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Abstract — The latency between machines on the Internet can
dramatically affect users’ experience for many distributed applica-
tions. Particularly, in multiplayer online games, players seek to
cluster themselves so that those in the same session have low la-
tency to each other. A system that predicts latencies between ma-
chine pairs allows such matchmaking to consider many more ma-
chine pairs than can be probed in a scalable fashion while users are
waiting. Using a far-reaching trace of latencies between players on
over 3.5 million game consoles, we designed Htrae, a latency pre-
diction system for game matchmaking scenarios. One novel feature
of Htrae is its synthesis of geolocation with a network coordinate
system. It uses geolocation to select reasonable initial network co-
ordinates for new machines joining the system, allowing it to con-
verge more quickly than standard network coordinate systems and
produce substantially lower prediction error than state-of-the-art la-
tency prediction systems. For instance, it produces 90th percentile
errors less than half those of iPlane and Pyxida. Our design is gen-
eral enough to make it a good fit for other latency-sensitive peer-to-
peer applications besides game matchmaking.

Categories and Subject Descriptors — C.2.4 [Computer Systems Organi-
zation]: Computer Communication Networks — Distributed Systems; K.8.0
[Personal Computing]: General — Games

General Terms — Algorithms, design, experimentation, measurement, per-
formance

Keywords — latency estimation, matchmaking, network coordinates, online
gaming

1. INTRODUCTION

Online gaming is a rapidly growing industry with revenues ex-
ceeding that of the entire movie business [29]. Appealing to in-
creasingly discriminating game players requires careful attention to
their chief concerns, particularly lag, the perceived time between an
action and its effect. For the majority of games, the primary con-
tributor to lag is direct communication between participants’ game
machines over the Internet. To reduce lag and hence improve the
game experience, it is critical to perform accurate matchmaking—
selecting groups of players with low latency to each other.

In typical matchmaking, each player sends network probes to
potential game hosts and selects one host based on latency and
bandwidth. Since probing consumes time and bandwidth, and play-
ers have limited patience for matchmaking, only a small fraction of
potential hosts can be probed. Furthermore, in games where player
machines communicate directly with each other rather than only
with the host, it is prohibitive to probe all the potential paths traffic
will take, which can be quadratic in the number of online play-
ers. For these reasons, game matchmaking can benefit from latency
prediction—determining the latency between machines without any
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probing. In this paper, we develop a new latency prediction sys-
tem, called Htrae, suited to game matchmaking. Using a trace of
50 million latency measurements between 3.5 million players of the
popular game Halo 3, we show that our system works better than
state-of-the-art latency prediction systems.

A novel feature of Htrae is its merging of two disparate ap-
proaches to latency prediction, network coordinate systems (NCS)
and geolocation. An NCS assigns each machine a coordinate in a
virtual metric space, such that the distance between two machines’
coordinates approximates the round-trip time (RTT) between them.
Because initial conditions are random, NCSes take time to converge
to a reasonable state, and usually converges to a sub-optimal local
minimum. Geolocation, on the other hand, determines each ma-
chine’s location on the planet and uses physical distance as a predic-
tor of network delay. This approach does not model the impact of
different routing efficiencies on different paths and disadvantages
machines whose location is imprecisely known. Htrae combines
these approaches by assigning each machine a coordinate on a vir-
tual Earth based on its physical location, but allowing this coordi-
nate to shift based on observations of actual latency. In so doing, we
gain the benefits of both approaches: the realistic initial conditions
of geolocation, combined with the ability of an NCS to converge to
a state with greater predictive power.

Htrae also includes enhancements that are beneficial in game
matchmaking. Triangle inequality violations and different network
access latencies for different machines are scenarios that tradition-
ally pose problems for an NCS. They occur often enough in our
game traces that we use simple heuristics to help combat their ef-
fects. We also observe that since reliably measuring RTT for game
purposes can consume a fair amount of bandwidth, the overhead of
one additional message to notify the probee of the result is low, and
quite worthwhile considering its usefulness to the recipient.

Our evaluation for game matchmaking shows that Htrae has sub-
stantially better predictive power than other latency prediction sys-
tems. For instance, its 90th percentile of prediction error is 71 ms,
compared to 176 ms for Pyxida [13] and 162 ms for iPlane [18],
even when restricting consideration only to the 23% of pairs iPlane
can make a prediction for. Also, when searching for the best peer
game server, Htrae picks the best one 70% of the time, compared to
only 35% for Pyxida and 55% for iPlane. Even though it does not
always find the best one, 95% of the time it picks one at most 47 ms
worse than optimal, compared to 184 ms for Pyxida and 131 ms for
iPlane. In scenarios allowing a limited amount of probing to select
the best server, Htrae finds one with under 75 ms of latency 68%
of the time, compared to 44% for Pyxida and 41% when no latency
prediction is used. Our results show that Htrae will have tremen-
dous impact on the playability of games, and may also be useful for
other latency-sensitive peer-to-peer applications.

The contributions of our work are as follows:

e We propose a novel latency prediction system, Htrae, a hybrid
of geolocation and network coordinate systems that achieves the
benefits of both.

e Based on extensive traces of latencies between game consoles,
we thoroughly evaluate the accuracy, convergence and drift of
Htrae.



e We also evaluate in detail the effectiveness of various imple-
mentation details of Htrae, including a component that corrects
for triangle-inequality violations in an NCS.

The rest of this paper is structured as follows. §2 details the
design of our system, Htrae, including how we merge geolocation
with an NCS. §3 shows how we implemented Htrae. §4 describes
the traces of game matchmaking probes we collected and presents
the methodology we use to evaluate our system. §5 gives the results
of that evaluation. §6 discusses these results as well as avenues for
future work. §7 describes related work, and, finally, §8 concludes.

2. DESIGN

Htrae is a hybrid between two approaches to latency prediction:
geolocation and network coordinate systems.

Geolocation predicts latency based on the real-world distance
between two physical machines, which many researchers have
found is a strong predictor of RTT [10, 14, 24]. However, this cor-
relation is weak, especially for the home machines typically found
in games; for instance, we found a correlation coefficient of only
+0.56 among Halo 3 players. Furthermore, if geolocation inaccu-
rately judges the location of some player’s machine, it will consis-
tently give that player poor performance.

