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ABSTRACT

Advertising plays a vital role in supporting free websites and smart-
phone apps. Click-spam, i.e., fraudulent or invalid clicks on on-
line ads where the user has no actual interest in the advertiser’s
site, results in advertising revenue being misappropriated by click-
spammers. While ad networks take active measures to block click-
spam today, the effectiveness of these measures is largely unknown.
Moreover, advertisers and third parties have no way of indepen-
dently estimating or defending against click-spam.

In this paper, we take the first systematic look at click-spam.
We propose the first methodology for advertisers to independently
measure click-spam rates on their ads. We also develop an auto-
mated methodology for ad networks to proactively detect different
simultaneous click-spam attacks. We validate both methodologies
using data from major ad networks. We then conduct a large-scale
measurement study of click-spam across ten major ad networks and
four types of ads. In the process, we identify and perform in-depth
analysis on seven ongoing click-spam attacks not blocked by major
ad networks at the time of this writing. Our findings highlight the
severity of the click-spam problem, especially for mobile ads.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Online Advertising Fraud
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1. INTRODUCTION

Background and motivation: Click-spam costs online advertisers
on the order of hundreds of millions of dollars each year [4]. In-
stead of supporting free smartphone apps and websites, this money
ends up in the pocket of click-spammers. Click-spam' subsumes
a number of scenarios that all have two things in common: (1) the
advertiser is charged for a click, and (2) the user delivered to the
ad’s target URL has no actual interest in being there. Click-spam
can be generated using a variety of approaches, such as (i) botnets
(where malware on the user’s computer clicks on ads in the back-
ground), (ii) tricking or confusing users into clicking ads (e.g., on
parked domains), and (iii) directly paying users to click on ads.
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'or equivalently, click-fraud. Since a fraudulent motive is often
difficult to conclusively prove, we use the term click-spam instead.
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Incentives for click-spam are linked directly to the flow of money
in online advertising — advertisers pay ad networks for each click
on their ad, and ad networks pay publishers (websites or phone apps
that show ads) a fraction (typically around 70% [2]) of the revenue
for each ad clicked on their website or app. A publisher stands to
profit by attracting click-spam to his site/app. An advertiser stands
to inflict losses on his competitor(s) by attracting click-spam to his
competitors’ ads. An advertising network stands to increase rev-
enues (but lose reputation) by not blocking click-spam.

Reputed online ad networks have in-house heuristics to detect
click-spam and discount these clicks [39]. No heuristic is per-
fect. Advertisers pay for false negatives (click-spam missed by
the heuristic). None of the ad networks we checked release any
specifics about click-spam (e.g., which keywords attract click-spam,
which clicks are click-spam, etc.) that would otherwise allow ad-
vertisers to optimize their campaigns, or compare ad networks.

Research goals and approach: We have two main research goals
in this paper. Our primary goal is to design a methodology that
enables advertisers to independently measure and compare click-
spam across ad networks. The basic idea behind our approach is
simple: since the user associated with click-spam is, by definition,
not interested in the ad, he would be less likely to make any extra
effort to reach the target website than a user legitimately interested
in the ad. The advertiser can measure this difference and use it
to estimate the click-spam fraction. Of course some legitimately
interested users may not make the extra effort (false positives), or
some uninterested users may still make the extra effort (false neg-
atives). We correct for both types of errors by using a Bayesian
framework, and by performing experiments relative to control ex-
periments. Section 3 details our methodology.

Validating the correctness of our methodology is challenging be-
cause there is no ground truth to compare against. Ad networks
do not know the false negative rate of their heuristics, and thus
tend to underestimate click-spam on their network [12]. The ac-
curacy of heuristics used by third-party analytics companies (e.g.,
Adometry) is unknown since their methodology and models are not
open to public scrutiny; indeed, ad networks contend they overesti-
mate click-spam [16]. We manually investigate tens of thousands of
clicks we received (in Section 5). We present incontrovertible ev-
idence of dubious behavior for around half of the search ad clicks
and a third of the mobile ad clicks we suspect to be click-spam,
and circumstantial evidence for the rest, thus establishing a tight
margin-of-error in our methodology. In the process, we discover
seven ongoing click-spam attacks not currently caught by major ad
networks, which we reported to the parties concerned.

Our secondary goal is to measure the magnitude of the click-
spam problem today. To this end, in Section 4, we apply our method-
ology to measure click-spam rates across ten major ad networks (in-
cluding Google, Bing, AdMob, and Facebook) and four ad types.
Our work represents the first measurement study of click-spam.

We also identify key research problems that can have a measur-
able impact in tackling click-spam.

Contributions: We make three main contributions in this pa-
per. (i) We devise the first methodology that allows advertisers
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Figure 1: Time-line for serving ads.

to independently measure and compare click-spam rates across ad
networks. We validate the correctness of the methodology using
real-world data. (ii) We report on the sophistication of ongoing
click-spam attacks and present strategies for ad networks to mit-
igate them. (iii) We conduct a large-scale in-depth measurement
study of click-spam today.

2. ONLINE ADVERTISING PRIMER

Search vs. contextual: Keyword-based advertising is broadly
classified into two categories: (i) search advertising, which are ads
based on search keywords that show up on the side of search re-
sults, and (ii) contextual advertising, which are ads that show up
on Web pages or in applications based on keywords extracted from
the context. Search ads may be syndicated — i.e., they are shown
not only on the search engine operated by the ad network (e.g.,
on www.google.com), but also on affiliate websites that offer cus-
tomized search engines (e.g., www.ask.com). The term publisher
refers to the party that showed the ad (e.g., website for contextual
ads, smartphone application for mobile ads, affiliate for syndicated
search ads). We do not consider other kinds of ads (e.g., ads in
videos, banner ads, etc.) in this paper.

Mobile vs. non-mobile: Both search and contextual advertis-
ing can be further classified as mobile or non-mobile based on
what device the search or webpage request originated from. Mo-
bile includes smart-phones and other mobile devices that have “full
browser capabilities”, as well as feature-phones with limited WAP
browsers. The reason we draw a distinction between mobile and
non-mobile is because we found ad networks internally seem to
have very different systems for serving the same ads to mobile vs.
to non-mobile users. We do not know the reason for this differ-
ence, but speculate it is because ad networks tend to expand through
mergers and acquisitions, resulting in multiple technology stacks
operating concurrently.

Ad delivery: Figure 1 illustrates the time-line for serving online
ads. When the user visits a publisher website, the website returns
an adbox (e.g., embedded iframe), which causes the user’s browser
to contact the ad network. The request to the ad network identifies
the referring website through the HTTP Referer (sic) header. The
ad network then populates the adbox with contextual ads. In an
alternate mechanism (not shown), premium publishers may directly
query the ad network for relevant ads and seamlessly integrate them
into the website content.

Charging model: While there are multiple charging models for
online advertising (e.g., impression-based, action-based), by far the
most common is pay-per-click (PPC or CPC), where the advertiser
is charged (and publisher paid) only if the user clicks on the ad.

The publisher gets some fraction (typically 70%) of the revenue
that the ad network collects from the advertiser. The accounting
is performed as follows. The ad URL points to the ad network’s
domain with information about which ad was clicked (encoded in
the GET parameters). When the user clicks an ad, the browser
contacts the ad network, which logs the encoded information for
billing purposes and redirects the user to the advertiser’s site. This
redirection is typically performed through an HTTP 302 response,
which preserves the publisher’s URL in the HTTP Referer seen by
the advertiser’s Web server. Black-hat techniques such as Referer-
Cloaking [5] by the publisher, ad network policies [14], or bugs in
browsers and proxies may result in empty or bogus Referer values
being sent to the advertiser.

