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Abstract–DatacenterWAN tra�c consists of high priority transfers
that have to be carried as soon as they arrive, alongside large trans-
fers with preassigned deadlines on their completion. �e ability to
o�er guarantees to large transfers is crucial for business needs and
impacts overall cost-of-business. State-of-the-art tra�c engineering
solutions only consider the current time epoch or minimize max-
imum utilization and hence cannot provide pre-facto promises to
long-lived transfers. We present Tempus, an online temporal plan-
ning scheme that appropriately packs long-running transfers across
network paths and future timesteps, while leaving capacity slack
for future changes. Tempus builds on a tailored approximate so-
lution to a mixed packing-covering linear program, which is par-
allelizable and scales well in both running time and memory us-
age. Consequently, Tempus can quickly and e�ectively update the
promised future �ow allocation when new transfers arrive or un-
expected changes happen. Our experiments on traces from a large
productionWANshow, Tempus cano�er and keeppromises to long-
lived transfers well in advance of their actual deadlines; the promise
on minimal transfer size is comparable with an o�ine optimal solu-
tion and outperforms state-of-the-art solutions by 2-3X.

Categories and Subject Descriptors
C.2.1 [Computer-CommunicationNetworks]: NetworkArchitecture
and Design

Keywords
Inter-datacenter; wide area networks; so�ware-de�ned networking;
deadlines; mixed packing covering

1. INTRODUCTION
Calendaring, colloquially, refers to setting aside future resources

so that long term objectives are met in spite of short-term demands
for resources.
Several large cloud companies operate geo-distributed datacen-

ters connected through a Wide Area Network (WAN). �e WANs
carry tra�c on the order of terabits/sec; are expensive and business
critical [11, 13].
Tra�c on the inter-datacenter WAN can be roughly character-

ized as a mix of two types. �e �rst, called highpri tra�c, comprises
of instantaneously arriving demands due to customer facing tra�c.
�ese demands are somewhat unpredictable but are in generalmuch
smaller than the total capacity and need to be fully met. �e second
comprises of large transfers between datacenters that require WAN
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capacity over extended periods of time (see, e.g., [11, 13]). �ese
make up the bulk of tra�c on the WAN. Examples include moving
a new search index generated at one datacenter to all the other dis-
tribution datacenters or moving datasets collected at one datacenter
for later analysis on a big data cluster at another datacenter.
Long-running transfers are o�en time-critical. Delaying them

may directly impact service quality and customer revenue. For ex-
ample, delays in transferring the search index reduce response qual-
ity. Delays in onboarding datasets into Azure or AWS reduce rev-
enue. In addition, transfer delays increase cost by wasting other
resources, e.g., servers and developers are idle waiting for datasets
to arrive. �e time-sensitivity of the long-running transfers can be
modeled in the form of a deadline. Some deadlines are hard, i.e.,
transfers are useless if late; however, many are "so�"; the transfer still
needs to be completed however its "value" reduces past the deadline.
Ideally, a network provider should serve both types of tra�c well.

�at is, the network should at all times be able to support the instan-
taneous demands. In addition, enough resources should be assigned
to the longer term tra�c so that these transfers have a predictable
completion time. �e objective of this paper is to design a solution
to the calendaring problem, with the following characteristics:

1. No delays and zero loss rate for high-priority tra�c.

2. When not limited by network capacity, long-running requests
are fully met before the deadline.

3. When demands exceed network capacity, continue to o�er
guarantees such asmaximizing theminimal fraction of trans-
fers that �nish before deadline (fairness), or maximizing a
speci�ed total utility function.

Satisfying all these goals is hard. Prior TE schemes minimize the
maximum link utilization; some are dynamic [14] whereas others
can be oblivious to the actual demands and network topology [1, 9].
With inter datacenter WANs, maximizing return on the investment
requires operating at nearly full utilization; hence prior work does
not apply. More recently, TE schemes have been proposed for inter-
datacenterWANs [11, 13]. While they do operate at high utilizations,
for reasons that we will explain below, these schemes only plan for
a single future timestep (e.g., �ve minutes). Any transfers that last
longer receive no guarantees. Further, such one-timestep TE has
poor practical performance since (a) it cannot di�erentiate which
of the large transfers to serve before the others, and along which
network paths and (b) a current high transfer rate does not guar-
antee high transfer rates in the future. Scheduling transfers in ear-
liest deadline �rst (EDF) order is also far from optimal primarily
because it does not carefully spread transfers across the network. By
scheduling strictly on deadline order, EDF can miss opportunities
to simultaneously schedule non overlapping transfers. Also, EDF is
unfair and performs poorly when all of the deadlines cannot bemet.
To understand why calendaring is hard, consider the simpler

o�ine scenario in which all requests and their requirements are
known ahead of time. Satisfying all of the demands before the cor-
responding deadlines, or getting as close as possible to that goal,
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requires optimally spreading tra�c not just along all the available
network paths but also along future times. �is optimization prob-
lem can be formulated as a linear program (LP) but the size, as we
will show, is typically huge (millions of variables and constraints).
�e online version is harder still. Clearly the problem evolves with

time; new long-running requests may arrive; links may fail or the
volume of high-priority tra�c can change. So the (o�ine) optimiza-
tion problem described above has to now run repeatedly, e.g., once
every few minutes or whenever substantial changes happen. �is
increases the computational cost. Worse, the cumulative e�ect of
running a sequence of optimizations, each of which has only a lim-
ited knowledge of the future, can be very poor compared to the of-
�ine oracle solution above. For example, requests arriving later will
be treated unfairly if all future network capacity has been promised
to prior requests. Also, by not being able to jointly optimize over
requests that arrive at di�erent times, the solution quality will be
poor (as we show later). Reneging on promises made to prior re-
quests does help improve solution quality, i.e., more requests can be
�nished before deadline, but doing so signi�cantly reduces the value
of calendaring; no promises are "for sure" and hence, programmer’s
and customer’s overall plans are disrupted.
Calendaring requires online temporal planning; temporal implies

network resource has to be allocated far into the future to o�er and
meet guarantees to long-running transfers; online implies having to
do this with imperfect future knowledge. To the best of our knowl-
edge, no prior solution exists to this problem.
We present Tempus, a solution to the calendaring problem that

meets these goals. Flows are allocated far into the future. Tra�c is
spread across network paths and time so as tomaximize theminimal
fraction of requests served before deadline as well as to maximize a
utility function overall. Current network capacity is fully allocated.
Future network capacity is systematically under-allocated so as to
(a) o�er high promises to requests that are currently in the system
and (b) leave room open for future arrivals and other changes.
We achieve all of the above with an appropriate sequence of lin-

ear programs to be solved at each timestep. Tempus uses our novel
mixed-packing covering solvers, which have the following distinc-
tive features: (a) they have smaller memory footprint compared to
running an LP solver at each timestep, and perhaps more impor-
tantly, (b) they conserve computation. �at is, since the cumula-
tive e�ect of the online optimization across all timesteps allocates
only as much network �ow as the o�ine LP, the total computational
cost should be similar; i.e., the running time when added up across
all timesteps equals the runntime of the o�ine LP; and hence the
per timestep running time is much smaller. Our main algorithmic
contribution is in showing how the packing-covering solver at each
timestep proceeds by editing the �ow allocation from the previous
timestep rather than having to begin from scratch. In general, this
is harder to achieve in an LP solver. Finally, we also show how to
parallelize our mixed packing-covering solver.
We evaluate Tempus by measuring its ability to schedule large

transfers that resemble those observed on a productionWAN across
a wide range of load factors. Compared to the o�ine optimal
scheme, we see that Tempus achieves nearly the same minimum
guarantee on transfer satisfaction, and nearly �nishes the same frac-
tion of �ows before their deadlines. Along both these metrics, Tem-
pus improves on top of the best performing variants of greedy (one
timestep) schemes. Further, Tempus o�ers a promise to each trans-
fer that is nearly the best possible as soon as the transfer arrives or
soon a�er. Greedy heuristics, in contrast, can o�er no guarantees
beyond the fraction that has already been served. Tempus’s paral-
lelized version appears comparable to top-of-the-shelf LP solver on
running time.

Figure 1: An example illustrating online temporal planning. On the le�
are the network and request requirements. On the right are the schedules
output by various schemes; some schedules have multiple requests active
at the same time on the same edge, assume then that each request gets a
fair share. �e shares due to Tempus are uneven as we describe later.

2. INTER-DC CALENDARING MODEL
In this sectionwe describe characteristics of inter-datacenter traf-

�c, motivate the need for online temporal planning and observe
some key requirements for a calendaring solution.

