
Detailed Diagnosis in Enterprise Networks

Srikanth Kandula Ratul Mahajan Patrick Verkaik (UCSD)
Sharad Agarwal Jitendra Padhye Paramvir Bahl

Microsoft Research

Abstract – By studying trouble tickets from small enterprise net-
works, we conclude that their operators needdetailedfault diagno-
sis. That is, the diagnostic system should be able to diagnose not
only generic faults (e.g., performance-related) but also application
specific faults (e.g., error codes). It should also identify culprits at
a fine granularity such as a process or firewall configuration. We
build a system, calledNetMedic, that enables detailed diagnosis by
harnessing the rich information exposed by modern operating sys-
tems and applications. It formulates detailed diagnosis as an infer-
ence problem that more faithfully captures the behaviors and inter-
actions of fine-grained network components such as processes. The
primary challenge in solving this problem is inferring when a com-
ponent might be impacting another. Our solution is based on an
intuitive technique that uses the joint behavior of two components
in the past to estimate the likelihood of them impacting one another
in the present. We find that our deployed prototype is effective at
diagnosing faults that we inject in a live environment. The faulty
component is correctly identified as the most likely culprit in 80%
of the cases and is almost always in the list of top five culprits.

Categories and Subject Descriptors
C.4 [Performance of systems] Reliability, availability, serviceability

General Terms
Algorithms, design, management, performance, reliability

Keywords
Enterprise networks, applications, fault diagnosis

1 Introduction
Diagnosing problems in computer networks is frustrating. Mod-

ern networks have many components that interact in complex ways.
Configuration changes in seemingly unrelated files, resource hogs
elsewhere in the network, and even software upgrades can ruin what
worked perfectly yesterday. Thus, the development of tools to help
operators diagnose faults has been the subject of much research and
commercial activity [2, 4, 6, 5, 11, 12, 17, 21].

Because little is known about faults inside small enterprise net-
works, we conduct a detailed study of these environments. We reach
a surprising conclusion. As we explain below, existing diagnostic
systems, designed with large, complex networks in mind, fall short
at helping the operators of small networks.

Our study is based on trouble tickets that describe problems re-
ported by the operators of small enterprise networks. We observe
that most problems in this environment concern application specific
issues such as certain features not working or servers returning error
codes. Generic problems related to performance or reachability are
in a minority. The culprits underlying these faults range from bad
application or firewall configuration to software and driver bugs.

We conclude that detailed diagnosis is required to help these op-
erators. That is, the diagnostic system should be capable of observ-
ing both generic as well as application-specific faults and of identify-
ing culprits at the granularity of processes and configuration entries.
Machine-level diagnosis is not very useful. Operators often already

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SIGCOMM’09,August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$5.00

know which machine is faulty. They want to know what is amiss in
more detail.

Existing diagnostic systems fall short because they either lack de-
tail or require extensive domain knowledge. The systems for large
enterprises, such as Sherlock [2], target only performance and reach-
ability issues and diagnose at the granularity of machines. They es-
sentially sacrifice detail in order to scale. Other systems, such as
Pinpoint for online services [5] and SCORE for ISP networks [17],
use extensive knowledge of the structure of their domains. Extend-
ing them to perform detailed diagnosis in enterprise networks would
require embedding detailed knowledge of each application’s depen-
dencies and failure modes. The range and complexity of applications
inside modern enterprises makes this task intractable.

Can detailed diagnosis be enabled with little application specific
knowledge? By developing a system calledNetMedic, we show that
the answer is yes. The two keys to our solution are:i) framing de-
tailed diagnosis as an inference problem that is much richer than
current formulations [2, 5, 17, 32]; and ii) a novel technique to es-
timate when two entities in the network are impacting each other
without programmed knowledge of how they interact.

Our formulation models the network as a dependency graph of
fine-grained components such as processes and firewall configura-
tion. While dependency graphs have been used previously [2, 5, 17,
32], our formulation is different. One difference is that it captures
the state of a network component using many variables rather than
a single, abstract variable that denotes overall health. Different vari-
ables capture different aspects of component behavior. For instance,
the variables for a process may include its resource consumption, re-
sponse time for its queries, and application-specific aspects such as
fraction of responses with error codes. Another difference is that our
formulation allows for components impacting each other in complex
ways depending on their state; existing formulations assume that
faulty components hurt dependent components irrespective of the
nature of the failure. These differences are necessary for observing
and diagnosing a rich set of failure modes. For instance, whether or
not a faulty process hurts other processes on the same machine de-
pends on its resource consumption. For correct diagnosis, we must
capture its behavior in detail as well as allow for both possibilities
in the model.

The goal of diagnosis in our model is to link affected components
to components that are likely culprits, through a chain of dependency
edges. The basic primitive required is inferring the likelihood that
the source component of a dependency edge is impacting the desti-
nation. This inference is challenging because components interact in
complex ways. And because we want to be application agnostic, we
cannot rely on knowing the semantics of individual state variables.

Our insight is to use the joint behavior of the components in the
past to estimate impact in the present. We search in the history of
component states for time periods where the source component’s
state is “similar” to its current state. If during those periods the des-
tination component is often in a state similar to its current state, the
chances are that it is currently being impacted by the source compo-
nent. If not, it is likely that the source component in its current state
is not impacting the destination component.

Our system,NetMedic, builds on this insight to identify likely
culprits behind observed abnormal behaviors in the network. The
rich information on component states needed for detailed diagno-
sis is already exported by modern operating systems and applica-

Observed symptom Identified cause

1
The browser saw error codes when accessing
some of the pages on the Web server even
though they had correct permissions.

A software update had changed the Web server’s configuration. In the new configuration, it was
not correctly processing some required scripts. The operator was aware of the update but not of
the configuration change.

2
An application was observing intermittently
high response times to its server.

An unrelated process on the server’s machine was intermittently consuming a lot of memory.

3
Some of the clients were unable to access a
specific feature of a Web-based application.

The firewall configuration on a router along the path was blocking https traffic that was required
for that feature. The operator did not know when or how the firewall configuration had changed.

4
The mail client (Outlook) was not showing
up-to-date calendar information.

A remote folder on the client machine was unmounted during a defragmentation operation. The
operator did not know that defragmentation could lead to the unmounting of a remote folder.

5
None of the clients in the network could send
email.

The configuration of the client was overriden with incorrectmail server type. The probable cause
of the change was a bug in the client software that was triggered by an overnight update.

6 Database server refused to start. The server was misconfigured. The operator did not know how that happened.

7
An application client was getting RPC errors
when contacting the server.

A low-level service (IPSec) on the client machine was intercepting application traffic. The opera-
tor did not know how the service got turned on or that it could interfere with the application.

8
The clients were experiencing poor perfor-
mance to a database server.

Another client was generating too many requests.

9 The network latency between hosts was high.A buggy process was broadcasting UDP packets at a high rate.

10
The database server was returning errors to a
subset of the clients.

A port that was being used by the problematic clients had been blocked by a change in firewall
configuration on the server machine. The operator was not aware of the configuration change.

Table 1. Example problems in our logs.

tions [20, 25]. NetMedic takes as input simple templates (e.g., a ma-
chine depends on all active processes) to automatically build the de-
pendency graph amongst components. It implements history-based
reasoning in a way that is robust to idiosyncrasies of real-world data.
It uses statistical abnormality detection as a pruning step to avoid
being misguided by components that have not changed appreciably.
And it uses simple learning techniques to extract enough relevant in-
formation about state variables to compete favorably with a scheme
that uses domain knowledge.

We evaluate our approach by deployingNetMedic in two envi-
ronments, including a live environment with actively used desktops.
In the live environment,NetMedic built a dependence graph with
roughly 1000 components and 3600 edges, with each component
populated by roughly 35 state variables. By injecting faults drawn
from our trouble tickets, which comprise both fail-stop and perfor-
mance problems, we find that in almost all casesNetMedic places
the faulty component in the list of top five causes. In 80% of them,
the faulty component is the top identified cause. Compared to a
diagnostic method based on current formulations, this ability rep-
resents a five-fold improvement. We show thatNetMedic is more
effective because its history-based technique enables it to correctly
identify many situations where the components are not impacting
each other. Additionally, this ability requires only a modest amount
of history (30-60 minutes).

2 Problems in small enterprises

To understand what plagues small enterprise networks, we ana-
lyze trouble ticket logs from an organization that provides technical
support for such networks. The logs indicate that the network sizes
vary from a few to a few hundred computers. To our knowledge,
ours is the first study of faults in such networks.

Our logs span an entire month (Feb ’08) and contain 450K cases.
A case documents the information related to a problem, mainly as a
free form description of oral or electronic conversation between the
operator of the small enterprise network and the support personnel.
Most cases span multiple conversations and describe the problem
symptoms, impact, and the culprit if identified. A case also contains
other information such as when the network was behaving normally
and any recent changes that in the operator’s knowledge may have
resulted in the abnormality.

Since the logs contain only faults for which operators contacted
an external support organization, they may not be representative of
all problems that occur. They are likely biased towards those that
operators struggle to diagnose independently and need help with.