User engagement: The ad network can track limited user engage-
ment (i.e., ads viewed or clicked) for multiple ads shown across
multiple publishers (e.g., using cookies), but cannot, in general,
track user engagement after the click. The advertiser, on the other
hand, can track detailed user actions (only) on the advertiser’s own
website, but cannot track user engagement with other ads. Thus
while the ad network has a broad-but-shallow view, the advertiser
has a narrow-but-deep view into user engagement.

Click-spam discounts: Ad networks internally discount clicks
based on in-house heuristics. The user is still redirected to the ad-
vertiser, but the advertiser is not charged for the click. Ad networks
do not indicate which clicks were charged and which not in the
advertiser’s billing report.

3. ESTIMATING CLICK-SPAM

In this section we design a method that any party (e.g., advertis-
ers, ad agency, or researchers) can use to estimate click-spam rates
for a given ad without explicit cooperation from the ad network.

3.1 Challenges

No ground truth: It is not possible to first identify (definitively)
which clicks are click-spam, and then compute what fraction of the
total traffic click-spam accounts for. A click is click-spam if the
user did not intend to click the ad. There is no way to conclusively
determine user intent without explicitly asking the user.

No global view: As mentioned, the ad network cannot track user
engagement on the advertiser site, and the advertiser has no knowl-
edge of the user’s engagement with other advertisers. For example,
the ad network does not know if the user never loads the adver-
tiser’s site after the click (we saw botnets exhibiting this behavior),
and the advertiser does not know if the same user is implicated in
click-spam attacks on another advertiser. The obvious solution is
for the ad network and advertiser to cooperate. But financial dis-
incentives and legal concerns prevent them from doing so: the ad-
vertiser could lie in his favor (claiming fraud where there is none)
in order to gain deeper discounts from the ad network; the ad net-
work could be held liable if sharing user history with advertisers
has unforeseen privacy consequences.

Granularity: The granularity over which click-spam is estimated
is important. An ad network may have low click-spam overall, say,
but certain lucrative segments (e.g., mortgage) may be experiencing
orders of magnitude more click-spam. Advertisers require fine-
grained measurements for their selected set of keywords.

Noise: As in any Internet-scale system, data is extremely noisy.
We encountered users where Referer headers are inexplicably omit-
ted, or browser User-Agents, IP addresses, cookies etc. change in-
explicably within the same session (perhaps a buggy browser or
proxy), and bad publishers that behave non-deterministically (per-
haps to avoid detection). At the same time, because clicking an ad



is a rare event, gathering good data is time-consuming. The combi-
nation results in very low signal-to-noise ratios.

3.2 Our Approach

We apply a Bayesian approach to work around the lack of ground
truth. Instead of attempting to conclusively identify which clicks
are click-spam, for a given ad, we create two scenarios detailed
below where the (unknown) fractions of click-spam traffic is differ-
ent. We link the two using a Bayesian formula to effectively cancel
out quantities we cannot measure. The remaining quantities are
those an advertiser can measure locally without requiring a global
view. We control for noisy data (i.e., adjust for false-positives and
false-negatives) using a control experiment. Our approach does not
(and indeed cannot) report whether a specific click is click-spam or
not. The output is a single number representing our estimate of the
fraction of clicks for the given ad that click-spam accounts for.

3.2.1 Data Collection

The detailed data collection procedure is as follows.

1. The advertiser (or a researcher signed-up as an advertiser with
an ad network) creates his ads of interest in the usual way. That
is, enters the text of the ad, selects ad targeting criteria (i.e., search
keywords, user demographics, mobile vs. non-mobile, etc.), sets
his advertising budget (i.e., auction bid amount, daily-budget), and
sets the destination URL of the ad to his landing-page — a page on
the advertiser’s website the user should be sent to.

2. When a user clicks the ad, the advertiser website either loads the

intended landing-page for the ad, or with some (small) probability
first loads an interstitial page before eventually loading the landing-
page. The point of the interstitial page is to turn away some fraction
of users (legit clicks or not). To this end, the interstitial page may
require some passive or active user engagement before continuing
on to the landing-page. An example of passive engagement is to
require the user to stay on the page for a few seconds before con-
tinuing on to the landing page (the interstitial page in this case may
simply show a “loading...” message; it is known that a few sec-
onds increase in page loading time can result in a measurable drop
in traffic [6]). Some examples of active engagement is to require
the user to click a link (e.g., “This page has moved. Click here to
continue.”) or, in the extreme case, solve a CAPTCHA [15], both
of which also result in significant drops in traffic.

Assumption 1. An implicit assumption is that the interstitial page
will turn away a (unknown) larger portion of the click-spam traf-
fic than the (unknown) portion of legitimate traffic it turns away.
Specifically, we do not assume for example that all good users will
patiently wait a few seconds; rather we assume that a smaller por-
tion of click-spam traffic will wait the duration than the portion of
good users doing so. Indeed user dwell time and willingness to
click have long been considered an implicit measure of user inter-
est [29, 35]. Interstitial pages leverage this knowledge to enhance
the quality of the traffic reaching the landing-page by some (un-
known) amount as compared to without the interstitial page.

3. Next the advertiser defines some advertiser-specific user en-
gagement that he considers ultimate proof that the user intended
to click the ad. For example, if the user makes a financial transac-
tion on the advertiser’s site, or signs up for some mailing list, etc.
We call such users gold-standard users. Certainly not all users are
gold-standard. But as long as a handful of users coming directly
to the landing-page, and a handful coming to the landing-page via
the interstitial page are gold-standard, we can apply our Bayesian
approach below.

Assumption 2. We make an implicit assumption that for users that
are not turned away by the interstitial page, their likelihood of be-
coming gold-standard users is not significantly changed. We do not
assume that the interstitial page will not turn away users who may
have become gold-standard users. Rather we assume for example
that some users will not wait on the interstitial page, but if they do,
they will not hold a grudge. We empirically find this assumption to
hold in practice as we report later.

4. Lastly, extending the technique in [25], the advertiser creates a
second ad that is identical to the ad created in step 1 above with the
exception of the text of the ad. That is, the second ad has the same
targeting criteria, advertising budget, and destination URL, but the
text of the ad is junk (e.g., a random nonsensical combination of
words). We use this ad to adjust for false positives.

Assumption 3. We assume that very few users will intentionally
click the second ad. While some users may be curious about the
random set of words, we find this assumption is borne out in prac-
tice. We also assume for now that the click-spam click-through-
ratio i.e., the ratio of click-spam clicks to impressions of the ad) is
independent of the text of the ad (we relax this assumption later).

3.2.2 Bayesian Estimation

Let G4 and G; be the event that the user is a gold-standard user
that arrived either directly, or via the interstitial page respectively.
Let 14 and I; be the event that the user intended to click the ad (i.e.,
not click-spam) out of all users directly reaching the landing-page,
or all users reaching via the interstitial page respectively.

Bayesian equation for P(I;): The advertiser is interested in
learning P(I4). G and I are linked using Bayes theorem as fol-
lows: P(G|I) = P(I|G)x P(G)/P(I). Note that a gold-standard
user implies that the click is not click-spam, i.e., P(I|G) = 1. As
discussed above in Assumption 2, P(Gq|lq) ~ P(G;|I;); substi-
P(Gq)xP(1;)

P(Gy)

P(G) is computed as the ratio of the number of gold-standard
clicks (g; known) to the number of clicks (n; known). P(I;) is the
ratio of the number of non-click-spam clicks (¢;; unknown) to the
number of clicks (n;; known) arriving via the interstitial page. The
above equation reduces to:

tuting and simplifying yields: P(I4) =

=}

x;—/i/:gdxii (l)
;—} ng X gi

P(Iy) =

Only ¢; on the right-hand-side is unknown.