2.1 Inter-DC WAN Traffic
Heterogeneous tra�c types/ deadlines. As described earlier, tra�c
on the WAN is a mix of high priority tra�c and large long-running
transfers. �e former has to be served fully with no delays whereas
the latter can be served more �exibly. We use the term request to
denote an application-desired transfer that the logically centralized
tra�c engineering algorithm has to manage (as in [11, 13]). Source
and destination for requests are typically groups of servers (10s-
1000s) in di�erent datacenters. Consequently, requests can achieve
high cumulative rate. �e request speci�es a begin time, the bytes
to move within a deadline, optionally a set of paths through the net-
work that the request’s tra�c should be sent over and optionally a
peak tra�c rate. We assume that the scheduling epochs are much
coarser than TCP time-scales, (e.g., minutes vs. RTT of 100ms).
Typical request sizes range from tens of terabytes to petabytes; dead-
lines range from an hour to a couple days.
Need to highly utilize the WAN and to o�er service guarantees

to tra�c. �eWAN between datacenters is an expensive resource;
one study estimates amortized annual cost of 100s ofmillions of dol-
lars [11]. Hence, fully utilizing the WAN maximizes return on cost.
Prior work on managing inter-DC tra�c designs an application-
network interface to learn application requirements and runs an op-
timal tra�c allocation per timestep. �e resultant allowed rates are
conveyed to each app and desired routes programmed into the net-
work [11, 13]. Tempus uses a similar architecture. However, prior
work either allocates tra�c one time-step at a time [11, 13] or min-
imizes the maximum link utilization [1, 9, 14, 22] and cannot o�er
deadline SLAs to transfers.
Estimating volumeof high-priority tra�c:Weobserve that source
servers can mark tra�c type (e.g., using the IP ToS �eld). Our anal-
ysis of DC-WAN traces (taken from Microso�’s inter-DC WAN)
indicates that high-priority tra�c is estimatable: the per DC-pair
time series of the volume of high priority tra�c, over a period of a
day exhibits a coe�cient-of-variation, ranging from 0.06 to 0.48. A
scheduling framework can plan based on the statistical averages of
highpri demand but has to be robust to their variations.

2.2 Guidelines for Online Temporal Planning
In view of the above observations, there is a crucial need to spread

the long-running requests over network paths and time so as to
maximize deadline satisfaction as well as network utilization. How-
ever, such planning should be able to incorporate future request ar-
rivals as well as the variability in the volume of high-priority tra�c.
Here, we observe some guidelines for such a solution.
�e "o�ine" calendaring problem can be formulated as a linear

program (LP).When the details of all requests and the precise vol-



ume of highpri transfers are known in advance, calendaring can be
written as an LP.�e details are deferred to §3. Table 1 lists the sizes
of this LP. We note that a typical problem consists of networks with
hundred datacenter sites, thousand links (m), tens of thousands of
requests (R), i.e., a handful of requests per datacenter pair, and hun-
dreds of time units (T) (e.g., corresponding to a �ve minute resolu-
tion, where the overall time horizon is a single day). �e LP then has
millions of variables and constraints. Such large LPs can in principle
by solved by state-of-the-art LP solvers running on powerful ma-
chines but the space and running-time complexities are substantial.
Here, we consider whether simpler combinatorial solutions exist for
the core problem.
Planning in the midst of dynamically evolving conditions. Cer-
tainly, the calendaring problem evolves: new long-running requests
arrive, the network can change etc. Simply re-running the above of-
�ine optimization problem, whenever a change happens or a short
period later is computationally challenging. Worse, if the optimiza-
tions at each timestep runwith no context of the others, the resultant
allocations can be extremely poor.
We use a simple example to illustrate the important aspects that

an online optimizer has to get right so as to approximate the o�ine
oracle in spite of operating at each timestep without future knowl-
edge. Figure 1 depicts a simple network and four requests. When
requests are known a-priori, i.e., the o�ine case, observe that there
exists a schedule that �nishes all requests within their deadlines.
Let us �rst consider online strategies that look one timestep at

a time. Earliest deadline �rst (EDF), at each timestep, schedules
the requests in order of their deadlines. EDF does not �nish R4
before its deadline. EDF’s key weakness is that picking requests
strictly on deadline order prevents it from �nding bene�cial sched-
ules that simultaneously schedule requests on di�erent parts of the
network (e.g., schedule R2 early so that R1 and R4 can run simul-
taneously). Observe that in the above example, each request has
exactly one usable path; EDF would have a harder time when traf-
�c has to be spread across multiple paths. Greedy corresponds to
schedulers proposed by prior work [11] that at each timestep allocate
tra�c evenly and are work-conserving; it cannot �nish R1 on time.
�e primary weakness here is the inability to plan into the future;
fair share at each timestep does not translate to meeting deadlines,
esp: if the deadlines are short. Online corresponds to a scheduler
that does plan into the future for all the requests that it is currently
aware of; it cannot �nish R4 on time. �e primary weakness is that
the schedule chosen at t = 1 o�ers promises to the �rst three requests
without knowing what would arrive in the future; hence, very likely
it picks a schedule that is not compatible. Re-scheduling at t = 4
does not help either because �ow allocations in the past cannot be
revisited. Reneging on promises can help the online scheduler meet
deadlines of new requests but they counteract the value of calendar-
ing. Tempus, as we show later is able to meet all deadlines. Tem-
pus only allocates a small fraction of the capacity of edges in future
timesteps. Since Tempus plans well into the future and attempts to
�nish as many requests as possible before their deadline, requests
R1 , R2 , R3 are "safe" with Tempus because there is enough capacity
to �nish them all before their deadlines even a�er under-allocating
future edges. Further, due to the under-allocation Tempus retains
enough capacity on future edges, e.g., the B → C edge for timesteps
a�er 4, so as to �nish request R4 .
Promises. As we saw above, a good calendaring solution has these
properties: (a) o�er to each request a promise on the fraction that
will be satis�ed before deadline; it is better to o�er large promises
early in the request lifetime; (b) do not renege on promises; (c)
ensure promises are fair (or proportionally fair) in spite of online

Scheme Num. Equations Num. Variables

Optimal O�ine (�ow) ≈ nRT + mT + R mRT
Optimal O�ine (path) ≈ mT + R PRT

Online LP above, at each timestep
Greedy [11, 13] per timestep, above with T set to 1

Table 1: Estimating the size of LPs to be solved for the calendaring prob-
lem; for a network graph with n nodes, m edges; planning T timesteps
into the future; and R requests. Optionally, each request can require to
be routed only along given paths (say P per request).

changes and (d) maintain high network utilization. In essence, the
cumulative e�ect of the online optimizations should mimic closely
the o�ine (impractical) scheme. Simply repeating the o�ine opti-
mization at each timestep does not o�er these properties.
Conservation of computation. Notice that the online optimiza-
tions done at each timestep allocate all together a similar amount
of �ow as the single o�ine LP. Hence, it is natural to ask whether
the total computation cost of the online optimizations can be about
the same as the cost of running the single o�ine LP. For typical LP
solvers, this does not hold; in fact, the cost of the optimization in
each timestep can be as much as that of the o�ine LP.
In the rest of this paper, we will describe Tempus, an online tem-

poral planner, that satis�es both the above requirements on solution
quality and computation cost.

3. OVERVIEW OF TEMPUS
�e goal of Tempus is to accommodate the long-term requests,

while leaving enough capacity for ad-hoc high-priority requests.
�e system uses available information on long-running requests to
e�ciently pack these requests over time and network paths. Our
goal here is to identify some key aspects, we defer the details to §4.
Preliminaries. �e input for our problem consists of a graph G =
(V , E) where ∣V ∣ = n and ∣E∣ = m, and non-negative edge capac-
ities c ∶ E → R+. Each long-term request i with strict deadline is
de�ned by the tuple (a i , b i , d i ,D i , s i , t i ,Pi) where: a i is the aware
time in which Tempus becomes aware of the request; b i is the be-
gin time from which the request can be scheduled; d i is the deadline
a�er which the request cannot be scheduled anymore; D i is the de-
mand of the request; s i is the source node the request needs to be
routed from; t i is the target node the request needs to be routed to;
Pi is the collection of admissible paths from s i to t i of the request.
Requests with so� deadlines are de�ned similarly, with a value func-
tion replacing the strict deadline d i ; the details are deferred to §4.
Additionally, the algorithm has an estimate χe ,t for the fraction of
the capacity ce of edge e that will be needed by the high priority
requests at time t; only the remaining (1 − χe ,t) fraction can be al-
located to long-term requests.