We randomly selected 0.1% of the cases and read them manually.
We decided to read the cases to get detailed insights into the na-
ture of the problems and also because the unstructured nature of the
logs defied our attempts at automatic classification. We discarded
cases that were incomplete, contained internal communication be-
tween support personnel, or contained non-faults such as forgotten
passwords. Our analysis is based on the remaining 148 cases. While
these cases represents a small fraction of the total, we find that the
resulting classification is consistent even when we use only a ran-
domly selected half of these cases.

We first describe example cases from our logs and then provide
a broader classification of all that we read.

2.1 Example problems
Table 1 shows ten problems in our logs that we find interest-

ing. Our intent is to provide concrete descriptions of a diverse set of
problems rather than being quantitatively representative. We see that
the range of symptoms is large and consists of application-specific
errors as well as performance and reachability issues. The range of
underlying causes is large as well and consists of bugs, configuration
changes, overload, and side-effects of planned activities.

While it may be straightforward to design point solutions to each
of these problems, it is challenging to design a comprehensive sys-
tem that covers all of them. The design and implementation of such
a system is a goal of our work.

2.2 Classification results
Table2 classifies the cases that we read along three dimensions

to understand the demands on a diagnostic system—the fault symp-
toms that it should detect and the culprits that it should identify.

The first dimension captures whether the fault impacted an indi-
vidual application or the entire machine (i.e., many applications on
it). It does not relate directly to the underlying cause. For instance,
the machine category includes cases where a faulty application im-
pacted the entire machine. The data shows that most of the problem
reports refer to individual applications and hence monitoring ma-
chine health alone will miss many faults. To detect these faults, a
diagnostic system must monitor individual applications.

The second category is based on how the fault manifests. We see
that application-specific defects account for a majority of the cases.
These include conditions such as the application servers returning
error codes, features not working as expected, and a high number
of failed requests. The prevalence of such symptoms indicates the
need to track application-specific health. Unlike the more generic
symptoms, it is unclear how a diagnostic system can track applica-

1. What was impacted
An application 125 (84.5%)
Entire machine 23 (15.5)

2. Symptom
Application-specific faults 88 (59.5%)
Failed initialization 19 (12.8)
Performance 15 (10.1)
Hang or crash 15 (10.1)
Unreachability 11 (7.4)

3. Identified cause
Other configuration 44 (29.7%)
Application configuration 28 (18.9)
Software bug 20 (13.5)
Driver bug 10 (6.8)
Overload 6 (4.1)
Hardware fault 3 (2.0)
Unknown 37 (25.0)

Table 2. A classification of the problems in our logs.

tion health without knowing application semantics or requiring help
from the application. We show later how we handle this issue.

The final category shows the root causes of the faults. In 19% of
the cases, the application configuration was incorrect. The biggest
cause, however, was some other configuration element in the envi-
ronment on which the application depends. We define other con-
figuration quite broadly to include the lower-layer services that are
running, the firewall configuration, the installed devices and device
drivers etc. For 25% of the faults, the underlying cause could not be
identified but recovery actions such as a reboot fixed some anyway.

Unlike other settings [10, 18, 22], it appears from the logs that
in most cases incorrect configuration was not a result of mistakes on
the part of the operators. Rather, configuration was overwritten by
a software update or a bug without their knowledge. In many other
cases, the configuration change was intentional but the operators did
not realize the effects of that change.

2.3 Discussion
Statistics aside, the overall picture that emerges from the logs is

that small business networks are very dynamic. They undergo fre-
quent changes, both deliberate (e.g., installing new applications, up-
grading software or hardware) as well as inadvertent (e.g., triggering
of latent bugs, automatic updates). Each change impacts many com-
ponents in the network, some of which may be seemingly unrelated.

Detecting individual changes is rather easy. Applications and
operating systems today expose plenty of low-level information,
for instance, Windows Vista exposes over 35 different aspects of a
process’s current behavior. However, complex interactions and un-
known semantics make it hard to use this information to identify the
reasons behind specific abnormalities of interest to operators.

While our study is based on small enterprise networks, we be-
lieve that the kinds of problems it reveals also plague large enter-
prises. Existing diagnostic systems for large enterprises such as
Sherlock [2] are not capable of diagnosing such faults. In order to
scale, they focus on coarser faults such as a DNS server failing com-
pletely. Our work asks whether the detailed faults that we observe
in our logs can be diagnosed if scalability is not a prime concern. If
our techniques can be scaled, they will benefit large enterprises as
well. We discuss how to scaleNetMedic in §8.

3 Problem formulation
We now formulate the diagnosis problem in a way that helps op-

erators with the kinds of issues that we uncover in our logs. Our goal
is to build a system that can narrow down the likely causes responsi-
ble for a wide range of faults such as poor performance, unreachabil-
ity, or application specific issues. This ability is the first and perhaps
the hardest aspect of troubleshooting. Once the operators have iden-
tified the true culprit using our system, they can proceed to repairing
the fault. Automatic repair is not our goal in this work.

Generic variables
% processor time

% user time
io data bytes/sec

thread count
page faults/sec
page file bytes
working set

Application variables
current files cached

connection attempts/sec
files sent/sec

get requests/sec
put requests/sec

head requests/sec
not found errors/sec

Table 3. Example variables in Web server state. In all there are
28 generic and 126 application specific variables.

We want our system to have the following two properties.
1. Detail: The system should be able to diagnose both applica-

tion specific and generic problems. Further, it should identify likely
causes with as much specificity as possible. If a process is responsi-
ble, it should identify that process rather than the hosting machine.
If application configuration is responsible, it should identify the in-
correct configuration rather than simply blaming the application.

The need for detailed diagnosis clearly stands out in our logs.
Most faults are application-specific. The callers often knew which
machine was faulty but did not know what aspect was faulty.

2. Application agnosticism: The system should rely on mini-
mal application specific knowledge. Enterprises run numerous ap-
plications across the board. It is intractable for a general diagnostic
system to contain knowledge of every possible application.

These two properties are conflicting. How can application spe-
cific faults be detected without application knowledge? For instance,
the straightforward way to detect that an application client is receiv-
ing error messages is through knowledge of the protocol. Detecting
faults that are not reflected in protocol messages may require even
more application knowledge. We layout the problem and explain
how we reconcile these conflicting goals below.

3.1 Our inference problem
There are several broad approaches that one might consider to

diagnose faults in a computer network. To be able to diagnose a
wide range of faults, we take an inference-based approach rather
than, for instance, a rule-based approach (§9). However, our goals
require a much richer network model than current inference models.
We first describe our model and then explain how it differs from
existing models.

We model the network as a dependency graph between compo-
nents such as application processes, host machines, and configura-
tion elements. There is a directed edge between two components if
the source directly impacts the destination. The dependency graph
may contain cycles–in particular, two components may be connected
by edges in both directions. Our system automatically constructs the
dependency graph.

The state of a component at any given time consists of visible
and invisible parts, of which only the former is available to us. For
instance, the visible state of an application process includes generic
aspects such as its processor usage and some application-specific
aspects. The invisible state may include values of program variables
and some other application-specific aspects. Table3 shows a subset
of the variables that form the Web server process’s visible state in our
prototype. We represent visible state using multiple variables, each
corresponding to a certain aspect of the component’s behavior. The
set of variables differs across components. The diagnostic system is
unaware of the semantics of the variables.

Given a component whose visible state has changed relative to
some period in the past, our goal is to identify the components likely
responsible for the change. In other words, we want to identify the
causes underlying an observed effect. Each identified causes has the
properties that:i) its visible state changes can explain the observed
effect; ii) its visible state changes cannot be explained by visible
state changes of other components.

Server

CvictimCprolific

Machineserver

MachineCVMachineCP

[High load]

[Normal load][Normal load]

[Normal outbound request rate]

[High response time]

[High outbound request rate]

[High response time]

[High inbound request rate]

Figure 1. Illustration of Problem 8 in Table 1. The rectangles
are processes and the ellipses are host machines. The relevant
state of the components is shown in brackets.

For instance, consider Figure1, which illustrates Problem 8 of
Table1. Both clients experience high response times becauseCprolific

is overwhelming the server. Suppose we want to diagnose why the
response time is high forCvictim. Although the load onServer leads
to high response times, we want to identifyCprolific as the culprit,
sinceCprolific is responsible for bothServer’s high load andCvictim’s
high response times, and its behavior cannot be explained by other
visible factors. It may have been externally impacted, but lacking
further visibility, the diagnosis will identify it as the culprit.

We do not assume that the effect being diagnosed represents a
deterioration. Thus, our system can be used to explain any change,
including improvements. This agnosticism towards the nature of
change and the lack of knowledge of the meaning of state variables
lets us diagnose application-specific behaviors without application
knowledge. If applications export their current experience, e.g.,
number of successful and failed transactions, the system treats these
experiences as part of the state of the application process and diag-
noses any changes in them. We assume that the state variables are
well-behaved—small changes in component behaviors lead to rel-
atively small changes in variable values and significant behavioral
changes are detectable using statistical methods. We find that this
assumption holds for the state variables exported by the components
in our prototype.

