Detailed Diagnosis in Enterprise Networks

Srikanth Kandula Ratul Mahajan Patrick Verkaik (UCSD)
Sharad Agarwal Jitendra Padhye Paramvir Bahl
Microsoft Research

Abstract — By studying trouble tickets from small enterprise net- know which machine is faulty. They want to know what is amiss in
works, we conclude that their operators nelethiledfault diagno- more detail.

sis. That is, the diagnostic system should be able to diagnose not Existing diagnostic systems fall short because they either lack de-
only generic faults (e.g., performance-related) but also applicationail or require extensive domain knowledge. The systems for large
specific faults (e.g., error codes). It should also identify culprits atenterprises, such as Sherloék ftarget only performance and reach-

a fine granularity such as a process or firewall configuration. Weability issues and diagnose at the granularity of machines. They es-
build a system, calledetvedic, that enables detailed diagnosis by sentially sacrifice detail in order to scale. Other systems, such as
harnessing the rich information exposed by modern operating sysPinpoint for online services] and SCORE for ISP network47],

tems and applications. It formulates detailed diagnosis as an infedse extensive knowledge of the structure of their domains. Extend-
ence problem that more faithfully captures the behaviors and intering them to perform detailed diagnosis in enterprise networks would
actions of fine-grained network components such as processes. Thequire embedding detailed knowledge of each application’s depen-
primary challenge in solving this problem is inferring when a com- dencies and failure modes. The range and complexity of applications
ponent might be impacting another. Our solution is based on amside modern enterprises makes this task intractable.

intuitive technique that uses the joint behavior of two components Can detailed diagnosis be enabled with little application specific
in the past to estimate the likelihood of them impacting one anotheknowledge? By developing a system calbesivedic, we show that

in the present. We find that our deployed prototype is effective athe answer is yes. The two keys to our solution aydraming de-
diagnosing faults that we inject in a live environment. The faulty tailed diagnosis as an inference problem that is much richer than
component is correctly identified as the most likely culprit in 80% current formulationsZ, 5, 17, 32); andii) a novel technique to es-

of the cases and is almost always in the list of top five culprits. timate when two entities in the network are impacting each other
Categories and Subject Descriptors without programmed knowledge of how they interact.
C.4 [Performance of systems] Reliability, availability, sieeability _ Our formulation models the network as a dependency graph of
General Terms fine-grained components such as processes and firewall configura
Algorithms, design, management, performance, reliability tion. While dependency graphs have been used previoRshy 17,
Keywords 32], our formulation is different. One difference is that it captures
Enterprise networks, applications, fault diagnosis the state of a network component using many variables rather than
. a single, abstract variable that denotes overall health. Different vari-
1 Introduction ables capture different aspects of component behavior. For irstanc

. the variables for a process may include its resource consumption, re-
Diagnosing problems in computer networks is frustrating. Mod-

elsewhere in the network, and even software upgrades can ruin wh ; ; . Ayicti :
! s depending on their state; existing formulations assume that
worked perfectly yesterday. Thus, the development of tools to helqa y b 9 9

] ; Ity components hurt dependent components irrespective of the
operators diagnose faults has been the subject of much research aﬁ‘;{ure of the failure. These differences are necessary for ahgerv
commercial activity 2, 4, 6, 5, 11, 12, 17, 21].

little is K b faults insid I . and diagnosing a rich set of failure modes. For instance, whether or
Because little is known about faults inside small enterprise nety, i 5 tay ity process hurts other processes on the same machine de-
works, we conduct a detailed study of these environments. We rea

S . . - . “Ppends on its resource consumption. For correct diagnosis, we must

a surprising conclusion. As we explain below, existing diagnostic., e its behavior in detail as well as allow for both possibilities
systems, designed with large, complex networks in mind, fall short 1o model.
at helping the operators of small networks. _ The goal of diagnosis in our model is to link affected components

Our study is based on trouble tickets that describe problems ré, .omponents that are likely culprits, through a chain of dependency
ported by the operators of small enterprise networks. We 0bS€Vgyqeg ™ The basic primitive required is inferring the likelihood that
that most problems in this environment concern application specifighe’soyrce component of a dependency edge is impacting the desti-
issues such as certain features not working or Servers returnng eff oo This inference is challenging because components interact in
codes. Generic problems related to performance or reachability arg, ,njex ways. And because we want to be application agnostic, we
in a minority. The culprits underlying these faults range from bad 500t rely on knowing the semantics of individual state variables.
application or firewall configuration to software and driver bugs. Our insight is to use the joint behavior of the components in the

We conclude that detailed diagnosis is required to help these o yast to estimate impact in the present. We search in the history of
erators. That s, the diagnostic system should be capable of ObSEE@bmponent states for time periods where the source component’s
ing both generic as well as application-specific faults and of identify-gya1q g “similar” to its current state. If during those periods the des-
ing culprits at the granularity of processes and configuration entries;p, iion component is often in a state similar to its current state, the

Machine-level diagnosis is not very useful. Operators often alread\éhances are that it is currently being impacted by the source compo-

Permission to make digital or hard copies of all or part of this work for personal _nent- |_f not, "f is likely tha_t th? source component in its current state
classroom use is granted without fee provided that copies are not made outistrib IS Not impacting the destination component.

for profit or commercial advantage and that copies bear this notice and the furitati Our system,NetMedic, builds on this insight to identify likely

on the first page. To copy otherwise, to republish, to post on servers or toitds ¢ |hrits behind observed abnormal behaviors in the network. The
to lists, requires prior specific permission and/or a fee.
SIGCOMM’09, August 17-21, 2009, Barcelona, Spain. rich information on component states needed for detailed diagno-

Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$5.00 sis is already exported by modern operating systems and applica-

Observed symptom

Identified cause

The browser saw error codes when accessing software update had changed the Web server’s configuraliothe new configuration, it was

some of the pages on the Web server ey
though they had correct permissions.

enot correctly processing some required scripts. The opevae aware of the update but not of
the configuration change.

An application was observing intermittent!
high response times to its server.

An unrelated process on the server’s machine was interntjttesiisuming a lot of memory.

Some of the clients were unable to acces
specific feature of a Web-based application

5 dhe firewall configuration on a router along the path was blagkttps traffic that was required
. for that feature. The operator did not know when or how theveileconfiguration had changed.

The mail client (Outlook) was not showin
up-to-date calendar information.

y A remote folder on the client machine was unmounted during agdefentation operation. The
operator did not know that defragmentation could lead to tiraaunting of a remote folder.

None of the clients in the network could sendThe configuration of the client was overriden with incornetil server type. The probable cause

email.

of the change was a bug in the client software that was tregbby an overnight update.

Database server refused to start.

The server was misconfigured. The operator did not know hothéggpened.

An application client was getting RPC erro
when contacting the server.

s A low-level service (IPSec) on the client machine was intetiog) application traffic. The opera-
tor did not know how the service got turned on or that it conlgifere with the application.

The clients were experiencing poor perfg
mance to a database server.

" Another client was generating too many requests.

The network latency between hosts was highA buggy process was broadcasting UDP packets at a high rate.

10

The database server was returning errors t

0 A port that was being used by the problematic clients had bémkéd by a change in firewall

subset of the clients. configuration on the server machine. The operator was noteasfdhe configuration change.

Table 1. Example problems in our logs.

tions [20, 25]. NetMedic takes as input simple templates (e.g., a ma- We randomly selected 0.1% of the cases and read them manually.
chine depends on all active processes) to automatically build the dé\/e decided to read the cases to get detailed insights into the na-
pendency graph amongst components. It implements history-basedre of the problems and also because the unstructured nature of the
reasoning in a way that is robust to idiosyncrasies of real-world dataogs defied our attempts at automatic classification. We discarded
It uses statistical abnormality detection as a pruning step to avoidases that were incomplete, contained internal communication be-
being misguided by components that have not changed appreciabliyveen support personnel, or contained non-faults such as forgotten
And it uses simple learning techniques to extract enough relevant irpasswords. Our analysis is based on the remaining 148 cases. While
formation about state variables to compete favorably with a schemthese cases represents a small fraction of the total, we find that the
that uses domain knowledge. resulting classification is consistent even when we use only a ran-

We evaluate our approach by deployingMedic in two envi- domly selected half of these cases.
ronments, including a live environment with actively used desktops. We first describe example cases from our logs and then provide
In the live environmentNetMedic built a dependence graph with a broader classification of all that we read.
roughly 1000 components and 3600 edges, with each component
populated by roughly 35 state variables. By injecting faults drawnZ.1 Example problems

from our trouble tickets, which comprise both fail-stop and perfor- Table 1 shows ten problems in our logs that we find interest-

nk:anfcelproblems, We.fing trl!at i? almf(?st all camem/lecggopla(;,eﬁ ing. Our intent is to provide concrete descriptions of a diverse set of
the fau lty component in t ﬁ Isto .(thp];{edcauses. '% %0 td €M.problems rather than being quantitatively representative. We see that
the faulty component Is the top identified cause. Compared 10 g,o range of symptoms is large and consists of application-specific
diagnostic method based on current formulations, this ability repgorq a5 well as performance and reachability issues. The range of

r?cfsenlts abflve-fold. |mr?rovemt)ent. dWe rs]hpw tMtheldic IS more nderlying causes is large as well and consists of bugs, configuration
effective because its history-based technique enables it to correcty,n e “overload, and side-effects of planned activities.