An NCS gives each machine a coordinate in a virtual space, such
that the distance between two coordinates is an estimate of their
RTT. Coordinates are dynamically adjusted based on observations
of RTT so as to make estimation more accurate. Unfortunately, ac-
curately embedding the Internet graph in a virtual coordinate space
is difficult. One reason is that the Internet has many routing inef-
ficiencies, some that lead to triangle-inequality violations (TIVs),
where two nodes have a greater RTT than the sum of their respective
RTTs to some other node. Coordinate spaces cannot have such vio-
lations [16, 36]. Furthermore, embeddings are often sensitive to ini-
tial conditions [12], since they can fall into one of many imperfect
local minima in the space of possible coordinate assignments [28].

Our insight is that these two approaches, NCS and geolocation,
are complementary, i.e., we can combine them in a way that miti-
gates disadvantages of both. We do this by geographic bootstrap-
ping, i.e., initializing NCS coordinates to correspond to the loca-
tions of the nodes in actual space. Our approach improves on an
NCS because it provides better initial conditions, and improves on
geolocation because its dynamic coordinate refinement can correct
inaccurate or missing information. Essentially, our coordinate sys-
tem is a rough representation of Earth, modified to better predict
Internet latencies; the name Htrae comes from a warped version of
Earth in a certain comic-book universe.

2.1 Geographic bootstrapping

Geographic bootstrapping requires a virtual space with a known
relationship to the real world. Therefore, in Htrae, we use latitude
and longitude on a virtual Earth. Also, as in Vivaldi [6], we use
a virtual height, which represents the component of latency a ma-
chine experiences on all its paths, e.g., due to its Internet access
link. The predicted RTT between two machines is the great-circle
distance between their virtual locations, times 0.0269 ms/mile, plus
the sum of the two machines’ heights. We obtained the factor
0.0269 from Figure 1, which shows the relationship between dis-
tance and median RTT. It shows that this relationship is strongly
linear, with R?> = 0.976, slope 0.0269 ms/mile, and y-intercept
63.32 ms. This factor of 0.0269 ms/mile is about five times greater
than the inverse speed of light. A factor of two is expected since
we use round-trip latency, and the remaining factor of 2.5 suggests
other causes besides the speed of light.
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Figure 1. Correlation between distance and RTT. Each point
is the median RTT among machines with the same distance,
rounded to the nearest mile. RTT data is from Halo 3 players
from March 1-31, 2008, and distance data is from MaxMind’s
IP-to-geo database. The least-squares fit weights each point by
its number of contributing machine pairs.
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Figure 2. Overview of updating coordinates. (1) Node A sends
a message to B. (2) B responds, and A measures the RTT. (3) If
the distance between their virtual coordinates is too low/high,
A applies a virtual force to its coordinate, moving it away
from/toward B’s.

When a machine joins the system, it determines its latitude and
longitude in one of various ways, e.g., by looking up its IP address
in a database. It then uses this as its initial location, along with
height equal to half the least-squares y-intercept, or 31.66 ms. If
it cannot determine its location, it uses latitude and longitude 0.
From then on, whenever it determines its RTT to another machine,
it applies a virtual force to its coordinates, either toward the other
machine if the RTT was unexpectedly small or away if it was unex-
pectedly large, as shown in Figure 2. The magnitude of this force
is calculated as in Vivaldi [6], but adapted to using spherical co-
ordinates instead. See Figures 3 and 4 for details. Note that the
authors of Vivaldi tried using spherical coordinates in their system,
but found them not to work well; we will see in §5.2 that they work
in Htrae because of geographic bootstrapping.

As in Vivaldi, each node also maintains an estimate of the un-
certainty of its coordinates, a weighted moving average of the error
observed between expected RTTs and observed RTTs. When coor-
dinates improve such that distances better predict observed RTTs,
uncertainty will decrease. This uncertainty is used to decide how
strong a force to apply when updating coordinates: the greater the
moving node’s uncertainty, and the lower the other node’s uncer-
tainty, the stronger the force will be, as shown in Figure 3. However,
unlike Vivaldi, we do not always initialize uncertainty to 100%. If a
machine initializes its coordinates based on geographic location, it
uses initial uncertainty of 29.2%, the average relative error obtained
from using geolocation alone.

RTT measurements are prone to errors, which can harm the cor-
rectness and stability of network coordinates [13]. Therefore, as in
Pyxida [13], we do not use a single RTT measurement when adjust-
ing coordinates but rather an aggregate of multiple measurements.
Specifically, we use the median of five back-to-back RTT measure-
ments; our traces of Xbox LIVE probes report only these medians.
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Figure 3. Vivaldi update algorithm, run after node A learns the
RTT /45 to node B. Here, Xy is the virtual location of node N, wy
is the uncertainty of node N’s coordinates, () is the unit vector
in the direction of ¥, and c. and ¢, are algorithmic constants.

2.2 TIV avoidance and history

Triangle inequality violations in Internet delay are typically
caused by inefficient routing between two nodes, resulting in more
delay between them than the sum of delays via some other interme-
diate nodes. Game consoles on singly-homed residential connec-
tions can be particularly susceptible because they are restricted by
their ISPs’ routing policies, as opposed to a server in a datacenter
that has multiple upstream ISPs to choose from. For example, in our
dataset, a game console in Vancouver, BC measured a 378 ms me-
dian RTT to a console in Tukwila, WA. This is an unusually high
delay for a distance of only 141 miles. Indeed, around the same
time, the Vancouver console measured a median RTT of only 47
ms to a console in Pleasanton, CA (distance of 959 miles) and the
Tukwila console had a RTT of 75 ms to Los Angeles (1,100 miles
away).! Such violations are relatively infrequent—in this exam-
ple, the Vancouver and Tukwila consoles were involved in 78 RTT
measurements to other nodes, none of which appear to be TIVs.

TIVs are problematic for both NCSes and geolocation-based la-
tency estimation. Geolocation will under-estimate the latency be-
tween two nodes, as evident from the above example. Similarly,
an NCS will underestimate the latency because the coordinates for
the two nodes may have converged to stable positions based on the
vast majority of non-TIV latency measurements. Further, when a
TIV measurement is used to update an NCS, the coordinates of the
nodes involved will be pushed further apart by the resulting force,
thereby worsening their positions with respect to other nodes.