3.2 Limitations of existing models
Existing models [2, 5, 17] differ from our formulation in three

important ways that makes them unsuitable for detailed diagnosis.
First, they use a single variable to represent component health. How-
ever, if exposing and diagnosing a rich set of failure modes is de-
sired, component state must be captured in more detail. One might
be tempted to abstract away the detail and just present a faulty-or-
healthy status for each component, but some types of component
failures impact other components while others do not. For instance,
an application process has the ability to hurt other processes on the
same machine, but typically, it hurts them only when it consumes a
lot of resources and not otherwise. To correctly determine if a pro-
cess is impacting others, its state must be captured in more detail.

In principle, a component with multiple variables is logically
equivalent to multiple components with a variable each. In prac-
tice, however, the difference is significant. Dividing a component
into constituent variables forces us to consider interactions within
those variables. Given the internal complexities of components and
that there can be hundreds of variables, this division significantly in-
creases the complexity of the inference problem. Further, as we will
show, keeping a multi-variate component intact lets us extract useful
information from the collective behavior of those variables.

Second, existing models assume a simple dependency model in
which a faulty component hurts each dependent component with
some probability. Turning again to the faulty process example
above, we can see that whether a component impacts another de-
pends in a more complex way on its current state.

Finally, existing models do not allow circular dependencies by
which two components have a direct or indirect mutual dependence.
When viewed in detail, circular dependencies are commonplace. For

SD

STa

STe

STd

STc

STb

DTa

DTe

DTd

DTc

DTb

1
Identify time periods

when the state of S

was similar to Snow

2 Recover the state of D

during those time periods

3

Check how similar

those states of D

are to Dnow

T
im

e

SnowDnow

Figure 2. Computing the weight of the edge from S to D.
instance, processes that run on the same machine are mutually de-
pendent, and so are processes that communicate.

4 Using history to estimate impact
Solving our inference problem requires us to estimate when a

component might be impacting another. The primary difficulty in
this estimation is that we do not knowa priori how components in-
teract. Our lack of knowledge stems from application agnosticism.
Even if we had not chosen an application-agnostic approach, it ap-
pears unrealistic to embed detailed knowledge of component inter-
action into the design of the diagnostic system. For instance, there
is no general way to specify how network path congestion impacts
application processes because the impact varies across applications.

One could use time to rule out the possibility of impact along
certain dependency edges. A component that is currently behav-
ing normally is likely not impacting one that is currently abnormal.
For instance, in Figure1, because the host machine ofCvictim is be-
having normally, we can rule it out as a possible culprit. However,
time-based elimination is limited because it cannot deduce what is
impacting what. Returning to the same example, we can see that
both clients as well asServer andMachineserver are abnormal. Time-
based elimination alone cannot tell which of these might be the cul-
prit. Instead, we must use a more precise analysis based on the states
of various components.

Our level of detail makes the challenge more daunting. Com-
ponent states include many variables (e.g., some applications ex-
pose over fifty variables in our implementation); it is not uncommon
for at least some variables to be in an abnormal state at any time.
Amidst this constant churn, we need to link observed effects to their
likely causes, while ignoring unrelated contemporaneous changes
and without knowinga priori either the meanings of various state
variables or the impact relationship between components.

We address this challenge using a novel, history-based primitive.
This primitive extracts information from the joint historical behavior
of components to estimate the likelihood that a component is cur-
rently impacting a neighbor. We use this estimated likelihood to set
edge weights in the dependency graph. The weights are then used
to identify the likely causes as those that have a path of high impact
edges in the dependency graph leading to the affected component.

We provide in this section the intuition underlying our history-
based primitive; we explain in §5.3 how exactly it is implemented
in a way that is robust to the real-world complexities of component
states. In Figure2, assume that the current state of the source com-
ponent S isSnow and of the destination D isDnow. We want a rough
estimate of the probability that S being inSnow has driven D into
Dnow. We compute this by searching through the history for peri-
ods when the state of S was “similar” toSnow. Informally, similarity
of state is a measure of how close the values are for each variable.
We quantify it in a way that does not require the knowledge of the
semantics of the state variables and appropriately emphasizes the
relevant aspects of the component’s behavior. The edge weight is
then a measure of how similar toDnow is the state of D in those time
periods. If we do not find states similar toSnow in the history, a
default high weight is assigned to the edge.

Intuitively, if D’s state was often similar toDnow when S’s state
was similar toSnow, the likelihood of S being inSnow having driven
D into Dnow is high. Alternately, if D was often in dissimilar states,
then the chances are thatSnow does not lead toDnow.

Generate

dependency graph

Diagnosis

a) Compute abnormality

b) Compute edge weights

c) Rank likely causes

Dependency

templates

Capture

component states

Component types,

data sources

Time period to

diagnose, historical

time range, affected

components (optional)

Dependency

graph

Ranked list of likely causes

for each affected component

Component

states

Figure 3. The work-flow of NetMedic.

This reasoning is reminiscent of probabilistic or causal infer-
ence [13, 23]. But because component states are multi-dimensional,
real-valued vectors, we are not aware of a method from these fields
that we can directly apply. Crudely, what we are computing is
the conditional probabilityProb(D = Dnow|S = Snow) and assuming
that it reflects causality. Conditional probability in general does not
measure causality, but we find that the assumption holds frequently
enough in practice to facilitate effective diagnosis. Further, we do
not infer complex probabilistic models to predict the conditional
probability for each pair of S-D states; such models typically require
a lot of training data. Instead, we estimate the required probability
on demand based on whatever historical information is available.

Consider how our use of history helps in Figure1. The estimated
impact fromServer to Cvictim will be high if in the past time periods
whenServer had high inbound request rate,Cvictim had high response
time along with normal outbound request rate. The estimated impact
fromServer toCprolific will be low if during those time periods,Cprolific

had normal outbound request rate. On the other hand, the estimated
impact fromCprolific to Server will be high if Cprolific never had high
outbound request rate in the past or ifServer had high inbound re-
quest rate whenever it did. This way, we obtain a high impact path
throughServer from Cprolific to Cvictim, without the need for interpret-
ing client and server state variables.

Whether the weight is correctly determined for an edge depends
of course on the contents of the history. We find that estimating the
correct weight for every edge is not critical. What is important for
accurate diagnosis is an ability to correctly assign a low weight to
enough edges such that the path from the real cause to its effects
shines through. We show later that our method can accomplish this
using only a modest amount of history.

5 Design
The workflow ofNetMedic is depicted in Figure3. Its three main

functional pieces capture the state of network components, generate
the dependency graph, and diagnose based on component states and
the dependency graph. We describe each piece below.

5.1 Capturing component state
There are many ways to partition a network into constituent com-

ponents. Our partitioning is guided by the kinds of faults that appear
in our logs—components in our current design include application
processes, machine, and network paths, as well as configuration of
applications, machine, and firewalls. The machine component bun-
dles the hardware and the OS.

In addition, we also include a virtual component, called NbrSet
(short for Neighbor set). A NbrSet represents the collective behav-
ior of communication peers of a process. Its state variables represent
information such as traffic exchanged and response time aggregated
based on the server-side port. In the presence of redundant servers
(e.g., for DNS), it helps model their collective impact on the client
process. Similarly, it models the collective impact of all the clients
for a server process. Using a NbrSet instead of individual dependen-
cies allows us to model the dependencies more accurately [2].

The granularity of diagnosis is determined by the granularity of
the modeled components. For instance, using the full network path

Machine CPU utilization, memory usage, disk usage, amount
of network and other IO

Process Generic variables:CPU utilization, memory usage,
amount of network and other IO, response time to
servers, traffic from clients
Application specific variables:Whatever is available

NbrSet State relevant to communication peers, e.g., inbound
and outbound traffic, response time

Path Loss rate and delay
Config All relevant key-value pairs

Table 4. Example state variables thatNetMedic captures.

as a component implies that culprits will not be identified at the level
of individual switches. Our framework, however, can be extended to
include finer-grained components than those in our current design.

NetMedic periodically captures the state of each component as a
multi-variable vector. State is stored in one-minute bins. The bin
size represents a trade-off—bigger bins have lower overhead of cap-
turing component state but limit our ability to diagnose short-lived
faults. The value of a variable represents some aspect of the com-
ponent behavior during that time bin. The number of variables and
their meanings vary across components. Table4 shows a subset of
aspects that are currently included for each component type.

A process is identified by its complete command line, rather than
the process ID. Such identification ensures that across machine re-
boots and process restarts, process instances with the same com-
mand line (e.g.,c : \mssql\bin\sqlservr.exe− ssqlexpress) are consid-
ered to be the same functional component [30].

Process state is a union of two parts. The first part captures
generic, application-independent aspects such as resources con-
sumed and traffic exchanged. We maintain traffic information per
port and also log which other processes this process communicates
with, which is used for dependency graph generation. The second
part of process state consists of application specific variables and
reflects different aspects of current application experience such as
fraction of failed requests, number of requests of a certain type, etc.
Including it in the process state lets us diagnose application specific
abnormalities without application knowledge.

We describe in §6 how various component state variables are
captured, including how application-specific variables are captured
without application knowledge.