identify many situations where the components are not impacting While it may be straightforward to design point solutions to each

each other. Additionally, this ability requires only a modest amount L . . .)
of history (30-60 minutes). of these problems, it is challenging to design a comprehensive sys

tem that covers all of them. The design and implementation of such
a system is a goal of our work.
2 Problems in small enterprises 22 Classification results
To understand what plagues small enterprise networks, we ana- Taple? classifies the cases that we read along three dimensions
lyze trouble ticket logs from an organization that provides technicaky nderstand the demands on a diagnostic system—the fault symp-
support for such networks. The logs indicate that the network sizegyms that it should detect and the culprits that it should identify.
vary from a few to a few hundred computers. To our knowledge, e first dimension captures whether the fault impacted an indi-
ours is the first study of faults in such networks. vidual application or the entire machine (i.e., many applications on
Our logs span an entire month (Feb '08) and contain 450K casesk). It does not relate directly to the underlying cause. For instance,
A case documents the information related to a problem, mainly as ¢he machine category includes cases where a faulty application im-
free form description of oral or electronic conversation between theyacted the entire machine. The data shows that most of the problem
operator of the small enterprise network and the support personneleports refer to individual applications and hence monitoring ma-
Most cases span multiple conversations and describe the probleghine health alone will miss many faults. To detect these faults, a
symptoms, impact, and the culprit if identified. A case also containgliagnostic system must monitor individual applications.
other information such as when the network was behaving normally The second category is based on how the fault manifests. We see
and any recent changes that in the operator's knowledge may havgat application-specific defects account for a majority of the cases.
resulted in the abnormality. These include conditions such as the application servers returning
Since the logs contain only faults for which operators contactecerror codes, features not working as expected, and a high number
an external support organization, they may not be representative aff failed requests. The prevalence of such symptoms indicates the
all problems that occur. They are likely biased towards those thaheed to track application-specific health. Unlike the more generic
operators struggle to diagnose independently and need help with. symptoms, it is unclear how a diagnostic system can track applica-

1. What was impacted Generic variables Application variables
An application 125 (84.5%) % processor time current files cached
Entire machine 23 (15.5) % user time connection attempts/sec

2. Symptom io data bytes/sec files sent/sec
Application-specific faults| 88 (59.5%) thread count get requests/sec
Failed initialization 19 (12.8) page faults/sec put requests/sec
Performance 15 (10.1) page file bytes head requests/sec
Hang or crash 15 (10.1) working set not found errors/sec

T denl‘tji?i;%aggsg'e“ty n_(74 Table 3. Example variables in Web server state. In all there are
Other configuration a4 (20.7%) 28 generic and 126 application specific variables.
Application configuration | 28 (18.9)
Software bug 20 (13.5) We want our system to have the following two properties.
Driver bug 10 (6.8) 1. Detail: The system should be able to diagnose both applica-
Overload 6 (4.1 tion specific and generic problems. Further, it should identify likely
Hardware fault 3 (20 causes with as much specificity as possible. If a process is responsi-
Unknown 37 (250 ble, it should identify that process rather than the hosting machine.

Table 2. A classification of the problems in our logs. If application configuration is responsible, it should identify the in-

correct configuration rather than simply blaming the application.
tion health without knowing application semantics or requiring help The need for detailed diagnosis clearly stands out in our logs.
from the application. We show later how we handle thisissue. Most faults are application-specific. The callers often knew which

The final category shows the root causes of the faults. In 19% Ofnachine was faulty but did not know what aspect was faulty.

the cases, the application configuratiqn was incorrect. The bigge;t 2. Application agnosticism: The system should rely on mini-
cause, however, was some other configuration element in the envina| application specific knowledge. Enterprises run numerous ap-
ronment on which the application depends. We define other congjications across the board. It is intractable for a general diagnostic
figuration quite broadly to include the lower-layer services that aresysiem to contain knowledge of every possible application.
running, the firewall configuration, the installed devices and device These two properties are conflicting. How can application spe-

%rivi_rﬁ %tct; Iior 25% of th? faults, tt:'e underlI)yintgf_calése could not b%ific faults be detected without application knowledge? For instance,
! eB' II(I3< lih recov:gry accl)ozg SZUC .?S are oof Ixe thsolme atnhy";’a%he straightforward way to detect that an application client is receiv-
niike other se ings10, . 2] It appears from the logs tha ing error messages is through knowledge of the protocol. Detecting

a software update or a bug without their knowledge. In many otheg, . \va reconcile these conflicting goals below.
cases, the configuration change was intentional but the operators dl(? '

not realize the effects of that change. 3.1 Ourinference problem

2.3 Discussion There are several broad approaches that one might consider to

Statistics aside, the overall picture that emerges from the logs igiagnose faults in a computer network. To be able to diagnose a
that small business networks are very dynamic. They undergo frewide range of faults, we take an inference-based approach rather
quent changes, both deliberate (e.qg., installing new applications, uphan, for instance, a rule-based approad).($owever, our goals
grading software or hardware) as well as inadvertent (e.g., tilgger require a much richer network model than current inference models.
of latent bugs, automatic updates). Each change impacts many corwe first describe our model and then explain how it differs from
ponents in the network, some of which may be seemingly unrelatecexisting models.

Detecting individual changes is rather easy. Applications and e model the network as a dependency graph between compo-
operating systems today expose plenty of low-level information,nents such as application processes, host machines, and configura-
for instance, Windows Vista exposes over 35 different aspects of gon elements. There is a directed edge between two components if
process’s current behavior. However, complex interactions and unthe source directly impacts the destination. The dependency graph
known semantics make it hard to use this information to identify themay contain cycles—in particular, two components may be connected
reasons behind specific abnormalities of interest to operators. py edges in both directions. Our system automatically constructs the

While our study is based on small enterprise networks, we bedependency graph.
lieve that the kinds of problems it reveals also plague large enter- Tpg state of a component at any given time consists of visible
prises. Existing diagnostic systems for large enterprises such ag,q invisible parts, of which only the former is available to us. For
Sherlock P] are not capable of diagnosing such faults. In order tojstance, the visible state of an application process includes generic
scale, they focus on coarser faults such as a DNS server failing COMyspects such as its processor usage and some application-specific
pletely. Our work asks whether the detailed faults that we observggpects, The invisible state may include values of program variables
in our Iogg can be diagnosed if scalabl_llty is no_t a prime concern. Ifand some other application-specific aspects. Talsleows a subset
our techniques can be scaled, they will benefit large enterprises &g the variables that form the Web server process’s visible state in our
well. We discuss how to scaietMedic in 8. prototype. We represent visible state using multiple variables, each

; corresponding to a certain aspect of the component’s behavior. The
3 Problem formulation set of variables differs across components. The diagnostic system is

We now formulate the diagnosis problem in a way that helps op-unaware of the semantics of the variables.
erators with the kinds of issues that we uncover in our logs. Our goal Given a component whose visible state has changed relative to
is to build a system that can narrow down the likely causes responssome period in the past, our goal is to identify the components likely
ble for a wide range of faults such as poor performance, unreéechab responsible for the change. In other words, we want to identify the
ity, or application specific issues. This ability is the first and perhapsauses underlying an observed effect. Each identified causes has the
the hardest aspect of troubleshooting. Once the operators have idgproperties thati) its visible state changes can explain the observed
tified the true culprit using our system, they can proceed to repairingffect; ii) its visible state changes cannot be explained by visible
the fault. Automatic repair is not our goal in this work. state changes of other components.

[High load] Recover the state of D
Machineserer High inbound request rate] during those time periods

[High outbound request ratg
[High response time

Cp}ulific

ormal outbound request rate] Check how similar < -
High response time] those states of D

; are to D,

] Identify time periods
hen the state of S
i was similar to Spow

[Normal load] [Normal load]

Figure 1. lllustration of Problem 8 in Table 1. The rectangles Figure 2. Computing the weight of the edge fr.om StoD.
are processes and the ellipses are host machines. The relevant instance, processes that run on the same machine are mutually de-
state of the components is shown in brackets. pendent, and so are processes that communicate.

For instance, consider Figufe which illustrates Problem 8 of 4 Usmg hIStOI’y to estimate Impact

Tablel. Both clients experience high response times becaysi. Solving our inference problem requires us to estimate when a
is overwhelming the server. Suppose we want to diagnose why theomponent might be impacting another. The primary difficulty in
response time is high fa,c:im. Although the load orServer leads thjs estimation is that we do not knaavpriori how components in-
to high response times, we want to identffy..isc as the culprit, teract. Our lack of knowledge stems from application agnosticism.
sinceCproiific is responsible for botBerver's high load andCyiciim'S ~ Even if we had not chosen an application-agnostic approach, it ap-
high response times, and its behavior cannot be explained by othgjears unrealistic to embed detailed knowledge of component inter-
visible factors. It may have been externally impacted, but lackingaction into the design of the diagnostic system. For instance, there
further visibility, the diagnosis will identify it as the culprit. is no general way to specify how network path congestion impacts
We do not assume that the effect being diagnosed representsadplication processes because the impact varies across applications.
deterioration. Thus, our system can be used to explain any change, One could use time to rule out the possibility of impact along
including improvements. This agnosticism towards the nature otertain dependency edges. A component that is currently behav-
change and the lack of knowledge of the meaning of state variableiag normally is likely not impacting one that is currently abnormal.
lets us diagnose application-specific behaviors without applicatiorFor instance, in Figuré, because the host machine@f., is be-
knowledge. If applications export their current experience, e.g.having normally, we can rule it out as a possible culprit. However,
number of successful and failed transactions, the system treats thegge-based elimination is limited because it cannot deduce what is
experiences as part of the state of the application process and diagnpacting what. Returning to the same example, we can see that
noses any changes in them. We assume that the state variables &kgh clients as well aServer andMachinegener are abnormal. Time-
well-behaved—small changes in component behaviors lead to rebased elimination alone cannot tell which of these might be the cul-
atively small changes in variable values and significant behavioraprit. Instead, we must use a more precise analysis based on the states
changes are detectable using statistical methods. We find that thég various components.
assumption holds for the state variables exported by the components Qur level of detail makes the challenge more daunting. Com-

in our prototype. ponent states include many variables (e.g., some applications ex-
o o pose over fifty variables in our implementation); it is not uncommon
3.2 Limitations of existing models for at least some variables to be in an abnormal state at any time.