Estimating 7;: As mentioned, the interstitial page enhances the
traffic quality. If it did a perfect job — i.e., all unintentional clicks
would be turned away, and all intentional clicks would pass through
— computing i; would be trivial. In practice, the interstitial page
has false-negatives (turns away users intentionally clicking the ad)
and false-positives (not turning away click-spam). False-negatives
do not affect ¢, since it is the number of non-click-spam clicks ac-
tually reaching the landing-page, but false-positives result in an in-
flated value of 7;. We use a control ad to estimate the number of
false-positives, and adjust for it.

Let F; and T;; be the false-positive and true-positive click-through-
ratios for the original ad and the interstitial page ¢. Similarly, let
F/ and T} be the false- and true-positive click-through-ratios for
the control ad (identical ad except with junk ad text as mentioned
above). We have four unknowns, and need four equations to solve.
As discussed above in Assumption 3, we assume 7; ~ 0 and
F; = Fj. The advertiser can measure F; + T; = [;/d where [;
is the number of clicks for original ad reaching the landing page
through the interstitial page, and d is the number of impressions of



the original ad as reported by the ad network, and the corresponding
equation Fy + T} = I;/d’ for the control ad.

The estimate for 4; is simply 7; X d. Solving the four equations
above for T; we get the value of i; adjusted downwards to account
for false-positives as: i; = [; — I x %
Final estimation formula: Combining the above with Eq. (1) we
can estimate the click-spam rate for the original ad as:

_ng(lz‘—l,;X%)

P(14) e % g7

@
where:
gd, g; : numbers of gold-standard users arriving directly and
through the interstitial page respectively
d,d : number of impressions of the original ad and control
ad respectively
l;, 1} : number of clicks reaching (via the interstitial page)
the landing-page for the original ad and control ad
respectively
nq  : number of clicks on the original ad directly reaching
the landing-page

All these quantities can either be measured directly by the adver-
tiser, or are present in billing reports ad networks generate today.

3.3 Limitations

A key limitation of our approach is that the advertiser must ac-
tively measure click-spam. The advertiser must interpose the inter-
stitial page on live traffic (that he has paid-for), create a control ad
(that he needs to pay for) to correct for false-positives, etc. Both the
interstitial ad and control ad harm the user experience. It would be
far more desirable to be able to passively look at logs and be able
to estimate the click-spam rate from them.

One way to minimize the user experience impact is to apply our
approach reactively when click-spam is suspected, but that runs
into a second limitation — the rarity of data. Any estimation tech-
nique requires statistically significant data. The crucial factor in
Eq. (2) is g; and g4 — the number of gold-standard users. If these
are small, the click-spam estimate can swing wildly. Suppose the
advertiser manages to identify two gold-standard users, one arriv-
ing through the interstitial page and one directly, and computes a
click-spam estimate based on it. If one new gold-standard user ar-
rives through the interstitial site (or directly), the new click-spam
estimate is half the previous (or will double). For a statistically
significant estimate, as we report later, the advertiser must wait for
roughly 25 gold-standard users via the two paths. This is especially
an issue for small advertisers. Small advertisers may have to wait
a long time to get gold-standard users — low advertising budgets
means their ads don’t get shown as much, even if they get shown
users may not click on poorly ranked ads, even if they click they
may not engage in a financial transaction with the advertiser, etc.
The need to gather data over such an extended period is clearly at
odds with minimizing the impact on user experience.

A group of small advertisers targeting similar keywords/users (or
an ad-agency representing them) can apply our approach in the ag-
gregate. Doing so has two benefits. First, due to the aggregation
effect the group accretes statistically significant data more quickly.
And second, the user experience impact is amortized across many
advertisers. The downside, however, is that advertisers lose the
ability to individually define what a gold-standard user means (which
our approach otherwise allows) and have to depend on someone
other than themselves to estimate click-spam rates.

Finally, our approach is naturally sensitive to the three choices
the advertiser needs to make: 1) what his definition of a gold-
standard user is, 2) what interstitial page approach he wishes to

use, and 3) what the text of the control ad is. We discuss the impli-
cation of each design decision in turn. First, if the advertiser sets
too high a bar for the gold-standard user he may not get statisti-
cally significant data; if he sets too low a bar that even click-spam
users get classified as gold-standard he will underestimate click-
spam rates. Second, if the advertiser picks too easy an interstitial
page (everyone gets through), in Eq. (2) g4/g: will approach ng4/;
and the estimate will approach 1 (i.e., all clicks are legitimate) if the
advertiser doesn’t use a control ad; or O if he uses a control ad (i.e.,
no clicks are valid). If the advertiser picks too hard an interstitial
page (no one gets through), g; and /; will both approach 0, and the
click-spam estimate will become undefined. Thus there is clearly
some sweet-spot in designing the interstitial page, which we do not
discuss. Third, if the control ad is not independent of the original
ad (e.g., the random choice of words happens to be related to the
original ad), false-positives may be over- or under- corrected for.
Making the right design choices is advertiser-specific.

To address the above issues to some degree, we report in the
next section our experience with multiple types of interstitial pages,
different definitions and numbers of gold-standard users. While our
data shows much promise in our approach, we stress that a more
thorough evaluation is needed.

4. MEASURING CLICK-SPAM TODAY

In this section we first validate the correctness of our approach
from the previous section. We then conduct a large-scale measure-
ment study of ten major ad networks and four types of ads.

Validation strategy: We assume that reputed search ad networks
(specifically Google and Bing) are mature enough that their in-
house algorithms are able to detect and discount for most of the
click-spam on their search affiliate network. Validating our mea-
surement approach then involves computing our click-spam esti-
mate and comparing it to the charged clicks for Google and Bing
search ads. Note that our algorithm does not have access to any
data (including historical and aggregate data) that in-house algo-
rithms at Google and Bing have access to, and Google and Bing
do not have access to the detailed user-engagement data we collect
as advertisers for user clicking our ads (specifically, we do not use
any of the analytics products offered by Google or Bing). Given the
datasets are completely different, if the click-spam rates we com-
pute match that computed by leading ad networks (which they do
as we report below), we have a strong reason to believe that our
measurement approach is sound.

4.1 Methodology

We sign-up with ad networks as three different advertisers (each
targeting different keywords) and follow the methodology from
the previous section. The first advertiser targets a highly popular
keyword (celebrity). The second, a medium-popularity keyword
(yoga). And the third, a low-popularity keyword (lawnmower). We
pick the keywords from a ranked list of popular keywords that the
advertising tools of these ad networks provide.

For each keyword we create a realistic looking landing page,
since the policies of the ad networks require us to use keywords
that are relevant to the landing page. We instrument the landing-
page to track mouse-movement, time spent on the page, switching
browser tabs into or away from our page, whether any link on the
page was clicked or not, page scroll, etc. Our instrumentation is
through Javascript on the page; we detect browsers that don’t sup-
port Javascript or have it disabled and exclude those data points.
We direct on-path proxies (if any) to not cache any response so
our server logs accurately reflect accesses. Unless otherwise men-
tioned, we pick a lax definition of gold-standard users based on
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Figure 2: A control ad; content is a random set of English words

this telemetry, which is, that the user stays on the page for at least
five seconds, and (for non-mobile browsers) produces at least one
mouse/cursor move event. We are unable to define gold-standard
users based on financial transactions, even though we expect that to
be very strong signal of intent for real advertisers.

