bound on link e ’s traffic from flows

starting at v when a fault occurs (λv = 1). That is:

∀v ∈ V, e ∈ E : β̂v,e =
∑

f∈F,t∈Tf
βf,tL[t, e]S[t, v] (7)

where βf,t is the upper bound on flow f’s traffic on tunnel t when
a faults occurs for f . Since we assume the updates in rate limiters
are successful, βf,t can be modeled as:

∀f ∈ F, t ∈ Tf : βf,t = max{w
′

f,t
bf , af,t} (8)

where w
′

f,t
is flow f’s splitting weight for tunnel t in the old con-

figuration (which is known).
Adding Eqns. 5–8 to the basic TE formulation can, in theory, find

TE configurations that are robust to kc control plane faults. How-
ever, Eqn. 5 contains |E|

∑kc
j=1

(|V |
j

)

constraints because Λkc
has

∑kc
j=1

(|V |
j

)

failures cases. Directly solving for so many constraints
is computationally intractable. We outline in §4.4 how we reduce
this problem to a smaller number of equivalent constraints.

4.3 Modeling data plane faults

For data plane faults, the goal of FFC is to compute flow allo-
cations such that no congestion occurs even after up to ke links
fail and up to kv switches fail. The guarantee is for link failures
that are not incident on the failed switches. Since switch failures
imply link failures, one could protect against them by considering
only link failures [15]. But we explicitly consider switch failures
because switches can have a large number of incident links; pro-
tecting against switch failures implicitly (using link failures) would
require a high value of ke. This approach would significantly hurt
throughput because it will protect against arbitrary combinations of
up to ke links, a much stronger condition than protecting against ke
incident links on the same switch.

We model data plane FFC as follows. Let µe=1 denote that link
e has failed, and ηv=1 denote that switch v has failed; the indicator
values are 0 otherwise. Then, a case of data plane fault can be repre-
sented by (µ,η) in which vector µ = [µe|e ∈ E] and η = [ηv |v ∈ V].
Thus, TE that is robust to ke link failures and kv switch failures re-
quires that there is no overloaded link under the set of hardware
failure cases Uke,kv

= {(µ,η)|
∑

e µe ≤ ke,
∑

v ηv ≤ kv}.
Recall that data plane faults can cause congestion because they

alter traffic distribution over the network when ingress switches
rescale traffic, that is, move it from the impacted to the residual
tunnels for the flow. Given a fault case (µ,η), we know the resid-
ual tunnels Tµ,η

f
of each flow f—those that do not traverse any

failed link or switch. FFC requires that f’s residual tunnels be able
to hold its allocated rate.

∀f ∈ F, (µ,η) ∈ Uke,kv
:

∑

t∈T
µ,η
f

af,t ≥ bf (9)

Further, if a flow f has no residual tunnels (Tµ,η
f

= ∅) under a
failure case (µ,η), its flow size bf should be fixed to 0.

Eqn. 9 also guarantees that no link will be overloaded:

LEMMA 1. A TE configuration ({af,t}, {bf}) that satisfies con-

straints Eqns. 2–4, 9 under fault case (µ,η) causes no link overload

after all ingress switches rescale.

Figure 7: Overall process for FFC-TE computation.

PROOF. When a data plane failure case (µ,η) happens, the traf-
fic load of a flow f on a residual tunnel t ∈ Tµ,η

f
is:

bµ,η
f,t

=
at,f

∑

t∈T
µ,η
f

af,t
∗ bf ≤

at,f

bf
∗ bf = af,t (10)

which is directly derived from Eqn. 9. Therefore, we know the total
traffic load on a link e is:

∀e ∈ E :
∑

f,t∈T
µ,η
f

bµ,η
f,t

L[t, e] ≤
∑

f,t∈Tf
af,tL[t, e] ≤ ce

which finishes the proof.

As for control plane faults, adding these constraints to the basic
TE will in theory yield a solution that is robust to data plane faults,
but directly solving for these constraints is intractable given the
large number of possible failure cases in Uke,kv

. Before describ-
ing how to solve these constraints, we briefly discuss how careful
tunnel layout can improve robustness to data plane faults as well as
reduce the overhead of data plane FFC.

Robust tunnel layout One observation from Eqn. 9 is that higher
the number of residual tunnels, greater the network throughput.
Thus, we can improve throughput by creating tunnels such that
flows lose as few tunnels as possible when faults occur. Ideally,
each flow would lose at most one tunnel upon a fault, but this guar-
antee requires switch-disjoint (and thus also link-disjoint) tunnels,
which limits flows to a small number of tunnels in networks with
low path diversity. That would in turn restrict network throughput,
as more tunnels are better able to utilize network capacity.

To balance these needs, we recommend (p, q) link-switch dis-
joint tunnels. For an individual flow, at most p tunnels should tra-
verse a link and at most q tunnels should traverse a switch. The
parameters p and q can be flow specific. Algorithms to find link
and switch disjoint paths can be extended to find (p, q) link-switch
disjoint tunnels; we omit details for space constraints.

4.4 Efficiently solving FFC constraints

To tractably solve the large number of FFC constraints, we trans-
form them to a "bounded M-sum" problem and then encode the
transformed problem using a sorting network. Figure 7 shows the
overall process of the FFC-TE computation.

4.4.1 Transformation to bounded M-sum

We define the bounded M-sum problem as: Given a set of N

variables, the sum of any M of those should be less (or more) than
a bound B. Formally, if NM is the set of all possible variable subsets
with cardinality ≤M , we have:

∀S ∈ NM :
∑

ni∈S

ni ≤ B (11)

The interesting aspects of this problem are: 1) FFC constraints
can be transformed to it; and 2) while the original formulation has
a large number of constraints, all of them are satisfied as long as
one constraint involving the largest M variables is satisfied. If nj

is an expression for the j-th largest variable in N , all constraints
above hold if: M

∑

j=1

nj ≤ B (12)

Thus, if we can find efficient (linear) expressions for the largest M
variables in N , we can replace all original constraints with one con-
straint. Before showing how to find such expressions, we first show
how to transform FFC constraints into bounded M-sum problem.