Amidst this constant churn, we need to link observed effects to their

. : . X .likely causes, while ignoring unrelated contemporaneous changes
important ways that makes them unsuitable for detailed diagnosis,q without knowinga priori either the meanings of various state

First, they use a single variable to represent component health. How;, japles or the impact relationship between components.
ever, if exposing and diagnosing a rich set of failure modes is de- ~\ye address this challenge using a novel, history-based primitive.

sired, component state must be captured in more detail. One mighiyjg primitive extracts information from the joint historical behavior
be tempted to abstract away the detail and just present a faulty-Of¢ components to estimate the likelihood that a component is cur-

- . . - Péntly impacting a neighbor. We use this estimated likelihood to set
failures impact other components while others do not. For |nstanceedge weights in the dependency graph. The weights are then used
an application process has the ability to hurt other processes on th jjentify the likely causes as those that have a path of high impact
same machine, but typically, it hurts them only when it consumes g 65 in‘the dependency graph leading to the affected component.
lot of resources and not otherwise. To correctly determine if a pro- o provide in this section the intuition underlying our history-
cess is impacting others, its state must be captured in more detail. p;q primitive; we explain inS3 how exactly it is implemented

In principle, a component with multiple variables is logically in a way that is robust to the real-world complexities of component
equivalent to multiple components with a variable each. In pracstates. In Figur®, assume that the current state of the source com-
tice, however, the difference is significant. Dividing a componentponem S iShow and of the destination D B,0,. We want a rough
into constituent variables forces us to consider interactions withinestimate of the probability that S being $o has driven D into
those variables. Given the internal complexities of components angy e compute this by searching through the history for peri-
that there can be hundreds of variables, this division significantly inpds when the state of S was “similar” $qu,,. Informally, similarity
creases the complexity of the inference problem. Further, as we Wilhf state is a measure of how close the values are for each variable.
show, keeping a multi-variate component intact lets us extract usefuje quantify it in a way that does not require the knowledge of the
information from the collective behavior of those variables. semantics of the state variables and appropriately emphasizes the

Second, existing models assume a simple dependency model i@levant aspects of the component’s behavior. The edge weight is
which a faulty component hurts each dependent component witkhen a measure of how similar B, is the state of D in those time
some probability. Turning again to the faulty process exampleperiods. If we do not find states similar 8., in the history, a
above, we can see that whether a component impacts another dgefault high weight is assigned to the edge.
pends in a more complex way on its current state. Intuitively, if D's state was often similar t®,,,, when S’s state

Finally, existing models do not allow circular dependencies bywas similar toS,.., the likelihood of S being i1$,., having driven
which two components have a direct or indirect mutual dependenced into D, is high. Alternately, if D was often in dissimilar states,
When viewed in detail, circular dependencies are commonplace. Fdhen the chances are ti&t,, does not lead t®,,o -

Existing models 2, 5, 17] differ from our formulation in three

Component types, H Capture W Component Machine CPU utilization, memory usage, disk usage, amount
data sources component states states
of network and other IO

Dependency H S H/ Dopandancy Process Generic variables:CPU utilization, memory usage,
templates epeNdencyjgrEniy graph amount of network and other 10, response time to
Time period to Diagnosis Serv.ers'.traﬁic from Clie.nts . "
diagnose, historical 2) Compute abnormality Application specific variablesiVhatever is available
components fptonal) /4) R oo NbrSet State relevant to communication peers, e.g., inbound
and outbound traffic, response time
Path Loss rate and delay
(eneas e o oeoend Config Al relevant key-value pairs
Figure 3. The work-flow of NetMedic. Table 4. Example state variables thaetMedic captures.

This reasoning is reminiscent of probabilistic or causal infer-
ence [L3, 23]. But because component states are multi-dimensional

real-valued vectors, we are not aware of a method from these fiel nclude finer-grained components than those in our current design.

that we can directly apply. Crudely, what we are computing is NetMedic periodically captures the state of each component as a

the conditional probabilityProb(D = Dyow|S = Snow) @nd assuming A . h . . !
that it reflects causality. Conditional probability in general does notmu'tI variable vector. State is stored in one-minute bins. The bin

measure causality, but we find that the assumption holds frequent jze represents a trade-off—bigger bins have lower overhead of cap

f . - . : . ring component state but limit our ability to diagnose short-lived
enoqgh In practice to facnl_lt_at_e effective dlagno$|s. Further,_v_ve dqaultg. Thepvalue of a variable representsysome %spect of the com-
not infer complex probabilistic models to predict the Cond'tlonaleponent behavior during that time bin. The number of variables and

>}heir meanings vary across components. Tdbdéhows a subset of
aspects that are currently included for each component type.

A process is identified by its complete command line, rather than
the process ID. Such identification ensures that across machine re-
boots and process restarts, process instances with the same com-

as a component implies that culprits will not be identified at the level
findividual switches. Our framework, however, can be extended to

probability for each pair of S-D states; such models typically requir
a lot of training data. Instead, we estimate the required probabilit
on demand based on whatever historical information is available.
Consider how our use of history helps in FigireThe estimated
impact fromServer to Cyictimy Will be high if in the past time periods
whenServer had high inbound request rate,..;,, had high response ° . .
time along with normal outbound request rate. The estimated impa(fpand line (€.g.¢ : \mssql\bin\sqlservr.exe —ssqlexpress) are consid-
from Server t0 Cproiic Will be low if during those time periods, o ered to be the same functional componé [_
had normal outbound request rate. On the other hand, the estimated Process state is a union of two parts. The first part captures
impact fromC,oisc to Server will be high if Coroie Never had high ~ 9€neric, application-independent aspects such as resources con-
outbound request rate in the past oséver had high inbound re- sumed and traffic exchanged. We maintain traffic information per
quest rate whenever it did. This way, we obtain a high impact pattPort and also log which other processes this process communicates
throughServer from Cpygiic t0 Cyictim, Without the need for interpret- With, which is used for dependency graph generation. The second
ing client and server state variables. part of process state consists of application specific variables and
Whether the weight is correctly determined for an edge dependieflects different aspects of current application experience such as
of course on the contents of the history. We find that estimating théraction of failed requests, number of requests of a certain type, etc.
correct weight for every edge is not critical. What is important for Including itin the process state lets us diagnose application specific
accurate diagnosis is an ability to correctly assign a low weight tg@Pnormalities without application knowledge. _
enough edges such that the path from the real cause to its effects We describe in & how various component state variables are
shines through. We show later that our method can accomplish thigaptured, including how application-specific variables are captured

using only a modest amount of history. without application knowledge.
5 Design 5.2 Generating the dependency graph
The workflow ofNetMedic is depicted in Figur®. Its three main We model the network as a dependency graph among compo-

functional pieces capture the state of network components, generatents in which there is an edge from a component to each of its di-
the dependency graph, and diagnose based on component states agetly dependent components. We automatically generate this graph

the dependency graph. We describe each piece below. using a set of templates, one template per component type. Figure
51 Capturi t stat shows the set of templates we have currently defined. A template
: apturing component state has a component type in the center, surrounded by other component

There are many ways to partition a network into constituent comtypes that impact it directly. Edges in the real dependency graph
ponents. Our partitioning is guided by the kinds of faults that appeacorrespond to edges in the templates. For instance, if the template
in our logs—components in our current design include applicatiorfor a machine shows that it depends on its processes, we introduce
processes, machine, and network paths, as well as configuration ah edge from each of its processes to it.
applications, machine, and firewalls. The machine component bun- The templates in Figuré can be easily interpreted. They show
dles the hardware and the OS. that a machine depends on its processes and its configuration. An

In addition, we also include a virtual component, called NbrSetapplication process depends on its configuration, its NbrSet, its host
(short for Neighbor set). A NbrSet represents the collective behavmachine, and the configuration of the machine. While a process re-
ior of communication peers of a process. Its state variables represeliés on other processes on the machine because of resource sharing,
information such as traffic exchanged and response time aggregated do not include that dependency directly in the templates. For
based on the server-side port. In the presence of redundantsservenon-communicating processes, that dependency is indirect, medi-
(e.g., for DNS), it helps model their collective impact on the client ated by the machine. We currently ignore inter-process interaction
process. Similarly, it models the collective impact of all the clientsthat does not involve exchanging IP packets (e.g., through shared
for a server process. Using a NbrSet instead of individual depende memory). IP communication is captured using NbrSet. The NbrSet
cies allows us to model the dependencies more accuraely [of a process depends on local and remote firewall configurations, the

The granularity of diagnosis is determined by the granularity ofprocesses it is communicating with and the network paths. Finally,
the modeled components. For instance, using the full network path network path between two machines depends on all machines that

Machine config

Given the abnormality for each variable, the abnormality of a

‘Process 1‘ LR ‘Process K‘ . R . . .
component is the maximum abnormality across its variables.
(Machine The abnormality values computed above are used in two ways.
They can be used directly, for instance, as multiplicative factors.
Machi fi
This usage is robust to the exact method for computing abnormality
as long as the first order trend of the variable values are captured

such that less likely values have higher abnormality.