Some prior solutions to this problem have been shown to either
worsen prediction accuracy or not scale in distributed settings [33].
We instead use a heuristic similar to TIV Alert proposed in [33].
When updating a node’s coordinate, if the measured latency ex-
ceeds the predicted latency by 8, we skip this coordinate update.
We apply this heuristic only when both nodes in question have un-
certainty lower than the geographic bootstrapping default of 29.2%,
and update their uncertainties based on this measurement. This
guards against slowing down convergence for nodes with poor ini-
tial coordinates. We have empirically determined that a 8 of 100 ms
works best for our client population.

While this heuristic reduces the impact of TIVs on the quality
of node coordinates, it does not help improve latency prediction of
TIV edges. To address that problem, we rely on history prioriti-
zation. Every time a node learns the RTT to another, it saves this
RTT in its history. When a prediction is needed, if there is history
for the destination node, we use the most recently measured RTT
instead of the RTT predicted by the coordinates. Note that we use
the most recent one because we assume robust RTT measurements,
as discussed earlier. The past RTT can be a good estimate of future
RTT because RTTs on the Internet can be very stable. In our data,

"'We found the physical locations of these consoles by using
a geolocation database (§ 4.1), and confirming by looking up the
DNS names of nearby routers using traceroute.
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Figure 4. Adaptation of Vivaldi update algorithm to spheri-
cal coordinates. Here, Xy, the coordinates for node N, consist
of ¢y, the latitudinal distance in radians between node N and
the North Pole, and Ay, the longitude in radians of node N. We
compute r, the ratio between the desired and current distance
between nodes A and B; d, the current distance in radians be-
tween them; 7, the angle from the North Pole to B to A (which
stays the same as A moves); and f3, the angle from B to the North
Pole to A’s new location. Note that some special cases are not
shown.
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for about 95% of nodes that measured RTT multiple times between
themselves for as long as 50 days, the coefficient of variation in
RTT was under 0.2. History prioritization is particularly useful for
node pairs that cause TIVs, because latency estimates from their
coordinates will be inaccurate.

It might seem unlikely that among millions of players, a player
will ever probe the same player twice, but it does happen. This is
presumably because the factors that make two players good can-
didates for matchmaking, such as liking the same type of game,
having similar skill level, and liking to play at the same time of day
or week, change infrequently.

2.3 AS correction

There are many autonomous systems (ASes) serving game play-
ers, so most pairs of players will belong to different ASes. Thus,
we can expect our coordinate system will automatically tune itself
to predicting latencies assuming endpoints are in different ASes.
Unfortunately, this means that when endpoints are in the same AS,
the faster resulting routing will not be reflected in the coordinate
system, leading to systematic overestimation of the RTT of such
paths. This can be particularly frustrating for game players, since it
may lead to unnecessary exclusion of some of the closest players.

To understand our solution, recall that Htrae, like other NCSes,
augments coordinates with a virtual height reflecting the latency a
machine incurs on essentially all of its paths [6]. For home ma-
chines, we can loosely consider this latency to have two main com-
ponents. First, a packet incurs latency in the so called “last-mile.”
In the case of a machine with a broadband DSL connection, this is
the latency between the machine and the next IP-level device, such
as the broadband remote access server (BRAS). The second compo-
nent is the remaining latency through the high-speed network core
for the AS the machine resides in. Typically, this would be a set of
core routers where that AS peers with others.

As shown in Figure 5, for a node A to reach node B, pack-
ets would traverse the last-mile, reach the core, traverse inter-AS
links to the second core, and then traverse the last-mile. However,
a packet from A to C will traverse a shorter path that skips some
of the second component of the height. This can occur when two
nodes are part of the same AS and are “close-by” in the network.

Using BGP routing tables, we are able to determine if two nodes
belong to the same AS, and using geolocation we are able to deter-



Figure 5. Simple model of two ASes with broadband machines
on the Internet

mine their physical distance. Given that it is difficult to break a
height down into its two components based solely on end-to-end
RTT measurements, we rely on a heuristic: we ignore a portion of
the sum of heights when predicting RTT or updating coordinates
for such nodes. We have empirically determined that ignoring 20%
of the heights for nodes in the same AS and under 225 miles apart
produces the best results.

2.4 Symmetric updates

As we have observed earlier, RTT measurement between game
machines requires multiple round trips and typically is coupled with
bandwidth measurements. Therefore, it does not add substantially
to traffic to send one additional message, at the conclusion of the
measurement, to notify the other machine of the RTT. Since the
RTT is the same in both directions, the recipient can use the re-
ported RTT to update its own coordinates, saving it the time of per-
forming its own RTT measurement. Note that the overhead is even
less when the matchmaking service is centralized. In that case, the
measuring machine must expend network traffic to notify the cen-
tral service of the RTT anyway, at which point the service can up-
date the coordinates of both endpoints. For these reasons, Htrae
adjusts both machines’ coordinates after an RTT measurement. It
adjusts them effectively simultaneously, i.e., it uses the pre-update
coordinates for one in the computation of the other.

3. IMPLEMENTATION

Our Htrae implementation is based on the publicly-available
code for Pyxida, a practical implementation of the Vivaldi algo-
rithm for the Azureus BitTorrent client [13]. We ported this code to
C# and added our algorithmic modifications as well as support for
experimentation on home machines. Our system is approximately
3,600 lines of code, about a third of which is the direct port of Pyx-
ida.

To enable geographic bootstrapping, Htrae relies on a location
service. For simplicity, we built a centralized server that loads the
GeolP City Database from MaxMind [20] in memory and responds
to IP address lookups with the corresponding latitude and longi-
tude. The 01 January 2009 version of the database that we use has
4,100,436 entries, each with an IP address range, latitude, and lon-
gitude. §5 discusses how well this database covers the IP addresses
in our traces and deployment.

To enable AS correction, Htrae uses a routing table service.
For simplicity, we built a centralized server that loads a routing
table into a PATRICIA trie [22] in memory and responds to IP
address lookups with the origin AS. The routing table we use is
from the Route Views Project [27], in particular from the route-
views.oregon-ix.net router which peers with 43 different routers
across 37 ASes on the Internet. We use a snapshot from 04:00 on
01 January 2009, with entries for 277,383 prefixes.

Home networks typically use network address translation
(NAT), preventing straightforward direct communication between
them [11]. To enable experiments in which home machines com-
municate with each other, we implemented a simple approach sim-
ilar to STUN [26].
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Figure 7. Arrival rate of nodes and node pairs in trace A

4. METHODOLOGY

In this section, we describe our methodology for the experi-
ments in §5. We describe our data set, how we use it to evaluate
Htrae, and how we use it to compare to other systems. We also
describe how we deployed Htrae to conduct tests in a real-world
environment.