Algorithm 1: LargestValues(X , M)

[Input] X: an array of variables1

[Input] M : the number of largest values to extract2

[Output] Y : an array of new variables in which Y [i] (0 ≤ i ≤M) is3

the ith largest element in X
[Output] C: a set of constraints between X and Y4

Y ← ∅; C ← ∅;5

// Pop M largest variables from X .6

while |Y | < M do7

y∗, X , C
′

← BubbleMax(X) ;8

Y ← Y + {y∗}; C ← C + C
′

;9

return Y , C ;10

Control plane faults Eqn. 5 of control plane FFC can be equiva-
lently re-written as:

∀e ∈ E,λ ∈ Λkc
:
∑

v∈V

λv(β̂v,e − âv,e) ≤ ce −
∑

v

âv,e (13)

Let D = {β̂v,e − âv,e|v ∈ V } and dj be the jth largest element in
D. Since β̂v,e − âv,e ≥ 0, Eqn. 13 is equivalent to

∀e ∈ E :

kc
∑

j=1

dj ≤ ce −
∑

v

âv,e (14)

Thus, we have transformed the original |E| × |Λkc
| constraints into

|E| constraints, one for each link.

Data plane faults Assume that the tunnels of flow f are (pf , qf)

link-switch disjoint. The values (pf , qf) are computable for any
given tunnel layout; the layout does not have to use the robust strat-
egy above. Then, for any data plane fault case (µ,η) ∈ Uke,kv

, the
number of residual tunnels is no less than τf = |Tf |−kepf −kvqf .
Suppose aj

f,t
is the jth smallest (not largest) element in Af =

{af,t|t ∈ Tf}, then the following guarantees that all constraints
in Eqn. 9 are satisfied:

∀f :
∑τf

j=1
aj
f,t
≥ bf (15)

The guarantee holds because the left-hand side of Eqn. 15 is the
worst-case rate allocation that flow f can have from its residual
tunnels under any case in Uke,kv

.
Unlike control plane faults, the transformation from Eqn. 9 to

Eqn. 15 does not preserve equivalence. Satisfying Eqn. 15 satis-
fies Eqn. 9, but not vice versa. In the special cases link failures
with link-disjoint tunnels and switch failures with switch-disjoint
tunnels, the two are equivalent.

Interestingly, however, the imprecision of Eqn. 15 allows it to
protect against fault cases beyond Uke,kv

. It essentially protects the
network against any fault case where the number of tunnel failures
is no more than kt = kepf + kvqf . Suppose (pf , qf)=(1, 3) and
our desired protection level is up to 3 links failures and no switch
failure (ke=3, kv=0), with Eqn. 15 we also simultaneously protect
the network against one arbitrary switch failure and no link failure
(ke=0, kv=1). We leverage this effect in our experiments.

4.4.2 Encoding for largest (or smallest) M variables

We now explain how we express the largest M variables as lin-
ear constraints. When added to other TE constraints, they help ef-
ficiently compute FFC traffic distribution.

Our method is based on sorting networks [10], which are net-
works of compare-swap operators that can sort any array of N val-
ues. An example network to sort 4 values is shown in Figure 8(a).
This network is based on the merge sort algorithm. Each compare-
swap operator takes two inputs from left, and it moves the higher
input upwards and the lower downwards.

Algorithm 2: BubbleMax(X)

[Input] X: an array of variables1

[Output] x∗: a variable that represents max{X}2

[Output] Y : an array that represent X \ {x∗}3

[Output] C: a set of constraints among X , Y and x∗4

x∗←X .pop(); Y ← ∅; C ← ∅ ;5

while X 6= ∅ do6

x←X .pop() ;7

xmax, xmin← new variables ;8

// Make two new constraints.9

c1← 2 ∗ xmax = x+ x∗ + |x− x∗| ;10

c2← 2 ∗ xmin = x+ x∗ − |x− x∗| ;11

x∗ ← xmax; Y ← Y + {xmin}; C ← C + {c1, c2};12

return x∗, Y , C ;13

The characteristic of sorting networks that we exploit is that the
sequence of compare-swap operations is independent of the input,
unlike many sorting algorithms (e.g. quick sort) where the next
comparison depends on the outcome of previous ones. This charac-
teristic allows us to encode the relationship between original vari-
ables and the jth largest element in them with linear expressions.

We also exploit that we are interested in only the largest M val-
ues, rather than sorting them all, which allows us to use a partial
network. Practical sorting networks require O(Nlog(N)2) compare-
swap operators, while we use a partial network with O(NM) oper-
ators. This difference is substantial since N is large and M is small
in our setting—equivalent to the number of faults we guard against.

We base our network on bubble sort; unlike other algorithms, its
premature termination after M stages yields the largest M values.
Figure 8(b) illustrates our strategy for the case of finding the largest
2 of 4 values. The first stage finds the largest element, and the
second finds the second largest.

Algorithm 1 shows the pseudo-code for generating expressions
for the largest M values. It operates in M steps, and in each step,
it builds an expression for the largest of the remaining values. Al-
gorithm 2 shows the pseudo-code for building the expression for
the largest value. Figure 8(c) shows a concrete example of Algo-
rithm 2 in which |x−x∗| in Lines 10 and 11 is encoded with linear
formulations.

A similar approach can find the expressions for the smallest M
values. The only difference is that compare-swap operators that
push the lower (not higher) of the two values upwards are used.

4.4.3 Throughput and computational overhead

Our methods have the following properties with respect to through-
put overhead: 1) Our control plane FFC scheme is optimal; and 2)
Our data plane FFC scheme is optimal for the special cases of link
failures with link disjoint tunnels and switch failures with switch
disjoint tunnels. Optimal means that no other scheme will have
lower overhead for the same degree of protection. We omit proofs
from this paper due to space constraints.

