
.NET Gadgeteer: A New Platform for
K-12 Computer Science Education

Steve Hodgesa, James Scotta, Sue Sentanceb, Colin Millerc, Nicolas Villara,
Scarlet Schwiderski-Groschea, Kerry Hammilc, Steven Johnstona

a: Microsoft Research Cambridge
7 JJ Thomson Avenue
Cambridge, CB3 0FB

+44 1223 479700

b: Anglia Ruskin University
Bishop Hall Lane, Chelmsford

Essex, CM1 1SQ
+44 845 196 3519

c: Microsoft Corporation
Microsoft Way

Redmond, WA 98052
+1 425 703 4530

 {shodges,jws,colinmil,nvillar,scarlets,khammil,v-stejo}@microsoft.com sue.sentance@anglia.ac.uk

ABSTRACT
In this paper we present the features of a new physical device
prototyping platform called Microsoft .NET Gadgeteer along with
our initial experiences using it to teach computer science in high
schools. Gadgeteer makes it easy for newcomers to electronics
and computing to plug together modules with varied functionality
and to program the resulting system’s behavior. We believe the
platform is particularly suited to teaching modern programming
concepts such as object-oriented, event-based programming and it
could be a timely addition to established teaching tools given the
current interest in improving high school computer science
education in some regions. We have run a number of pilot studies
in the US and in the UK with students of varying age and ability.
Our results indicate that the tangible and expressive nature of
Gadgeteer helps to engage and motivate a diverse set of students.
We were also pleasantly surprised by the level of polish and
sophistication of the devices which were built. We hope to further
explore the potential of Gadgeteer for teaching in future work and
we encourage others to build on our experiences.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education–computer science education, curriculum,
information systems education, literacy. D.2.6 [Software
Engineering]: Programming Environments–graphical, integrated
& interactive environments. D2.m [Software Engineering]:
Miscellaneous–rapid prototyping, reusable software.

General Terms
Algorithms, Design, Experimentation, Languages, Theory.

Keywords
K-12 computer science education, prototyping platform, modular
hardware, tactile learning, Microsoft .NET Gadgeteer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.
Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

1. INTRODUCTION
There is a growing acknowledgement that computer science
teaching in high schools has not kept pace with the remarkable
growth of computing and related technologies in society. For
several years, bodies such as the Computing At School (CAS)
group in the UK and the Computer Science Teachers Association
(CSTA) in the US have actively promoted the need for a stronger
emphasis on computer science in the curriculum and associated
facilities and expertise in schools [3], [13]. A recent report by the
UK Royal Society highlights an unsatisfactory level of computing
education in many UK schools and states that computer science is
sufficiently foundational that it should be recognized with equal
importance as subjects like mathematics, physics and history [8].

As a result of this awareness, we are starting to see changes in the
curriculum coupled with additional qualification options for
students aged 14-18 along with increased adoption of computing-
related content in schools for younger students [4]. Consequently,
more than ever there is a need for engaging resources and vehicles
for teaching computer science. Given the dramatic change in the
way in which computer-related technologies are used in homes
and workplaces – from smartphones and tablets to social
networking – it is also timely to re-examine exactly what should
be taught within the curriculum to “bridge the gap” between
computer literacy and computer science [2].

A number of different programming environments and tools are
well-established in a secondary computing education context. In
particular systems such as Scratch1 Alice2, Greenfoot3 and Kodu4
have been shown to motivate and engage young people. The
constructivist learning theory claims that knowledge is actively
constructed by the student [1]. This suggests that active
participation in problem-solving is very valuable, and critical
thinking regarding a learning activity which the students find
relevant and engaging is encouraged. Papert built on this concept
by introducing the term ‘constructionism’ to indicate a
combination of constructivism and hands-on construction [6].

We have recently been exploring how a new platform which we
have developed – Microsoft .NET Gadgeteer5 [11], [12] – might
be used as a tool to support hands-on constuctionist computer

1 http://scratch.mit.edu/
2 http://www.alice.org/
3 http://www.greenfoot.org/
4 http://www.kodugamelab.com/
5 http://netmf.com/gadgeteer/

science learning in high schools. Gadgeteer enables rapid creation
of small electronic gadgets and digital devices. A key property of
Gadgeteer is the use of physical hardware rather than the virtual
environment approach taken by systems like Greenfoot, Logo and
Kodu. This provides the excitement of a hands-on experience and
the reward of physically building something, while also making it
easy to introduce modern programming concepts like object-
orientation and event-based programming.

The use of physical hardware in the context of K-12 computer
science education has been explored previously through systems
such as Logo-based turtles, Lego MindStorms and a variety of
robot-based education products. These constructionist tools have
engaged many students but are not yet established in support of
the complete K-12 CS curriculum. The ScratchBoard/PicoBoard
provides a tangible, hardware-based extension to Scratch which
can be useful for younger students but is still quite limited both in
terms of hardware flexibility and the programming experience.
Modkit [5] extends the Scratch environment with a ‘code view’
and supports a wider variety of Arduino-based hardware but does
not have the flexibility of Gadgeteer or the ability to create stand-
alone electronic devices. The Sense system [7] similarly builds on
Scratch and provides a modular tangible hardware experience
through the SenseBoard, but is primarily aimed at adult learners.

In this paper we describe the Gadgeteer system and explain the
features which we feel make it suitable for teaching. We present
two initial pilots where Gadgeteer was used to teach aspects of
computer science to students aged 11-18 in schools in the UK and
US. We give an overview of our methodology and report on
classroom experiences. We end by presenting avenues for future
work which our pilots have uncovered. Our aim is to inform
others who are active in the field of high-school computer science
education of the potential of Gadgeteer as part of a portfolio of
tools which teachers can use to engage a diverse set of students.