4.1 Traces

To evaluate the techniques behind Htrae in the context of game
matchmaking, we use traces of Xbox 360 consoles participating in
matchmaking for the popular game Halo 3. For Halo 3, matchmak-
ing involves choosing one console to be a server, then choosing up
to 16 consoles to be clients. When a player starts matchmaking,
his console chooses whether to be a client or server and notifies the
Xbox LIVE matchmaking service. Xbox LIVE replies with a set of
potential servers, and the client probes them all. Each probe mea-
sures RTT by taking the median value of multiple ping-like mea-
surements. Based on the probe results, the client chooses a server.

For each session, i.e., instance of one client probing one or more
servers to find a game, we log: UTC time, client’s and servers’ pub-
lic IP addresses, and RTT from the client to each server. Due to the
enormous volume of online game play, the logging system cannot
record every probe, so for each session it chooses randomly with
probability 10% whether to log all measurements in that session.

In this paper, we focus on the two time periods described in
Table 1. Our results from several other time periods are similar
and we focus on these two for conciseness. With almost 50 million
RTT measurements across over 3.5 million unique IPs in trace A,
our evaluation data set is still among the largest ever used.

Figure 6 shows the geographic locations of the nodes in trace
A. While there is extensive coverage across North America and Eu-
rope, several other major regions such as Japan and eastern Aus-
tralia are also well represented. We believe such geographic spread
is common for large distributed systems.

Two important characteristics of our traces are the rate at which
new nodes are seen, and the rate at which any node probes another it
has not probed before. Figure 7 shows that after the first three days



trace start time training end end time distinct IPs session count | total probes post-training probes
A 11/07/2008 12am | 11/10/2008 12am 12/10/2008 12am 3,534,120 15,630,101 49,946,991 44,227,511
B 01/14/2009 12am | 01/17/2009 12am | 01/24/2009 12am 1,700,547 5,859,214 20,300,141 14,810,694

trace num. of sessions with choice of

1 server 2 servers 3 servers > 3 servers
A 9,351,950 | 2,096,555 1,138,157 3,043,439
B 3,888,694 620,834 344,420 1,005,266

Table 2. Server counts per session

of trace A, there is an almost constant diurnal arrival of new nodes
through the end of the month. The high rate of new probe pairs
indicates the need for efficient latency estimation between nodes
that have not previously directly communicated.

4.2 Trace replay

To evaluate a latency predictor, we replay each session from a
trace in timestamp order. Nodes are initialized using geographic
bootstrapping at the time that they first appear in the trace. Subse-
quently, if a node is absent and then later returns, it rejoins using
the coordinates it had the last time it was in the trace. Thus our
evaluation reflects the churn that is present in online gaming.

During the training period, we simply feed each probe’s source
IP address, destination IP address, and RTT to the predictor. After
training ends, evaluation begins. For each session, for each of its
probes, we ask the predictor to predict the RTT from the source IP
address to the destination IP address. We evaluate these predictions,
then feed the predictor the session’s RTT measurements.

We use two main metrics to quantify the quality of a prediction.
The first, prediction error, is the absolute difference between the ac-
tual median RTT and the prediction. This is relevant to applications,
like games, that care about absolute RTT magnitude, e.g., to decide
if a pairing meets some QoS requirement. The second, best-server
error, reflects the need to choose among a set of others the one with
the lowest latency, as is the approach of current matchmaking sys-
tems. It is computed on a per-session basis, as the additional RTT a
client would experience if it sought the lowest-RTT server based on
the predictor’s output instead of a perfect oracle. In best-server ex-
periments, we ignore sessions with only one probe; Table 2 shows
that this still leaves a large number of sessions for evaluation.

Given the enormous size of trace A, we did not have time to
evaluate every aspect of Htrae on it. We instead focus on trace B
for most of our evaluation, and use trace A for overall results and
evaluations of long-term properties such as convergence and drift.

4.3 Comparison to other systems

We compare Htrae to various other latency prediction systems,
including Pyxida [13], Hyperbolic Vivaldi [17], iPlane [18], and
OASIS [10]. Pyxida is the implementation of the Vivaldi algorithm,
with improvements, in the Azureus BitTorrent client. We turned off
the recent neighbor set after finding it unhelpful and after discus-
sions with an author indicating it was chiefly meant to deal with an
artifact of the Azureus deployment. Hyperbolic Vivaldi is an adap-
tation of Pyxida that uses hyperbolic coordinates, as described by
Lumezanu et al. [17]. iPlane uses multiple vantage points on the
Internet to create an atlas with information about every link. It uses
the atlas to predict the path and its RTT between a given pair of
nodes. OASIS’s main purpose is to select, for a given client, the
lowest-RTT server providing a given service. It uses infrastructure
nodes to periodically probe address prefixes and learn their geo-
graphic locations, which it then uses to estimate RTTs.

For Pyxida and Hyperbolic Vivaldi, the code and algorithms are
published, so we are able to evaluate them with trace replay. How-
ever, iPlane and OASIS are online services, so we use a different
methodology to compare to them. Since both are designed to re-

Table 1. Halo 3 matchmaking traces
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Figure 8. CDF of prediction error for Htrae, Geolocation, Pyx-
ida, and Naive on trace A. Horizontal axis limited to 150 ms.

flect the current state of the Internet, we do not use historical data.
We use the last day of trace B, and query the systems on January 25,
2009, shortly after that trace was captured. To avoid overwhelming
the services, we randomly sample 0.5% of the sessions from the
last day and use only that subsample for evaluation. This subsam-
ple contains 10,869 probes in 2,648 sessions.

For illustration, we sometimes also compare to Oracle and
Naive. Oracle always predicts perfectly, i.e., it always returns the
actual RTT. Naive always guesses 85 ms, the average seen in Fig-
ure 1.