Next we create three interstitial pages: the first shows a loading
message for five seconds before automatically redirecting to the
landing-page. The second asks the user to click a link to continue to
the landing-page. And the third asks the user to solve a CAPTCHA.
We do not test the CAPTCHA interstitial for Google traffic since
their advertiser policies restrict us from doing so.

We then create four ads for each target landing-page. The first ad
directly takes the user to the landing page. The second, third and
fourth ads first take the user to the three interstitial pages respec-
tively, before continuing on to the landing page. All ads target the
same keyword(s), user demographics, device and platform types,
etc. The reason we create four separate ads (instead of a single
one and interposing the interstitial page after the click) is so that
Google/Bing produce fine-grained billing reports and statistics for
each ad, which we can then validate our design choices against.

We create four additional (control) ads for each landing-page that
correspond to the four original ads, but with junk ad text. The ad
text was generated by picking five random words from an English
dictionary (e.g., Figure 2).

4.2 Scale

We repeat the above for 10 ad networks. For search ads we mea-
sure Google Search, Bing Search, and 7Search. For contextual ads
we measure Google AdSense and Bing Contextual. For mobile ads
we measure Google Mobile, Bing Mobile, AdMob (now owned by
Google), and InMobi. And lastly for social ads, we measure Face-
book. Altogether this adds up to 216 ads across all the networks.

We run the ads for a period of 50 days as needed to gather enough
data. The majority of the ads were flighted in early January 2012.
We continually adjust bids (mostly revising them higher) to help
the lower popularity ads quickly attract enough data.

In all our ads were shown 26M times across all ad networks.
They resulted in a total of 85K clicks (17K charged). Our ads were
shown at at-least 1811 publisher websites and mobile apps (but the
true number is likely much higher since we cannot determine the
publisher for over 65% of our traffic). The landing pages were
fetched by a total of 33K unique IP addresses located in 190 coun-
tries. We encountered over 7200 browser User-Agent strings (after
sanitizing them to remove browser plugin version numbers).

4.3 Data

We log all web requests made to our server. The logs used in this
study are standard Apache webserver logs that include the user’s
IP address, date and time of access, URL accessed (of a page on
our webserver) along with any GET parameters, the HTTP Referer
value and User-Agent value sent for that request, and a cookie value
we set the first time we see a user to identify repeat visits from
the same user. The raw logs including user engagement telemetry
weighs in at over 3 GB.

A sanitized version of our raw logs is available online?.

Zhttp:/mwww.cs.utexas.edu/~vacha/sigcomm12-clickspam.tar.gz
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4.4 Ethics

Throughout our study we followed the advertiser terms-of-service
(current as of when we did the measurement) for each of the ad
networks we measured. Whenever our ads were rejected by the
ad network (due to policy reasons) we fixed the issue so as to be
compliant; if we couldn’t fix it, we simply dropped that data-point.

High click-spam is an embarrassment for ad networks. Our goal
in this paper is to systematically design a methodology, highlight
the severity of the click-spam problem, and give researchers the
tools and knowledge to further the state of the art. Our goal is not to
embarrass ad networks. As a result, we prefer to report normalized
or relative numbers whenever possible, and anonymize ad network
names whenever it does not affect the core message of this paper.

Lastly, we expressly try to minimize adversely impacting user
experience on these ad networks. For example, in order to get
enough clicks on an ad, we have two options: run the campaign
for longer, or increase the bid amount. We always choose the latter
to minimize the time our ad is active on the network. For ads where
despite increasing the bid we cannot gather traffic fast enough, we
prefer to give up on that data-point and stop running that ad. Mini-
mizing the time our ads are active also minimizes our contribution
to the existing auction volatility for the keywords we bid on. As of
this writing we have not received any complaints from ad networks,
users, or advertisers regarding our study.

4.5 Validation

Figure 3 compares (normalized) complementary click-spam rates
computed by our approach (plotted as error bars) and the (nor-
malized) complementary click-spam rates as reported by Bing and
Google for their search ad networks (plotted as bars). We ran an-
other experiment where where we explicitly set our ad campaign
to exclude syndicated search partners for one of the search ad net-
works (plotted as C in Figure 3). The Bing and Google estimates
are the ratio between the number of clicks we were charged for
(from the billing report), and the total number of landing-page fetches
(from our logs). For our approach, we calculate two separate esti-
mates based on the delay and click interstitial pages. The spread of
the error bar plots the max and the min of the estimates we compute.
The center tick plots the average. The figure plots the estimates for
all three ads we flighted. In line with our goals, this figure (and
all other figures in this section) are normalized so one of the data
points is 1.

As is evident from Figure 3, our estimate for the yoga and lawn-
mower ads are in the same ball-park as that reported by Google
and Bing. We manually investigated the difference between our
estimates and that for the celebrity ad. We found over 50 clicks
from sites associated with well-known search redirection viruses
where browser toolbars hijack normal user searches and funnel
them through affiliate search programs (Section 5.3.1 has more de-
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tails). We were charged for at least 48 of these clicks. Our estimates
match the search ad network’s estimates recomputed after discount-
ing these clicks. Furthermore, as seen for network C where syndi-
cated search partners are excluded, our estimates closely match that
reported by the network. There were no clicks on the control ads
on network C, which further supports our high estimate.

Our absolute numbers also agree with public estimates of av-
erage click-spam for these networks [3]. Next we drill deeper to
validate our design decisions.

4.5.1 Interstitial Pages

Figure 4a plots the fraction of clicks for each interstitial page that
reach the landing page for the celebrity ad, and for the correspond-
ing control ad. Note that this fraction drops as the interstitial page
changes from clicking a link (29%), to waiting 5 seconds (13%), to
solving a CAPTCHA (4%), demonstrating the increasingly higher
bar set by the interstitial pages. Interestingly, we find users are
more likely to click through to the landing-page than wait 5 sec-
onds. Except for the CAPTCHA interstitial, the fraction reaching
the landing page is significantly lower for the control ad than for
the original ad; this validates Assumption 1 from the previous sec-
tion that the interstitial page concentrates non-click-spam traffic (by
some unknown amount). Despite the varied interstitial page perfor-
mance, the estimates computed from the delay and click interstitial
converge (in Figure 3) for the experiments where we have a bal-
anced number of converters through the interstitial and direct path,
which supports Assumption 2. The CAPTCHA seems to reduce
both normal and control traffic to the same low base level regardless
of user intent; as a result, it is unsuitable for use in our framework.

4.5.2 Gold-Standard Users

Figure 4b plots the fraction of gold-standard users for the origi-
nal celebrity ad and the control ad, for three different definitions of
gold-standard users. The first definition is, as before, 5s of dwell
time and 1 mouse event. The second definition is 15s of dwell time
and 5 mouse events. The third definition is 30s of dwell time and 15
mouse events. Note that the fraction of gold-standard users for the
control ad is zero for the second and third definition. This validates
Assumption 3 that very few users are curious enough to click the
control ad. In a real-world setting, we expect advertisers to define
gold-standard users based on financial transactions (much tighter
than any of our definitions).

We focus next on the sensitivity of the click-spam estimate to the
number of gold-standard users. Figure 4c plots the convergence
of our click-spam estimate as a function of the number of gold-
standard users for various combinations of our ad, interstitial page,
and definition of gold-standard user. X-values are driven by the
periodicity of ad network reports. Y-values are deltas from our best
estimate (last data-point for that series). In each case our estimate
converges at or before 25 gold-standard users.
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4.6 Search Ad Networks

Figure 3 shows that while reputed search ad networks generally
have a good handle on click-spam, a single average click-spam met-
ric across the entire network is of little use due to different key-
words experiencing different levels of click-spam. An advertiser
cares only about click-spam rates for keywords he is interested in
bidding on. The difference in click-spam rates between the celebrity
ad and lawnmower ad is up to 20% (normalized).