The computational overhead of our methods can be characterized
using the number of additional variables and constraints they intro-
duce in the LP. The basic (non-FFC) TE problem has 2|F |+|E| con-
straints and

∑

f |Tf |+ |F | variables. Control plane FFC introduces
|E| constraints (Eqn. 14) plus up to 4kc|V ||E| constraints and up
to 3kc|V ||E| variables to encode the partial sorting network. (Even
though we show only 2 new variables and 2 constraints in Algo-
rithm 2, multiplicative factors of 4 and 3 stem from converting the
absolute values in Lines 10∼11 into standard linear constraints.)
Data plane FFC introduces up to |F |+4

∑

f |Tf |min{|Tf |− τf , τf}

constraints and up to 3
∑

f |Tf |min{Tf − τf , τf} variables. Recall
that τf = |Tf | − kepf − kvqf .

Figure 8: Sorting networks and finding largest elements among variables.

4.5 Combined FFC for both faults types

To simultaneously protect against control and data plane faults,
we simply include both types of constraints in TE computations. It
will take three parameters (kc, ke, kv) and the guarantee is that no
congestion will occur as long as switch configuration failures, link
failures, and switch failures are up to kc, ke , and kv , respectively.

A subtle issue can arise in combined protection settings right af-
ter data plane faults bigger than the protection level (e.g., number
of failed links > ke). Due to such faults, some links may get con-
gested and there may be no way to move traffic away from them
while being also robust to control plane faults. For instance, as-
sume that due to a big data plane fault, after rescaling, a link e with
capacity 10 gets 7 units of traffic each from three flows that start at
different ingress switches. Moving the extra 11 units of traffic away
from the link requires updating at least two switches. But if we are
protecting against two control plane faults (kc=2) planning for this
movement is impossible; there would be no feasible solution to the
FFC constraints. To handle this issue, we allow unprotected moves
for overloaded links by setting kc=0 for such links in Eqn. 5. In
theory, overloaded links can arise after big control plane faults as
well, but in our experience, such faults are unlikely to create con-
gestion that is so severe that traffic cannot be moved in a manner
that is robust to (further) control plane faults.

5. Extending Basic FFC

Our FFC formulation is not only efficient but also flexible. We
now show how it extends to a wide range of TE settings.

5.1 Traffic with different priorities

Earlier, we assumed that all traffic has the same priority; some
networks may use multiple priorities to differentiate between ap-
plications with different performance requirements [1, 2]. FFC can
be extended to this setting to offer different levels of protections
to different priorities. The TE solution for higher priority traffic is
computed first with a custom protection level (khc , khe and khv), and
the TE solution of lower priority traffic is computed next with its
own protection level (klc, kle and klv). This cascading computation is
already done to support multiple priorities [1, 2]; computation for
lower priority traffic uses residual link capacity (not actually used
higher priority traffic).

A requirement for the extension above is that the protection level
for high priority should not be smaller (khx ≥ klx, x ∈ {c, e, v}),
which is a desirable property anyway. Otherwise, the FFC-TE for
lower priorities may not have a feasible solution because the con-
figuration for high priority traffic may violate FFC constraints.

5.2 Congestion-free updates

Some networks use multi-step updates to preclude transient con-
gestion caused by different switches updating their configuration at
different times [2, 16]. The basic idea is to find a chain of inter-
mediate TE configurations Ai={ai

f,t
}(0 < i < m) that update the

network from current configuration A0 to the desired configuration

Am. The transition between each pair of adjacent TE configura-
tions is guaranteed to be congestion free irrespective of the order
in which the switches apply updates. Such intermediate TEs are
found using the following key constraint:

∀e ∈ E, i :
∑

v

max{âi−1

v,e , âiv,e} ≤ ce (16)

This constraint captures the condition that each link e should be
able to accommodate the maximum traffic, across adjacent config-
urations, it gets from each ingress switch v. After computing the
intermediate configurations, the TE controller updates the network
step-by-step: A0 → A1 . . . Am.

With congestion-free updates, control plane faults will not cause
congestion, but will block the update process; the preceding step
must complete before the next step can be taken. In this setting,
FFC can ensure that the update can proceed from Ai−1 to Ai as
long as the cumulative number of faults (across all steps thus far)
is kc or fewer. We can find such intermediate configurations by
replacing Eqn. 16 with:

∀e ∈ E, λ ∈ Λkc
, i :

∑

v λvmax{β̂0
v,e, ...β̂

i
v,e}+ (1− λv)max{âi−1

v,e , âiv,e} ≤ ce

This is a large number of constraints, but we can solve them effi-
ciently by transforming them to the bounded M-sum problem (§4.4).
We omit details for space constraints.

5.3 Optimizing for fairness

Earlier, we assumed that TE objective was to maximize network
throughput; another common objective is fairness among flows [1,
2]. Fairness typically introduces more constraints in the TE prob-
lem, and simply including those constraints will yield FFC-TE with
fairness. As a concrete example, consider the iterative approximate-
max-min fair method of SWAN [2]. It solves the basic TE (Eqns. 1–
4) multiple times, each time with an upper-bound on flow alloca-
tions (bf). The bound is iteratively increased by multiplying it by
a factor α. The allocation of flows that are unable to reach the
bound in a given iteration are frozen for future iterations, and the
iterations continue until the bound goes above the maximum flow
demand (df). This process ensures that flows with large demands
cannot get a higher allocation until the allocation of other flows
cannot be increased to at least that level. It yields flow allocations
that are provably at most α away from true max-min fair allocation
(which is computationally hard to calculate).

The same process can be used largely unmodified to compute TE
solutions that are both fair and provide FFC. The only difference is
that each iteration includes FFC-related constraints as well.

5.4 TE without flow rate control

In some networks, such as ISP backbones, controlling the rates
of incoming flows is not possible. Instead of allocating flow rates,
the goal of TE tends to be to configure the network such that max-
imum link utilization (MLU) is minimized while carrying the of-
fered demand ({df}). The basic (non-FFC) network configuration
({af,t}) can be computed for this setting by replacing Eqns. 1 and 2
with the following objective function and constraint:

Figure 9: The network topology emulated in our testbed.

min. Θ(u)

s.t.∀e : u ≥
∑

v âv,e/ce

where u denotes MLU and Θ is a function of MLU that needs to be
minimized. Eqn. 2, which limited the amount of traffic a link had to
carry, is replaced because the offered demand may be higher than
what is routable while honoring link capacities. In the equations
above, u is allowed to be higher than 1 (i.e., over-subscribed links).