4.4 Deployment

To demonstrate the effectiveness of our Htrae implementation,
we deployed it on several friends’ home computers running Win-
dows at 23:00 PST on October 7, 2008. This deployment used an
older version of Htrae with a 3-dimensional virtual coordinate sys-
tem rather than the spherical coordinate system we later found to
be more accurate. We also used earlier versions of the MaxMind
database and Route Views BGP table. Eleven people participated
with locations in CA, IL, MA, NY, WA, and the U.K. We ran several
experiments serially, with each lasting approximately 30 minutes.
Everyone’s state reset at the start of each experiment. In each exper-
iment, every three seconds, each node calculated its RTT to another
and compared the result to what would have been predicted. It then
incorporated the RTT measurement into its predictor. For measure-
ment stability, it calculated RTT as the minimum from ten probes
sent 100 ms apart. The first five minutes of each experiment are
considered training; we report results for only the remaining time.

5. EVALUATION

We begin our evaluation by comparing Htrae to other latency
prediction systems. We then examine in detail the impact of some
of Htrae’s components, followed by analyses of convergence, drift,
and a hybrid of probing and prediction. Finally, we summarize re-
sults from our modest deployment.

5.1 Htrae

Figure 8 shows the prediction error of Htrae on the month-long
trace A, comparing it to Pyxida, Geolocation, and Naive. We see
that Htrae substantially outperforms all other three. For 50% of
predictions, Htrae is off by under 15 ms, compared to 24 ms, 44 ms,
and 47 ms for Geolocation, Pyxida, and Naive respectively. At the
95th percentile, Htrae is at 138 ms, while Geolocation is at 208 ms,
Pyxida at 244 ms, and Naive at 285 ms. Figure 9 shows the results
from the week-long trace B, and as expected, they are similar.
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Figure 10. Estimates versus guesses in trace B. To avoid over-
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Figure 11. CDF of best-server error for Htrae, Geolocation,
Pyxida and Naive in trace A

We also considered how often the errors were underestimates
or overestimates, but for space reasons we only present the follow-
ing summary of the results. For all predictors, the significant error
is due to underestimation rather than overestimation: none of the
predictors overestimates by more than 85 ms more than 1% of the
time. Also, Htrae and Geolocation overestimate about as often as
they underestimate, while Pyxida and Naive usually underestimate:
80% and 76% of the time, respectively.

One explanation for a predictor’s good or bad performance is
the frequency with which it has no knowledge or 100% uncertainty
about one or both endpoints. In these cases, its best option is to
simply guess the average of 85 ms. Figure 10 shows how often each
predictor must guess. Pyxida guesses for 41% of the 14,810,694
post-training probes in trace B. In contrast, Geolocation guesses
only 4% of the time while Htrae guesses less than 1% of the time.

In Figures 11 and 12, we show the best-server results for traces
A and B. Htrae picks the best server over 70% of the time, while
Geolocation, Pyxida, and Naive do so only 61%, 35%, and 31% of
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Figure 12. CDF of best-server error for Htrae, Geolocation,
Pyxida, and Naive in trace B
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Figure 13. CDF of best-server error for various systems, where
a system lacking coverage of a node pair is forced to guess.

the time, respectively. The rest of the time, when Htrae does not
pick the best server, it picks one that is still very close: the 95th
percentile of additional latency beyond optimal is only 46 ms. Ge-
olocation’s 95th percentile is much higher, at 107 ms, and Pyxida
and Naive are at 183 ms and 204 ms. Performance at the 95th per-
centile is important since players often judge games based on the
most memorably bad experience they have, or have heard about. A
penalty of up to 107 ms due to poor estimation is likely unaccept-
able for many online games. ~ We now compare Htrae’s perfor-
mance to two online latency prediction systems, OASIS and iPlane,
which we query directly.

First, we find that the coverage of Halo 3 players by these ser-
vices is quite low. OASIS produces estimates for only 22% of our
requests, while iPlane does 23%. For the remaining requests to
iPlane or OASIS, we use a guess, which is the median latency it
produced for all other probes: 9 ms for OASIS and 81 ms for iPlane.
In Figure 13, we see that these systems do only slightly better than
Pyxida, but much worse than Htrae. The main reason OASIS and
iPlane do poorly here is their lack of information for most pairs.

To go beyond the coverage issue, we now consider a different
approach. When comparing to OASIS, we discard any probe where
OASIS has no prediction, and similarly for iPlane. This gives them
a sizable advantage in that each gets to restrict the experiment to
the portion of the Internet it has modeled. Figure 14 presents the
results of the best-server comparison for OASIS. Despite only con-
sidering node pairs when OASIS has a prediction, Htrae still does a
better job. OASIS targets services that are in hosted environments
unlike home machines, and thus may not need to model last-mile
latencies. Our trace that Htrae trains on has end-to-end RTTs, and
hence it is able to model end nodes more accurately, which OASIS
was not designed to do. Finally, one of OASIS’s authors has in-
dicated to us that it uses stale geography information, since active
collection stopped a while ago due to various difficulties. The dif-
ficulty of keeping such geolocation information up-to-date further
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Figure 16. CDF of prediction error for various systems, consid-
ering only RTTs iPlane makes a prediction for.

demonstrates the need for the dynamic component of Htrae, which
can deal with geolocation inaccuracy.

In Figure 15, Htrae performs better than iPlane in picking the
best server, even when restricted to those that iPlane can pre-
dict. Figure 16 has the results for a prediction-error comparison
to iPlane, and Htrae does better here as well. We note that iPlane
probes only one representative out of a cluster of nodes, while our
traces have end-to-end measurements. This additional fidelity in
Htrae’s training likely accounts for some of its advantage.

5.2 Components of Htrae

To understand where the improvements in Htrae come from, we
consider Figure 17, where we show how prediction error changes
as various components of Htrae are removed. Comparing Htrae
to Htrae without symmetric updates, we see that symmetric up-
dates provide a 3 ms prediction advantage at the 50th percentile
that grows to 37 ms at the 95th percentile. Considering the effect
of removing TIV avoidance, AS corrections, and history we find
that those three elements combined provide a small additional im-
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Figure 18. CDF of best-server error for Htrae; Htrae without
symmetric updates; Htrae without symmetric updates, AS cor-
rections, TIV avoidance, or history; Pyxida; and Vivaldi with
spherical coordinates. The latter two lines overlap.

provement. This is as expected since TIVs, intra-AS probes, and
repeat probing are all relatively rare; when we look at only intra-
AS probes (not shown for space reasons), AS correction improves
latency prediction by several milliseconds. Finally, removing geo-
graphic bootstrapping to yield the basic Pyxida algorithm, we see
a large drop, showing that the majority of Htrae’s performance ad-
vantage comes from this bootstrapping. In particular, it is clearly
not due to the use of spherical coordinates, since we find Vivaldi
does badly when modified to use them. We conclude that spherical
coordinates are only helpful due to the use of geographic bootstrap-
ping. Additionally, Vivaldi with hyperbolic coordinates performs
only marginally better than Vivaldi with spherical coordinates.