5.2 Generating the dependency graph
We model the network as a dependency graph among compo-

nents in which there is an edge from a component to each of its di-
rectly dependent components. We automatically generate this graph
using a set of templates, one template per component type. Figure4
shows the set of templates we have currently defined. A template
has a component type in the center, surrounded by other component
types that impact it directly. Edges in the real dependency graph
correspond to edges in the templates. For instance, if the template
for a machine shows that it depends on its processes, we introduce
an edge from each of its processes to it.

The templates in Figure4 can be easily interpreted. They show
that a machine depends on its processes and its configuration. An
application process depends on its configuration, its NbrSet, its host
machine, and the configuration of the machine. While a process re-
lies on other processes on the machine because of resource sharing,
we do not include that dependency directly in the templates. For
non-communicating processes, that dependency is indirect, medi-
ated by the machine. We currently ignore inter-process interaction
that does not involve exchanging IP packets (e.g., through shared
memory). IP communication is captured using NbrSet. The NbrSet
of a process depends on local and remote firewall configurations, the
processes it is communicating with and the network paths. Finally,
a network path between two machines depends on all machines that

Process 1 Process K

Machine

Machine config

Machine
Application

process

Machine config

Application config

NbrSet

Nbr 1 firewall Nbr K firewall

Local firewall

Nbr 1 process

Path to Nbr 1

Nbr K process

Path to Nbr K

NbrSet
Path

Machine 1 Machine K

Other Traffic

Figure 4. The templates used byNetMedic to automatically gen-
erate the dependency graph.

inject traffic into it and the amount of other traffic, that is, traffic
from hosts outside the monitored network.

In our current templates, configuration components do not de-
pend on anything else. If configuration changes explain the effect
being diagnosed, we identify the configuration component as the
culprit, without attempting to identify what changed the configu-
ration. ExtendingNetMedic to remember what modified the configu-
ration can enable such identification if needed [30].

We can see from the templates that the resulting dependency
graphs can be quite complex with a diverse set of dependencies and
many cycles, e.g., Process1→ NbrSet of Process2→ Process2→
NbrSet of Process1→ Process1. The next section describes how we
perform an accurate diagnosis over this graph.

5.3 Diagnosis
Diagnosis takes as input the (one-minute) time bin to analyze and

the time range to use as historical reference. This time range does
not need to be contiguous or adjacent to the time bin of interest. We
only assume that it is not dominated by the fault being diagnosed.
For instance, if a configuration fault occurs at night but its effect is
observed the next morning,NetMedic needs historical reference be-
fore the fault (e.g., the previous morning) to diagnose the effect.
Optionally, the operator can also specify one or more affected com-
ponents whose abnormal behavior is of interest. If left unspecified,
we identify such components automatically as all that are behaving
abnormally. The output of the system is a ranked list of components
that are impacting each affected component of interest. There is a
separate list for each affected component.

Diagnosis proceeds in three steps (Figure3). First, we deter-
mine the extent to which various components and variables are sta-
tistically abnormal. Second, we compute weights for edges in the
dependency graph. Third, we use edge weights to compute path
weights and produce a ranked list of likely culprits.

5.3.1 Computing abnormality
Given historical values of a variable, we want to detect how ab-

normal its value is at the time of diagnosis. For purposes that will
become clear later, we need a fine-grained measure of abnormality
in addition to a simple binary decision as to whether a variable is ab-
normal. While the semantics of some variables may be known, most
have application-specific, undocumented semantics. Our goal is not
to craft a perfect detector but to design a simple one that works well
in practice without knowing semantics before hand.

For abnormality computation, we assume that the values of the
variable approximate the normal distribution. Per the central limit
theorem, this is a reasonable assumption because the values of our
variables tend to be sums or averages (e.g., memory usage) over the
sampling time bin. Ifµ andσ are the variable’s mean and standard
deviation over the historical time range, the abnormality of valuev at
the time of diagnosis is|erf(v−µ

σ
√

2
)|, whereerf(.) is the error function.

The formula is double the probability of seeing values betweenµ and
v in a normal distribution with parametersµ andσ. It ranges from 0
to 1, and the higher end of the range corresponds to values that are
far from the mean, i.e., towards the tails of the normal distribution.

Given the abnormality for each variable, the abnormality of a
component is the maximum abnormality across its variables.

The abnormality values computed above are used in two ways.
They can be used directly, for instance, as multiplicative factors.
This usage is robust to the exact method for computing abnormality
as long as the first order trend of the variable values are captured
such that less likely values have higher abnormality.

The abnormality values are also used to make a binary decision
as to whether a variable or component is abnormal. For this decision,
we use a threshold of 0.8. Like all binary decisions of abnormal-
ity, we face a trade-off between flagging a non-existent abnormal-
ity and missing a real one. We prefer the former because our edge
weight computation assumes that normally behaving components do
not impact others. Thus, declaring potentially abnormal components
as normal is less desirable than the other way around. Our chosen
threshold reflects this preference.

5.3.2 Computing edge weights
Let S and D be the source and destination of a dependency edge.

If either S or D is behaving normally, it is unlikely that S is impacting
D and we assign a low weight to the edge. The exact value of the
edge weight is not critical in this case. However, since computing
path weights involves multiplying edge weights, edge weights of
zero are brittle in the face of errors. Hence, we use an edge weight
of 0.1 in our experiments.

If both S and D are abnormal, we use their joint historical be-
havior to determine the edge weight. LetSnow and Dnow be their
respective states during the time bin of diagnosis. We first divide the
history where both components co-exist intoK equal-sized chunks,
each consisting of one or more time bins. Within each chunk we
identify the time bin in which S was in a state most similar toSnow.
We then compute how similar on average D was toDnow during those
times. More precisely:

E(S → D) =
∑K

k=1(1−|Dtk −Dnow|)×wk

∑K
k=1 wk

, (1)

wheretk is the time bin in chunkk where the state of S was most
similar, and|Dtk −Dnow| is the difference between the two state vec-
tors. The differencing of two states (explained below) produces a
number between 0 and 1.

The termwk is a relative weighting factor for different chunks.
We specifywk = 1−|Stk −Snow| if |Stk −Snow| ≤ δ; it is 0 otherwise.
This specification places a higher weight on historical states that are
more similar. And it excludes chunks of time where the most sim-
ilar source state differs by more thanδ. Because historical states
that differ more already have a lower weight, the main reason for
this cutoff is to avoid computing the probability based on dissimilar
states alone. Our experiments use a relaxedδ of 1/3.

When no usable historical information exists, e.g., because there
is insufficient history or because similar source states do not exist,
we assign a high weight of 0.8 to the edge. This assignment as-
sumes that a fault is more likely to stem from a component that was
not seen in a similar state previously. It has the desired behavior of
erring on the side of assuming impact rather than exonerating possi-
bly responsible components.

Dividing the history intoK disjoint chunks and looking for a sim-
ilar state in each helps base the weight computation on a diverse set
of time windows. Alternately, we could pickK time bins where
the source state was most similar. But this method could bias re-
sults to temporally close bins that may be dependent, leading to a
less effective factoring out of other aspects that impact the destina-
tion state. We find that even small values ofK suffice for accurate
diagnosis. We useK = min(10,number of time bins in history) for ex-
periments in this paper.

The basic procedure for differencing states: When comput-
ing state differences, our intent is to get a robust measure of how
differently a component is behaving at different points in time. State

differences are based on differences in the values of individual vari-
ables. The difference between two state vectors withL variables
is ∑L

i=1 |di|/L, wheredi is the difference of thei-th variable normal-
ized by the observed range. That is,di = (vi

tk
−vi

now)/(vi
max −vi

min),
wherevi

tk
and vi

now are the values of the variable at the two time
bins, andvi

max andvi
min are the maximum and minimum values ob-

served across all time. Normalization means that the difference for
each variable is between 0 and 1. It ensures that a variable does not
dominate because its values are drawn from a bigger range.

Configuration components are handled differently for computing
state differences. The difference is zero if the values of all variables
are identical. It is one otherwise. For configuration components,
any change in the value of even a single variable could represent a
significant functional shift. We thus err on the side of deeming every
such change as significant.

Robust weight assignment with unknown variable semantics:
The procedure above is a starting point; while it works well in some
cases, it is not robust to the presence of a large and diverse set of vari-
ables in component states. The underlying problem is that it equally
emphasizes all variables, irrespective of the fault being diagnosed,
the uniqueness of the information represented by that variable, or
whether the variable is relevant for interaction with the neighbor un-
der consideration. Equal emphasis on all variables dilutes state dif-
ferences, which hinders diagnosis. For instance, even when a run-
away process is consuming 100% of the CPU, its state may appear
similar to other times if the vast majority of its state variables are
unrelated to CPU usage.

If we knew variable semantics, we could pick and choose those
that matter to the fault being diagnosed. We now describe extensions
to the basic procedure that create a similar effect without requiring
knowledge of variable semantics. The simplest of our extensions
leverages the abnormality of variables and the others are based on
automatically inferring the relevant properties of state variables.

a) Weigh variables by abnormality: Instead of treating the vari-
ables equally, we use abnormality of a variable as the relative weight
in the state difference. This weighting biases the state difference to-
wards variables related to the effect currently being diagnosed. For
instance, while diagnosing an effect related to CPU usage, the ab-
normality of aspects related to CPU usage will be higher.

b) Ignore redundant variables: We ignore variables that represent
redundant information with respect to other variables of the compo-
nent. This extension helps prevent an over-representation of certain
aspects of the component’s behavior. For instance, our machines ex-
port used as well as available memory, each in units of bytes, kilo-
bytes, and megabytes. If we include all six variables, the state dif-
ferences will be biased towards memory-related aspects, making it
harder to diagnose other aspects.