3.1 Offline version
Formulating o�ine calendaring as an optimization problem:

Tempus uses variables f i ,p ,t to denote the amount of �ow allocated
for request i on path p ∈ Pi in time t. Using these variables, lin-
ear inequalities can be formulated to assert the allocation’s feasibil-
ity: in every time and for every edge the total �ow allocated on it
does not exceed the available capacity. Further the tra�c for re-
quest i, can only be routed when it is available t ∈ [b i , d i] and to-
tals no more than demand D i (and is at least α iD i). Goals include
maximizing the minimum fraction of request tra�c routed before
deadline (maxmini α i). �e o�ine problem assumes perfect future
knowledge of all requests and hence is not a practical solution.
Adding utility. While maximizing the smallest fraction α i cor-
responds to a fairness objective, some parts of the network might
remain under-utilized, i.e., more �ow can be allocated but the re-



quest with the least α cannot be improved further. To fully use
the network, we introduce a supplementary utility function, e.g.,
δ = avgiα i . We defer the precise de�nition of utility to later (§4),
however, we note that several forms of utility can be speci�ed as lin-
ear functions. A�er maximizing α, we execute a second optimiza-
tion problem to maximize the total utility.
Note that Tempus does not directlymaximize howmany transfers

�nish before their deadline. �e all-or-nothing nature of the met-
ric makes it hard to optimize; e.g., it cannot be captured with a lin-
ear constraint. However, maximizing α and then utility, as Tempus
does, is a close approximation. In particular, when all deadlines are
satis�able Tempus will �nd such a �ow allocation. Further, due to
utility maximization, Tempus will �nish some transfers before their
deadline even when it cannot �nish all transfers.

3.2 Online temporal planning
�emain challenge is to solve the above optimization problem in

an online manner, since new long-term requests can arrive at any
time and other changes may happen. As discussed before, repeat-
edly applying the above o�ine optimization problem is computa-
tionally expensive because it has to plan far into the future. Further,
it can lead to a substantially worse solution. Here, we discuss how
to solve the latter; speeding-up the computation is in §3.3.
Rerunning the above optimization problem at each timestep

treats requests that arrive later unfairly. Maximizing the minimum
α i and then, maximizing the total utility, can use up all of the avail-
able capacity on edges causing later requests to receive a very small
α. As we saw before, it also reduces howmany requests �nish before
their deadlines because it cannot jointly optimize over all requests.
To retain fairness and improve solution quality, Tempus system-

atically under-allocates future edges. When planning at time τ,
the fraction of edge capacity that is available for allocation at times
t > τ is denoted by βe ,t ,τ . We choose β to be a function that decreases
with t−τ. Intuitively, the further an edge is into the future the less its
capacity can be used up during the current timestep. At each con-
secutive timestep, more of the capacity becomes available ensuring
that later arriving requests can be allocated on that {edge, time}. �is
helps with fairness. Solution quality also improves because Tempus
allocates more capacity on timesteps in the near future for which
it understands the requirements more completely. Due to the pro-
gressive release of capacity, Tempus’s promise to long-term requests
α i increases with time; Tempus aims to o�er large promises early in
the lifetime of the request.
Another concern is that whereas capacity can be set aside on fu-

ture edges for highpri tra�c (χe ,t), the actual highpri tra�c may
require more or less capacity. If more is needed, some �ow that
has been promised to long-term requests has to be lowered caus-
ing promises to be reneged. Tempus corrects the solution for ac-

tual usages of high-priority requests. Edges that are under-used
by highpri tra�c need no special consideration since Tempus uses
the spare capacity to increase the �ow for requests that are not fully
satis�ed. To correct over-usage, Tempus reduces the pre-promised
�ows f i ,p ,τ of a carefully chosen set of long-term requests such that
(a) the total �ow on every edge remains below capacity, while (b)
having minimal e�ect on promises α i as well as the total utility. We
use an LP for this correction; the LP is small since it only considers
the current timestep τ. Intuitively, the LP chooses requests that have
later deadlines or other less constrained paths, and hence decreases
in f i ,p ,τ can be made up for at other times or along other paths.
Observe that link and switch failures can also be handled similarly

because a link failure can be mimicked as if a highpri request with
demand equal to link capacity appears for that timestep.

A side-e�ect of the above is that Tempus can renege upon a
promise. In practice, however, we see that this occurs rarely; be-
cause Tempus preferentially lowers the �ows of requests that can be
made up for later. Further, when Tempus reneges, we �nd that the
fraction served by Tempus is close to the fraction served by the op-
timal o�ine scheme (which has perfect future knowledge).
Lengthy requests, i.e., with a large d i − a i , will slow down any

temporal planner by forcing each timestep to plan far into the fu-
ture (up to max d i time). To ensure a fast solution, Tempus option-
ally employs a slidingwindow approach; i.e., it only plans for a �xed
number of time steps into the future. Requests whose deadline lies
beyond the sliding window’s length are broken into a smaller request
and their demand is scaled accordingly.

3.3 Approximate packing-covering solvers
We have a choice of solvers; whereas the overall framework de-

scribed so far leads to a novel solution for the online temporal plan-
ning problem, how the optimization at each timestep is solved cru-
cially impacts the practicality of the solution. We o�er a brief back-
ground on iterative solvers for mixed packing covering problems
and then comment on how Tempus extends them for calendaring.
Background on Packing-Covering Solvers: Given a variable vec-
tor x, a packing matrix P and a covering matrix C, a mixed packing
covering problem �nds a feasible solution for these inequalities:

{Px ≤ 1, Cx ≥ 1, x ≥ 0} , (1)

where x ∈ Rn ,P ∈ R+
m×n ,C ∈ R+

ℓ×n ;R+ indicates that all entries in
P and C are non-negative.
It is easy to see that any mixed packing covering problem is a lin-

ear program (LP).While it can be solved using typical LP solvers, its
special structure allows for iterative solutions that have some useful
properties. Intuitively, a common approach in the design of iterative
solvers is the following. First, let x = 0 be the starting zero solution;
all packing constraints are trivially satis�ed but none of the cover-
ing constraints are met. Second, inductively, suppose there exists an
increment ∆x to the variables that satis�es:

maxP(x + ∆x)−maxPx ≤ minC(x + ∆x) −minCx. (2)

Here, max (min) is taken over the m (l) packing (covering) con-
straints. In words, the above equation ensures that the smallest cov-
ering constraint improves by more than the largest packing con-
straint. Incrementing the variables by such a ∆x is helpful since it
moves the solution closer towards satisfying all covering constraints
while giving up a smaller amount on the packing constraints. Fi-
nally, observe that repeating the above step until all covering con-
straints are satis�ed would yield a feasible solution.
Translating the above intuition into a solution is challenging be-

cause (a) it is not apriori clear how to search for such a ∆x and
(b) more importantly, it is unclear that a solution for every feasi-
ble mixed packing-covering problem could be found by summing
up increments that satisfy (2).
Young’s method [24], among several other methods, adopts the

above approach. First, sincemin andmax are not smooth functions,
Young replaces them with:

min
1≤i≤n

{xi} ≥ lmin(x) ≜ − ln(
n

∑
i=1

e−x i) ,

max
1≤i≤n

{xi} ≤ lmax(x) ≜ ln(
n

∑
i=1

ex i) .



Second, Young restricts the increment per iteration to a small
amount and to one variable xi in x. �en, condition (2) becomes:

∂lmax (Px)
∂xi

≤ ∂lmin (Cx)
∂xi

. (3)

In words, for variable xi , the rate of change of the maximum over
packing constraints should be smaller than the rate of change of the
minimum over covering constraints. Equipped with this new con-
dition, Young [24] proved that if the packing-covering problem is
feasible, then for any current value assignment to variables x there
is a variable xi that satis�es (3). �e solver starts with x = 0, repeat-
edly makes increments satisfying (3) and terminates when no such
increment can be found or when all covering constraints are met.
Extending mixed packing covering solvers to online temporal

planning: Here, we mention how iterative solvers for mixed pack-
ing covering problems are more suitable for the calendaring prob-
lem and show how Tempus extends the theoretical work.
For the online step in the calendaring problem, we observe that

the solution to the mixed packing-covering problem in a timestep
can be edited into a feasible starting point for the problem of the
next timestep. Observe that edge capacity translates to a packing
constraint, request satisfaction translates to a covering constraint
and that the variable vector x contains �ow allocations. To wit, in
the online step, the constraints change as follows (precise details are
in §4.2): for each newly arriving request and {edge, time} that is
to be newly considered, new constraints on their respective dead-
line satisfaction and capacity are added. Some existing constraints
are edited, for example, to release more capacity for allocation. �e
solution to the previous packing-covering problem is expanded by
adding �ow variables for newly arriving requests and on new edges
and setting them to zero. Crucially, observe that none of the pack-
ing constraints are violated (new edges have �ow 0 and every old
edge has strictly larger capacity to allocate). �e old covering con-
straints are unchangedwhereas the new covering constraints are un-
met (�ow for new requests is 0). Hence, the old solution is a feasible
searching point for the new problem. Further, as we show later by
extending Young’s proof that if the new problem is feasible, incre-
ments that satisfy condition (3) will continue to exist.
�is is incredibly useful because: (a) all of the previously