To compute FFC configuration, constraints for data plane FFC
stay the same, but control plane FFC requires changing the objec-
tive function and additional constraints, as follows:

min. Θ(u) + σΘ(uf)

∀e ∈ E, λ ∈ Λkc
: uf ≥

∑

v{λv
ˆβv,e + (1− λv)âv,e}/ce

where σ > 0 is a coefficient that balances the importance of MLU
in normal cases u and MLU when faults occur uf. These constraints
can be solved using the method of §4.4.

5.5 Control plane faults for rate limiters

Earlier, we assumed that configuration updates for rate limiters
always succeed; some networks may experience update failures for
rate limiters as well. If ingress switches and rate limiters are up-
dated independently, the traffic load of a flow on a tunnel can be
a mix of old or new traffic splitting weights and old or new flow
sizes. We can account for this by modifying Eqn. 8 to:

βf,t = max{a
′

f,t, b
′

fwf,t, bfw
′

f,t, af,t} (17)

In some networks, the updates on switches and rate limiters are
ordered to ensure that there is no congestion due to transient incon-
sistencies in flow sizes and tunnel weights [2]. The order is: if f’s
size is increasing (b

′

f
< bf), the traffic splitting weights at ingress

switches are updated first and the rate limiter is updated after (and
only if) that succeeds; otherwise, the rate limiter is updated first and
the splitting weights are updated after that succeeds. Thus, if b

′

f
<

bf , the combination of new flow size and old weights (bfw
′

f,t
) will

not occur and b
′

f
wf,t < af,t; similarly if b

′

f
> bf , the combination

of old flow size and new weights (b
′

f
wf,t) will not occur and bfw

′

f,t

< a
′

f,t
. We can then simplify Eqn. 17 to:

βf,t = max{a
′

f,t, af,t} (18)

Besides simplifying the FFC formulation, ordering of updates on
switches and rate limiters also helps lower the overhead of FFC. It
reduces the number of possible traffic configurations for which we
must be prepared.

5.6 Uncertainty in current TE

Earlier, we assumed that while computing the next TE configura-
tion, the controller exactly knows the current configuration ({a

′

f,t
},

{b
′

f
}) of each flow. Sometimes, however, there may be uncertainty

in the configuration of some flows, e.g., if update commands were
sent in the last round to change configuration from ({a

′′

f,t
}, {b

′′

f
})

to ({a
′

f,t
}, {b

′

f
}) but the success of some updates could not be con-

firmed. In such an event, the configuration of the flow can be either
({a

′′

f,t
}, {b

′′

f
}) or ({a

′

f,t
}, {b

′

f
}).

Figure 10: Traffic distribution before link s6-s7 fails.

We can explicitly account for this uncertainty in FFC computa-
tions. Suppose F is a set of flows with uncertain configurations.
Instead of computing yet another configuration for them, we try to
bring their configuration up-to-date and, in terms of link capacity
allocation, we plan for them to be in either of the last two configu-
rations. The following constraints capture this strategy:

∀f ∈ F , t ∈ Tf : bf = b
′

f
; af,t = a

′

f,t

∀f ∈ F , t ∈ Tf : βf,t = max{a
′′

f,t
, a

′

f,t
}

6. Implementation

Our FFC controller is implemented as a drop-in replacement
for existing TE controllers. It takes as input traffic demand (per-
priority ingress-egress flow), network topology, and current traffic,
and produces the allocation of each flow and configuration for each
switch. The additional configuration for our controller includes the
protection level (kc, ke, kv) for each priority. It implements all the
extensions in §5. We use Solver Foundation v3.0.2 with CPLEX
plugin v12.5.0 as our LP solver.

Our implementation includes a few optimizations that lower com-
putational burden without practically impacting FFC properties.
For control plane FFC, observe that not all ingress switches have
traffic on each link. Thus, in Eqn. 14, if a switch v has no load on a
link e in the old TE, we ignore v when considering the safety of e.
Similarly, we also ignore switches that have little traffic load—less
than 0.001% of capacity—on e in the old TE because the impact of
such switches not updating is negligible. For data plane FFC, we
pick mice flows—those that collectively carry less than 1% of the
traffic—and fix their tunnel bandwidth allocations with the con-
straint af,t =

bf
τf

, which suffices to satisfy Eqn. 15, rather than

using sorting networks.

7. Testbed Evaluation

We begin our evaluation of FFC by first performing experiments
on a testbed. These experiments show the value of FFC with real
switches and actual delays in detecting and reacting to failures. The
next section shows the value of FFC at scale using simulations with
data from real networks.

Our testbed emulates a WAN with 8 sites spread across 4 conti-
nents, as shown in Figure 9. Each site has 5 servers that generate
traffic and 1 WAN-facing switch (Arista 7050T). The capacity of
every cross-site link is 1 Gbps. The TE controller is in New York
(s5), and we emulate delays for control messages based on geo-
graphic distances. We update switch rules via a custom software
agent running on the switches (which we have found to be more
performant and reliable than the built-in software). We use iperf on
the servers to generate UDP traffic flows with specified rates and
measure packet loss according to both iPerf’s server reports and
the packet counters in the switches. All switches run link liveness
detection protocol, and they report any failures to ingress switches.
Upon hearing about a failure, ingress switches rescale traffic away
from the impacted tunnels.

We conducted several experiments to study the behavior of FFC
and non-FFC TE, but we present results only from a simple, rep-
resentative experiment that illustrates their differences for a data

Figure 11: Events with and without FFC during link failures.

plane fault. This experiment has two flows, s3→s7 and s4→s5,
each with demand 1 Gbps. Figure 10 shows how this traffic was
spread in the case of FFC and non-FFC. The main difference is
that FFC uses tunnel s4-s6-s5, instead of s4-s3-s5, to transmit 0.5
Gbps traffic, which provides protection against any single-link fail-
ure. We conducted many trials with this setup; in each we failed
link s6-s7 and observed the ensuing events.