To discover variables that are not redundant, we want to look for
independent components [14]. Instead of running a full-blown inde-
pendent component analysis, we approximate via a simple heuristic
that works well in our setting. We compute linear correlation be-
tween pairs of variables in the component and then identify cliques
of variables such that the Pearson correlation coefficient between
every pair of variables is above a threshold (0.8). We select one
variable to represent each clique and deem others to be redundant.

c) Focus on variables relevant to interaction with neighbor:
Among the remaining variables, we ignore those that are irrelevant
to interaction with the neighbor under consideration. For instance,
while considering the impact of a machine on an application pro-
cess, we exclude variables for error codes that the process receives
from a peer process. By reducing the noise from irrelevant variables,
this exclusion makes weight assignment more robust.

We infer whether a variable is relevant to interaction with the
neighbor by checking if it is correlated to any of the neighbor’s vari-
ables. Specifically, we compute the linear correlation between this

E

BC D

A

H

H H

LH

L

Figure 5. An example dependency graph. The labels on edges
denote whether the computed weight was high (H) or low (L).

variable and each variable of the neighbor. We consider the variable
relevant if the Pearson correlation coefficient is greater than a thresh-
old (0.8) for any neighbor variable. Linear correlation does not cap-
ture all kinds of relationships but is easy to compute and works well
for the kinds of variables that we see in practice.

The state difference for non-configuration components after ap-
plying these three extensions is(∑L

1 |di| ·ai · ri)/(∑L
1 ai · ri), whereL and

di are as before andai is abnormality of the variable. The termri is
a binary indicator that denotes if thei-th variable is included in the
computation. It is 1 if the variable is relevant to interaction with the
neighbor and represents non-redundant information.
d) Account for aggregate relationships:Some variables in machine
state (e.g., CPU usage) are sums of values of process variables. Sim-
ilarly, some variables in server process state (e.g., incoming traffic)
are sums of values across its client processes. We discover and ac-
count for such relationships when computing state differences. The
following discussion is in the context of a machine and its processes.
The same procedure is used for server and its client processes.

If the variable values of different components were synchronized
in time, discovering aggregate relationships would be easy. The sum
of the values of appropriate process variables would be exactly the
value of a machine variable. But because variables values may be
sampled at different times, the sum relationship does not hold pre-
cisely. We thus use an indirect way to infer which machine variables
are aggregates. We instantiate virtual variables whose values rep-
resent the sum of identically named process variables; one virtual
variable is instantiated per name that is common to all processes.
Even though we do not know their semantics, variables have names
(e.g., “CPU usage”), and a name refers to the same behavioral as-
pect across processes. We then check if any machine state variable
is highly correlated (with coefficient> 0.9) with a virtual variable.
If so, we conclude that the machine variable is an aggregate of the
corresponding process variables.

We use aggregate relationships in several ways. First, we replace
the variable value in the machine with that of the virtual variable,
i.e., sum of values of the corresponding process variable. Second,
when computing the edge weight from a machine to its process,
we subtract the contribution of the process itself. Specifically, as a
pre-processing step before searching for similar machine states, the
value of each aggregate variable in the machine state at each time
bin is reduced by the value of its corresponding process variable.
The remaining process is as before.

Such pre-processing lets us compute the state of the process’s
environment without its own influence. Without it, we may not find
a similar machine state in history and hence falsely assign a high
weight for the machine-to-process edge. Consider a case where a
runaway process starts consuming 100% CPU. If such an event has
not happened before, we will not find similar machine states in the
history with 100% CPU usage. Instead, by discounting the impact
of the process, we will likely find similar machine states and find
that it is only the process that is behaving differently. These findings
will correctly lead to a low weight on the machine-to-process edge.

Finally, when estimating the impact of a process on the machine,
if similar process states are not found, we assign weight based on the
contribution of the process. That is, we do not use the default high
weight. For each aggregate variable, we compute the fraction that
the process’s value represents in the aggregate value. The maximum
such fraction is used as the weight on the edge. This modification
helps by not blaming small processes just because they are new. Ar-
rival of new processes is common, and we do not wish to impugn
such processes unless they also consume a lot of resources.

Rank(c→e) ∝ (I(c→e) ·S(c))−1

I(c→e) = max(weightW(p) of acyclic pathsp from c to e)
1 if c = e

W(p) =
(

∏n
j=1 E(ej)

)
1
n wheree1 · · ·en are edges of the path,

E(·) is edge weight
S(c) = ∑e∈C I(c→e) ·Ae whereC is set of all components,

Ae is the abnormality ofe

Figure 6. Our methodology for ranking causes.

5.3.3 Ranking likely causes
We now describe how we use the edge weights to order likely

causes. The edge weights help connect likely causes to their ob-
served effects through a sequence of high weight edges. However,
unlikely causes may also have high weight edges leading to the ef-
fects of interest.These include those that lie along paths from respon-
sible causes but may also include others if weights on those edges
overestimate the impact.

As an example, consider the dependency graph in Figure5. For
simplicity, we show whether the edge weight is high (H) or low (L)
instead of numeric values. Assume that we set out to diagnose the
abnormal behavior of the component labeledE and that the real cul-
prit C is impacting it throughB. Accordingly,C is connected toE
through a path of high weight edges, but so areB andD (via the path
D-B-E). Let us further assume thatC is also hurtingA and that the
high weight fromD to B is erroneous.

Our goal is to rank causes such that more likely culprits have
lower ranks. A compact representation of our ranking function is
shown in Figure6. The rank of a componentc with respect to an
affected component of intereste is based on the product of two mea-
sures, and components with larger products are ranked lower. The
first measureI(c→e) is the impact fromc to e. The second measure
S(c) is a score of the global impact ofc.

Together, the two measures help achieve our goal. The im-
pactI(c→e) from one component to another is the maximum weight
across all acyclic paths between them, where path weight is the ge-
ometric mean of edge weights. Per this measure, in Figure5, B, C,
andD have high impact onE but A has a low impact. The score
S(c) of a component is the weighted sum of its impact on each other
component in the network, where the abnormality of the component
is used as the weight. Components that are highly impacting more
abnormal components will have a higher score. Per this measure, in
Figure5, C will have a lower rank thanB andD, despite the inac-
curate weight on theD−B edge because it has high impact to many
abnormal nodes. Of course, in any given situation whether the real
culprit gets a low rank depends on the exact values of edges weights
and component abnormalities. We find in our evaluation that real
culprits have low ranks the vast majority of the time.

6 Implementation
We have implementedNetMedic on the Windows platform. Our

implementation has two parts—data collection and analysis. The
first part captures and stores the state of various components. The
second part uses the stored data to generate the dependency graph
and conduct diagnosis.

The main source of data is the Windows Performance Counter
framework [20]. Using this framework, the operating system (OS)
and applications export named counters and update their values.
Each counter represents a different aspect of the exporter’s behav-
ior. “Performance” is a misnomer for this framework because it
exposes non-performance aspects as well. The OS exports many
machine-wide counters such as processor and memory usage. It also
exports generic process-level aspects such as resource consumption
levels. In addition, many processes export application-specific coun-
ters. See Table3 for some counters exported by the Web server.

NetMedic reads the values of all exported counters periodically.
We do not interpret what a counter represents but simply make each
counter a state variable of the component to which it belongs. While
most counters represent values since the last time they were read,
some represent cumulative values such as the number of exceptions
since the process started. We identify such counters and recover their
current behavior by subtracting the values at successive readings.

The Performance Counter interface does not tell us which pro-
cesses in the network are communicating with each other. We use
a custom utility that snoops on all socket-level read and write calls.
This snooping yields the identity of the calling processes along with
the IP addresses and ports being used on both ends. It lets us con-
nect communicating processes and measure how much traffic they
exchange. We also estimate response times from these socket-level
events as the time difference between read and write calls. Includ-
ing these response times as a variable in the process state lets us
diagnose faults that delay responses even if the application does not
expose this information as a counter.

We measure path loss rate and delay by sending periodic probes
to machines with which a monitored machine communicates. For
paths that go outside the monitored network, we measure the part up
to the gateway.

NetMedic monitors machine, firewall, and application configura-
tion stored in the Windows registry as well as files. We read all rel-
evant information once upon start and register callbacks for future
changes. Machine configuration includes information about running
services, device drivers, and mounted drives. Application configu-
ration may be spread over multiple locations. Currently, the list of
locations for an application is an input toNetMedic, but we plan to au-
tomatically infer where application configuration resides using soft-
ware package managers and by tracking application read calls [30].