promised allocations are retained and (b) none of the work that has
been done by the previous steps, in terms of allocating �ow, needs
to be redone which speeds-up the computation as we prove later.
We also observe that solving calendaring with a mixed packing-

covering solver requires less memory. Table 1 describes the problem
size for di�erent approaches. Notice that in the calendaring prob-
lem, themost numerous are the �ow variables; per request, per time
and per path (or per edge) they record how much �ow has been al-
located. We assert that the iterative solver above need not maintain
all of the �ow variables. In fact it su�ces to keep per-packing and
covering constraint (edge and request), the current state of Px or
Cx respectively, i.e., available capacity and unmet demand. Upon
allocating some �ow along a path to a request, the e�ect to these
constraints is recorded. �e precise �ow variables are needed only
for the current time instance, so as to push appropriate routes into
the network, and can be computed by solving a small LP for the cur-
rent timestep that takes as input the total that has been allocated to
requests in that timestep. Consequently, the memory overhead re-
duces by at least one order of magnitude (see §5.1 and §6.3).
Similarly to [24], we note that the iterative solver can be paral-

lelized since typically many feasible increments ∆x exist. Young de-
scribes how to parallelize the search process. However, we observe
some additional aspects of our problem that make searching for a
feasible increment much faster (§5.3). Consequently, the bottleneck

shi�s to applying the increment for which we design a novel paral-
lelization technique (§5.2).
Finally, we note that a packing-covering solver only outputs an

approximate solution to a feasibility problem. �ey guarantee that:
(a) if the packing-covering equations are infeasible, the solver would
report infeasibility; (b) if the packing-covering equations are fea-
sible, the solver reports feasibility but the solution can violate the
packing constraints by a small amount. We extend Tempus to cope
with the imprecision and yet obtain the desired objective by solving
a small number of feasibility problems (§4.2).

3.4 Takeaways
We have described how to design appropriate optimization prob-

lems to solve at each timestep such that their cumulative e�ect
avoids unfairness and provides a good quality solution; close to
that from the o�ine oracle (§3.2). �e per-timestep optimization
can also be posed as a packing-covering problem. And, we de-
velop a new online version of Young’s algorithm to solve sequences
of packing-covering problems (§3.3). �is solution has some nice
properties compared to a general LP solver. We emphasize that un-
like greedy approaches (e.g., [11]), our online algorithm schedules
�ows far in the future, and can thus provide promises α i on the frac-
tion of the demand that each request i would be able to transfer.
Since inter-DCWANs operate at nearly full utilization, prior e�orts
to minimize network congestion do not apply [1, 9, 14, 22]. Further,
inter-DCWANs have less statistical multiplexing than ISP networks
– few large requests contribute most of the bytes – and hence, dead-
line SLAs to large requests is an important part of the overall tra�c
management problem. We proceed to the details.

4. DESIGN OF TEMPUS
In this section, we present details of Tempus including prov-

able guarantees on its runtime. For clarity, we �rst examine the of-
�ine case (§4.1) and then build our novel formulation for the online
case (§4.2). In either case, we �rst describe the optimization prob-
lem, which can be solved using an LP, and then present the Tempus
algorithm that builds on Young’s method [24].
Recall from §3 that the input for our problem is a graph G =

(V , E) with edge capacities ce ; requests de�ned by their parameter
tuple (a i , b i , d i ,D i , s i , t i ,Pi) (see §3 for de�nitions of parameters).
Additionally, unless otherwise speci�ed, we assume that there is an
absolute size T that upper bounds all request deadlines.

4.1 (Impractical) Offline Case
In the o�ine case, note that the algorithm is aware of all (future)

requests. Given the input graph G and all k requests, we �rst wish
to �nd the largest α, 0 ≤ α ≤ 1, such that a fraction of at least
α of the demand of each request can be routed before its dead-
line while respecting the capacity constraints. Maximizing α cor-
responds to a fairness objective. �is is the well-known Concur-
rentMulti-commodity Flow problem. Suppose f i ,p ,t denotes the �ow
variable associated with request i at time t on path p ∈ Pi and f de-
notes the vector of all �ow variables. Consider these quantities,

he ,t(f) ≜ ∑
i∶b i≤t≤d i

∑
p∈Pi ∶e∈p

f i ,p ,t (capacity usage)

ℓ i(f) ≜
d i
∑
t=b i
∑
p∈Pi

f i ,p ,t (satis�ed demand)

g(f) ≜
k

∑
i=1
∑
p∈Pi

d i
∑
t=b i

u i ,p ,t ⋅ f i ,p ,t (utility),



where he ,t(f) corresponds to the total �ow on edge e at time t, ℓ i(f)
corresponds to the demand of request i satis�ed by its deadline, and
g(f) corresponds to the value of the secondary utility function. Re-
call that we add a secondary utility function such that maximizing
utility would increase the network utilization even when the request
with the worst α cannot be further improved. We restrict utility to
functions having u i ,p ,t ≥ 0 so that g(f) would correspond to a cov-
ering constraint. We emphasize that u i ,p ,t are inputs to the solver
and are not variables for the optimization problem. Note that the δ
= average α mentioned earlier is a special case with u i ,p ,t = 1

k⋅D i
.

We seek to maximize utility g(f) among all the optimal solutions
of the fairness objective (maximizing mini α i). If α and U are the
target values for each of these goals, two LPs could be formulated to
maximize each of them in sequence with the following constraints:

LP(α,U) = {he ,t(f) ≤ ce ∀e ∈ E ,∀t ∈ [0, T], (capacity)
ℓ i(f) ≤ D i ∀1 ≤ i ≤ k, (demand)
ℓ i(f) ≥ αD i ∀1 ≤ i ≤ k, (fairness)
g(f) ≥ U , (utility)
f ≥ 0}

4.1.1 Applying mixed packing-covering solvers
Observe that LP(α,U) is exactly in the form of (1), as we can nor-

malize the constraints so that their right hand side is all 1s. Directly
maximizing α and thenU is not possible however since the iterative
solver only checks the feasibility for given values of each. Hence, we
start withU = 0 and conduct a search to �nd the largest α for which
LP(α, 0) is feasible. �e resulting α is then kept �xed and we search
for the largest U for which LP(α,U) is feasible.
Next, we describe how to use Young’s algorithm to determine

given some values for α and U whether a �ow vector f exists that
satis�es LP(α,U)? Figure 2 shows the pseudo-code for the algo-
rithm. It follows the intuition described in §3.3. We use these inter-
nal variables, each corresponding to a constraint of LP(α,U):

ye ,t ≜ e
N

ε⋅ce ⋅he ,t(f) (capacity)

q i ≜ e
N

ε⋅Di
⋅ℓ i(f) (demand - packing)

z i ≜ e−
N

ε⋅α⋅Di
⋅ℓ i(f) (fairness)

r ≜ e−
N

ε⋅U ⋅g(f) (utility),

where ε is an accuracy parameter and N is a scaling factor to be
speci�ed later. �e algorithm begins with an all 0s solution. In ev-
ery iteration a speci�c variable f i∗ ,p∗ ,t∗ in f is increased by a small
amount. �is variable is chosen according to condition (∗), which
is equivalent to condition (3) from Section 3.3. However, we simplify
by including only the unsatis�ed covering constraints in (∗), i.e., re-
quests i for which ℓ i(f) < αD i and possibly the utility constraint if
g(f) < U . One can verify the equivalence between (∗) and (3) by
calculating the appropriate partial derivatives of the following two
functions that correspond to lmax (Px) , lmin (Cx) respectively:

ln(∑
e∈E

T

∑
t=0

ye ,t +
k

∑
i=1

q i) ,− ln(
k

∑
i=1
1{ℓ i(f)<αD i}z i + 1{g(f)<U}r) .

Here, 1A refers to the indicator function of the event A, i.e., 1A = 1 if
A is true and 0 otherwise.