FFC behavior was consistent across trials. Figure 11(a) shows
an example. The x-axis is a time line relative to when the link
failure was injected and y-axis lists the events that could happen
in a failure reaction. Shadowed blocks denote the start and end
of the event. We see s6 detects link failure within 5 ms, and s3
hears about it within 45 ms. s3 rescales and moves all traffic to the
residual tunnel within 2 ms. Packet loss on tunnel s3-s6-s7 stops
immediately after that. We thus see that losses in FFC are a purely
a function of the time it takes for fault detection and rescaling de-
lay. We see that modulo propagation delay, which is fundamental,
today’s switches can detect faults and rescale quickly. FFC ensures
that these activities suffice at eliminating congestion, and the TE
controller does not need to react.

The situation is more complex in the non-FFC case. After s3
rescales, link s4-s5 will get congested as it starts getting 1.5 Gbps
of traffic; see Figure 9(b). To remedy this, the TE controller com-
putes a new solution in which s4 moves 0.5 Gbps of traffic to tun-
nel s4-s6-s5 and updates the switch s4. Figure 11(b) shows the
best case for non-FFC in our trials, in which the update itself was
quick (within 5 ms). We see rescaling-related loss on s3-s5 stops
within 45 ms, given the propagation delay from the controller to the
switch s4. Overall, the network was congested for twice the time
compared to FFC. Figure 11(c) shows a bad case for non-FFC, in
which the switch s4 took a long time to apply the update. Conse-
quently, the congestion lasted for much longer.

8. Data-driven Evaluation

We now evaluate FFC with topology, traffic, and failure data
from real networks. We first micro-benchmark its throughput and
computation cost, then study its end-to-end impact in single- and
multi-priority networks, and finally study its impact on update time
for multi-step updates. We start by describing our data sources and
experimental methodology.

8.1 Experimental methodology

Networks We experiment with two wide area networks. The first,
which we call L-Net, has O(50) sites globally with O(100) switches
and O(1000) links. We have data on link capacities, traffic, and
data plane faults for L-Net. To ensure that our results are robust
to network topology, we also use B4’s site-level topology with 12
sites [1], which we call S-Net. Since we do not know the internal
details of S-Net, we assume that there are two switches per site,
and each site-level link is composed of four 10 Gbps switch-level
links between each of the four inter-site switch pairs.

Traffic demand We collect network traffic logs and aggregate it
into ingress-egress flows. We partition time into 5-minute bins (the
TE interval) and the demand of the flow for an interval is the aver-
age bandwidth it consumed. For L-Net, we use its traffic logs di-
rectly. For S-Net, we use traffic logs from another inter-datacenter
network (not L-Net) and synthesize demand by mapping sites from
the other network onto S-Net, as in earlier work [2].

For multi-priority experiments, we partition traffic into three pri-
orities based on their source services. Following SWAN [2], high
priority is for interactive services, which are highly sensitive to loss
and delay; medium priority is for services that are less sensitive but
are still impacted by packet loss (e.g. deadline-driven transfers);
and low priority is for background services (e.g. data replications).

To understand the impact of network provisioning level, we study
three cases. The first is a well-utilized network where capacity
matches demand. To mimic this, we scale the demands of all flows
(uniformly) such that 99% of demands per interval are satisfied.
The results below refer to this case as traffic scale of 1. The other
two cases are a well-provisioned network and an under-provisioned
network, and we use traffic scales of 0.5 and 2 to mimic them.

In terms of relationship to practice, ISP networks are typically
well-provisioned and use single priority traffic. Inter-datacenter
networks are well-utilized and use multiple priorities to protect
high priority traffic from short-term demand increases of lower pri-
ority traffic [1, 2].

Failures and switch update models For L-Net, we inject data
plane faults as per logs from the network. For S-Net, we inject
faults based on the per-link and per-switch failure probabilities de-
rived from L-Net logs. We assume that it takes 5 ms for a switch
to detect a link failure, and the time it takes for an ingress switch to
hear about the failure and rescale depends on the propagation delay.

We consider two models of switch update behaviors. In the
Realistic model, we use the update delay distribution reported
for B4 (§2.3) and a configuration failure rate of 1%. In the Optimi-
stic model, we use the update delay distribution we measured in
a controlled environment (§2.3) and no configuration failures.

TE approaches We compare TE with and without FFC. Without
FFC, when a link or switch fails, the TE controller immediately
computes a new traffic distribution and updates the network. With
FFC, the controller does not react to data plane faults unless it is
on the edge of protection level. If the link protection level ke=2,
the controller reacts only after 2 links have failed. reaction logic is
per-priority; when a given priority traffic is at the edge of protec-
tion level, only that traffic is re-adjusted. Both approaches use the
same set of tunnels. We use (1, 3)-link-switch disjoint strategy to
establish six tunnels for each flow. Except in the micro-benchmark
experiments, if a flow’s demand is not satisfied in an interval, the
remaining bytes add to its demand in the next interval.

We evaluated both max-throughput and max-min fairness as TE
objectives but present results only for the former. Results for the
latter are qualitatively similar.

Metrics We use two metrics to capture the behavior of FFC:

 0

 5

 10

 15

 20

0.5 1 2

1
 -

 t
h

ro
u

g
h

p
u

t
ra

ti
o

 (
%

)

Traffic Scale

Kc=1
Kc=2
Kc=3

(a) Control Plane FFC (L-Net)

 0

 5

 10

 15

 20

0.5 1 2

1
 -

 t
h

ro
u

g
h

p
u

t
ra

ti
o

 (
%

)

Traffic Scale

Kc=1
Kc=2
Kc=3

(b) Control Plane FFC (S-Net)

 0

 10

 20

 30

 40

 50

 60

0.5 1 2

1
 -

 t
h

ro
u

g
h

p
u

t
ra

ti
o

 (
%

)

Traffic Scale

Ke=1
Ke=2
Ke=3
Kr=1

(c) Data Plane FFC (L-Net)

 0

 10

 20

 30

 40

 50

 60

0.5 1 2

1
 -

 t
h

ro
u

g
h

p
u

t
ra

ti
o

 (
%

)