Our data collectors are light-weight. In our prototype deploy-
ment, we find that the average processor usage due to data collec-
tion is under 1%. The exact usage at a given time depends on the
level of activity on the machine. The amount of data transmitted
for analysis is under 250 bytes per second per machine. From these
overheads and our experience with data analysis, we believe that
the current version ofNetMedic can scale to 100-machine networks,
which suffices for small enterprises. See §8 for a discussion on scal-
ing NetMedic further.

While the data collection part of our system knows the meanings
of some variables (e.g., traffic exchanged), we do not use that infor-
mation in the analysis. Treating variables with known and unknown
meanings identically greatly simplifies analysis. It also makes analy-
sis platform-independent and applicable to a range of environments
with different sets of known variables. All that is required to port
NetMedic to a different environment is to implement data collection
on non-Windows machines. Much of the needed information is al-
ready there, e.g., insyslog or theproc file system [25] in Linux. De-
veloping a Linux prototype is part of our future work.

7 Evaluation
We now evaluateNetMedic to understand how well it does at link-

ing effects to their likely causes. We find thatNetMedic is highly ef-
fective. Across a diverse set of faults it identifies the correct compo-
nent as the most likely culprit (§7.2) in over 80% of the cases. This
ability only slights degrades in the face of simultaneously occurring
faults (§7.5). In contrast, a coarse diagnosis method performs rather
poorly—only for 15% of the faults, is it able to identify the correct
component as the most likely culprit. We show that the effective-
ness ofNetMedic is due to its ability to cut down by a factor of three
the number the edges in the dependency graph for which the source
is deemed as likely impacting the destination (§7.3). We also find
that the extensions to the basic procedure for edge weight assign-
ment significantly enhance the effectiveness of diagnosis (§7.4) and
a modest amount of history seems to be sufficient (§7.6).

Evaluation Platforms: We have deployed our prototype in two en-
vironments. The primary one is a live environment. The deployment
spans ten client machines and a server machine inside an organiza-
tion. The clients are actively used desktops that belong to volunteers
and have all the noise and churn of regularly used machines.

Because we are not allowed to instrument the real servers in this
environment, we deploy our own. As is common in small enter-
prises, our server machine hosts multiple application servers, in-
cluding Exchange (email), IIS (web) and MS-SQL (database). Co-
hosted application servers are challenging for diagnostic systems as
application interactions are more intertwined. The server processes
already export several application specific counters.

We implemented custom client processes to communicate with
our application servers. The existing client processes on the desk-
tops communicate with the real servers of our organization, and we
could not experiment with them without disrupting our volunteers.
Our clients export application specific counters similar to those ex-
ported by real clients, such as number of successful and failed re-
quests, requests of various types, etc.

Our second environment consists of three clients machines and
a server. Because this environment is completely dedicated to our
experiments, it is a lot more controlled. We do not consider it to be
a realistic setting and unless otherwise stated, the results below are
based on the first environment. We present some results from the
controlled setting to compare howNetMedic behaves in two disparate
environments with different workloads, applications etc.
Methodology: Ideally, we would like to diagnose real faults in our
deployment but are hindered by the inability to monitor real servers.
We are also hindered by ground truth, which is required to under-
stand the effectiveness of diagnosis, being often unavailable for real
faults. Hence, most of the results below are based on faults that we
inject. We do, however, present evidence thatNetMedic can help with
faults that occurin situ (§7.7).

The faults that we inject are the diverse set of ten shown in Ta-
ble 1. We stay as close to the reported fault as possible, including
the kind of application impacted. For instance, for Problem 1, we
broke the configuration of the IIS server in a way that makes it stop
serving ASPX pages but continue serving HTML pages. Similarly,
to mimic Problem 4, we made an email client depend on information
on a mounted drive.

Except for the experiments in §7.5, where we inject multiple
faults simultaneously, each fault is injected by itself. We inject each
fault at least 5 times, at different times of the day (e.g., day ver-
sus night), to verify that we can diagnose it in different operating
conditions. Cumulatively, our experiments span a month, with data
collection and fault injection occurring almost non-stop.

For diagnosis, we specify as input toNetMedic a one minute win-
dow that contains a fault. We did not specify the exact effect to
diagnose; ratherNetMedic diagnoses all the abnormal aspects in the
network. Unless otherwise specified, for each fault we use an hour-
long history. The historical period is not necessarily fault-free. In
fact, it often contains other injected faults as well as any naturally
occurring ones. We do this for realism. In a live environment, it is
almost impossible to identify or obtain a fault-free log of behavior.
A coarse diagnosis method: We know of no detailed diagnosis
techniques to compareNetMedic against. To understand the value of
detailed history-based analysis ofNetMedic, we compare it against a
Coarsediagnosis method that is based loosely on prior formulations
that use dependency graphs such as Sherlock and Score [2, 17]. This
method uses the same dependency graph asNetMedic. But unlike
NetMedic, it captures the behavior of a component with one variable
that represents whether the component is behaving normally. The
determination regarding normal behavior is made in the same way
as inNetMedic. Also unlikeNetMedic, Coarsehas simple component
dependencies. A component impacts a neighboring component with
a high probability (of 0.9) when both of them are abnormal. Other-

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Coarse

NetMedic

0

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

(a) Live environment

20

30

40

50

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Coarse

NetMedic

0

10

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

(b) Controlled environment
Figure 7. Effectiveness ofCoarse and NetMedic for each fault.

wise, the impact probability is low (0.1). The exact values of these
probabilities are not significant, as long as one is high and the other
is low. Once these edge weights are assigned, the causes are ranked
in a manner that is similar toNetMedic. Keeping the ranking method
the same forCoarselets us focus the evaluation in this paper on our
method for inferring impact among neighbors. We omit results that
show that our ranking method outperforms several other alternatives.
Metric: Our metric to evaluate diagnosis is the rank assigned to the
real cause for each anticipated effect of a fault. For each fault, we
report the median and the maximum rank assigned across its multi-
ple effects. For instance, for Problem 1, all Web clients that browse
ASPX pages are expected to be affected. We study the rank assigned
to the configuration of Web server for each such client. The median
rank represents average case behavior, i.e., what an operator who is
diagnosing a randomly chosen effect of the fault would experience.
The maximum rank represents the worst case.

What should the rank be for the diagnosis to be useful to an op-
erator? Clearly, lower ranks are better, with a rank of one being
perfect. However, even the ability to frequently place the real cause
within the top few ranks helps administrators avoid many potential
causes that they would otherwise have to consider (close to 1000 in
our deployment).

7.1 Dependency graph properties
We briefly describe the dependency graph constructed across the

eleven machines in our live environment. The exact numbers vary
with time but the graph has close to a 1000 components and 3600
edges. With roughly 70 processes per machine, most of the nodes
in the graph correspond to processes. Correspondingly, the vast ma-
jority of the edges are between components on the same machine,
such as edges between machines and processes. Edges that con-
nect components on different machines (e.g., due to communicat-
ing processes) are a much smaller fraction. Hence, the dependency
graph is highly clustered, with clusters corresponding to machines
and the graph size grows roughly linearly with the number of ma-
chines. This linear growth in graph complexity makes it easier to
scaleNetMedic to larger networks.

Each component provides a rich view of its state in our deploy-
ment. Processes have 35 state variables on average, roughly half
of which are generic variables representing resource usage while the
rest are application specific and vary with the application. IIS server,
for instance, exports 128 application-specific variables. Machines
have over a hundred variables in their state. Thus, there are plenty of
variables that are already exported by real applications and operating
systems for detailed diagnosis to be possible. But the sheer scale of
this observable state makes understanding variable semantics daunt-
ing. NetMedic’s ability to be application agnostic allows diagnosis to
work even as new applications emerge or variable semantics change.

7.2 Effectiveness of diagnosis
Figure 7(a) shows the effectiveness ofNetMedic and Coarse

across all faults injected in the live environment. The lines connect

40

60

80

100
C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

0

20

0 10 20 30 40 50

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

% abnormal components

(a)

40

60

80

100

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

Coarse
NetMedic

0

20

0 10 20 30 40 50

C
u
m
u
la
ti
v
e
%
 o
f
fa
u
lt
s

% high weight edges

(b)
Figure 8. (a) CDF of the percentage of components that are ab-
normal during a fault. (b) CDF of the percentage of edges that
are assigned a high weight in the dependency graph.

the median ranks and the error bars denote the maximum ranks. The
two curves are independently sorted based on the median rank.

We see that for 80% of the faults the median rank of the correct
cause is one withNetMedic. That is,NetMedic frequently places the
real culprit at the top of the list of likely causes. For all cases except
one, the median rank of the correct cause is five or lower. The max-
imum ranks are often close to the median ranks, representing good
worst-case behavior as well. These results suggest thatNetMedic can
help operators diagnose such faults in their networks.

In contrast, diagnosing these faults withCoarsewould likely be
a frustrating exercise. The correct cause is assigned a rank of one in
fewer than 15% of the cases. For over 60% of the cases, the correct
cause has a median rank of more than ten.

We examined cases whereNetMedic assigned a median rank
greater than three to the correct cause. We find that these often
correspond to performance faults, which include Problems 2, 8 and
9 in Table1. The side-effects of these faults lead to abnormality
in many components in the network. For instance, a process that
hogs the CPU disturbs many other processes on its machine, each
of which can appear abnormal. A few of the victim components can
get ranked lower than the correct cause if there is insufficient history
to correctly determine the direction of impact. Diagnosis of non-
performance faults, which tend to be more prevalent (§2.3) turns out
to be easier as they disturb fewer components in the network.