We omit discussion of 7Search since we did not get any gold-
standard users through that network to base our estimates on.

4.7 Mobile Ad Networks

Figure 5a plots our click-spam estimates and the networks’ own
estimates for the celebrity ad across the four mobile ad networks
we measured. Despite running our ads for over a month, and weak-
ening our definition of gold-standard users to only 5s of dwell time
(i.e., user spent 5s on our landing page; no tap event required),
we failed to attract even five gold-standard users for the yoga and
lawnmower ads, and attracted fewer than twenty for the celebrity ad.
While, our estimates are below the convergence threshold, to inves-
tigate the huge difference in our interim estimates and ad network
numbers, we plot the CDF of user dwell-time in Figure 5b.

Ad network A charged us for over a third of the clicks (non-
normalized), yet as illustrated by the y-intercept in Figure 5b, over
95% of network A users spent under a second on our landing-page!
We find evidence of an attack that would result in such a signature
in Section 5.4.1. Network D appears to be quite well aware of the
poor traffic quality on their network; they charged us for less than
1% of the clicks. Mobile ad network C is a curious case. There is
practically no difference between the click-through-rate (CTR) of
our original ad and the CTR of our control ad with junk text, sug-
gesting that the content of the ad is irrelevant for users clicking ads
on this network. Our Bayesian formula understandably estimates
click-spam to be nearly 100% for this network despite the network
charging us for most of these clicks.

Our data, although inconclusive, suggests that charges on mobile
ad networks do not currently reflect actual user intent.
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4.8 Contextual and Social Ad Networks

Figure 6 plots our click-spam estimates, and those reported by
contextual and social ad networks we measured. Network B ap-
proved only our yoga ad. Click-spam is uniformly higher than that
on reputed search ad networks (not apparent due to normalization).
The networks do a better job than mobile ad networks in track-
ing this higher rate of click-spam. Nevertheless, our estimates are
uniformly lower than the numbers reported suggesting that these
networks do not yet discount all click-spam. Interestingly, network
B consistently charged us for more unique clicks than we logged on
our server. We speculate network B does not follow the standard
practice of suppressing duplicate/double-clicks by a user [39].

S. FINGERPRINTING CLICK-SPAM

Recall in previous sections we assumed that very few people
would intentionally click on our control ads (e.g., Figure 2), and
substantiated the assumption through the lack of gold-standard users
for these ads. Nevertheless, convincing ad networks requires in-
controvertible evidence of fraud. One needs to discover the full
sequence of events that culminate in the fraudulent click. We man-
ually investigate clicks we receive on control ads. The sophistica-
tion and diversity of attacks makes this non-trivial. In this section
we describe seven ongoing click-spam attacks we discovered.

5.1 Scale

We were charged approximately $1000 for about 30,000 clicks
on all the control ads we created across all ad networks. Our inves-
tigations cover 26% of the traffic our control ads attracted on re-
puted networks; as expected by design, all these clicks were found
to be fraudulent in nature. The ad networks typically discounted
substantially less than this fraction (between 6-20%). Thus we can
confidently claim that some of this fraudulent traffic is currently
not caught by ad networks. Note that 26% covers only the traffic
we actually investigated; we expect the disparity in discounts vs.
fraudulent traffic to grow as we investigate more clicks. That being
said, our manual approach is too laborious and not scalable. More
automated methods for investigating click-spam are needed.

5.2 Methodology

To prioritize manual investigation of the large number of clicks,
we use simple graph-clustering over features in the HTTP request,
and detecting heavy-hitting clusters. A naive approach would be
to use the HTTP Referer domain. We found groups of websites
on unrelated domains but with nearly-identical layouts (Figure 7),
all driving click-spam traffic to our site. This is done presumably
to spread out the click-spam through multiple sources in order to
operate below detection-thresholds of existing ad networks. Using
additional features to cluster such publishers allows us to aggregate
them back together and do proper heavy-hitter accounting.
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Figure 8: Graph-clustering and heavy-hitter detection output

Graph-clustering: We induce a graph that spans all publisher do-
mains we see. We do this as follows. For any pair of publishers, we
compute a similarity score. We construct a feature vector that con-
sists of various network-level attributes (e.g., Web host IP address,
subnet, hosting provider, domain registrar, whois information) as
well as HTTP-level attributes in our logs. We assign a weight to
each attribute and compute a cosine similarity between the fea-
ture vectors of the pair of domains. The similarity score ranges
between 1 (identical) and O (dissimilar). We add a graph edge be-
tween the domains if the similarity score is above some threshold.
We find this simple technique is surprisingly robust to our selec-
tion of weights and thresholds. In our data distinct cliques emerge
at thresholds as low as 0.2 and stay intact beyond 0.9, thus giving
us much wiggle room in picking the initial weights and thresholds
(which we manually refine iteratively).

Heavy-hitter detection: We use a conductance metric to detect
heavy-hitters especially when the clusters do not neatly fall out as
distinct cliques. Each node in the graph shares responsibility for
clicks originating from another node up to 2-hops away. We found
2-hops to be quite effective since the 1-hop neighborhood was too
sparse (due to sparsity in the underlying data), and 3-hop neighbor-
hood resulted in clusters too large for them to represent real-world
collusion between bad domains. We compute a badness score for
each node as the number of clicks originating in their 2-hop neigh-
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borhood. We then partition the graph into disjoint clusters by con-
sidering nodes in decreasing order of badness as cluster centers,
and collapsing nodes within 2-hops from it into its cluster.

We believe better techniques based on learning and mining lit-
erature can be designed to find patterns in click-spam data (e.g.,
[17,18,22]). We leave this for future investigations both by us and
other researchers. To this end, as mentioned earlier, our raw logs
are available online for other researchers to use.

That being said, even our simple technique was able to find mean-
ingful clusters. Figure 8a plots our clustering and heavy-hitter out-
put applied to control ad clicks on Google’s and Bing’s syndicated
search ad networks; all clusters also happen to be cliques. Fig-
ure 8c lists the top 5 heavy-hitter clusters. Figure 8b plots the clus-
ters from control ads on mobile ad networks. Next, we dig deeper
and discuss some case studies chosen specifically to depict the wide
variety and sophistication in current click-spam techniques.

5.3 Click-spam in Search Ads

Click-spam we observed in search ads can be attributed to three
main attack vectors: (1) malware and badware, (2) parked domains,
and (3) arbitrage.

5.3.1 Malware and BadWare

thespecialsearch.com affiliates: We noticed a large number of
clicks in our logs that fit the pattern clicks.thespecialsearch .com/xtr_-
new?g=.... What followed the g= parameter changed from click
to click, but almost always was a simple combination of English
words (e.g., Team Building or Saving more). 5% of the search clicks
in our logs matched this pattern.

Searching online we found malware reports [11] for the Win32/-
Olmarik (aka TDSS, TDL) botnet that had been observed fetching
URLSs fitting the above pattern. This particular malware family is
incredibly sophisticated [23]. The malware is a generic task execu-
tion platform — it contacts its command-and-control server (C&C),
downloads an arbitrary task meant specifically for that infection in-
stance, executes it, and repeats the process. The malware hooks
into all popular browsers (IE, Firefox, Safari, Chrome), through
which it can inject clicks that appear indistinguishable from nor-
mal traffic generated by these browsers. The malware can also in-
ject malicious code into iframes the user is browsing, or modify
search results before they are shown to the user. It even attempts
to cleanse the infected host of other malware so it has sole control
over the host (and to disrupt other competing botnets).