Traffic Scale

Ke=1
Ke=2
Ke=3
Kr=1

(d) Data Plane FFC (S-Net)

Figure 12: Throughput overhead of FFC. Bars show the 90th %-ile value and error bars show the 50th and 99th %-iles.

i) Throughput ratio Network throughput with FFC versus without
FFC. One minus this ratio is the overhead of FFC.
ii) Data loss ratio Bytes lost with FFC versus without FFC. We
count bytes lost due to both blackholes and congestion. Blackhole
losses occur during the time between when a link fails and when
ingress switches rescale; all packets that traverse the failed link
are considered lost in this period. Congestion losses are computed
based on link capacity and the duration and degree to which the link
is oversubscribed. This simple measure overestimates loss if traffic
is congestion controlled, as such traffic will reduce sending rate in
response to early losses. But it serves as a good proxy for capturing
the intensity and duration of congestion, without requiring us to
model the intricate relationship between loss and performance for
a diverse set of applications.

8.2 Micro-benchmarks

Throughput overhead To micro-benchmark the overhead of FFC,
we compute traffic distributions with and without it for successive
TE intervals. In each interval, we exclude any unfinished data from
previous intervals, so that both approaches operate on the same de-
mand in each interval, independent of preceding allocations. Fail-
ure and switch models do not impact these experiments as we do
not inject faults but study overhead when no faults happen.

Figures 12(a) and 12(b) show the overhead (1 - throughput ratio)
of control plane FFC in isolation (no data plane FFC) for three
protection levels. For each traffic scale, they plot three percentile
values. We see that the overhead of control plane FFC is small—
under 5% even at 90th percentile level for all but one setting—
and, expectedly, increases with the protection level. We also see
that the overhead generally increases with the traffic scale. As the
network gets busier, it becomes harder to accommodate all traffic in
a way that modifies traffic spread robustly. The results are similar
for L-Net and S-Net.

Figures 12(c) and 12(d) show the overhead of data plane FFC
for 1-3 links failures and 1 switch failure. Because we use (1, 3)-
link-switch disjoint strategy to construct tunnels, the cases with ke
= 3 and kv = 1 are identical. We see that the overhead is low at
traffic scale 0.5 (a well-provisioned network), but it grows quickly
as traffic scales and protection level increases.

Based on these results and that multiple link failures in a short
amount of time and switch failures are uncommon (but do occur),
we recommend using a protection level of (kc, ke, kv) =(2, 1, 0) in
single-priority networks. In multi-priority networks, we recom-
mend a higher protection level for high-priority flows. As the rela-
tive volume of this traffic is typically under 50%, FFC’s overhead
will still be small.

Computation time We benchmark computation time on an ordi-
nary PC with Intel i5 M540 2.53 Ghz CPU (2 cores) and 4GB
RAM. Table 2 lists the average computation time for FFC with dif-
ferent protection levels and without FFC. Because of the impreci-
sion of Eqn. 15 (§4.4.1), FFC configuration of (3, 3, 0) simultane-
ously provides protection for (3, 0, 1). We use (3, 0, 1)∪ (3, 3, 0) as

FFC (3, 3, 0) ∪ (3, 0, 1) FFC (2, 1, 0) Non-FFC

L-Net 1.2 sec 0.3 sec 0.05 sec

S-Net 0.03 sec 0.02 sec 0.015 sec

Table 2: TE computation time with and without FFC.

a shorthand for this combined protection level. We see that even
at a high protection level, FFC computation takes only 1.2 seconds
for large network like L-Net.

In contrast, we find that directly computing TE with the original
FFC constraints (Eqns. 5 and 9) takes longer than 12 hours in each
case. Such long computation time renders TE ineffective given that
the traffic demands and network topology likely change before a
solution is obtained.

8.3 Single-priority traffic

We now conduct end-to-end evaluation of FFC with realistic fail-
ure and switch models. This section focuses on the single-priority
case, and the next on multi-priority case. Per above, we configure
FFC as (kc, ke, kv) =(2, 1, 0) .

Figure 13 shows the results for the two networks, the two switch
models, and the three traffic scales. Focusing first on the case of
well-provisioned networks (traffic scale 0.5), which is the common
case for single-priority traffic, we see that throughput difference
with and without FFC is negligible. At the same time, FFC of-
fers 10–20 times reduction in data loss. We do not report absolute
amount of lost data to maintain confidentiality for link capacities
in L-Net. But we note that the loss is substantial—well above
O(100GB) per day—and in almost all cases of link oversubscrip-
tion, the amount of data lost is well above typical buffer capacities.

For the case of well-utilized networks (traffic scale 1), we see
that FFC carries over 90% of the traffic carried without FFC and
cuts data loss by a factor of 7–130 (0.72–11.5%).

Closer inspection of lost data reveals that both with and without
FFC, blackhole losses due to delay in rescaling after a link failure
are negligible. With FFC, the primary factor behind losses is cases
where the number of data plane faults is greater than the protection
level. Without FFC, any control and data plane fault leads to con-
gestive losses, and both types of faults contribute roughly equally.

Though the absolute amount of data loss is lower for the Optimi-
stic switch model, we observe in Figure 13 that the relative gain
of FFC is similar for both switch models. Thus, FFC helps even if
switch updates times could be improved to those in controlled envi-
ronments today and all configuration failures could be eliminated.

Trade-off between throughput and data loss Using link failures
as an example, Figure 15 shows the tradeoff between data loss and
throughput overhead as we change the protection level. This exper-
iment uses the Realistic switch model and no protection from
control plane faults or switch failures. For each traffic scale, the
point at (100, 100) corresponds to no protection (ke = 0) and suc-
cessive points to the left correspond to increasing values of link
protection. Expectedly, the less data we want to lose, the higher the
throughput overhead, though throughput overhead grows slower
than loss reduction (linear versus exponential).