Figure 18 shows the error for best-server prediction. We again
see that geographic bootstrapping provides a major advantage, fol-
lowed by symmetric updates.

In an earlier trace from March 2008, we found that history pri-
oritization provided near-perfect prediction for 10% of predictions,
producing substantial improvement in both prediction error and
best-server error. However, in trace B, the occurrence of repeated
probes between pairs of nodes is extremely rare. We suspect this is
due to changes in player behavior as the game has matured.

5.3 Convergence

An important issue for a latency prediction system is how long
it takes to converge, i.e., reach its optimal operation point. An NCS,
in particular, can take a long time to converge as it adapts from its
initial positions to positions that reflect latency observations. Note
that in some contexts, NCS convergence indicates how long it takes
to reach an embedding with zero error, but since TIVs make a per-
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Figure 20. Average per-machine coordinate movement, among
those whose coordinates changed, as a function of number of
days running.

fect embedding impossible this target is only possible in artificially
constructed networks. In this subsection, we compare the conver-
gence of Htrae on our game-machine trace to that of Pyxida.

One way to measure convergence is as the time when the error
rate reaches its steady state [6]. Thus, we measure, on each day, the
75th and 90th quantiles among all prediction errors occurring that
day. Note that all our evaluations include realistic churn as seen in
the trace. We turn off history prioritization in Htrae since we are
interested in the convergence of the coordinate system. Figure 19
shows the results. Note that there is some variation by day just
because of the nature of the data set, which one can see from the
variation in stateless geolocation. Pyxida takes about 2-3 days to
converge to its steady-state error levels, while Htrae converges es-
sentially immediately. Since Htrae, unlike Pyxida, initializes virtual
coordinates using reasonable albeit incomplete information, we get
much faster convergence across the full set of machines.

Another way to measure convergence is as the time when the
rate of coordinate shifting reaches its steady state. Thus, now we
measure, on each day, the average per-machine coordinate move-
ment among machines whose coordinates change that day. Note
that in measuring the distance between two coordinates, we use
the absolute difference in their height rather than the sum of their
heights. Figure 20 shows the results. We observe that Pyxida takes
about 7 days to converge to its steady-state coordinate movement
levels, while Htrae converges essentially immediately.

5.4 Drift

A potential downside of using an NCS is drift, i.e., the ten-
dency for coordinates to move systematically in some direction over
time [13]. Drift is a problem because if a machine does not par-
ticipate for an extended period of time, then when it resumes its
coordinates will be in the wrong position relative to the remaining
population, which has drifted. Drift is also problematic for Htrae
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Figure 22. CDF of prediction error using either up-to-date or
three-week-old coordinates.

because if coordinates drift from true Earth, e.g., by rotating 10 de-
grees westward in longitude, then newly arriving machines that ob-
tain initial coordinates based on their location on Earth will be in the
wrong position with respect to other machines’ coordinates. Pyx-
ida uses gravity, a weak force that pulls all coordinates gently and
slowly toward the origin, to counter drift. However, this only works
on translational drift; it cannot help with rotational drift, which is
the only kind that can occur in Htrae’s spherical coordinate system.
Fortunately, as we will now show, drift does not pose a significant
problem for Htrae.

The standard way to measure drift is to measure the movement
of the centroid of the population. However, this would only re-
flect translational drift, not rotational drift, and it is the latter we are
most concerned about since our coordinates are spherical coordi-
nates. Hence, rather than measure drift directly, we instead measure
the effect of drift. We measure the extent to which newly arriving
nodes see greater error as time progresses, and the extent to which
machines that are absent for an extended period suffer from return-
ing to a shifted coordinate system. Again, we now turn off history
prioritization in Htrae since we are interested in coordinate drift.

First, we measure, for each day of a one-month run, the aver-
age error seen by newly arriving machines on that day. Figure 21
shows the result. We see that there is no noticeable trend upward,
suggesting that this effect of drift is not present.

Next, we simulate the effect of absence. On the last day of a
one-month trace, we compare the effect of using the latest coordi-
nates for the probing machine to using its coordinates from three
weeks earlier. This simulates what would happen if the machine
had been absent for those three weeks and needed to use its coor-
dinates from just before its absence. We only consider machines
whose uncertainty has changed by less than 10% during those three
weeks, since we are only interested in machines whose coordinates
have converged before their departure. Figure 22 shows the results.
We see that the effect of using old coordinates is small, generally
producing less than 2 ms of additional error. Indeed, it is roughly
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the same amount seen in Pyxida, which uses gravity to counter drift.
Thus we believe that drift is not a problem for Htrae. We suspect
that the reason old coordinates work slightly worse is due to other
factors such as Internet topology changes and/or improvement to
coordinates for other nodes over the course of three weeks.

In conclusion, it appears that drift does not pose a significant
problem for Htrae. We believe this is because the steady arrival of
new machines, each of which is initialized with reasonable confi-
dence in its correct location on true Earth, prevents the coordinate
system from drifting away from true Earth. Since churn is common
in other peer-to-peer applications besides online games, we expect
drift will not be a problem in other applications as well.

5.5 Limited probing

So far, our analyses have assumed that matchmaking relies
solely on prediction for latency estimation, i.e., that there is no time
to perform network probing to determine latency. We are primar-
ily motivated by that scenario for game matchmaking where users
are very averse to waiting, or for games where it is prohibitive to
probe all potential traffic paths because they have an all-to-all rather
than client/server communication pattern. Nonetheless, there may
be other application scenarios where some network probing can be
used to supplement latency prediction.

We now evaluate the performance of latency prediction systems
when given n servers and asked to reduce it to a subset of m servers.
In this scenario, the application will then probe the m servers, and
pick one with an acceptable latency. A recent study showed that
clients prefer games better as RTT goes down to 75 ms, but below
this they do not care [2]. Hence we evaluate how often a latency
prediction system selects a subset containing a server with RTT un-
der 75 ms. Note that in such an evaluation, latency prediction sys-
tems are allowed a much larger tolerance of error, not only because
they need not place the lowest-latency server among the m, but also
because they can make up to m — 1 “mistakes”.