4.1.2 Analysis
�e following two theorems summarize the correctness of the al-

gorithm and bound its runtime (proofs are deferred to [15]).

initialization

ye ,t ← 1 ∀e ∈ E , ∀0 ≤ t ≤ T
q i ← 1 ∀1 ≤ i ≤ k
z i ← 1 ∀1 ≤ i ≤ k
r ← 1, f ← 0

while ∃1 ≤ i ≤ k s.t. ℓ i(f) < αD i or g(f) < U do

Find 1 ≤ i∗ ≤ k, b i∗ ≤ t∗ ≤ d i∗ , and p∗ ∈ Pi∗ s.t.:

∑e∈p∗
ye ,t∗
ce

+ q i∗
D i∗

∑e∈E ∑T
t=0 ye ,t +∑k

i=1 q i
≤

1{ℓ i∗ (f)<αD i∗}
z i∗

αD i∗
+ 1{g(f)<U}

u i∗ ,p∗ ,t∗
U r

∑k
i=1 1{ℓ i(f)<αD i}z i + 1{g(f)<U}r

(∗)

if there is no such i∗, t∗ and p∗ then
abort and return there is no feasible solution;

else
// choosing step size parameter γ
γ ← ε ⋅min{D i∗ , mine∈p∗ {ce}};
if ℓ i∗(f) < αD i∗ then

γ ← min{γ, εαD i∗};
if g(f) < U then

γ ← min{γ, ε U
u i∗ ,p∗ ,t∗

};

// updating internal variables
ye ,t∗ ← ye ,t∗ ⋅ e

γ
ce , ∀e ∈ p∗;

q i∗ ← q i∗ ⋅ e
γ

Di∗ ;

z i∗ ← z i∗ ⋅ e
− γ

α⋅Di∗ ;

r ← r ⋅ e−
ui∗ ,p∗ ,t∗ ⋅γ

U ;
// updating f a

f i∗ ,p∗ ,t∗ ← f i∗ ,p∗ ,t∗ + ε
N ⋅ γ;

return f ;

Figure 2: Pseudo-Code for Feasibility Check of LP(α,U)
aIf the increase in f i∗ ,p∗ ,t∗ causes a covering constraint to change
from being violated to satis�ed, the algorithm chooses the smallest
γ value such that this covering constraint is satis�ed with equality.

�eorem 1. For any 0 ≤ α ≤ 1 and U ≥ 0, if LP(α,U) is feasible
then for every 0 < ε ≤ 1/2 and

N ≥ ln ((m(T + 1) + k) ⋅ (k + 1)
1+ε
1−ε/2 )

the output f of Algorithm 2 satis�es:

he ,t(f) ≤ (1 + 3ε)ce ∀e ∈ E ,∀0 ≤ t ≤ T
ℓ i(f) ≤ (1 + 3ε)D i ∀1 ≤ i ≤ k
ℓ i(f) ≥ αD i ∀1 ≤ i ≤ k
g(f) ≥ U .

�eorem 2. For every 0 < ε ≤ 1/2, Algorithm 2 terminates within
N
ε2 [(1 + 3ε) (m(T + 1) + k) + (k + 1)] + (k + 2) iterations.

Note that �eorem 1 proves that for any feasible set of packing-
covering constraints, the pseudocode shown will �nd a feasible so-
lution with the caveat that the packing constraints can be violated
by a small amount of (1 + 3ε). Smaller the value of ε, the less the
violation. Note also that N ≈ ln(mTk). From �eorem 2, we see



that the number of iterations is at most O (ε−2(mT + k) ln(mTk));
so smaller ε increases running time. We use ε = .1 in Tempus.

4.2 Online Temporal Planning
Here, we present a novel formulation that copes with online ar-

rival of requests and the Tempus algorithm. �e algorithm has two
main properties: it sets the α i in a fair manner; and it makes only
incremental changes to the solution at each subsequent time-step.
We index the onlinemodel with the current time-step τ. Let R(τ)

denote the requests that are relevant at time τ, i.e., requests that the
algorithm is aware of (those with a i ≤ τ) and whose deadline did
not expire yet (those with d i ≥ τ). Analogous to §4.1, for a time-step
τ, we consider the following quantities:

hτ
e ,t(f) ≜ ∑

i∈R(τ)∶max{τ ,b i}≤t≤d i
∑

p∈Pi ∶e∈p
f i ,p ,t

ℓτ
i (f) ≜

d i
∑

t=max{τ ,b i}
∑
p∈Pi

f i ,p ,t

gτ(f) ≜ ∑
i∈R(τ)

∑
p∈Pi

d i
∑

t=max{τ ,b i}
u i ,p ,t ⋅ f i ,p ,t .

As before, the online problem can be formulated as two linear opti-
mization problems at each time-step τ: �rst maximize mini α i and
then maximize U , with the following constraints:

LPτ(α,U) = {hτ
e ,t(f) ≤ ce ∀e ∈ E ,∀τ ≤ t ≤ T ,
ℓτ
i (f) ≤ D i − Fi ,τ−1 ∀i ∈ R(τ),
ℓτ
i (f) ≥ α iD i − Fi ,τ−1 ∀i ∈ R(τ),
gτ(f) ≥ U −Uτ−1 ,
f ≥ 0}.

Here Fi ,τ−1 denotes the total �ow of request i routed prior to time
step τ, i.e., up to time step τ − 1 including. Similarly, Uτ−1 denotes
the total utility obtained prior to time step τ. Formally,

Fi ,τ−1 ≜
τ−1
∑
t=b i
∑
p∈Pi

f i ,p ,t

Uτ−1 ≜
k

∑
i=1
∑
p∈Pi

τ−1
∑
t=b i

u i ,p ,t ⋅ f i ,p ,t .

It is important to notice the following. First, α given as input
to LPτ(α,U) is a vector since di�erent requests can have di�erent
promises based in part on when they are made aware to the opti-
mization problem. Second, coordinates f i ,p ,t of f are variables of
LPτ(α,U) only if the request is relevant and the time has not yet
passed, i.e., t ≥ τ and i ∈ R(τ). Flow variables from the past are
�xed constants and cannot be changed by the algorithm.

4.2.1 The basic Tempus algorithm
First, we describe how to check whether a feasible �ow assign-

ment f exists that satis�es LPτ(α,U) given some values for α and
U . Observe that, to check feasibility, one can apply Algorithm 2
with syntactic changes that follow from the de�nition of LPτ(α,U).
Speci�cally, replace D i by (D i − Fi ,τ−1), replace αD i by (α iD i −
Fi ,τ−1) and replaceU by (U −Uτ−1). Further, the range of search for
a satisfactory increment i∗ , t∗ should be restricted to �ows that are
relevant and time that is in the future, i.e., i ∈ R(τ), t ≥ τ. Similarly,
the denominators of condition (∗) are changed to include only the
relevant edges (t ≥ τ) and requests (i ∈ R(τ)).
Second, it is more interesting to examine how the solution from

the current time-step f is usable as a starting point in the subsequent

time-step.1 All requests i that are not new, i.e., a i < τ, already have
a promised α i value from the previous time step. Newly aware re-
quests are initialized to a promise of 0; all their �ow variables are
also set to 0. All �ow variables on edges in time-steps that have
not been allocated before are also set to 0. Additionally let U be
the guarantee on the secondary utility from the previous time step.
Our online algorithm conducts a water �lling process, in which the
lowest promise values are increased as long as LPτ(α,U) is feasible,
while keeping U from the previous time step �xed. Once the water
�lling process cannot proceed anymore, the resulting α is �xed and
a search for the largest possible U value is conducted.
We note that by using the previous solution f as a starting point

in each time-step, the total network capacity that Tempus allocates
across all steps is the same as the o�ine optimization; bar a few cases
where pre-promised �ows are moved elsewhere. Hence, intuitively,
the work done by the algorithm and its running time are amortized
over time-steps; i.e., the per time-step running time is very small.
General LP solvers do not behave similarly.

4.2.2 Analysis
Similar to Section 4.1.2, one can prove that if LPτ(α,U) is fea-

sible, then the online algorithm, regardless of the f , will �nd an
i∗ ∈ R(τ), t∗ ∈ [max {τ, b i∗} , d i∗] and p∗ ∈ Pi∗ that satisfy (∗).
We will focus though on bounding the number of iterations that

the online algorithm executes per time-step. Let K be an upper
bound on the number of relevant requests in any time step τ, namely
∣R(τ)∣ ≤ K for all 0 ≤ τ ≤ T .

�eorem 3. �e number of iterations in the rth successful execution
of the algorithm that decides whether LPτ(α,U) is feasible, is upper
bounded by

K + 1 + N
ε2

[Xr + (K + 1)] ,

where the summation of Xr over all successful executions is at most
(1 + 3ε)(m(T + 1) + K).2

Note that as before N ≈ ln(mTK) and the number of itera-
tions per timestep is at most O (ε−2(Xr + K) ln(mTK)) , where
Xr = O(mT + K). Comparing this with �eorem 2 shows that the
total number of iterations used by Tempus are similar in the o�ine
and online cases; the proof can be found in [15].