Let us consider now the results from the controlled environment
shown in Figure7(b). We reduce they-axis range for this graph be-
cause the environment has fewer components. We see thatNetMedic
effectively diagnoses faults in this setting as well.

Interestingly,Coarseperforms much better in this setting. In the
live environment, for the worst 20% of the cases, its median rank is
35 or higher. Here, the median rank is 8 or higher, a sharp improve-
ment even after accounting for the difference in the numbers of com-
ponents. Thus, in going from the controlled to the more dynamic and
realistic setting, the ability ofCoarsedegrades sharply. This degra-
dation stems from the fact that the live environment has more ab-
normal components. Because of its simplistic component states and
dependency models,Coarsecannot effectively infer which compo-
nents are impacting each other, and many components get ranked
lower than the real culprit.NetMedic, on the other hand, shows no
such degradation in our experiments and appears better equipped
towards handling the noise in real environments. The next section
investigates in more detail why the methods differ.

7.3 Why NetMedic outperforms Coarse?
NetMedic outperformsCoarseprimarily because at the level of

detail that we observe at, components are often abnormal. As a re-
sult, Coarseassigns a high weight to many edges and ends up er-
roneously connecting many non-responsible components to the ob-
served effects. By looking at component states in detail and allowing
for complex dependencies,NetMedic assigns a low weight to many
edges even when both end points are abnormal simultaneously.

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e Basic

NetMedic

HandPicked

0

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

(a)

38

55

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e Basic

Abnormality
NetMedic

4 1
5

0

20

80 95

R
a
n
k
 o
f
co
rr
ec
t
ca
u
se

Cumulative % of faults

(b)
Figure 9. Value ofNetMedic’s extensions to the basic procedure.

Figure8(a)shows the CDF of the percentage of components that
are abnormal during the periods covering various faults. We see that
this percentage is quite high (20-40%).

Figure8(b) shows the CDF of the percentage of edges in the de-
pendency graph that are assigned a high weight (> 0.75) by each
scheme. We see that this percentage is 35-45% forCoarseand 10-
15% forNetMedic, which represents reduction by a factor of 3. This
reduction in likely spurious high-weight edges leads to fewer pos-
sible causes being strongly connected to the affected component,
resulting in fewer false positives and lower ranks for real causes.

Simply changing the requirement for deeming a component as
abnormal (e.g., using a higher abnormality threshold or requiring
more state variables to be abnormal) may reduce false positives. But
we find that doing so can hurt. It runs the risk of excluding the real
culprit from the list altogether; the culprit or a component on the
path from it to the effect of interest may appear normal.

7.4 Benefit of extensions
We now study the value of the extensions to edge weight assign-

ment by comparing them to two other methods. The first is the basic
procedure, without the extensions. For the second method, instead
of automatically inferring relationships between variables, we hard
code them manually, based on our knowledge of what each variable
represents. Given that the number of variables is quite large, we hard
code knowledge of only those that are relevant for diagnosing the
faults that we inject. Beyond programming these relationships, the
rest of the procedure stays the same. Comparison with this “Hand-
Picked” method quantifies any reduction in diagnostic effectiveness
due to our desire to be application agnostic and treating these vari-
ables as opaque.

Figure9(a)shows the diagnostic effectiveness of all three meth-
ods. Comparing the basic procedure withCoarsein Figure7(a) re-
veals that it more frequently assigns a rank of one to the correct
cause. This frequency is 44% versus the 14% ofCoarse. But over-
all, the basic procedure is quite fragile. In fact in the worst 20% of
the cases, it assigns a higher rank to the correct cause thanCoarse.

The extensions help make the basic idea practical—an 80% fre-
quency of assigning a rank of one to the correct cause and a signif-
icant reduction in the ranks of the correct cause for half the faults.
Closer examination reveals that such faults often correspond to per-
formance issues. As mentioned previously, performance faults have
more side effects than configuration faults. The extensions are better
able to sift through this noise.

Figure9(a)also shows that the performance ofNetMedic is close
to HandPicked. Thus, the extensions extract enough semantic infor-
mation for our task to not require embedding knowledge of variable
semantics into the system.

To investigate in more detail, we separately consider the exten-
sion that weighs variables based on their abnormality values and the
other three extensions that infer variable relationships. Figure9(b)
shows the median rank for 80th and 95th percentile of the faults
with the basic procedure, with only the abnormality extension, and

40

60

80

100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Coarse

NetMedic

0

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

Figure 10. Effectiveness ofCoarse and NetMedic
when diagnosing two simultaneous faults.

0

5

10

15

20

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

5 min

30 min

60 min

90 min

Figure 11. NetMedic’s effectiveness
when using different history sizes.

5

10

15

20

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e Coarse

NetMedic

0

5

0 20 40 60 80 100

R
a
n
k
 o
f
c
o
r
r
e
c
t
c
a
u
s
e

Cumulative % of faults

Figure 12. The ranks assigned to abnormal
processes in the absence of injected faults.

NetMedic, which includes all extensions. We see that both factoring
in abnormality and variable relationships are useful.

7.5 Multiple simultaneous faults
We now study the ability ofNetMedic to diagnose multiple, si-

multaneously occurring faults. In a dynamic network, simultaneous
faults are possible and it is desirable that the diagnostic system cor-
rectly match each effect to its own likely cause. Here, we inject two
faults simultaneously. With 10 basic faults, there are 45 unique fault
pairs. Of these, 9 fault pairs “interfere” in that they impact the same
application processes. We inject the 36 non-interfering pairs and
evaluate our ability to link each effect to its underlying cause.

Figure10 shows that withNetMedic the median rank for the cor-
rect cause is one for over 80% of the cases. Compared to the
single-fault case, there is some degradation in diagnosis effective-
ness, specifically in the maximum rank, which represents the worst
case operator experience. There is no deterioration in the median
rank, which represents the average case. These results suggest that
even in the presence of multiple faultsNetMedic can often often link
an effect to its correct cause.

In contrast,Coarsedoes significantly worse. The median rank is
one for only 15% of the cases. Curiously, compared to the single-
fault results in Figure7(a), Coarseappears to do better in thex-range
of 20-60%. It is not the case thatCoarseis better at diagnosing
multiple-fault cases than single-fault cases. The seemingly better
performance is a result of the fact that the two sets of experiments
have different fault type mixtures; the double-fault scenarios have a
higher fraction of faults for whichCoarsehas modest performance.

7.6 Impact of history
Next, we study the impact of the size of the history on the effec-

tiveness ofNetMedic. Figure11 shows results with using 5–90 min-
utes of history. We see that using 30 or 90 minutes performs as well
as our previous experiments that use 60 minutes of history. Using
5 minutes of history performs significantly worse; 10% of the faults
have median ranks above 20. Based on these results we conclude
that 30 minutes of historical data suffices for most faults. Recall that
this history does not need to be fault-free and our experiments use
history that contains other faults.

Preliminary evidence suggests that using history from more dy-
namic periods (e.g., day versus night) helps discount spurious con-
nections between components better. Investigating the nature of his-
tory that works best in various settings is a subject of ongoing work.

7.7 In situ behavior
We conclude our evaluation with evidence thatNetMedic can help

with naturally occurring faults as well. Consider a common scenario
for a process: plenty of available resources on the host machine,
the network appears normal, and the relevant configuration elements
have not changed recently. If the process appears abnormal in this
scenario, a good diagnostic method should blame the process itself
for this abnormality rather than, for instance, other processes. We
evaluateNetMedic on exactly this scenario, i.e., on ruling out impact

among components that happen to be abnormal simultaneously. We
focus this analysis on interactions within monitored desktops since
we could not monitor the real servers in our organization.

Figure 12 shows the rank assigned byCoarseand NetMedic to
abnormal processes. This data is based on a five hour monitoring
period during which none of our own clients are running. We ran-
domly select ten one-minute intervals to diagnose and use 30-minute
long history for each. In 75% of the cases,NetMedic blames the pro-
cess itself for its abnormality whileCoarsedoes so for only 5% of
the cases. Our monitored desktops are not resource constrained dur-
ing most of this monitored period. The inferences ofNetMedic are
more consistent thanCoarsefor this setting.

We manually examine many cases in whichNetMedic assigns a
high rank to an affected process. In nearly all of them, the top
ranked cause is a virus scanning process or a sync utility process.
In our deployment environment, such processes often hog resources
over short durations andNetMedic appears to correctly blame these
processes rather than the affected process.

8 ScalingNetMedic

While motivated by problems inside small enterprises,NetMedic
can also help large enterprises that suffer similar problems if it can
be scaled up. There are two challenges in scalingNetMedic; we be-
lieve that both are surmountable and addressing them is part of our
future work. The first challenge is to carry out diagnosis-related
computation over large dependency graphs. The primary bottleneck
in this computation is calculating component abnormality and edge
weights. These calculations are parallelizable as they can be done in-
dependently for each edge and component. In fact, they can also be
distributed to the machines that are being monitored because the vast
majority of dependency edges are between components on the same
machine (e.g., between a process and its host machine). Further, the
calculation of individual edge weights can be sped up through fast
correlation methods [33]. Once the edge weights are computed, the
remaining calculations are those that underlie ranking likely causes.
These calculations are akin to those of Sherlock [2] in their simplic-
ity and can thus scale to very large graphs.