The abnormality values are also used to make a binary decision
as to whether a variable or component is abnormal. For this decision,
we use a threshold of 0.8. Like all binary decisions of abnormal-
Figure 4. The templates used byetMedic to automatically gen- ity, we face a trade-off between flagging a non-existent abnormal-
erate the dependency graph. ity and missing a real one. We prefer the former because our edge

weight computation assumes that normally behaving components do
inject traffic into it and the amount of other traffic, that is, traffic notimpact others. Thus, declaring potentially abnormal components
from hosts outside the monitored network. as normal is less desirable than the other way around. Our chosen

In our current templates, configuration components do not dethreshold reflects this preference.

pend on anything else. If configuration changes explain the effec 3.2 Computing edge weights

being diagnosed, we identify the configuration component as the | o4 5 and D be the source and destination of a dependency edge.
cuI‘prlt, W'thou.t attempt'lng to identify what changed the con.flgu- If either S or D is behaving normally, it is unlikely that S is impacting
ration. ExtendingvetMedic to remember what modified the configu- D and we assign a low weight to the edge. The exact value of the

ration can enable such identification if needad[edge weight is not critical in this case. However, since computing

V\ﬁ can ts)ee fr.om the Itempllz?]tesdt.hat the I;esfuéting d(;sper]deng th weights involves multiplying edge weights, edge weights of
grapns caln € qwtt;compselx’nvtl)t Sa |\;eFr)se s€ ; Ft)epen erzliles a8ro are brittle in the face of errors. Hence, we use an edge weight
many cycles, e.g., Proces rSet of Process rocess of 0.1 in our experiments.

NbrSet of Process: Processl. The next section describes how we If both S and D are abnormal, we use their joint historical be-

perform an accurate diagnosis over this graph. havior to determine the edge weight. L%, andD,.. be their
5.3 Diagnosis respective states during the time bin of diagnosis. We first divide the

. istory where both components co-exist it@qual-sized chunks,
Diagnosis takes as input the (one-minute) time bin to analyze an

. L S ach consisting of one or more time bins. Within each chunk we
the time range to use as historical reference. This time range do‘?&entify the time bin in which S was in a state most similastg, .
not need to be contiguous or adjacent to the time bin of interest. Wey ihan compute how similar on average D waB/g, during those
only assume that it is not dominated by the fault being diagnosedtimes More precisely:

For instance, if a configuration fault occurs at night but its effect is ' '
observed the next morninggtMedic needs historical reference be- 1— Dy, — Drow|) x wi
fore the fault (e.g., the previous morning) to diagnose the effect. SK Wi) @
Optionally, the operator can also specify one or more affected com- . . . -

ponents whose abnormal behavior is of interest. If left unspecified Wh.?re"k thl:t)we tlrge b'.” '31Ck(‘jqf?k‘r;"r’:::irﬁet[‘v‘:esggﬁ:ﬁoﬁ?astén\?:é_
we identify such components automatically as all that are behavinécm' a%k?endlifftér;ngm‘ I?)f t\;evo Istiltes (explained below) produces &
abnormally. The output of the system is a ranked list of component uniber between 0 ar?d 1 p P

that are |r|r_1pe;ct|ng ehac?f affegted component of interest. There is d The termw, is a relati\./e weighting factor for different chunks.
sep[z)aigg;ﬁoiits c;)rrgggedas (ienCtt?lreceo r:tgc;;ge(néi.ga)e First, we deter- V\Le_ SpeCif}f’Y"k t: 1- ‘lstk - SnoF]v_\ ilf] ISt *_Sf‘r‘;{”‘ ﬁg i: if. 0 lotfgetrwi?ﬁ tar
mine the extent to which various components and variables are stg-'S sp_ec_ll |ca'|£ndp_tacesl ad '9 ﬁr Wlf'g ; tc') e'jvﬁe'f:tﬁearﬁ(s)st 2in611-e
tistically abnormal. Second, we compute weights for edges in th(fi%ore similar. And it exciudes chunks ot tim

dependency graph. Third, we use edge weights to compute pa r source state differs by more than Because historical states
weights and produée a rani<ed list of likely culprits. at differ more already have a lower weight, the main reason for

Nbr 1 process

Nbr K process
Nbr K firewall

Local firewall Other Traffic

E(S—D)= 2l

. . this cutoff is to avoid computing the probability based on dissimilar
5.3.1 Computing abnormality states alone. Our experiments use a relaxef /3.

Given historical values of a variable, we want to detect how ab- When no usable historical information exists, e.g., because there
normal its value is at the time of diagnosis. For purposes that willis insufficient history or because similar source states do not exist,
become clear later, we need a fine-grained measure of abnormalitye assign a high weight of 0.8 to the edge. This assignment as-
in addition to a simple binary decision as to whether a variable is absumes that a fault is more likely to stem from a component that was
normal. While the semantics of some variables may be known, mostot seen in a similar state previously. It has the desired behavior of
have application-specific, undocumented semantics. Our goal is n@frring on the side of assuming impact rather than exonerating possi-
to craft a perfect detector but to design a simple one that works welbly responsible components.
in practice without knowing semantics before hand. Dividing the history intok disjoint chunks and looking for a sim-

For abnormality computation, we assume that the values of théar state in each helps base the weight computation on a diverse set
variable approximate the normal distribution. Per the central limitof time windows. Alternately, we could pick time bins where
theorem, this is a reasonable assumption because the values of ahe source state was most similar. But this method could bias re-
variables tend to be sums or averages (e.g., memory usage) over thelts to temporally close bins that may be dependent, leading to a
sampling time bin. Ifx ando are the variable’s mean and standard less effective factoring out of other aspects that impact the destina-
deviation over the historical time range, the abnormality of valate tion state. We find that even small valueskosuffice for accurate
the time of diagnosis i&rf(;?/g)\, whereerf(.) is the error function. diagnosis. We Usk = min(10, number of time bins in history) for ex-

The formula is double the probability of seeing values betwesmd ~ periments in this paper.

v in a normal distribution with parameteusando. It ranges from 0 The basic procedure for differencing states: When comput-

to 1, and the higher end of the range corresponds to values that aieg state differences, our intent is to get a robust measure of how
far from the mean, i.e., towards the tails of the normal distribution. differently a component is behaving at different points in time. State

differences are based on differences in the values of individual var G L

ables. The difference between two state vectors withariables 6 GA D
is sk, |d|/L, whered' is the difference of theéth variable normal-)
ized by the observed range. Thatdse (vi, —Vie,)/ (Vimax — Vinin)s Figure 5. An example dependency graph. The labels on edges

now min . .
wherev;, andvi,, are the values of the variable at the two time denote whether the computed weight was highH) or low (L).

bins, andvi,,, andvi . are the maximum and minimum values ob- variable and each variable of the neighbor. We consider the variable

served across all time. Normalization means that the difference fofelevant if the Pearson correlation coefficient is greater than a thresh-

each variable is between 0 and 1. It ensures that a variable does n@d (0.8) for any neighbor variable. Linear correlation does not cap-

dominate because its values are drawn from a bigger range. ture all kinds of relationships but is easy to compute and works well
Configuration components are handled differently for computingfor the kinds of variables that we see in practice.

state differences. The difference is zero if the values of all variables The state difference for non-configuration components after ap-

are identical. It is one otherwise. For configuration componentsplying these three extensiongjg; |d'|-a' -r') /(3 fa' -r'), wherel and

any change in the value of even a single variable could representd are as before andl is abnormality of the variable. The teris

significant functional shift. We thus err on the side of deeming everya binary indicator that denotes if theh variable is included in the

such change as significant. computation. Itis 1 if the variable is relevant to interaction with the

Robust weight assignment with unknown variable semantics: ~€ighbor and represents non-redundant information.
The procedure above is a starting point; while it works well in somed) Account for aggregate relationshipsSome variables in machine
cases, it is not robust to the presence of a large and diverse set-of v State (e.g., CPU usage) are sums of values of process variables. Sim
ables in component states. The underlying problem is that it equalljfarly, some variables in server process state (e.g., incoming traffic)
emphasizes all variables, irrespective of the fault being diagnosedre sums of values across its client processes. We discover and ac-
the uniqueness of the information represented by that variable, gfount for such relationships when computing state differences. The
whether the variable is relevant for interaction with the neighbor unfollowing discussion is in the context of a machine and its processes.
der consideration. Equal emphasis on all variables dilutes state difthe same procedure is used for server and its client processes.
ferences, which hinders diagnosis. For instance, even when a run- If the variable values of different components were synchronized
away process is consuming 100% of the CPU, its state may appeér time, discovering aggregate relationships would be easy. The sum
similar to other times if the vast majority of its state variables areof the values of appropriate process variables would be exactly the
unrelated to CPU usage. value of a machine variable. But because variables values may be