We found a copy of the malware binary and installed it in a vir-
tual machine. We routed all traffic from the virtual machine through
a transparent proxy (running on the VM host) and logged all traffic.
We configured the proxy to block SMTP traffic to block malware-
generated spam campaigns. We also apply a strict network rate-
limit to prevent DoS attacks, and configured our proxy to block
requests to the click URL of Google, Bing, and other major ad net-

works to prevent advertisers being charged for clicks made by the
malware instance.
How it works: Figure 9 illustrates the process.

1. For every search we performed through the browser, the mal-
ware contacted a specific IP address with the following URL: http://-
63.223.106.16/bV03tDze8. . . JpdHk=08h. The string of random char-
acters is encoded using base64. It decodes as follows: ver=4.2&-
bid=noname&aid=50018&sid=08&rd=1307260520&eng=www.bing.co-
m&g=celebrity. Thus, for each search, the malware reported back
to its C&C server the version number of the bot, affiliate ID, the
search engine where the query was submitted, and the query key-
words.

2. Inresponse the C&C server sent back an XML file that directed
the bot to effectively click an ad. The XML file encoded the URL
to click, the HTTP Referer value to use (i.e., traffic will appear to
come from this site), and some accounting information.

It is important to note that the bot did not immediately perform the
click after receiving the XML file.

3. The browser showed the (unmodified) search results we had
requested as usual.

4. Only when we clicked a search result, the bot kicked into ac-
tion in the background (i.e., the user doesn’t notice anything un-
usual). The bot contacted the URL it was directed to contact with
the appropriate Referer header. This led to a sequence of HTTP and
JavaScript redirects (we observed upto 10) that culminated in the fi-
nal redirection to the click URL for one of the major ad networks.
Figure 9 plots the sequence of redirects.

Note: From the user’s perspective the malware is completely trans-
parent. The user’s search results and subsequent click were not
tampered with. The user wasn’t shown any extra ads or popups.
The user wasn’t redirected to an advertiser etc. The malware per-
formed all its activity stealthily in the background.

5. The bot then ceased this behavior for 24 hours (as long as the IP
address stayed the same). The following day the bot would repeat
this activity, perform one click, and become dormant again.

When we acquired a new external IP address (easy to do since the
ISP uses DHCP), the bot came out of dormancy, performed one
click, and resumed dormancy.

Discussion: It is clear that the C&C server is tracking which bots
are active and from where, and ensuring that across the botnet each
IP address is used only for one click in a 24 hour period — an
extremely low threshold that would likely not raise any flags. Fur-
thermore, when the bot does click, it is gated by a legitimate user
click (on the search page), which would defeat click-spam detec-
tion mechanisms that look for deviations from normal user behavior
(e.g., [35]). Lastly, since it hooks into a regular browser, and forges



the referer of a legitimate site, click-spam detection techniques that
look for deviation at the HTTP or HTML layer would fail.

Who made money: The penultimate website (thespecialsearch-
.com) made money from the ad network. Note this website also
shows up in our list of Sybils (Figure 7). The long chain of redi-
rects to thespecialsearch.com presumably identify the chain of af-
filiates, each making some fraction of the money the next one in
the chain did. We noted that the malware used different affiliate
chains based on geography (i.e., it used one when in the US, and a
different one when in another country). This suggests that the same
malware is performing click-fraud for different “customers”. Thus
the botmaster controlling the botnet likely made money as well.

scour.com affiliates: A large number of clicks were through clicks.-
scour.com. Scour is a meta-search engine that aggregates results
from Google, Yahoo, Bing into a single search result page. It pays
users to search through it, and to vote or comment on individual re-
sults. It has an affiliate program where registered affiliates are paid
for users they refer to Scour.

How it works: We found a browser toolbar that hijacks the user’s
searches through Scour (but doesn’t automatically click on ads.)
The affiliate ID (6678) is hardcoded in the scour.com URL the tool-
bar points the browser to. The same affiliate ID shows up in our
logs. The toolbar, which many anti-virus companies classify as the
Scour redirect virus, is extremely hard to remove [9]. Additional
search redirect viruses (unrelated to Scour) that we see clicks from
include search-results.com, mywebsearch.com, search.babylon.com,
search.alot.com and search.conduit.com. These sites explain the
discrepancy between our estimate in Figure 3 and the ad networks’.

Who made money: As before, the publisher (scour.com) made
money from the ad network, and the affiliate presumably made
some fraction of that from Scour.

5.3.2 Parked Domains

sedo.com parkers: While investigating a set of about 35 clicks
from a particular domain registered by Sedo, a domain registrar,
we stumbled across 57 other domains also hosted by Sedo and in
our various logs. All these domains are parked domains. A parked
domain is a domain name that is registered, but not in use. The reg-
istrar typically points DNS for that domain name to a Web server
that serves up a “This site is under construction” or similar mes-
sage, followed by a set of ads that the user may or may not click.

For these specific parked domains, however, Sedo would auto-
matically redirect the browser to the ad click URL.

How it works:

1. A domain name registered by Sedo was either never used, or
its previous owner vacated it before the registration expired. Sedo
serves the parked page to users reaching the domain name.

2. A user may reach the parked domain name through many ways.

He may have mistyped a domain (e.g.nsdi.com is a Sedo parked
domain that appeared in our logs; other examples include blog-
dpot.com a mistyping of blogspot.com, and icicbank.com a typo for
icicibank.com)

In other cases where the owner was using the domain but is no
longer, links to the domain when it was active may have been
posted on forums, exchanged in emails, indexed by search engines
etc., and users may click on these links in the present. There are
also reports of adult link-exchange networks that launder traffic
through parked domains [13].

3. The user is usually shown an ad-laden parking page.

4. If, however, the parked domain is one of these 58 domains (pos-
sibly more) and the user is geolocated to a certain set of countries,

which include UK, Brazil, Italy, India, China, Spain and Argentina
(but notably, not the US), Sedo serves up a piece of JavaScript that
in effect automatically clicks the first ad link without ever serving
up the parking page.

5. The automatic click initiates a chain of redirects (we observed
upto 4) many of which (roughly one in three) culminate in a redirect
to clicks.scour.com (but lacks an affiliate ID). Scour then shows ads
from major ad network.

Based on the referrer we see in our logs (which appears to be
a search query on Scour) we found that the domain of the Sedo
parked page is linked to the search query on Scour. For exam-
ple, the publisher URL for ad clicks originating at icicbank.com is
....scour.com?qg=icic+bank. Indeed this is how we discovered the
set of 58 domains that auto-redirect users. For each Scour query
in our logs we attempted to guess the Sedo parked domain by ap-
pending common top-level domains (.com, .net, etc.), and check-
ing which were parked, and then determined which countries they
auto-redirect for using PlanetLab nodes located in 45 countries.

6. The remaining auto-redirects reach either thespecialsearch.com
— encountered earlier in the context of malware, or searchmir-
ror.com. Both these sites further auto-redirect to the ad click-URL.

The ultimate ad URL in these cases is encoded in each of the inter-
mediate redirects starting from the very first redirect initiated at the
Sedo parked domain. Thus the decision for which ad to click was
made right at the onset.

7. In many cases, the first ad is for the correct version of the
mistyped domain (e.g., the ad posted by icicibank.com is the top ad
on icicbank.com). Thus when the user is automatically redirected,
he may never realize that he mistyped the domain, although under
the covers icicibank.com (as an advertiser) has had to pay for a user
that was about to reach his Web page anyway, and several parties
made money in the process.