The second challenge in large deployments is that of data col-
lection, storage and retrieval. For this challenge, we can leverage
the large body of existing work on managing data that is similar to
ours. This body includes methods for very-lightweight data collec-
tion [3, 28], for efficient data compression [8, 9], and for searching
(compressed) history for similar states [15, 24, 26].

9 Related Work
Diagnosing faults in computer networks is hard and has thus wit-

nessed much commercial and research activity. We divide related
work into four broad categories.
Inference-based: These systems identify the faulty component
based on a model of dependencies among components [2, 17, 32].
Because they target large-scale networks, the focus of existing sys-
tems is scalable analysis with simple models.NetMedic provides de-

tailed diagnosis in small business networks and differs in both the
challenges that it overcomes (e.g., unknown variable semantics) and
in the way it models components and dependencies.
Rule-based: These systems, which are also known as expert sys-
tems, diagnose based on a set of pre-programmed rules [4, 11, 16,
21]. Their main limitation is a lack of generality: they only diagnose
faults for which they have been pre-programmed. Because building
a rule database that covers a large fraction of possible faults in a
complex network is difficult, we chose an inference-based approach.
Classifier-based: These systems train offline on healthy and un-
healthy states, and when current system state is fed they try to de-
termine if the system is unhealthy and the likely cause [6, 7]. It is
unclear how such schemes fare on faults not present in the training
data and extensive training data is hard to get. Some systems attempt
to overcome the “unknown fault” limitation of learning approaches
by training on data from multiple networks [1, 29]. A recent ex-
ample is NetPrints, which detects home router configurations that
are incompatible with applications. This approach is enabled by the
fact that the set of compatible router configurations is much smaller
than the number of sharing networks. It may not, however, general-
ize to more complex configurations or to other kinds of faults. For
instance, it is difficult to diagnose performance faults using informa-
tion from other networks because performance is a complex function
of the specific hardware, software, and topology used by a network.
Single-machine: While we focus on diagnosing faults across ma-
chines in a network, there is extensive work on diagnosing faults
within individual machines [3, 27, 28, 30, 31]. NetMedic borrows
liberally from this body of work, especially in the light-weight yet
extensive data gathering, configuration monitoring and the use of
system history. However, cross-machine diagnosis presents unique
challenges and single-machine diagnosis methods often do not di-
rectly translate. LikeNetMedic, Strider [30] uses historical state dif-
ferences. It represents a machine with a single vector that contains
all Windows registry entries and detects faulty entries by differ-
encing this vector across time and across other similar machines.
NetMedic considers a broader and noisier input (e.g., application per-
formance), includes component interactions in its analysis, and de-
tects a wider range of faults.

10 Conclusions
NetMedic enables detailed diagnosis in enterprise networks with

minimal application knowledge. It was motivated by what to our
knowledge is the first study of faults in small enterprises. It com-
bines a rich formulation of the inference problem with a novel tech-
nique to determine when a component might be impacting another.
In our experiments, it was highly effective at diagnosing a diverse
set of faults that we injected in a live environment.

Modern operating systems and applications export much detailed
information regarding their behavior. In theory, this information can
form the basis of highly effective diagnostic tools. In reality, the
technology was lacking. One class of current systems uses the se-
mantics of this information to diagnose common faults based on pre-
programmed fault signatures [19]. Another class focuses exclusively
on certain kinds of faults such as performance that do not require
this information [2]. Even in combination these two classes of tech-
niques are unable to diagnose many faults that enterprise networks
suffer. The techniques developed in our work are a step towards fill-
ing this void. They enable diagnosis of a broad range of faults that
are visible in the available data, without embedding into the system
the continuously evolving semantics of the data.

Acknowledgments: We are grateful to Parveen Patel for his assis-
tance with implementing data collection inNetMedic and to our col-
leagues who let us deployNetMedic on their desktops. We also thank
our shepherd, Darryl Veitch, Alex Snoeren, and the SIGCOMM re-
viewers for helping improve the presentation of this paper.

11 References
[1] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. Padmanabhan, and

G. Voelker. NetPrints: Diagnosing home network misconfigurations
using shared knowledge. InNSDI, 2008.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via in-
ference of multi-level dependencies. InSIGCOMM, Aug. 2007.

[3] S. Bhatia, A. Kumar, M. Fiuczynski, and L. Peterson. Lightweight,
high-resolution monitoring for troubleshooting production systems. In
OSDI, 2008.

[4] S. Brugnoni, G. Bruno, R. Manione, E. Montariolo, E. Paschetta, and
L. Sisto. An expert system for real time fault diagnosis of theItalian
telecommunications network. InIFIP, 1993.

[5] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic Internet services. In DSN,
June 2002.

[6] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.Failure
diagnosis using decision trees. InICAC, 2004.

[7] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase. Corre-
lating instrumentation data to system states: a building block for auto-
mated diagnosis and control. InOSDI, 2004.

[8] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing his-
torical information in sensor networks. InSIGMOD, 2004.

[9] M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guar-
antees. InSIGMOD, 2002.

[10] J. Gray. Why do computers stop and what can be done about it?In Sym.
on Reliability in Distributed Software and Database Systems, 1986.

[11] Gteko, Inc.http://www.gteko.com.
[12] W. Hamscher, L. Console, and J. de Kleer, editors.Readings in model-

based diagnosis. Morgan Kaufmann Publishers Inc., 1992.
[13] D. Heckerman.Learning in Graphical Models, chapter A tutorial on

learning with Bayesian networks. MIT Press, 1999.
[14] A. Hyvarinen and E. Oja. Independent component analysis: Algo-

rithms and applications.Neural Networks, 13(4-5), 2000.
[15] H. Jagadish, A. Mendelzon, and T. Milo. Similarity-based queries. In

PODS, 1995.
[16] G. Khanna, M. Cheng, P. Varadharajan, S. Bagchi, M. Correia, and

P. Verissimo. Automated rule-based diagnosis through a distributed
monitor system.IEEE Trans. Dependable & Secure Computing, 2007.

[17] R. Kompella, J. Yates, A. Greenberg, and A. Snoeren. IP fault local-
ization via risk modeling. InNSDI, 2005.

[18] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP mis-
configuration. InSIGCOMM, 2002.

[19] Microsoft operations manager 2005 product overview.
http://technet.microsoft.com/en-us/opsmgr/bb498244.aspx.

[20] Performance counters (Windows).
http://msdn.microsoft.com/en-us/library/aa373083(VS.85).aspx.

[21] Open view, HP technologies inc.http://www.openview.hp.com.
[22] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do Internet

services fail, and what can be done about it. InUSITS, 2003.
[23] J. Pearl. Causality : Models, Reasoning, and Inference. Cambridge

University Press, 2000.
[24] I. Popivanov and R. Miller. Similarity search over time-series data

using wavelets. InICDE, 2002.
[25] The /proc file system.http://www.faqs.org/docs/kernel/x716.html.
[26] D. Rafiei and A. Mendelzon. Similarity-based queries fortime series

data. InSIGMOD, 1997.
[27] Y. Su, M. Attariyan, and J. Flinn. AutoBash: improving configuration

management with operating system causality analysis. InSOSP, 2007.
[28] C. Verbowski et al. Flight data recorder: monitoring persistent-state

interactions to improve systems management. InOSDI, 2006.
[29] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatic mis-

configuration troubleshooting with PeerPressure. InOSDI, Dec. 2004.
[30] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang, and C. Yuan.

STRIDER: A black-box, state-based approach to change and configu-
ration management and support. InLISA, 2003.

[31] A. Whitaker, R. Cox, and S. Gribble. Configuration debugging as
search: Finding the needle in the haystack. InOSDI, Dec. 2004.

[32] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed
and robust event correlation.IEEE Communications Mag., 1996.

[33] L. Yu and H. Liu. Feature selection for high-dimensionaldata: A fast
correlation-based filter solution. InICML, 2008.

http://www.gteko.com
http://technet.microsoft.com/en-us/opsmgr/bb498244.aspx
http://msdn.microsoft.com/en-us/library/aa373083(VS.85).aspx
http://www.openview.hp.com
http://www.faqs.org/docs/kernel/x716.html

	Introduction
	Problems in small enterprises
	Example problems
	Classification results
	Discussion

	Problem formulation
	Our inference problem
	Limitations of existing models

	Using history to estimate impact
	Design
	Capturing component state
	Generating the dependency graph
	Diagnosis
	Computing abnormality
	Computing edge weights
	Ranking likely causes

	Implementation
	Evaluation
	Dependency graph properties
	Effectiveness of diagnosis
	Why NetMedic outperforms Coarse?
	Benefit of extensions
	Multiple simultaneous faults
	Impact of history
	In situ behavior

	Scaling NetMedic
	Related Work
	Conclusions
	References