During our trace, many clients probed as many as 200 servers,
so we know the actual RTT to all of them. We randomly select n of
the servers a client probed and query the latency prediction system
for all n. We then choose the m that were predicted to have the
lowest RTT, and determine if any one of these has a latency under
75 ms.

In Figure 23, we present the m = 6 scenario while varying n on
the horizontal axis. We pick 6 because that is the average number of
probes during a multi-server session in our traces. We see that Htrae
performs the closest to Oracle, and significantly above Pyxida. In
this scenario, geolocation also performs extremely well because the
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Figure 25. CDF of prediction error in various experiments dur-
ing Htrae deployment.

number of nodes for which it has no or inaccurate location infor-
mation is relatively small. Since it gets six tries to pick servers
within 75 ms, these errors have little impact. However, it is quite
possible for nodes with poor location information to get starved and
never be picked by geolocation. Furthermore, we found that some
clients experience consistently bad performance with geolocation,
due presumably to inaccurate placement.

In Figure 24, we fix n at 100 and vary m. This shows how the
benefit of latency prediction varies as more probing is done. We
see that Htrae once again does best of all the non-oracle prediction
systems. However, as expected, the benefit of Htrae, and latency
prediction in general, declines as the number of probes allowed is
increased. This is natural, because the point of latency prediction is
to avoid probing to reduce user wait time and network overhead.

We conclude that Htrae is most useful in scenarios where there
is time to probe only a modest fraction of the candidate game traf-
fic paths available. This includes scenarios where the matchmak-
ing service wants to make a quick decision without relying on any
probes, where probes are costly in terms of game delay, or where
game traffic will traverse so many paths that there is not time to
probe them all. However, even when there is time to probe a large
number of candidates, using Htrae or geolocation is still far prefer-
able to using random selection as is commonly done today.

5.6 Deployment

We now present results from our live deployment of Htrae on
the home machines of eleven volunteers. Because of the limited
size of this deployment, and hence lack of multiple nodes within
the same small AS, we do not expect AS correction to be beneficial
and in fact it is not. Figure 25 presents results of our experiments.
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Figure 26. Virtual path taken by the coordinates of a machine in
Redmond, WA. Its IP address was initially incorrectly classified

as being in the center of the U.S.

We find that even in this small deployment, geographic bootstrap-
ping is quite helpful, reducing Pyxida’s average error from 11 ms
to 8 ms. The frequent all-to-all nature of probing ensures Pyxida is
given ample time to converge, but we see that it converges to a local
minimum worse than what we obtain with better initial conditions.
Finally, the remaining improvements reduce average error to 6 ms;
chiefly, this comes from history prioritization, which unsurprisingly
is extremely useful in a deployment enabling all-to-all probing.

An interesting finding in our deployment is an illustration of the
dynamic nature of geographic bootstrapping. One of our volun-
teers’ machines was in Redmond, WA, but our database could not
pinpoint its IP address in more detail than just its country. Figure 26
shows how over the course of the experiment, this machine adjusted
its coordinates from the initial position in the center of the U.S. to
a location much closer to where it actually is. Estimation systems
relying solely on geographic information would not be able to adapt
in this way to missing information, but this example illustrates that
with Htrae it happens naturally.

6. DISCUSSION AND FUTURE WORK

There is substantial room for improvement in the way game
matchmaking is done today [3]. Adding a latency prediction system
to select good candidates for probing offers substantial improve-
ment in the latency of the ultimate choice. In addition, incorpo-
rating latency prediction will allow the design of a much different
type of matchmaking system, one with greater flexibility to explore
a broader range of alternatives. For instance, in the case of match-
making for a peer-to-peer game, the service will be able to select
groups of players with mutually low latency, without requiring all
candidates to probe all others.

Furthermore, it is clear that a network coordinate system by it-
self is not sufficient as a latency prediction system for games; ge-
olocation is an important tool in making predictions accurate. For
some applications, such as static content distribution, geolocation
by itself may be sufficient. However, for online gaming, it can be
costly to make certain customers unendingly suffer simply because
of inaccurate geolocation. Htrae has the advantage of automatically
correcting for such errors and adapting to changing network condi-
tions. It also produces better worst-case outcomes.

We have evaluated Htrae over month-long traces, and certainly
over such a long period there would have been many routing
changes on the Internet. However, we have not examined how Htrae
adapts to major changes, such as a trans-oceanic link being acciden-
tally cut, or two major ISPs de-peering. It would be interesting to
evaluate how prediction error increases during this time and how
quickly Htrae converges to a stable representation of the new net-
work.

Finally, there are likely other applications for a latency predic-
tion system as accurate and scalable as Htrae, particularly where
participants are likely to be numerous home machines. For in-
stance, distributed hash tables need to select close machines for

routing table entries and lookups [7]. Also, file sharing systems
often find it desirable, for the sake of ISP friendliness and perfor-
mance, to have peers select close peers for content exchange [4].
Some voice-over-IP applications use intermediate peer relays to
handle firewall traversal, and the choice of peer can have a tremen-
dous impact on call quality. Especially in this application, users
will expect fast call-setup times and may not tolerate long delays
from probing. We would like to examine how well Htrae works for
these scenarios.

7. RELATED WORK

Our work is closely related to three general approaches to la-
tency prediction: graph representation, NCSes, and geolocation.

7.1 Graph representation

All-to-all probing, as in RON [1], produces highly accurate la-
tency prediction but will not scale to large systems, such as one with
millions of game players. One way that researchers have found to
achieve scalability is to use graph representation. In this approach,
a cluster of nodes having similar latency properties is represented
by a vertex in a graph, and edges within that graph represent links
between clusters. The latency between two clusters is the total la-
tency of the links along the path joining them. IDMaps [9] achieves
such a graph embedding through the use of a select set of nodes
they called tracers. IDMaps periodically measures the distance be-
tween each pair of tracers, and between each cluster and its closest
tracer. Theilmann and Rothermel [31] proposed an extension of
this approach, in which the tracers themselves are clustered so they
do not have to perform all-to-all probing. The tracers form a tree
hierarchy, allowing for a graph having more tracers.

iPlane [18] seeks to learn the actual graph structure of the In-
ternet. In this graph, which it calls an atlas, the nodes are actual
routers and endpoints and the edges are actual network links. iPlane
uses multiple vantage points on the Internet and a variety of tech-
niques to create its atlas. This atlas includes latency, loss, and band-
width information about each link, enabling it to predict properties
of arbitrary paths. iPlane Nano [19], a recent variant, uses sophis-
ticated atlas compression to allow decentralized latency prediction
even though atlas creation remains centralized.