Discussion: Since Sedo parked domains redirect via a chain of
affiliates, detecting Sedo (or the Sedo customer) as the root-cause
requires reverse-engineering the chain (in this case through a query
parameter on scour.com, which taken out of context appears to be
a normal search query). More deviously, the user (e.g., that typed
icicbank.com) would engage normally with icicibank.com since he
anyway meant to type the latter. Thus any advertiser driven engage-
ment metrics would appear perfectly normal. Discovering such pat-
terns automatically is likely to be highly challenging, but would
illuminate a fraction of click-spam that is virtually undetectable.
Detection is only part of the problem however.

Sedo is benefiting from a ad network policy that does not forbid
its mode of operation. Parked domains are not only allowed to
show ads, ad networks expose special APIs to help them in doing
so [7]. Worse, even though ad networks have mechanisms to allow
advertisers to block certain classes of traffic (e.g., traffic through
proxy-servers), ad networks do not allow advertisers to block traffic
from parked domains.

Who made money: thespecialsearch.com and scour.com made
money from major ad networks, some fraction of which, as before,
traveled through the affiliate chain to the Sedo parked page.

networksolutions.com: NetworkSolutions, another domain regis-
trar, has a similar model as Sedo, but does not automatically redi-
rect. They account for 6% of the clicks we see for control ads.

In one scenario we found that even though the owner of www.-
noblenet.org (a library website) is actively using it, NetworkSolu-
tions is showing a parked page for noblenet.org that, at first glance,
appears to be a library page except all links are ads that direct the
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Figure 10: Arbitraging click-spam traffic through a fake site

user away from their intended URL. Note that here the user did not
make a typo; he simply omitted the www, which is often acceptable.

Discussion: As before, this is largely a policy issue. Major ad
network policies for parked domain affiliates states that they must
not violate trademarks and copyrights [1]. NetworkSolutions does
reserve for themselves the right to served parked pages for a do-
main (or sub-domain) in its terms-of-service (TOS) that customers
must agree to. It is unclear whether benefiting from someone else’s
domain constitutes copyright or trademark infringement, and if it
does, whether it can be overridden by the TOS. This is a loop-hole
NetworkSolutions benefits from.

Who made money: NetworkSolutions made money from major
ad networks if the user clicked a link on the parked domain.

5.3.3 Advertising Arbitrage

dotellall.com family: We next focus on the cluster of dotellall.com
and 20 other related domains that account for 18% of the traffic
for our search control ads. The entire cluster of websites on the
surface appear to be lively social question answer forums (users
ask questions, and post answers), but when we posted questions
and answers on one of the sites, it disappeared after a few days, and
the site was restored to its pristine condition. We noticed that over
time the questions and answers do not change. No question has
the date/time when it was asked or answered. For one of the sites,
we found the content was blatantly copied from other locations on
the web. As best as we can tell, the entire family of sites is an
incredibly elaborate (and realistic) sham.

It was extremely puzzling as to how they attract traffic. Clearly
users wouldn’t frequent a fake social site. We couldn’t find links to
malware. The sites weren’t typos of other popular sites (although
one is named livingfrugal.com, which is similar to the popular living-
social.com). Confusing us further, we (initially) couldn’t find ads
on their pages. It took us a long time (and a considerable amount
of serendipity) to determine how this family of sites makes money.

How it works:

1. We serendipitously discovered that the family of sites adver-
tises heavily on search and contextual ad networks. It advertises to
the tune of thousands of ads, for a wide spread of (long-tail) key-
words. As a result, they show up on low-popularity searches or
low-quality publishers. On low-quality publishers ad links are al-
most indistinguishable from content. Being the only ad for many
low-popularity searches, their ad is often placed above search re-
sults. Whenever there is competition, however, their ad is typically
ranked much lower (e.g., 7th or 8th position in the sidebar).

This suggests that they likely bid mere pennies for these thousands
of ads, but nevertheless manage to acquire long-tail traffic.

2. When a user clicks one of these ads, he is taken to the site.
The site shows ads only when the user arrives through an ad-click
(identified through a URL parameter in the landing-page URL the
site registered for its ads in the previous step). Figure 10 shows
screenshots of the site for users arriving either directly or through
an ad-click.

This second set of ads is from a different major search ad network.
Based on the keywords highlighted, we believe this second set of
ads are more expensive. The site filter-ins these higher-value ads
by stuffing keywords into the ad request.

Thus the family of sites acts as an advertiser with one search/contextual

ad network, and as a publisher with another search ad network.

3. Note that the users reaching the site have already displayed a
propensity to click ads. Presented with low-quality content, and
prominent ads on the top, it is likely a large fraction of these users
click the ad on the site. When they do, the second ad network pays
the site some fraction of the ad revenue from the lucrative ad, say a
dollar, while the site likely pays the first ad network mere cents for
getting the user (and pockets the difference).

Discussion: Arbitrage has been long known to be an issue in ad
networks [24]. However, such elaborate fake sites can be incredibly
hard for a human at an ad network to detect (given limited time to
investigate publishers). Recall how the site does not even show ads
if navigated to directly. Discovery is only half the problem.

The second half is that these sites are not violating ad network
policy. An advertiser may show ads on the landing-page. A pub-
lisher may advertise his site. A publisher may provide useful con-
tent hints in the ad request. A poor quality page and a prominent
ad box is bad user-experience, and an SEO optimized publisher ul-
timately costs the advertiser, but does not violate current policy.

Who made money: The dotellall.com family of sites likely made
a lot of money from one search ad network, for inexpensive traffic
it bought from the other ad network.

5.4 Click-spam in Mobile Ads

We next turn our attention to mobile ads, which as we found in
Section 4, are challenging even for reputable ad networks to detect
click-spam in. Figure 8b pictorially shows why. First, because mo-
bile advertising is a relatively new market, large legitimate content
providers have not yet replaced fly-by-night operators that exist to
make a quick buck. Indeed many mobile sites on which our ads
were shown serve primarily adult content; the abundance of these
sites mirrors the state of the web two decades ago when banner ads
first started appearing on similar sites. The two large cluster are
different adult entertainment networks, one hosted in Turkey, and
one in Denmark. We do not investigate these clusters.

5.4.1 Mobile Games

Ant-smasher and similar games: At least 2% of clicks on control
ads came from smartphone games that all require the user to tap
the screen close to where the ad is displayed. One such example
is the Ant-smasher iPhone app where ants randomly walk around
the screen up to (and under) where the ad is shown in the game,
and the user must tap the ant before it disappears from the screen
to progress in the game. We installed the games directing the most
traffic and confirmed the following modus operandi.
How it works:

1. A mobile game developer accidentally (or intentionally) places
the in-app advertising control close to where the user must tap, or
drag things to, in order to succeed in the game.

2. Given the tiny screen real-estate, the user is prone to mistap-
ping. When he does so, the browser navigates to the ad-click URL.



3. The user may realize his error and switch back to the game.
The browser, which in the mean time has already begun fetching
the ad landing-page, aborts the attempt. As a result, the user will
appear to have spent very little time on the advertiser’s page. We
saw exactly this behavior on our mobile ads — 95% of users spent
less than a second as mentioned earlier.

Discussion: The core issue here is the advertiser being charged
despite the user not spending any time on the landing page. It is
hard for an ad network to know how long the user spent on the
advertiser’s site. If it relied on the advertiser to get this information,
the advertiser could easily lie to get a discount. Solving this without
modifying the browser, and without hurting the user experience is
a non-trivial problem.