4.2.3 Additional Features in Tempus
We now discuss additional aspects in Tempus that build upon the

above basic algorithm (§4.2.1). �roughout this discussion, τ refers
to the current time-step while t refers to a general time-step.
Tra�c Smoothening: Recall that to retain fairness when requests
arrive online, Tempus systematically under-allocates future edges.
Otherwise, early arrivals can use up all of the capacity resulting in
poor promises to later arrivals and low fairness.
Intuitively, our goal with tra�c smoothening is to limit the capac-

ity that is allocated at any one time-step to leave room for future
arrivals. Formally, we denote by βe ,t ,τ the fraction of the capacity
of edge e in future time t that can be allocated by online Tempus
at time step τ. �is changes the capacity constraint of LPτ(α,U)
as follows: hτ

e ,t(f) ≤ βe ,t ,τce . Given an edge e ∈ E and a time t,
βe ,t ,τ is a function de�ned for t ≥ τ with a non-decreasing value
in [0, 1]. We require that βe ,τ ,τ = 1, since the entire capacity of an
edge that belongs to the current time-step can be safely used. In our
experiments, we use βe ,t ,τ = exp (−(t − τ)/c) for some constant c.
1Note that f also determines the initial values of ye ,t , q i , z i and r as
per their de�nition in §4.1.
2Choose N ≥ ln ((m(T + 1) + K)K(1+ε)/(1−ε/2)) .



Note that this function depends only on t − τ, i.e., how much fur-
ther into the future the edge is. An important side-e�ect is that the
promises o�ered by the online allocation rely more on network ca-
pacity in the immediate future than on network capacity that is far
into the future; this reduces the risk of reneging on promises since
unpredictability increases the further one looks into the future.
BoundedHorizon: In order to speed up the running time, Tempus
optionally uses a sliding window approach – given window sizeW ,
Tempus only plans up toW time steps into the future. Accordingly,
LPτ(α,U) can be edited to include only time-steps t ∈ [τ, τ +W].
We replace active requests whose deadline falls outside the window,
with equivalent smaller ones that �ts within the window. �at is, the
smaller request has deadline τ +W and has demand proportional
(according to time) to its current unmet demand. WhenW is large,
the fraction of total demand from such requests is small and there
is little net impact on solution quality.
Capacity Grace: As stated in �eorem 1 and §3 when discussing
their applicability, iterative packing covering solvers can produce so-
lutions that violate the packing constraints (esp: edge capacities) by
a small multiplicative factor of at most (1+3ε). Normally, this is not
an issue due to the above under-allocation, i.e., (1+ 3ε)βe ,t ,τ ⋅ ce can
be smaller than ce . Hence, then, we set the β value in the next time
step (βe ,t ,τ+1) to be the maximum between the planned β value and
the edge capacity fraction that has already been allocated ( h

τ
e ,t(f)
ce
).

�is approach is the common case and allows us to cope with ca-
pacity violations due to the approximate nature of the solver.
Post-Processing LP: However, it may be possible that the capac-
ity violations due to the solver truly exceed edge capacity. �is is
more likely for the current time-step, wherein all of the edge ca-
pacities are available for allocation (βe ,t ,t = 1) as well as for time-
steps in the near future that have high β values. One possibility is to
try and repair the over-allocation by steering tra�c from the edges
where capacity is violated on to other edges and times. However,
since the capacity violation can happen on any future edge, the op-
timization problem to repair would also have time as a dimension
and can be large. Another alternative is to reject solutions that vi-
olate edge capacity, i.e., consider a given (α,U) feasibility question
to be infeasible even though the solver reports feasibility if it o�ers a
�ow assignment f that violates edge capacity. Tempus chooses this
option. Due in part to such rejections the approximate solver can
fail to fully allocate the edges in the current time-step even though
�ows that could use the capacity exist. Hence, a�er the searches for
maximum α and then maximum U have concluded, Tempus uses
a post-processing LP that aims to maximize the utility by allocating
all of the unused capacity in the current time-step. Since this LP
only relates to the current time-step, it is considerably smaller than
the calendaring LP and can be solved quickly.
High-Priority Requests: As already mentioned in §3, high priority
requests arrive in an online manner andmust be satis�ed. To incor-
porate highpri requests in LPτ(α,U), Tempus adds a new request
that arrives and ends in the current time-step, has demand equal to
the cumulative demand of highpri requests, and requires full ser-
vice, i.e., promise = 1. Further, for future time-steps (t > τ), re-
call that Tempus sets aside some capacity for highpri requests (χe ,t).
�is can be done by replacing the corresponding ce with (1− χe ,t)⋅ce
in the above description of Tempus. Tempus infers χe t based on his-
torical usages of highpri tra�c per-edge, per-time-of-day.
Since the χs are only estimations, it might be that when the

true demands of highpri requests for the current time-step become
known, they need more than the fraction set aside for them. As
a consequence, satisfying the highpri requests fully may require

Figure 3: Tempus’s work�ow

Figure 4: State kept by Tempus; at time-step τ, for currently active re-
quests i ∈ R(τ) and future time-steps t ≥ τ.

lowering previously promised �ow. As before, note that Tempus’s
under-allocation of future edges helps: in particular, the allocation
in the previous time-step leaves some capacity unallocated on the
edges in the current time-step (1 − βe ,τ ,τ−1 fraction). If the over-use
is smaller than this amount, nothing more needs to be done. If not,
Tempus uses a small pre-process LP that considers only the current
time-step and lowers pre-scheduled �ow by the amount needed to
accommodate the highpri requests while minimizing the e�ect on
the promises already o�ered. As the name denotes, the pre-process
LP runs �rst, at each time-step. Since the pre-process LP only con-
siders the current time-step, it is small and quick. Further, when
Tempus subsequently searches for best α satisfying LPτ(α,U), any
requests that were impacted by the pre-process LP, and hence had
their promises reduce, would be preferentially served, i.e., o�ered
more �ow at some future time-step. Finally, we observe that link
and switch failures can also be modeled as if an additional highpri
request arrives on each of the failed edges with demand equal to link
capacity. Intuitively, this structure – ensure current time-step is fea-
sible and then mitigate the impact on requests by giving themmore
�ow on other paths or at other times – allows Tempus to accommo-
date apriori unknown amounts of highpri tra�cwith a small impact
on promises to long-running transfers.

5. IMPLEMENTATION OF Tempus
So far, we have described the theoretical framework behind Tem-

pus. In this section, we focus on some more practical aspects.

5.1 System overview
Architecture. Figure 3 describes how Tempus operates. At each
time-step τ, Tempus �rst attempts for fair allocation, i.e., maximize
the minimum promise to all currently active requests (maxmin α i ,
as in §4.2). �en, to allocate any remaining bandwidth Tempus at-
tempts tomaximize total utility (as described in §4.2). Around these
core pieces, are a few additional pieces: a pre-process LP that at each
time step reduces pre-scheduled �ows on edges where a higher-than
expected volume of high-priority tra�c causes allocation to exceed
capacity (§4.2.3); a post-processing LP that allocates any further re-
maining bandwidth on the edges at time-step τ so as to improve to-
tal utility (as described in §4.2.3); and �nally, a state repair step that
changes the internal state variables from being a feasible solution to
the current set of packing-covering constraints towards being a fea-
sible solution to the new set of packing-covering constraints for the
next time-step.
State maintenance. Figure 4 depicts the state maintained by Tem-
pus. �e �rst row is the input, the per-request tuple. �e next three
rows are Tempus’s state per edge, per request and for total utility.
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Figure 5: An illustration of how Tempus partitions requests to threads.
�ere is one thread per interval. RA is always assigned to thread 2 since
it is only active in that interval. RB is assigned to either thread 2 or 3with
equal probability since it lies half in each of those intervals.

Per edge, per time, Tempus retains the internal variable y (de�ned
in §4.1.1), the fraction of an edge’s capacity that has been set aside
for highpri tra�c χ and the amount that has already been allocated
h. Per request, Tempus retains internal variables related to its pack-
ing and covering constraints (q, z respectively), the amount of �ow
already routed Fi ,τ−1 , the promised fraction α i , and the amount of
�ow to be routed at each future time-step t in order to achieve this
promise Q i ,t . Similarly for utility, Tempus retains internal variable
r, utility achieved so far U i ,τ−1 and promised utility U . In particu-
lar, note that Tempus does not retain the �ow assignment vector f ,
which has a value per edge, per time, per request; the above state
represents everything needed for planning. Repairing state, refers
to editing state at the end of current time-step to be appropriate for
the next time-step. In particular, the internal variables y, z, q, r, are
edited as per their de�nition in §4.1.1 to remove the e�ect of �ow
that has been routed in the current time-step. Newly arriving edges
for time-step τ+W+1 are initialized with y = 1 indicating zero �ow;
similarly, newly arriving requests receive z, q = 1. Finally, we note
that the state maintained by Tempus is O(mW +W ∣R(τ)∣), where
m is the number of edges,W is the window size that Tempus plans
over and R(τ) is the set of requests that are active at time τ. Of these,
we believe R(τ) to be the largest; several hundred requests between
each pair of datacenters. �is is signi�cantly smaller than the state
used by a typical LP solver: per-edge (or per-path), per-request and
per-time, namely O(mW ∣R(τ)∣).