It is unclear whether graph representation systems, which in-
volve a great deal of centralized calculation on an enormous amount
of data, will scale to game matchmaking systems with millions of
participants. Our evaluation relative to iPlane suggests it may be
difficult for a graph representation system to achieve the coverage
necessary to deal with such a large population.

7.2 Network coordinate systems

To achieve even further scalability, many have proposed using
a network coordinate system, which embeds the graph structure of
the Internet into a virtual coordinate space. This technique of em-
bedding a graph into a metric space has been used in other disci-
plines to reduce the size of the representation [32, 35, 37]. In the
specific application of latency estimation, this reduction in repre-
sentation size has particular advantages: it reduces the amount of
background probing necessary to keep the data up to date, and it
enables more decentralized implementations. It is thus well-suited
for game matchmaking, and in turn for Htrae, since even when there
is a centralized matchmaking service it must dramatically limit its
per-machine state due to the large number of participants.

The idea of an NCS was first proposed for use in GNP [23].
This system makes use of a fixed set of nodes called landmarks.
Once the system obtains the RTT between each pair of landmarks,
the system computes the virtual coordinates for each landmark in a



way that minimizes the sum of the squared error in RTT estimation
over all landmark pairs. For a non-landmark node to compute its
virtual coordinates, it finds its RTT to each landmark, and chooses
virtual coordinates for itself that minimize the sum of the squared
error in RTT estimation over all paths from itself to the landmark.

One downside of this approach is that the landmarks become
bottlenecks. To allay this issue, Lighthouse [25] uses multiple sets
of landmarks, each with its own distinct coordinate space. Light-
house unifies these spaces into a global space so that the distance
between coordinates in distinct spaces can be calculated. PIC [5]
expands the set of landmarks further by allowing any node, once it
has computed its coordinates, to become a landmark for new nodes.
Another approach is to let nodes calculate coordinates using mea-
surements to only a subset of the landmarks, as in ICS [15] or with
virtual landmarks [30]. However, provisioning even a few land-
marks to deal with millions of customers is an expensive proposi-
tion for a game matchmaking system.

Fortunately, some researchers have discovered that landmarks
are not necessary. There exist graph embedding techniques that
rely only on distance measurements between nodes, enabling nodes
to learn reasonable coordinates in a global space by progressive re-
finement based on latency measurements. These techniques include
spring embedding [8], used by Vivaldi [6], and force-field explosion
simulation, used by Big-Bang Simulation [28]. Such embedding
techniques are thus well suited to the application of game match-
making, which is why we use one in Htrae.

Researchers have noted problems with NCSes, including the
sensitivity of coordinate embeddings to initial conditions and the
difficulty of embedding triangle-inequality violations [12]. Sug-
gested fixes have included techniques for avoiding local minima
and otherwise reducing the effect of initial conditions [28], rather
than choosing initial conditions based on geography as we do.
Wang et al.proposed solutions to the problem triangle-inequality
violations pose [33]; we have adapted one of them for use in Htrae
and evaluated its effectiveness in a realistic workload.

We are not the first to attempt using an Earth-like coordinate sys-
tem, but we are the first to have done so successfully. In the paper
describing GNP [23], the authors indicate they found a spherical
coordinate system inferior to a Euclidean one. Vivaldi’s creators
found a similar result [6]. However, we got it to work by using a
new approach not tried before: using geolocation for all machines’
initial positions, not just for a small number of landmarks.

7.3 Geolocation

Htrae relies upon earlier work that has enabled and refined the
estimation of the latitude and longitude of a machine. NetGeo [21]
extracts textual location names from whois records and looks them
up in a geographic database. IP2Geo [24] extracts location names
from the DNS name of the node or nearby nodes. OASIS [10]
uses Meridian [34] to find which infrastructure node with a known
geographic location is closest to an address prefix, and assigns
that geographic location to that prefix. Finally, some commercial
databases [20] complement these techniques with others such as
mining websites that ask users for their location.

7.4 Evaluation

One of our contributions is a thorough evaluation of latency pre-
diction on a large distributed system. Generally, latency prediction
system evaluations have used data sets such as PlanetLab ping times
and King measurements, which are not representative of home ma-
chines and do not illustrate realistic churn. A notable exception
is that of Ledlie et al. [13], who deployed the Vivaldi algorithm
in the Azureus BitTorrent client, revealing much about the sources
of error in a large P2P system containing mostly home machines.

Pyxida, the resulting NCS implementation, incorporates solutions
to many of these problems, and is generally considered the state-of-
the-art in NCSes [13]. Our trace of game players’ machines is even
larger than Pyxida’s corpus, and has enabled us to evaluate in even
more detail the effectiveness of various implementation elements
of an NCS. It also allowed us to examine properties of latency and
churn specific to game-matchmaking scenarios, and to devise a sys-
tem with significantly better predictive power than Pyxida.

8. CONCLUSION

Htrae is a latency prediction system designed for use in game
matchmaking and other latency-sensitive applications that run pri-
marily on home machines. Htrae is simple and scalable, as illus-
trated by the small size of our implementation and the ease of our
deployment. Its primary innovation is that it uses a novel combi-
nation of two classic approaches to latency prediction, geolocation
and a network coordinate system (NCS), fusing them in a way that
mitigates the disadvantages of each. It achieves this fusion by as-
signing each machine a location on a virtual Earth; each location
starts out roughly matching the machine’s approximate real-world
location, and is then dynamically adjusted to improve the corre-
spondence between distances and latencies.

To guide our design of a system to deal with realistic game
matchmaking scenarios, we used observations of 50 million match-
making probes among 3.5 million game machines. This data has
enabled a thorough evaluation of our system, showing how effec-
tive its various elements are, how well it solves classic problems
in latency prediction, and how well it performs relative to other
state-of-the-art latency prediction systems. We found that Htrae sig-
nificantly out-predicts other latency predictors, including Pyxida,
iPlane, and OASIS. With Htrae, 90th percentile prediction error is
reduced by a factor of well over 2, as is 90th percentile best-server
error. As a consequence, we expect our system to enable more effi-
cient and effective matchmaking for games, as well as for a variety
of other applications where users are sensitive to latency.
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