One mitigating approach would be to audit games and apps that
trick users into mistapping on the ad. Doing so would likely spark
an arms race for apps intentionally exploiting this loop-hole, but
would at least protect advertisers from apps accidentally triggering
this. Unfortunately, ad networks are making it harder for advertis-
ers and independent third-parties to identify bad apps. During the
course of our study, one major mobile advertising network stopped
sending the application ID in the HTTP Referer.

Who made money: The app made money from the ad network.

5.4.2 WAP Phones

waptrick.com and other sites: There is a sizable number of WAP
phones (phones with a limited browser that access the web via a
WAP proxy) that mobile ads are shown to. Nearly 42.1% of traffic
on our mobile control ads are from these sources. We loaded a
number of implicated sites with our browser’s user-agent set to that
of a WAP browser.

How it works:

1. Sites that cater to WAP users as well as WAP proxies optimize
the page content for display on feature phones, potentially stripping
away icons, colors, or sidebar content that visually differentiates an
ad from a normal link.

2. Combined with the extremely small screen, and clunky (keypad-
based) navigation on non-smart phones, the user clicks a link either
unintentionally, or without knowing that it is an ad.

Discussion: Proxies are the biggest hurdle in tracking down bad
WAP sites that confuse the user. As mentioned, less than 36% of
our clicks had the HTTP Referer we need to track it back to the
originating website and confirm that it intermixed ads with content.
While one might wish for legacy phones to die out, it is unlikely
to do so in developing countries in the near future. Advertisers
wishing to reach a global market will have to contend with click-
spam originating through these vectors.

Who made money: The WAP website made money from the ad
network. For websites that have arrangements with proxies, the
proxy operator potentially made some fraction of that money.

5.5 Epilogue and Future Work

Investigating 26% of clicks on our control ads, we find the five
classes of invalid clicks discussed above. We believe there are more
classes of dubious traffic lurking in our data, and are investigating
more automated means of reconstructing the attacks. In any event,
we find that click-spam is by no means a solved problem.

We also find that while there is a policy component to many of
the case-studies we presented, there is also an associated technol-
ogy (and research) component to proactively discover attacks.

Mobile is a particularly tricky case where much of the teleme-
try needed for detecting click-spam doesn’t exist. Given the large

role mobile advertising is expected to play in the coming future,
research in this space is both important and timely.

6. RELATED WORK
Related work falls into three distinct categories.

Measuring Traffic Quality: There is surprisingly little past work
in systematically measuring the quality of click traffic. [26] devel-
ops a learning algorithm for estimating the true CTR of an ad in
the presence of click-spam. [41] measures traffic from bulk traf-
fic providers and finds some providers to be qualitatively worse
than ad networks. Startups including Adometry, Visual IQ and
ClearSaleing that claim to be able to estimate click-spam rates pro-
vide no transparency into the specifics of their methods; further-
more, these approaches apply only at the granularity of entire ad
networks, which we found is insufficient information for advertis-
ers. Our click-spam estimation approach, which is grounded in
our Bayesian framework and validated through extensive measure-
ments, is the first principled approach an advertiser can indepen-
dently apply at the granularity of his individual ads.

Documenting Click-Spam: The second category of related work
is a snapshot-in-time of click-spam attacks, much like the case-
studies presented in this paper. Daswani et. al. [19] give a good
introduction to online advertising, pricing models, and online ad-
vertising fraud. Botnets like Clickbot.A [20], TDL-4 [36] and other
botnets [34] have been used for click fraud. More recent work
describes fraud in ad exchanges [38]. Individual advertisers, and
security researchers have documented many more attacks in blog
posts and white-papers [8,10,13]. Each of these has been an ad-hoc
targeted investigation given a specific publisher or attack vector.
Our generic clustering and heavy-hitter detection approach instead
starts from raw click logs to automatically identify (and prioritize)
potential publishers/attack vectors for targeted investigations.

Mitigating Click-Spam: The third category of related work aims
to identify individual clicks as click-spam so they can be discounted.
Bluft Ads [25], on which we base our control ad design, are ads
with unrelated targeting information (e.g., dog food ads for cat
lovers). Clicks on Bluff ads are assumed to be click-spam, which
the ad network should discount. While we subscribe to this as-
sumption, we differ in how such ads should be used. [25] sug-
gests blacklisting users that have above-threshold clicks on bluff
ads. There are two problems. First, this only applies to click-spam
driven by malware. In the non-malware scenarios we discovered,
blacklisting the user serves little purpose since the bad publishers
get a steady stream of unwitting users (false-negatives for Bluff
ads); furthermore, the legitimate clicks of blacklisted users on good
publishers would also get discounted (false-positives). The second
problem is that even for click-spam driven by malware, it wouldn’t
work. The malware we analyzed performs one click per day. If
Bluff Ads were to be shown 1% of the time, it would take on the
order of a 100 days to blacklist a user. The cost to the ad network
would be 1% of their revenue (hundreds of millions of dollars for
reputed networks), which would be unacceptably high. We use con-
trol ads in a different way; we use it sparingly to collect data ($1000
represents a negligible fraction of ad network revenue), from which
we then extract click-spam signatures that apply more broadly.
Other approaches to mitigating click-spam include SbotMiner [40],

Sleuth [33] and Detectives [32]. SbotMiner tries to identify bot
activity by using KL-divergence to detect change in query distribu-
tions, followed by pruning of false positives due to flash crowds, by
leveraging heterogenity for genuine users. Sleuth uncovers single
publisher fraud by finding correlation in multi-dimensional data;
however, they claim that the technique is suitable only when the



botnet uses tens of hundreds of IP addresses. Detectives detects
coalition hit inflation attacks by their similarity seeker algorithm;
it discovers coalitions made by pairs of fraudsters, which is then
enhanced in [31] by finding groups of fraudsters. All these ap-
proaches apply only to botnet and malware driven click-spam, which
is dwarfed by other sources of click-spam in our data.

Premium Clicks [27], access control gadgets (ACG) [37] and
CDN fraud prevention [30] focus on mitigation strategies that go
beyond botnets. Premium clicks employs economic disincentives
that devalue clicks from non-gold-standard users. ACGs ensure
authentic Ul interactions by users clicking a link. CDN fraud pre-
vention proposes a heavy-weight challenge-response protocol for
publisher-payee CDN models. While the first assumes an alternate
ad economy, the second and third (applied to ad networks) require
re-architecting the browser, or the ad network infrastructure. None
of these approaches apply to click-spam in existing ad networks.

Focusing squarely on existing ad networks, Camelot [28] is Goo-
gle’s click-fraud penetration system. It can test the susceptibility of
the network to known click-spam signatures, but does not itself de-
tect new signatures. [39] describes the invalid click detection sys-
tem inside Google, without identifying the specific heuristics that
are used to identify invalid clicks. No heuristic is perfect. Our data
shows click-spam is still an open problem despite these deployed
systems.

7. CONCLUSION

In this paper, we take a systematic look at click-spam. We pro-
pose the first methodology for advertisers to independently mea-
sure click-spam rates on their ads. We also develop an automated
methodology for ad networks to proactively fingerprint different
simultaneous click-spam attacks. We validate both methodologies
using data from major ad networks. We then conduct a large-scale
measurement study of click-spam across ten major ad networks and
four types of ads. In the process, we identify and perform in-depth
analysis on seven ongoing click-spam attacks not currently caught
by major ad networks. We conclude that even for the largest ad
networks, click-spam is a serious problem, and is especially ram-
pant in the mobile advertising context. Given the evolving nature of
click-spam, we believe that click-spam is an open problem that re-
quires a concerted effort from the research community to tackle. To
this end we have publicly released the data gathered for this paper
to aid other researchers in the design of novel click-spam defense
techniques.
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