If we knew variable semantics, we could pick and choose thoséampled at different times, the sum relationship does not hold pre-
that matter to the fault being diagnosed. We now describe extensiorfésely. We thus use an indirect way to infer which machine variables
to the basic procedure that create a similar effect without requiring® aggregates. We instantiate virtual variables whose values rep-
knowledge of variable semantics. The simplest of our extension&esent the sum of identically named process variables; one virtual
leverages the abnormality of variables and the others are based d§@riable is instantiated per name that is common to all processes.
automatically inferring the relevant properties of state variables. ~ Even though we do not know their semantics, variables have names
a) Weigh variables by abnormality: Instead of treating the vari- (e.g., “CPU usage”), and a name refers to the same behavioral as-

. : : . pect across processes. We then check if any machine state variable
ables equally, we use abnormality of a variable as the relative welng?5 highly correlated (with coefficient 0.9) with a virtual variable.

in the state difference. This weighting biases the state difference ta: so. we conclude that the machine variable is an agaregate of the
wards variables related to the effect currently being diagnosed. chorrés onding process variables gagrey
instance, while diagnosing an effect related to CPU usage, the ab- P gp . o .

We use aggregate relationships in several ways. First, we replace

normality of aspects rel.f:lted o CP[.J Hsage W?” be higher. the variable value in the machine with that of the virtual variable,
b) Ignore redundant variables: We ignore variables that represent j o ' sym of values of the corresponding process variable. Second,
redundar_1t |nformz_:1t|0n with respect to other variables of_the COMPOyhen computing the edge weight from a machine to its process,
nent. This extension helps prevent an over-representation of certajfle sybtract the contribution of the process itself. Specifically, as a
aspects of the component’s behavior. For instance, our machines xre_processing step before searching for similar machine states, the
port used as well as available memory, each in units of bytes, kiloya|ye of each aggregate variable in the machine state at each time
bytes, and megabytes. If we include all six variables, the state dif;, is reduced by the value of its corresponding process variable.
ferences will be biased towards memory-related aspects, making 4, remaining process is as before.

harder t.o d'agnos? other aspects. Such pre-processing lets us compute the state of the process’s
To discover variables that are not redundant, we want to 100k folypyironment without its own influence. Without it, we may not find

independent components. Instead of running a full-blown inde- 5 gimjlar machine state in history and hence falsely assign a high
pendent component analysis, we approximate via a simple heuristigeignt for the machine-to-process edge. Consider a case where a
that works well in our setting. We compute linear correlation be-ynaway process starts consuming 100% CPU. If such an event has
tween pairs of variables in the component and then identify cliqueg,ot happened before, we will not find similar machine states in the
of varlab!es such that t_he Pearson correlation coefficient betweeﬁistory with 100% CPU usage. Instead, by discounting the impact
every pair of variables is above a threshold8j0 We select one f the process, we will likely find similar machine states and find
variable to represent each clique and deem others to be redundantat it is only the process that is behaving differently. These findings
c) Focus on variables relevant to interaction with neighbor: will correctly lead to a low weight on the machine-to-process edge.
Among the remaining variables, we ignore those that are irrelevant Finally, when estimating the impact of a process on the machine,
to interaction with the neighbor under consideration. For instanceif similar process states are not found, we assign weight based on the
while considering the impact of a machine on an application procontribution of the process. That is, we do not use the default high
cess, we exclude variables for error codes that the processesceivweight. For each aggregate variable, we compute the fraction that
from a peer process. By reducing the noise from irrelevant variableshe process’s value represents in the aggregate value. The maximum
this exclusion makes weight assignment more robust. such fraction is used as the weight on the edge. This modification

We infer whether a variable is relevant to interaction with the helps by not blaming small processes just because they are new. Ar-
neighbor by checking if it is correlated to any of the neighbor’s vari- rival of new processes is common, and we do not wish to impugn
ables. Specifically, we compute the linear correlation between thisuch processes unless they also consume a lot of resources.

Rank(c—e) O (I(c—e)-S(c)) ! NetMedic reads the values of all exported counters periodically.

I(c—e) = max(weightW(p) of acyclic paths from c to e) We do not interpret what a counter represents but simply make each
lifc=e counter a state variable of the component to which it belongs. While

W(p) = (I'I-" E(e_)) most counters represen@ values since the last time they were r(_ead,
=17 some represent cumulative values such as the number of exceptions

Sie

wheree; ---e, are edges of the path,

_E() is edge weight since the process started. We identify such counters and recover their
S(c) = Yeecl(c—e) - A. whereC is set of all components, current behavior by subtracting the values at successive readings.
A. is the abnormality oé The Performance Counter interface does not tell us which pro-
Figure 6. Our methodology for ranking causes. cesses in the network are communicating with each other. We use
a custom utility that snoops on all socket-level read and write calls.
5.3.3 Ranking likely causes This snooping yields the identity of the calling processes along with

; . ., the IP addresses and ports being used on both ends. It lets us con-

We now describe how we use the edge weights to order likely,oct communicating processes and measure how much traffic they

causes. The edge weights help connect likely causes to their oRychange. We also estimate response times from these socket-level
served effects through a sequence of high weight edges. Howeve%‘,ems as the time difference between read and write calls. Includ-

unlikely causes may also have high weight edges leading to the ejpg these response times as a variable in the process state lets us

fects of interest. These include those that lie along paths from responyjagnose faults that delay responses even if the application does not
sible causes but may also include others if weights on those edg%?(pose this information as a counter.

overestimate the impact._ - We measure path loss rate and delay by sending periodic probes
As an example, consider the dependency graph in FigUF®r 15 machines with which a monitored machine communicates. For

simplicity, we show whether the edge weight is higt) or low (L) aths that go outside the monitored network, we measure the part up
instead of numeric values. Assume that we set out to diagnose thg the gateway.

abnormal behavior of the component labeteand that the real cul- NetMedic monitors machine, firewall, and application configura-

prit C is impacting it througfB. Accordingly, C is connected t& 4 stored in the Windows registry as well as files. We read all rel-
through a path of high weight edges, but solandD (via the path g ant information once upon start and register callbacks for future
D-B-E). Let us further assume thatis also hurtingA and that the changes. Machine configuration includes information about running
high weight fromD to B is erroneous. _) services, device drivers, and mounted drives. Application configu-

Our goal is to rank causes such that more likely culprits haveation may be spread over multiple locations. Currently, the list of
lower ranks. A compact representation of our ranking function isjacations for an application is an inputtetMedic, but we plan to au-
shown in Figure5. The rank of a componentwith respect to an iomatically infer where application configuration resides using soft-
affected component of |nte.re§is based on the product of two mea- \ygre package managers and by tracking application read 86]ls [
sures, and components with larger products are ranked lower. The o data collectors are light-weight. In our prototype deploy-
first measure(c—e) is the impact front to e. The second measure ment we find that the average processor usage due to data collec-
S(c) is a score of the global impact ef _ _ tion is under 1%. The exact usage at a given time depends on the

Together, the two measures help achieve our goal. The imfeye| of activity on the machine. The amount of data transmitted
pacti(c—e) from one component to another is the maximum weightfor analysis is under 250 bytes per second per machine. From these
across all acyclic paths between them, where path weight is the g@yerheads and our experience with data analysis, we believe that
ometric mean of edge weights. Per this measure, in FiGuB2C, the current version dfietMedic can scale to 100-machine networks,
andD have high impact o but A has a low impact. The score \hich suffices for small enterprises. Sef€r a discussion on scal-
S(c) of a component is the weighted sum of its impact on each othe[ng NetMedic further.
component in the network, where the abnormality of the component “\yile the data collection part of our system knows the meanings
is used as the weight. Components that are highly impacting morgt some variables (e.g., traffic exchanged), we do not use that info
abnormal components will have a higher score. Per this measure, ipation in the analysis. Treating variables with known and unknown
Figure5, C will have a lower rank tham andD, despite the inac- meanings identically greatly simplifies analysis. It also makes analy-
curate weight on the — B edge because it has high impact to many s platform-independent and applicable to a range of environments
abnormal nodes. Of course, in any given situation whether the reaj;in gifferent sets of known variables. All that is required to port
culprit gets a low rank depends on the exact values of edges weighf§.edic to a different environment is to implement data collection
and component abnormalities. We find in our evaluation that real, hon-Windows machines. Much of the needed information is al-
culprits have low ranks the vast majority of the time. ready there, e.g., ifyslog or theproc file system 5] in Linux. De-

. veloping a Linux prototype is part of our future work.