 0
 20
 40
 60
 80

 100

Throughput Data-Loss

R
at

io
 (

%
) Scale-0.5

Scale-1.0
Scale-2.0

(a) Realistic on L-Net

 0
 20
 40
 60
 80

 100

Throughput Data-Loss

R
at

io
 (

%
) Scale-0.5

Scale-1.0
Scale-2.0

(b) Optimistic on L-Net

 0
 20
 40
 60
 80

 100

Throughput Data-Loss

R
at

io
 (

%
) Scale-0.5

Scale-1.0
Scale-2.0

(c) Realistic on S-Net

 0
 20
 40
 60
 80

 100

Throughput Data-Loss

R
at

io
 (

%
) Scale-0.5

Scale-1.0
Scale-2.0

(d) Optimistic on S-Net

Figure 13: Throughput and data loss ratio for FFC with single-priority traffic.

 0
 25
 50
 75

 100

Throughput Data-Loss

R
at

io
 (

%
)

161%

High
Med

Low
Total

(a) L-Net

 0
 25
 50
 75

 100

Throughput Data-Loss

R
at

io
 (

%
)

High
Med

Low
Total

(b) S-Net

 0

 0.5

 1

FFC(L-Net)

Non-FFC(L-Net)

FFC(S-Net)

Non-FFC(S-Net)

F
ra

ct
io

n

High Med Low

(c) Fractions of data loss

Figure 14: Throughput and data loss ratio for FFC with multi-priority traffic with Realistic switch model.

 0.1

 1

 10

 100

 50 60 70 80 90 100D
at

a
L

o
ss

 R
at

io
 (

%
)

Throughput Ratio (%)

Traffic Scale = 0.5
Traffic Scale = 1.0
Traffic Scale = 2.0

Figure 15: The tradeoff of data loss and throughput.

8.4 Multi-priority traffic

We now consider multi-priority traffic. FFC offers the oppor-
tunity to provide greater protection for high-priority traffic with
minimal loss in total throughput because low-priority traffic can
be safely carried over the capacity that is set aside to protect high-
priority traffic. When congestion occurs, priority queueing, which
preferentially drops lower-priority packets, protects high-priority
traffic as long as its rate does not exceed link capacity.

We use different protection levels for different priorities: (kc, ke,
kv) =(3, 0, 1) ∪ (3, 3, 0) for high-priority traffic to provide it strong
protection, (2, 1, 0) for medium priority, and (0, 0, 0) for low pri-
ority. Thus, low priority traffic is not protected at all, which lets it
use all network capacity.

Figure 14 shows the results for both networks. This experiment
uses traffic scale of 1 (well-utilized network). In Figures 14(a) and
14(b), we see that the throughput ratio is close to 100%, for total
traffic as well as for individual priorities. Recall that in a single-
priority network, throughput ratio is 90% and loss ratio is 0.72–
11.5% for this traffic scale. Given the basic FFC trade-off, the in-
crease in total throughput for this multi-priority network must ac-
company a decrease in protection from congestion. The loss ratio
for total traffic bears this out; it is 40–80%.

What is interesting, however, is the data loss ratios of differ-
ent priorities. The high-priority traffic suffers almost no loss (<
0.01%), and the loss has been concentrated towards low-priority
traffic. The effect is extreme for L-Net, where low-priority traffic
loses more bytes with FFC than without FFC.

Figure 14(c) shows the relative fraction of lost bytes for each pri-
ority. With FFC, there is negligible loss (< 0.01%) for high-priority
traffic and a small amount (2–7%) of loss for medium-priority traf-
fic. In contrast, without FFC, 5–15% of the bytes lost are high-
priority and 30–70% are medium-priority. Thus, priority queueing
by itself is not sufficient to prevent congestion for high priority traf-
fic. FFC provides strong protection without throughput loss.

8.5 Congestion-free network updates

We now consider the case of congestion-free, multi-step updates.
Recall that in this setting, control plane faults do not lead to con-

 0

 0.5

 1

 0 50 100 150 200 250 300

C
D

F

Update Delay (sec)

FFC
Non-FFC

(a) Realistic

 0

 0.5

 1

 0 2 4 6 8 10

C
D

F

Update Delay (sec)

FFC
Non-FFC

(b) Optimistic

Figure 16: Update time for congestion-free updates.

gestion losses, but network updates can be slow and can even stall.
We evaluate the speed of network updates with and without FFC.

Figure 16 shows the results for L-Net for both switch models.
With the Realistic model, without FFC, 40% of the updates do
not finish within 300 seconds. Since that is the TE interval, it is
the maximum time we wait for the update to finish. This poor per-
formance stems from the fact that even a single switch that takes
a long time or fails to update altogether hurts the update process.
FFC allows for faster updates by being robust to a small number
of control plane faults (in this case kc=2). FFC provides signifi-
cant reduction in update time even with the Optimistic model, in
which there are no configuration failures, only occasional delays.
The median and 99th percentile speedup is a factor of three.

Faster updates lead to a more nimble network that can quickly
react to demands bursts. They can also improve throughput by en-
abling a shorter TE interval, which enables the network to handle
shorter-term demand variations.

9. Related Work

We build upon the rich line of work in TE algorithms and sys-
tems. Researchers have studied various aspects of this problem, in-
cluding i) how to implement close-to-optimal traffic distributions
in different settings such as link-state routing [17], MPLS environ-
ments [18], and SDNs [1, 2, 19, 20]; ii) how to stably adapt to
changing traffic demands [21, 22]; iii) how to reroute traffic after
failures such that minimal changes are needed [23]; and iv) how to
find efficient backup paths [24, 25].

For brevity, we focus below on proactive techniques to make TE
robust. Our key contributions in this space are i) proactively han-
dling control plane faults; and ii) proactively handling data plane
faults in a way that is both robust to any combination of up to k

failures and works with today’s commodity switches.

Data plane faults To prevent rescaling-induced congestion after
a data plane fault, Suchara et al. [26] modify the ingress switch’s
rescaling behavior. Instead of simple proportional rescaling, tunnel
splitting weights are based on the set of residual tunnels. These
weights are pre-computed and configured at the switch. Unlike our
data plane FFC, which protects against any combination of up to k

faults, this approach can handle only a modest number of potential
failure cases as there are exponential number of residual tunnel sets.