5.2 Parallelizing Young’s algorithm
From Figure 4, observe that some of the state that Tempus has

to keep can be partitioned by time (y, χ, h) and the rest can be par-
titioned by request (z, q, F ,Q). Further observe from Algorithm 2
that except for the values of ∑ y,∑ z,∑ q in the denominators of
(∗), the remaining computation– �nding a tuple (i∗ , p∗ , t∗), rout-
ing additional �ow for that request, editing the state etc.– can be
done in parallel. Since the calendaring problem becomes harder the
more time and more requests that one has to plan jointly, it would
be very satisfying to parallelize the computation per-time and per-
request; such a parallel version, if possible, could �nish in constant
time given enough threads.
We are able to achieve this goal partially; the overlap between re-

quests’ active times and the sums in the denominators of (∗) require
synchronization. Step 1: we divide the total time into intervals and
assign each to a di�erent thread. �e time-intervals are chosen so
as to equalize the "load" (request count); (hence, intervals can have
di�erent lengths). As described in Fig. 5, requests that are active
in multiple intervals are alternatively assigned to either range, with
probability equal to the relative duration of the request in that time-
interval. Step 2: we ask each thread, given a time interval and some
requests, to make forward progress, e.g., 104 iterations. While most
threads make forward progress, we repeat these steps. Towards the
end of the execution, where the number of unsatis�ed requests is
small, we switch to single-thread execution (the parallelization over-

head dominates otherwise). Finally, to avoid contention between
threads on the shared variables, we have the threads search for a fea-
sible tuple (i∗ , t∗ , p∗) and prepare a speculative update to the state
variables; the actual update is performed quickly under an exclusive
lock. We �nd speculation to succeed over 99.9% of the time and as
we show in our evaluation on a single server, we �nd a roughly linear
speedup up to 30 threads.

5.3 Efficient flow assignment
Searching for a feasible tuple. In principle, �nding an (i∗ , t∗ , p∗)
tuple that satis�es (∗) (see Algorithm 2) can be hard. A simple ran-
dom search over each of these values (request, time, path) can take a
long time since not all tuples will satisfy (∗) esp: in later iterations of
the algorithm. Instead, we observe that for each request, its shortest
path has the smallest value of the le�-hand-side (LHS) (path length
is measured as∑e∈p

ye ,t
ce
). Hence, if there exists a tuple that satis�es

(∗), at least one of the shortest paths must satisfy (∗). Using this
observation, we maintain a sorted list of the shortest paths through
the network for each request, time-step. We then iterate over re-
quests and check if their shortest path (overall) satis�es (∗). Note
that the running complexity to �nd a feasible tuple is now the order
of number of active requestsO(∣R(τ)∣), whereas before it wasmuch
larger O(∣Pi ∣WR(τ)).
E�cient updates to shortest path.�e shortest path data-structure
has to be updatedwhen path lengths change; for example, when new
�ow is allocated on an edge, the edge length ye ,t changes. Observe
that if some �ow was allocated for (i∗ , t∗ , p∗), the shortest-paths
can change only for time t∗. Even better, since the edge lengths
only increase, the shortest paths could only have changed for re-
quests whose shortest path at t∗ has common edges with the path
p∗ (whose �ow has been augmented). By keeping appropriate data
structures (e.g., for each (e , t), the list of requests whose shortest
path at time t passes through e), this observation quickly updates
the shortest paths that change in each iteration.

6. EVALUATION

6.1 Methodology
Datasets: We evaluate Tempus on the topology and tra�c matri-
ces from one of Microso�’s production wide area networks. Nodes
in the graph are PoPs and edges are bundles of optical links. �e
network has 40 nodes and 280 edges. We also evaluate Tempus on
larger synthetic topologies.
We collected sampledNetFlowdata at every ingress into theWAN

to obtain �ve-minute averages of tra�c sent betweenPoPs (one day’s
worth of data overall). From discussions with cluster operators, we
identi�ed the portion of this tra�c that is considered highpri. Recall
that wemodel highpri tra�c as an unpredictable amount of demand
that arrives in each time step and has to be completely satis�ed. �e
remaining tra�c portion, which is the bulk of the bytes on theWAN,
are attributed to large requests. While NetFlow traces do have TCP
�ow level information, we could not identify which of the �ows be-
longed to a single request (e.g., moving a petabyte between data-
centers). Instead, we interviewed cluster operators for typical dis-
tributions of the sizes of requests and the durations between their
arrival and hard deadline. Given a tra�c demand between a pair
of PoPs, we repeatedly sample from these distributions to generate
large transfer requests until their cumulative volume equals the ob-
served tra�c demand.
Load factor: To evaluate calendaring solutions under a wide range
of network load, we scale the actual tra�c demandmatrix by a con-
stant factor, that we call load factor.
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Figure 6: Minimum request fraction satis�ed post-facto.
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Figure 7: Fraction of transfers that �nish before deadline.
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Figure 8: Total utility.

Metrics:We compare solutions on these metrics:
● MinFract. (or α) �is metric is the minimum of the fraction of
request that is transferred before deadline. It bounds the worst-case
behavior of a calendaring solution and also measures sensitivity to-
wards unpredictable arrivals or load changes. An ideal calendaring
scheme would o�er the largest possible value of α.
● Requests �nishing before deadline. �is metric measures how
many requests �nish on time. When the network load is low, car-
rying as much �ow as possible will satisfy all (or most) deadlines.
However, as the network load increases, �nishing more requests on
time requires carefully spreading tra�c across available paths and
time. Also, there is a tension between �nishing more requests vs.
o�ering a minimum guarantee to every request.
● Total utility or δ.Whereas the above measure is binary, 1 when a
requestmeets its deadline and 0 otherwise, thismetric is a smoother
measure of the total utility from carrying tra�c. Recall that our
design can handle arbitrary measures of utility, including the case
where each request speci�es, a non-negative number per timestep to
depict the value per unit demand that is satis�ed at that time step.
Here, we use a simpler variant: the average fraction satis�ed over
all large transfers. A calendaring solution should maximize utility.
However, there is a similar tension betweenmaximizing α (the min.
share of a request) versus maximizing δ.
● Promise. A guarantee is only useful if provided pre-facto.
Whereas α above measures the minimum post-facto fraction that
each request gets served, with promise, we measure what the cal-
endaring solution can guarantee ahead of time to each request.

�is is not relevant for o�ine solutions; their promise equals the
best achievable fraction. For online schemes, however, where fu-
ture arrivals of large requests and the remaining capacity a�er serv-
ing highpri transfers is unknown, it is challenging to specify a
high promise. An ideal calendaring solution should o�er as high
a promise as possible, as early in a request’s lifetime as possible and
ensure that the promise does not decrease over request lifetime.
●Running time,memory usage.Weare also interested in how long
the di�erent solutions take to run; howmuchmemory they use; and
how well these scale as the size of the problem increases.
Compared schemes:

●O�ine Optimal (Gurobi): We formulate the calendaring solution
as a sequence of two LPs over all requests and over all time-epochs.
�e �rst LP maximizes α, and then the second LP maximizes δ,
where the optimal α obtained in the �rst LP is incorporated as a
constraint (α, δ de�ned above). Gurobi was the best performing of
the commercially available LP solvers that we experimented with.
● Tempus: We built an incomplete implementation of Tempus. In
particular, bounded time horizon has not been implemented. �e
o�ine variant does the same as above except by invoking Young’s
instead of an LP solver. �e online variant is as described in §4.2.
Also, we have implemented parallel versions as described.
●GreedyMaxFlow: �is is an online solution. At each time step, this
scheme �rst routes highpri tra�c. �en, given all the un-satis�ed
demands, it uses an LP solver to maximize the total �ow that can be
served in the current time step. It does not plan into the future.
● Greedy MaxMinFract: �is is an online solution similar to the
above; the only di�erence is that the LP solver’s goal is to maximize
the minimum fraction served for all pending requests.

6.2 Value of calendaring
We compare the performance of online version of Tempus with

online alternatives and the o�ine optimal. Figure 6 shows that at
high load both the Greedy schemes have very small minimum of-
fered service (α). In fact, the α quickly reaches zero for Greedy
MaxFlow; that is unlucky requests can receive no service at all. �is
is because both the Greedy schemes plan one timestep at a time. By
planning into the future, we see that the online variant of Tempus
continues to o�er a high minimum service, closely approximating
that achieved by the o�ine optimal.
Note that Gurobi could not compute the o�ine optimal for load

factors above 1 because it could not �nish within the time-limits im-
posed by Gurobi so�ware. Sometimes looking for the best α would
�nish but not the second LP of maximizing δ given the best α. �e
main issue is the degree of precision that the LP solvers operate at;
lower precision values let the solver �nish quickly but lead to poor
answer quality. E.g., Gurobi has a parameter called optimalitytol;
with the default sensitivity value of 10−6 , maximizing α yields an
α that is 2X smaller than the best possible value; setting sensitivity
to 10−7 yields the best α but takes 5X more time. �roughout our
evaluation, whenever Gurobi solver times-out, we re-run with pro-
gressively smaller sensitivity parameters. We believe that doing so is
okay because running time is a challenge that cannot be neglected
when looking at calendaring solutions. As we show later, Tempus
�nishes well within that time.
Figure 7 shows that even at high load factors, there is enough

residual capacity a�er serving highpri tra�c to �nish most requests
before their deadline. Between these two �gures, it is interesting to
note that the Greedy, single timestep planners, have a hard choice.
Maximizing the minimum guarantee, such as Greedy MaxMin-
Fract (shown with star markers) does, �nishes very few �ows be-
fore their deadline. �is is because whenever some request has a
large pending demand, MaxMinFract has to allocate more capacity
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(a) Load factor 0.7
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(c) Load factor 3

Figure 9: How the promised fraction evolves over lifetime of requests? We show the average promise over all requests.