6 Implementation

We have implementeretMedic on the Windows platform. Our 7 Evaluation
implementation has two parts—data collection and analysis. The We now evaluateetMedic to understand how well it does at link-
first part captures and stores the state of various components. Tleg effects to their likely causes. We find thattMedic is highly ef-
second part uses the stored data to generate the dependency grégttive. Across a diverse set of faults it identifies the correct cempo
and conduct diagnosis. nent as the most likely culprit {82) in over 80% of the cases. This

The main source of data is the Windows Performance Counteability only slights degrades in the face of simultaneously occurring
framework R0]. Using this framework, the operating system (OS) faults (§.5). In contrast, a coarse diagnosis method performs rather
and applications export named counters and update their valuepoorly—only for 15% of the faults, is it able to identify the correct
Each counter represents a different aspect of the exporter'stehacomponent as the most likely culprit. We show that the effective-
ior. “Performance” is a misnomer for this framework because ithess ofNetMedic is due to its ability to cut down by a factor of three
exposes non-performance aspects as well. The OS exports mattye number the edges in the dependency graph for which the source
machine-wide counters such as processor and memory usage. It alis deemed as likely impacting the destinatio.@. We also find
exports generic process-level aspects such as resource cdisump that the extensions to the basic procedure for edge weight assign-
levels. In addition, many processes export application-specific courment significantly enhance the effectiveness of diagnosisgl&nd
ters. See Tabld for some counters exported by the Web server. a modest amount of history seems to be sufficiertg)g

Evaluation Platforms: We have deployed our prototype intwoen- 100 q———————————. 50

vironments. The primary one is a live environment. The deploymen % 80 = -Coarse 404" Coarse &
spans ten client machines and a server machine inside an organiz§ | —o—NetMedic » T —e— NetMedic
tion. The clients are actively used desktops that belong to volunteels 60 - Tﬂ* 0t

orre

and have all the noise and churn of regularly used machines.
Because we are not allowed to instrument the real servers in thi2
environment, we deploy our own. As is common in small enter- 20 1

40

Rank of correct cause
N
o

prises, our server machine hosts multiple application servers, in§ 0 - 0 -

cluding Exchange (email), 1S (web) and MS-SQL (database). Co® 0 20 40 60 80 100 0 20 40 60 80 100
hosted application servers are challenging for diagnostic systems i Cumulative % of faults Cumulative % of faults
application interactions are more intertwined. The server processes (a) Live environment (b) Controlled environment

already export several application specific counters.
We implemented custom client processes to communicate with

our applicatio_n SErvers. The existing client processes on the des%\'/ise the impact probability is low (0.1). The exact values of these
tops communicate with the real servers of our organization, and w :

i . . : . 5r0babi|ities are not significant, as long as one is high and the other
could not experiment with them without disrupting our volunteers.is ., “nce these edge weights are assigned, the causes are ranked
Our clients export application specific counters similar to tho§e €Xin a manner that is similar teetMedic. Keeping the ranking method
A s of vari t i &he same foCoarselets us focus the evaluation in this paper on our
quests, requests of various types, €tc. . . method for inferring impact among neighbors. We omit results that

Our second environment consists of three clients machines ang,y that our ranking method outperforms several other alternatives
a server. Because this environment is completely dedicated to oyr
etric: Our metric to evaluate diagnosis is the rank assigned to the

experiments, it is a lot more controlled. We do not consider it to be | f h anticioated effect of a fault. F h fault
a realistic setting and unless otherwise stated, the results below af§&! cause for each anticipated efiect of a fault. -or each fault, we

based on the first environment. We present some results from ﬂ{gport the median and the maximum rank assigned across its multi-

controlled setting to compare howetmedic behaves in two disparate e effects. For instance, for Problem 1, all Web clients that bfo‘(vse
environments with different workloads, applications etc. ASPX pages are expected to be affected. We study the rank assigned

. . . to the configuration of Web server for each such client. The median
Methodology: Ideally, we would like to diagnose real faults in our 4, represents average case behavior, i.e., what an operatds wh
deployment but are hindered by the inability to monitor real SeIVerSyiagnosing a randomly chosen effect of the fault would experience.
We are also hindered by ground truth, which is required to underthe maximum rank represents the worst case.
stand the effectiveness of diagnosis, being often unavailable for real What should the rank be for the diagnosis to be useful to an op-
faults. Hence, most of the results below are based on faults that wg . - .- Clearly, lower ranks are better, with a rank of one being

;njeli:t. t\tﬁv? do, h_owg;/eré;)resent evidence thaktedic can help with perfect. However, even the ability to frequently place the real cause
au i fa c|>ccuhm S! u(. 7). he di f h . within the top few ranks helps administrators avoid many potential

The faults that we inject are the diverse set of ten shown in Tag., g6 that they would otherwise have to consider (close to 1000 in
ble 1. We stay as close to the reported fault as possible, includin

Sur deployment).
the kind of application impacted. For instance, for Problem 1, we ur deploy)

brokg the configuration of the.IIS server in a way that makgs i.t stopy 1 Dependency graph properties
serving ASPX pages but continue serving HTML pages. Similarly,
to mimic Problem 4, we made an email client depend on information We briefly describe the dependency graph constructed across the
on a mounted drive. eleven machines in our live environment. The exact numbers vary
Except for the experiments in7&, where we inject multiple ~ With time but the graph has close to a 1000 components and 3600
faults simultaneously, each fault is injected by itself. We inject eactedges. With roughly 70 processes per machine, most of the nodes
fault at least 5 times, at different times of the day (e.g., day verdn the graph correspond to processes. Correspondingly, the vast ma
sus night), to verify that we can diagnose it in different operatingiority of the edges are between components on the same machine,
conditions. Cumulatively, our experiments span a month, with datuch as edges between machines and processes. Edges that con-
collection and fault injection occurring almost non-stop. nect components on different machines (e.g., due to communicat-
For diagnosis, we specify as inputietMedic a one minute win- N9 pro_ces_ses) are a much s_maller fraction. Hence, the dependency
dow that contains a fault. We did not specify the exact effect to9"@pPh is highly clustered, with clusters corresponding to machines
diagnose; rathemetMedic diagnoses all the abnormal aspects in the@nd the graph size grows roughly linearly with the number of ma-
network. Unless otherwise specified, for each fault we use an houchines. This linear growth in graph complexity makes it easier to
long history. The historical period is not necessarily fault-free. InSCaleNetvedic to larger networks. . .
fact, it often contains other injected faults as well as any naturally Each component provides a rich view of its state in our deploy-
occurring ones. We do this for realism. In a live environment, it isment. Processes have 35 state variables on average, roughly half
almost impossible to identify or obtain a fault-free log of behavior. ©f which are generic variables representing resource usage while the
A coarse diagnosis method: We know of no detailed diagnosis restare application specific and vary with the application. IIS server,
techniques to comparetMedic against. To understand the value of for instance, exports 128 application-specific variables. Machines

detailed history-based analysisfivedic, we compare it against a have over a hundred variables in their state. Thus, there are plenty of

Coarsediagnosis method that is based loosely on prior formulationsvariables that are already exported by real applications and operating

: systems for detailed diagnosis to be possible. But the sheer scale of
tmhg':#c')sg Sggse Qﬁgfggéﬁg;jﬁg Qna::sysgr;zgd(;:g;;(cj Sg%r;@u[;mg this observable state makes understanding variable semantics daunt-

NetMedic, it captures the behavior of a component with one variablgNd: NetMedic S ability to be application agnostic allows diagnosis to

that represents whether the component is behaving normally. Th‘é’ork even as new applications emerge or variable semantics change.
determination regarding normal behavior is made in the same wa ; ; ;
as inNetMedic. Also unlikeNetMedic, Coarsehas simple component ¥.2 Effectiveness of dlagnOSIS

dependencies. A component impacts a neighboring component with Figure 7(a) shows the effectiveness ofetMedic and Coarse

a high probability (of 0.9) when both of them are abnormal. Other-across all faults injected in the live environment. The lines connect

Figure 7. Effectiveness ofCoarse and NetMedic for each fault.

., 100 S 100 -y — 100 -) 100 - .
2 o a l L =-Basic g 9 Basic
E Z80 2 go {—e—NetMedic % 80 1 m Abnormality
5 60 S 60 4 Coarse s HandPi ke? £ 60 m NetMedic| 55
2 . o 60 S
X N e NetMedic 2 , & 38
2 40 2 404 ——f——————— E 40 5 40
= i) o ©
=20 <20 —{ ——————— B 20 ‘204 , 5
g g A4 2 < 1
i o E 0= £ 0 ek = 0.
0 10 20 30 40 50 0 10 20 30 40 50 ~ 0 20 40 60 80 100 é 80 95
% abnormal components % high weight edges Cumulative % of faults Cumulative % of faults
(@) (b) (a) (b)

Figure 8. (a) CDF of the percentage of components that are ab- Figure 9. Value ofNetMedic’s extensions to the basic procedure.
normal during a fault. (b) CDF of the percentage of edges that
are assigned a high weight in the dependency graph. Figure8(a)shows the CDF of the percentage of components that
)) are abnormal during the periods covering various faults. We see that
the median ranks and the error bars denote the maximum ranks. Thiis percentage is quite high (20-40%).
two curves are independently sorted based on the median rank. Figure8(b) shows the CDF of the percentage of edges in the de-
We see that for 80% of the faults the median rank of the Co”ecbendency graph that are assigned a high weigh0.¢5) by each
cause is one withletMedic. That is,NetMedic frequently places the scheme. We see that this percentage is 35-45% é@rseand 10-
real culprit at the top of the list of likely causes. For all cases excepy 5o, fornetmedic, which represents reduction by a factor of 3. This
one, the median rank of the correct cause is five or lower. T_he MaXeduction in likely spurious high-weight edges leads to fewer pos-
imum ranks are often close to the median ranks, representing goagple causes being strongly connected to the affected component,
worst-case behavior as well. These results suggesti#éhagdic can regylting in fewer false positives and lower ranks for real causes.
help operators d!agnosg such faults in their networks.) Simply changing the requirement for deeming a component as
In contrast, diagnosing these faults wilnarsewould likely e apnormal (e.g., using a higher abnormality threshold or requiring
a frustrating exercise. The correct cause is assigned a rank of one ji e state variables to be abnormal) may reduce false positives. But
fewer than 15% of the cases. For over 60% of the cases, the corregjs fing that doing so can hurt. It runs the risk of excluding the real

cause has a median rank of more th?” ten.] culprit from the list altogether; the culprit or a component on the
We examined cases wheretvedic assigned a median rank path from it to the effect of interest may appear normal.