For a distributed TE setting, R3 [15] proposes an approach for
congestion-free fast re-route [27], in which adjacent routers route
around failed links. The routing behavior is determined by a fast
online computation, aided by offline computation that is done in
advance. Like FFC, R3 protects against any combination of up to
k link failures. There are two key differences, however. Our con-
straint reduction framework handles both control and data plane
faults; R3’s approach handles only data plane faults (and we could
not extend it to control plane faults). Second, while R3 mixes
proactive and reactive elements, FFC is purely proactive, which
is a better approach when control plane faults can occur.

Further, both works above [15, 26] require changes to the switch
hardware or software. We build solely on existing primitives.

Control plane faults Dionysus enables faster network updates in
the face of switch configuration delays and failures, by dynamically
deciding the order in which rule updates are applied [28]. While it
reduces update time in general, it does not address the fundamental
limitations of reactive approaches—they kick in after congestion
occurs and the slowest switch can bottleneck the update process—
which we seek to address. FFC and Dionysus are complementary.
The former ensures that reactions are not needed for common case
faults, and the latter ensures that, when needed, reactions are fast.

Demand uncertainty In networks where incoming traffic rate is
not controlled, oblivious routing [29] and COPE [30] compute TE
configurations that are robust to changes in traffic demand or errors
in demand prediction. They do not consider control and data plane
faults which are our focus. An interesting area of future investiga-
tion is if our approach for control faults in rate limiting, which pro-
duce uncertainty in traffic entering the network, can be extended to
handle demand uncertainty. That would enable a common frame-
work for handling both faults and demand uncertainty.

10. Conclusions

We developed FFC methods that proactively protect a network
from congestion and packet loss due to data and control plane faults.
These methods have low overhead in terms of network throughput—
even optimal in some cases—and are computationally efficient. Us-
ing testbed experiments and data from real networks, we showed
how FFC is useful in a variety of settings. For instance, in well-
provisioned networks, it can reduce packet loss by a factor of 7–
130; in well-utilized networks that carry traffic with multiple prior-
ities, it can reduce loss for high-priority traffic to almost zero, with
negligible reduction in total network throughput.

Acknowledgments Mohan Nanduri helped collect data for our
experiments; Mohit Singh suggested the use of sorting networks
for constraint reduction; Meg Walraed-Sullivan, Vyas Sekar (our
shepherd), and the anonymous reviewers provided valuable feed-
back on drafts of this paper. We thank them all.

11. References
[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a Globally-deployed
Software Defined Wan,” in SIGCOMM’13.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with
Software-driven WAN,” in SIGCOMM’13.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic Flow Scheduling for Data Center
Networks,” in NSDI’10.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalag, P. Sharma, and
S. Banerjee, “Devoflow: Scaling Flow Management for
High-Performance Networks,” in SIGCOMM’11.

[5] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall,
“Augmenting Data Center Networks with Multi-gigabit Wireless
Links,” in SIGCOMM’11.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
Grained Traffic Engineering for Data Centers,” in CoNext’11.

[7] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications,” in
SIGCOMM’11.

[8] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of Failures in an
Operational IP Backbone Network,” IEEE/ACM Transactions

Networking, 2008.

[9] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California
Fault Lines: Understanding the Causes and Impact of Network
Failures,” in SIGCOMM’10.

[10] K. E. Batcher, “Sorting Networks and Their Applications,” in
AFIPS’68 (Spring).

[11] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud Control with Distributed Rate Limiting,” in
SIGCOMM’07.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
Predictable Datacenter Networks,” in SIGCOMM’11.

[13] “OpenFlow 1.1.” http://www.openflow.org/documents/
openflow-spec-v1.1.0.pdf.

[14] S. Even, A. Itai, and A. Shamir, “On the Complexity of Timetable
and Multicommodity Flow Problems,” SIAM Journal on Computing,
1976.

[15] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and
Y. R. Yang, “R3: Resilient Routing Reconfiguration,” in
SIGCOMM’10.

[16] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zUpdate: Updating Data Center Networks with Zero Loss,” in
SIGCOMM’13.

[17] D. Xu, M. Chiang, and J. Rexford, “Link-state Routing with
Hop-by-hop Forwarding Can Achieve Optimal Traffic Engineering,”
IEEE/ACM Transactions on Networking, 2011.

[18] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive
Traffic Engineering,” in INFOCOM’01.

[19] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric:
A Retrospective on Evolving SDN,” in HotSDN’12.

[20] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE
and MPLS VPNS with Openflow,” in SIGCOMM’11.

[21] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
Tightrope: Responsive Yet Stable Traffic Engineering,” in
SIGCOMM’05.

[22] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and
Robust Routing of Highly Variable Traffic,” in HotNets’04.

[23] D. Applegate, L. Breslau, and E. Cohen, “Coping with Network
Failures: Routing Strategies for Optimal Demand Oblivious
Restoration,” in SIGMETRICS’04.

[24] K. Kar, M. Kodialam, and T. V. Lakshman, “Routing Restorable
Bandwidth Guaranteed Connections Using Maximum 2-route
Flows,” IEEE/ACM Transactions on Networking, 2003.

[25] M. Kodialam, A. Member, T. V. Lakshman, and S. Member,
“Dynamic Routing of Restorable Bandwidth-guaranteed Tunnels
using Aggregated Network Resource Usage Information,”
IEEE/ACM Transactions on Networking, 2003.

[26] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford,
“Network Architecture for Joint Failure Recovery and Traffic
Engineering,” in SIGMETRICS’11.

[27] E. A. Atlas and E. A. Zinin, “Basic Specification for IP Fast Reroute:
Loop-Free Alternates.”

[28] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic Scheduling of Network
Updates,” in SIGCOMM’14.

[29] D. Applegate and E. Cohen, “Making Intra-domain Routing Robust
to Changing and Uncertain Traffic Demands: Understanding
Fundamental Tradeoffs,” in SIGCOMM’03.

[30] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic Engineering in Dynamic Networks,” in
SIGCOMM’06.