Instance. # nodes
(n)

# edges
(m)

# transfers
(R)

# timesteps
(T)

prod. dataset 40 280 104 288
E1 200 1000 104 2000
E2 200 1000 2 ∗ 104 2000
E3 200 1000 2 ∗ 104 5000
E4 200 1000 2.5 ∗ 104 5000
E5 250 1250 3 ∗ 104 8000

Table 2: Comparing Tempus with Gurobi on larger instances. For all in-
stances, we choose 15 paths per src-dest pair; the transfer sizes and dura-
tions were scaled proportional to the number of timesteps, transfers such
that the load factor remains around 0.4.

to that request. Maximizing total �ow, as Greedy MaxFlow (shown
with light squares) does, �nishes more �ows before deadline but at
the cost of signi�cant unfairness (α =0 for load factors ≥ 1).
Figure 8 shows a similar trade-o�. Whereas the Greedy schemes

can only do one of these two well: �nish more �ows before deadline
or o�er a high minimum guarantee post facto, the online variant of
Tempus does both well and is nearly the same as optimal.
Figure 9 shows how the promise evolves over the lifetime of a

request. We see results at three di�erent load factors; the promise
value is averaged over all requests; the x axes plots the fraction
of request lifetime. First, we see that Tempus begins with a high
promise when the requests arrive, much higher than either version
of Greedy. Second, due to the online nature of Tempus and the
network smoothening, the promise gradually increases with time,
as Tempus becomes more con�dent of how much capacity will be
available in the future. �e Greedy schemes can promise no more
than the fraction that has already been served. Finally, we see that
the best possible promise from the o�ine oracle reduces as the load
factor increases. In all cases, Tempus reaches a promise that is over
80% of the best possible promise when the request is a ��h of its way
into its lifetime (x=0.2). At high load factors, even when requests
come close to their end, neither Greedy scheme o�ers as large an
average promise as Tempus.

6.3 Computational costs, Scalability
Recall that one of our reasons behind using mixed packing cov-

ering solvers in Tempus is to scale to larger problem sizes. Figure 10
compares the running time and memory used by Gurobi with an
o�ine variant of Tempus for larger instance sizes. Table 2 describes
the instances. Notice that as proved in�eorem 3, the runtime of the
online variant of Tempus isO(ln(mTK)(Xr+K)/ε2) per timestep,
the∑ Xr over all timesteps isO(mT+K) and the runtime of the of-
�ine variant isO(ln(mTk)(mT+k)/ε2). Here, k is the total number
of requests whereas K is the number that are active at each timestep;
hence K ≤ k. Hence, loosely speaking, the per timestep runtime of
online Tempus is 1

T that of the o�ine variant. Gurobi ran on a 4
core 3.3GHz Intel Xeon E31240 with 16GB of memory. Tempus with
15 threads ran on an 8 core 2.5GHz Intel Xeon L5420 with 16 GB of
memory. �e latter is several years older; the disparity is because
our Gurobi license was for a speci�c server. Our implementation of

(a) Running time

(b) Memory usage

Figure 10: Comparing the scalability of Tempus vs. Gurobi on the large
instances shown in Table 2.

Figure 11: Tempus’s running time vs. number of threads.

Tempus is in a high-level language that has garbage collection and
is not optimized.
Regardless, we �nd that Tempus obtains comparable if not better

running times than Gurobi. Further, Tempus uses signi�cantly less
memory. �ese gains are because our implementation has no vari-
able that is indexed per time, per request, per path. �ough such a
variable exists in our formulation, we realize that the state needed
for the packing covering problem is smaller (see §5.1 for details).
Finally, Figure 11 shows how the running time of Tempus changes

when di�erent numbers of threads are used. We see a sub-linear
speedup. At 30 threads, the machine’s CPU was consistently pegged
at 100%. However, servers with up to 32 or more cores are available
at modest prices hinting that Tempus can be sped up further. We
take care to point out that our parallelization of Tempus is not the
best possible; we attempt to but do not always ensure that the degree
of parallelism is as much as the number of threads.



7. RELATED WORK
Tra�cEngineering (TE) has been a long standing problem in net-

working. Early work focused onminimizing themaximum link uti-
lization in order to avoid congestion. Somewere adaptive [14]; some
were oblivious to demands and network failures [1, 9]; some dis-
tributed tra�c across paths [1, 14] while others computed suitable
routing parameters (e.g., edge weights for OSPF equal cost multi-
path routing [9]). Recently [5, 6] consider the problem of sustaining
di�erent fairness criteria in a shared network. We note that to max-
imize return on investment inter-DC WANs run at nearly full uti-
lization and hence, minimizing congestion does not apply. Further,
prior work does not consider deadline SLAs for large transfers.
Tra�c engineering for datacenter WANs has been a recent topic

of research. NetStitcher [17] uses information about future band-
width availability to move data between datacenters at low cost; it
does not support deadlines for requests. B4 [13] and SWAN [11],
designed by Google and Microso�, respectively, focus on improv-
ing the utilization of the inter-DC WAN. �e resource allocation
policies o�ered therein can be classi�ed as greedy/ one timestep,
namely they do not compute long-term allocation schedules which
are needed to o�er deadline SLAs for long-running requests.
Deadlines have been considered in di�erent subareas. Some prior

work supports deadlines for �ows within a datacenter by suitably
modifying TCP or designing new transport protocols [4, 21, 23].
�e calendaring problem is fundamentally di�erent, as it operates
at a much longer time scale and schedules requests which are aggre-
gations of many �ows. Other recent work considers deadlines for
batch jobs in large clusters [7, 12, 19]. �e algorithmic tools devel-
oped therein do not apply to the calendaring contextmainly because
we need to consider network routing in addition to scheduling.
Packing and covering problems have been considered extensively.

Some algorithmic work adapts techniques from multi-commodity
�ow to general mixed packing and covering systems of inequali-
ties [20] and proves that the running time of the algorithm depends
only on the number of variables and constraints [10, 8]. Young [24]
presented a further improvement. We extended Young to the online
case, observed ways to speed-up the search for a feasible increment,
to reducememory footprint and also a novel parallelizationmethod.
Finally, we note several fast algorithms for solving pack-

ing/covering linear programs, and speci�cally the Concurrent
Multicommodity Flow problem. Some of these works deal only
with pure packing or pure covering constraints, e.g., [2, 18], whereas
calendaring needs a mixed packing/covering LP. Some others [2, 3]
take longer to converge when approximation error has to be small.
Recall that ε appears in bounds on the amount of violation in con-
straints; whereas the running time of Young’s depends on ε−2 , those
other works have running time proportional to ε−5 and ε−6 , respec-
tively. Even faster probabilistic algorithms exist [16], however they
are more complex and do not always �nd a feasible solution.

8. CONCLUDING REMARKS
In this paper, we design Tempus, a novel WAN transfer frame-

work, which schedules long-running transfers in space and time.
�is allows the network provider to accommodate both high prior-
ity tra�c and long-running requests. Tempus uses an e�cient on-
line algorithm which incrementally utilizes a quick mixed packing-
covering subroutine. Our simulation results demonstrate that Tem-
pus clearly outperforms greedy state-of-the-art heuristics in terms
of both transfer ratio guarantees and promise quality. Further, Tem-
pus is e�cient in terms of running time, memory usage, and update
overhead, which we believe would make it an attractive framework
for future tra�c engineering systems.

While we focus here onmaking intra-orgWAN transfersmore ef-
�cient, we believe that the ideas in Tempus can be used in other con-
texts. For example, in the public cloud setting, where customers pay
the cloud provider for data transfers, Tempus could be used to sup-
port new pricing frameworks where users specify data size, deadline
and their willingness to pay. Customers can receive discounts for
willingness to defer transfers, and providers can exploit price di�er-
entiation for more pro�ts. More generally, Tempus can be reused
whenever sequences of optimization problems, which change based
on some underlying structure, have to be solved e�ciently.
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