greater than three to the correct cause. We find that these often
correspond to performance faults, which include Problems 2, 8 an . .
9 in Tablel. The side-effects of these faults lead to abnormalitye'il'4 Benefit of extensions
in many components in the network. For instance, a process that \We now study the value of the extensions to edge weight assign-
hogs the CPU disturbs many other processes on its machine, eagfent by comparing them to two other methods. The first is the basic
of which can appear abnormal. A few of the victim components carprocedure, without the extensions. For the second method, instead
get ranked lower than the correct cause if there is insufficient historyf automatically inferring relationships between variables, we hard
to correctly determine the direction of impact. Diagnosis of non-code them manually, based on our knowledge of what each variable
performance faults, which tend to be more prevaleBt3gurns out represents. Given that the number of variables is quite large, we hard
to be easier as they disturb fewer components in the network. code knowledge of only those that are relevant for diagnosing the
Let us consider now the results from the controlled environmentaults that we inject. Beyond programming these relationships, the
shown in Figure7(b). We reduce thg-axis range for this graph be- rest of the procedure stays the same. Comparison with this “Hand-
cause the environment has fewer components. We semedivaidic Picked” method quantifies any reduction in diagnostic effectiveness
effectively diagnoses faults in this setting as well. due to our desire to be application agnostic and treating these vari-
Interestingly,Coarseperforms much better in this setting. In the ables as opaque.
live environment, for the worst 20% of the cases, its median rank is Figure9(a) shows the diagnostic effectiveness of all three meth-
35 or higher. Here, the median rank is 8 or higher, a sharp improveeds. Comparing the basic procedure witharsein Figure7(a)re-
ment even after accounting for the difference in the numbers of comveals that it more frequently assigns a rank of one to the correct
ponents. Thus, in going from the controlled to the more dynamic an@ause. This frequency is 44% versus the 14% oérse But over-
realistic setting, the ability o€oarsedegrades sharply. This degra- all, the basic procedure is quite fragile. In fact in the worst 20% of
dation stems from the fact that the live environment has more abthe cases, it assigns a higher rank to the correct caus€thanse
normal components. Because of its Slmpllstlc component states and The extensions he|p make the basic idea practica|_an 80% fre-
dependency model§oarsecannot effectively infer which compo- quency of assigning a rank of one to the correct cause and a signif-
nents are impacting each other, and many components get rankgghnt reduction in the ranks of the correct cause for half the faults.
lower than the real culpritNetMedic, on the other hand, shows no Cjoser examination reveals that such faults often correspond to per-
such degradation in our experiments and appears better equipp@simance issues. As mentioned previously, performance faults have
towards handling the noise in real environments. The next sectiomore side effects than configuration faults. The extensions are better

investigates in more detail why the methods differ. able to sift through this noise.
. Figure9(a)also shows that the performanceneimedic is close
7.3 Why NetMedic OUtperformS Coarse? to HandPicked Thus, the extensions extract enough semantic infor-

NetMedic outperformsCoarseprimarily because at the level of mation for our task to not require embedding knowledge of variable
detail that we observe at, components are often abnormal. As a réemantics into the system.
sult, Coarseassigns a high weight to many edges and ends up er- To investigate in more detail, we separately consider the exten-
roneously connecting many non-responsible components to the olsion that weighs variables based on their abnormality values and the
served effects. By looking at component states in detail and allowin@ther three extensions that infer variable relationships. Fig(re
for complex dependenciesgtMedic assigns a low weight to many shows the median rank for 80th and 95th percentile of the faults
edges even when both end points are abnormal simultaneously. with the basic procedure, with only the abnormality extension, and

N
o
N
o

2 v . . Q Coarse

2 g0 2 s 5 min 2 |5 4 =NetMedic

3 o == 30 min S

B 60 12 i

8 $ 1o { ~*6omin R S—

S 40 s XS <X 90 min ;6

S “ 5 e 54

s 20 5 S}

Y 4 4

£ 0 5 0 S0 —_—

= 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Cumulative % of faults Cumulative % of faults Cumulative % of faults

Figure 10. Effectiveness oCoarse and NetMedic Figure 11. NetMedic’s effectiveness Figure 12. The ranks assigned to abnormal
when diagnosing two simultaneous faults. when using different history sizes. processes in the absence of injected faults.

NetMedic, which includes all extensions. We see that both factoringamong components that happen to be abnormal simultaneously. We

in abnormality and variable relationships are useful. focus this analysis on interactions within monitored desktops since
ltiol . | faul we could not monitor the real servers in our organization.
7.5 Multiple simultaneous faults Figure 12 shows the rank assigned I§oarseand NetMedic to

We now study the ability ofletMedic to diagnose multiple, si- abnormal processes. This data is based on a five hour monitoring
multaneously occurring faults. In a dynamic network, simultaneougPeriod during which none of our own clients are running. We ran-
faults are possible and it is desirable that the diagnostic system coflomly select ten one-minute intervals to diagnose and use 30-minute
rectly match each effect to its own likely cause. Here, we inject twolong history for each. In 75% of the casesimedic blames the pro-
faults simultaneously. With 10 basic faults, there are 45 unique faul€ess itself for its abnormality whil€oarsedoes so for only 5% of
pairs. Of these, 9 fault pairs “interfere” in that they impact the samethe cases. Our monitored desktops are not resource constrained dur
application processes. We inject the 36 non-interfering pairs anénhg most of this monitored period. The inferencesvefviedic are
evaluate our ability to link each effect to its underlying cause. more consistent tha@oarsefor this setting.

Figure10 shows that withNetMedic the median rank for the cor- We manually examine many cases in whigiiMedic assigns a
rect cause is one for over 80% of the cases. Compared to thigh rank to an affected process. In nearly all of them, the top
single-fault case, there is some degradation in diagnosis effectivéanked cause is a virus scanning process or a sync utility process.
ness, specifically in the maximum rank, which represents the worgn our deployment environment, such processes often hog resourc
case operator experience. There is no deterioration in the media@ver short durations angetMedic appears to correctly blame these
rank, which represents the average case. These results suggest thepcesses rather than the affected process.
even in the presence of multiple faultstMedic can often often link .
an effect to its correct cause. 8 ScalingNetMedic

In contrastCoarsedoes significantly worse. The median rank is Whil tivated b bl insid Il ent . ,
one for only 15% of the cases. Curiously, compared to the single- lle motivated by problems inside small enterprisésiedic

fault results in Figuré(a), Coarseappears to do better in tikerange (k:)an alslo dhelp Iz%Lger entrer[t)vr\;seshth”atnsuffeirngm;flr prgb.l%'vmgf it can
of 20-60%. It is not the case th&@oarseis better at diagnosing L€ Sc&€d Up. There are two challenges In scaléfedic, we be-

multiple-fault cases than single-fault cases. The seemingly bettdﬁfve that both are surmountable and addressing them is part of our
performance is a result of the fact that the two sets of experiment ture work. The first challenge is to carry out diagnosis-related

have different fault type mixtures: the double-fault scenarios have S°MPutation over large dependency graphs. The primary bottleneck
higher fraction of faults for whiclCoarsehas modest performance n t.h'S computation is calculatlng component abnormality and edg_e
" weights. These calculations are parallelizable as they can be done in-

7.6 Impact of history dependently for each edge and component. In fact, they can also be
. . . distributed to the machines that are being monitored because the vast

_ Next, we study the impact of the size of the history on the effec-p5jority of dependency edges are between components on the same

tiveness oNetmedic. Figurellshows results with using 5-90 min- yachine (e.g., between a process and its host machine). Further, the

utes of history. We see that using 30 or 90 minutes performs as weyly|cyation of individual edge weights can be sped up through fast

as our previous experiments that use 60 minutes of history. Using re|ation methods33]. Once the edge weights are computed, the

5 minutes of history performs significantly worse; 10% of the faults ,emajining calculations are those that underlie ranking likely causes.

have median ranks above 20. Based on these results we conclu§fese calculations are akin to those of Sherl@r their simplic-
that 30 minutes of historical data suffices for most faults. Recall tha}t

e) g/ and can thus scale to very large graphs.
this history does not need to be fault-free and our experiments US€ 14 second challenge in large deployments is that of data col-
history that contains other faults.

- . . . lection, storage and retrieval. For this challenge, we can leverage
Preliminary evidence suggests that using history from more dy

. . ‘aht) hel . X the large body of existing work on managing data that is similar to
namic periods (e.g., day versus night) helps discount spurious cons, - ‘This hody includes methods for very-lightweight data collec-
nections between components better. Investigating the nature of higg, [3, 28], for efficient data compressios,[9], and for searching

tory that works best in various settings is a subject of ongoing Work(compressed) history for similar statds[24, 26)].

7.7 |In situ behavior 9 Related Work

We conclude our evaluation with evidence tRatvedic can help
with naturally occurring faults as well. Consider a common scenario Diagnosing faults in computer networks is hard and has thus wit-
for a process: plenty of available resources on the host machinéiessed much commercial and research activity. We divide related
the network appears normal, and the relevant configuration elementork into four broad categories.
have not changed recently. If the process appears abnormal in thisference-based: These systems identify the faulty component
scenario, a good diagnostic method should blame the process itsddhsed on a model of dependencies among compon2nts,[32].
for this abnormality rather than, for instance, other processes. W8ecause they target large-scale networks, the focus of existing sys-
evaluateNetMedic on exactly this scenario, i.e., on ruling out impact tems is scalable analysis with simple modelsivedic provides de-

tailed diagnosis in small business networks and differs in both thél 1
challenges that it overcomes (e.g., unknown variable semantics) an?ll
in the way it models components and dependencies.

Rule-based: These systems, which are also known as expert sys-
tems, diagnose based on a set of pre-programmed ryld4,[16,

21]. Their main limitation is a lack of generality: they only diagnose
faults for which they have been pre-programmed. Because building
a rule database that covers a large fraction of possible faults in a3l
complex network is difficult, we chose an inference-based approach.

Classifier-based: These systems train offline on healthy and un-
healthy states, and when current system state is fed they try to de-
termine if the system is unhealthy and the likely cau&er]. It is
unclear how such schemes fare on faults not present in the traininds]
data and extensive training data is hard to get. Some systems attempt
to overcome the “unknown fault” limitation of learning approaches
by training on data from multiple network4,[29]. A recent ex-
ample is NetPrints, which detects home router configurations that
are incompatible with applications. This approach is enabled by thel”]
fact that the set of compatible router configurations is much smaller
than the number of sharing networks. It may not, however, general- 8]
ize to more complex configurations or to other kinds of faults. For
instance, it is difficult to diagnose performance faults using informa- [9]
tion from other networks because performance is a complex function
of the specific hardware, software, and topology used by a network10]

Single-machine: While we focus on diagnosing faults across ma-
chines in a network, there is extensive work on diagnosing fault%;]
within individual machinesd, 27, 28, 30, 31]. NetMedic borrows !
liberally from this body of work, especially in the light-weight yet 13]
extensive data gathering, configuration monitoring and the use o[f
system history. However, cross-machine diagnosis presents uniqygs]
challenges and single-machine diagnosis methods often do not di-
rectly translate. Likexetmedic, Strider B0] uses historical state dif- [15]
ferences. It represents a machine with a single vector that contains
all Windows registry entries and detects faulty entries by differ-[16]
encing this vector across time and across other similar machines.
NetMedic considers a broader and noisier input (e.g., application per:
formance), includes component interactions in its analysis, and dé-ﬂ]
[18]

[2

tects a wider range of faults.

10 Conclusions [19]
NetMedic enables detailed diagnosis in enterprise networks with[20]
minimal application knowledge. It was motivated by what to our
knowledge is the first study of faults in small enterprises. It com-[21]
bines a rich formulation of the inference problem with a novel tech- 22]
nigue to determine when a component might be impacting anothe 23]
In our experiments, it was highly effective at diagnosing a divers
set of faults that we injected in a live environment. 2
Modern operating systems and applications export much detailed
information regarding their behavior. In theory, this information can[25]
form the basis of highly effective diagnostic tools. In reality, the [26]
technology was lacking. One class of current systems uses the se-
mantics of this information to diagnose common faults based on prel27]
programmed fault signaturetg). Another class focuses exclusively
on certain kinds of faults such as performance that do not requirézS]
this information R]. Even in combination these two classes of tech- 29]
nigues are unable to diagnose many faults that enterprise networlLs
suffer. The techniques developed in our work are a step towards fiIIBO]
ing this void. They enable diagnosis of a broad range of faults that
are visible in the available data, without embedding into the system
the continuously evolving semantics of the data. [31]

Acknowledgments: We are grateful to Parveen Patel for his assis-[32]
tance with implementing data collection netMedic and to our col-
leagues who let us deployetmedic on their desktops. We also thank [33]
our shepherd, Darryl Veitch, Alex Snoeren, and the SIGCOMM re-
viewers for helping improve the presentation of this paper.

4] 1. Popivanov and R. Miller.

References

B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. Padmanahdrad
G. Voelker. NetPrints: Diagnosing home network misconfigarest
using shared knowledge. MSDI, 2008.

P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maiad
M. Zhang. Towards highly reliable enterprise network segsivia in-
ference of multi-level dependencies. S\GCOMM Aug. 2007.

S. Bhatia, A. Kumar, M. Fiuczynski, and L. Peterson. Lighight,
high-resolution monitoring for troubleshooting produat®ystems. In
OSD|, 2008.

4] S. Brugnoni, G. Bruno, R. Manione, E. Montariolo, E. Faeita, and

L. Sisto. An expert system for real time fault diagnosis of Itiadian
telecommunications network. I&IP, 1993.

M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Rint:
Problem determination in large, dynamic Internet servicess DSN
June 2002.

6] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. BrewEailure

diagnosis using decision trees. {DAC, 2004.

I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chaserr&
lating instrumentation data to system states: a buildingkbfor auto-
mated diagnosis and control. @SDI, 2004.

A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Coegsing his-
torical information in sensor networks. 8iIGMOD, 2004.

M. Garofalakis and P. B. Gibbons. Wavelet synopses withreguar-
antees. I'5IGMOD 2002.

J. Gray. Why do computers stop and what can be done abdat&ym.
on Reliability in Distributed Software and Database Syserfi86.
Gteko, Inc.http://www.gteko.com

W. Hamscher, L. Console, and J. de Kleer, edit&sadings in model-
based diagnosisMorgan Kaufmann Publishers Inc., 1992.

D. Heckerman.Learning in Graphical Modelschapter A tutorial on
learning with Bayesian networks. MIT Press, 1999.

A. Hyvarinen and E. Oja. Independent component analy8igo-
rithms and applicationdNeural Networks13(4-5), 2000.

H. Jagadish, A. Mendelzon, and T. Milo. Similarity-bdsgieries. In
PODS 1995.

G. Khanna, M. Cheng, P. Varadharajan, S. Bagchi, M. &arrand
P. Verissimo. Automated rule-based diagnosis through ailalisdd
monitor systemlEEE Trans. Dependable & Secure Computigg07.
R. Kompella, J. Yates, A. Greenberg, and A. Snoeren. Ui facal-
ization via risk modeling. IINSDI, 2005.

R. Mahajan, D. Wetherall, and T. Anderson. Understagd8GP mis-
configuration. INSIGCOMM 2002.

Microsoft ~ operations manager 2005 product
http://technet.microsoft.com/en-us/opsmgr/bb498244.asp
Performance counters (Windows).
http://msdn.microsoft.com/en-us/library/aa373083(V pa&Hx
Open view, HP technologies inbttp://www.openview.hp.com
D. Oppenheimer, A. Ganapathi, and D. Patterson. Why dermet
services fail, and what can be done about itUBITS 2003.

J. Pearl. Causality : Models, Reasoning, and Inferend@ambridge
University Press, 2000.

overview.

Similarity search over timeries data
using wavelets. INCDE, 2002.

The /proc file systemhttp://www.fags.org/docs/kernel/x716.html

D. Rafiei and A. Mendelzon. Similarity-based queriestfore series
data. INSIGMOD, 1997.

Y. Su, M. Attariyan, and J. Flinn. AutoBash: improvingrémuration

management with operating system causality analysiSAO8R 2007.

C. Verbowski et al. Flight data recorder: monitoring gistent-state
interactions to improve systems managemen©8D|, 2006.

H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatis-

configuration troubleshooting with PeerPressuréO8D|, Dec. 2004.
Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang, an@n.

STRIDER: A black-box, state-based approach to change anfijce

ration management and support.LISA 2003.

A. Whitaker, R. Cox, and S. Gribble. Configuration debnggas

search: Finding the needle in the haystackOBDI, Dec. 2004.

S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. Higpeed
and robust event correlatiofEEE Communications Magl1996.

L. Yu and H. Liu. Feature selection for high-dimensiodata: A fast
correlation-based filter solution. I€ML, 2008.

http://www.gteko.com
http://technet.microsoft.com/en-us/opsmgr/bb498244.aspx
http://msdn.microsoft.com/en-us/library/aa373083(VS.85).aspx
http://www.openview.hp.com
http://www.faqs.org/docs/kernel/x716.html

	Introduction
	Problems in small enterprises
	Example problems
	Classification results
	Discussion

	Problem formulation
	Our inference problem
	Limitations of existing models

	Using history to estimate impact
	Design
	Capturing component state
	Generating the dependency graph
	Diagnosis
	Computing abnormality
	Computing edge weights
	Ranking likely causes

	Implementation
	Evaluation
	Dependency graph properties
	Effectiveness of diagnosis
	Why NetMedic outperforms Coarse?
	Benefit of extensions
	Multiple simultaneous faults
	Impact of history
	In situ behavior

	Scaling NetMedic
	Related Work
	Conclusions
	References