2. MICROSOFT .NET GADGETEER
The Microsoft .NET Gadgeteer system is an open and modular
platform we created to facilitate the design, programing and
construction of digital devices [12]. The ease of building new
hardware coupled with powerful software development results in
a very low hurdle for creating simple projects, but also supports
more sophisticated applications. The open source nature of the
platform6 enables multiple manufacturers to create a diverse set of
interoperable hardware. We now discuss the particular features
we feel make Gadgeteer an interesting platform for CS education.

2.1 Hardware
At the heart of each Gadgeteer project there is a central
‘mainboard’ which includes a processor and a number of
electrical sockets. The sockets may be used to attach a variety of
‘modules’ – different sensors, actuators, displays, communication
and storage elements. Gadgeteer supports well-established
protocols and formats such as USB, TCP/IP, FAT file systems,
JPG/BMP/GIF images and WAV/MP3 audio files. Consequently
modules can support quite sophisticated functionality including
audio playback, color image display, Ethernet, WiFi, SD cards,
USB keyboards, mice and cameras etc. Of course, Gadgeteer also
supports simpler modules such as LED lights, buttons, joysticks,
buzzers, light sensors etc. A growing number of modules are
commercially available, around 100 at the time of writing.

6 http://gadgeteer.codeplex.com/

The use of modules creates a very flexible platform with which
many different devices can be built and programmed, promoting
creativity. The solder-less composability of the elements means
that students can construct sophisticated devices in minutes, and
these can subsequently be re-configured and extended just as
quickly. By using modules rather than the underlying hardware
components such as individual LEDs or ICs, Gadgeteer is easier
and faster to use and is more robust. It also encourages students to
approach the corresponding software in a modular way.

2.2 Software development
From a programming point of view, code may be written in either
C# or Visual Basic (VB). These high-level languages enable
relatively sophisticated yet robust programs to be created quickly
and as a result are very popular with professional programmers.
The Gadgeteer system is tightly integrated with the Visual Studio
(VS) integrated development environment (IDE) which is freely
available as the “Express Edition” in addition to its commercial
variants. While Visual Studio has a steeper learning curve than
bespoke educational programming environments, it familiarizes
students with the kind of professional tools used in modern
software development. In particular, students can take advantage
of features like automatic inline API documentation, dynamic
syntax checking, real-time debugging and auto-completion of
variable names, method calls, code snippets etc., see Figure 1.
Also, there are no artificial ceilings in terms of the complexity of
the projects and the development experience since any of Visual
Studio’s features can be used. For example, a shared library can
be created for use by many students and projects, source control
systems can be used for group project work, and so on.

2.3 Visual designer experience
Gadgeteer support is integrated into the VS IDE via Visual
Studio’s “plug-in” architecture. We have created a new visual
representation for Gadgeteer projects which we call the “designer
view”, see Figure 2. This acts as the bridge between hardware and
software and is the first screen that a user sees on creating a new
Gadgeteer project. It specifies to the software which hardware
modules are included, provides editable names for each of these,
and assists the user with connecting the cables from modules to
compatible mainboard sockets. The user can then go on to write
C# or VB code to specify what this device actually does. Figure 2
shows the designer view during the creation of a digital camera.

Figure 1. Real-time auto-completion in Visual Studio lists
object methods, properties and so on in real-time as you type.

Figure 2. A ‘designer view’ in Visual Studio lets students
create a graphical representation of the modules in a project
and how they are connected to each other.

Figure 3. Real-time debugging allows students to pause
program execution and examine and edit variables.

2.4 Real-time remote debugging
Through Visual Studio and the underlying .NET Micro
Framework, Gadgeteer supports real-time debugging of whatever
code is running on a mainboard. This debugging channel is
established via USB and it enables a number of features.
“Breakpoints” can be set up to cause execution to pause at
specific places in a program. The state of variables can then be
examined (see Figure 3) and even modified during execution; the
program can be “stepped through”; and “immediate” commands
can be executed as if the device was interpreting code rather than
running compiled code. These features, commonly found in
desktop environments, are much less common on embedded
platforms but are immensely useful in a teaching context. For
example, it is possible to “step through” algorithms to see how the
variables interact and how control structures operate. It also gives
students a realistic professional software development experience.

2.5 Programming model
Gadgeteer uses an event-driven programming model. This is in
line with many modern programming environments such as
Javascript, and lends itself to programming parallel behaviors like
blinking two LEDs at different rates in a thread-safe manner.

The functionality of each Gadgeteer module is wrapped up in a
software class which acts as an object-oriented “device driver” for
the relevant hardware. This hides the underlying complexity of
initializing, communicating with, and controlling that module.
For example, an accelerometer driver can provide a high-level
API that might include a “GetReading()” method which returns an
“Acceleration” class with floating-point fields “X”, “Y” and “Z”
and a “Magnitude” property. The driver might also provide a
“HighAcceleration” event. In this way drivers expose module
functionality in a very accessible manner. Of course, it is possible

for more capable students to develop their own drivers if
appropriate. Note that objects can be instantiated multiple times
if several identical hardware modules are used in a single project.

2.6 Bringing it all together
One short example which simultaneously illustrates the simplicity
and the sophistication of Gadgeteer is the construction of a self-
contained digital camera. Until very recently this would have
required considerable hardware and software development skills.
With Gadgeteer the first step is to use the VS Designer to specify
the hardware components and how they are connected. In the case
of a digital camera, an image sensor, an SD storage card, a
touchscreen and a push button are needed along with the
mainboard and power supply modules. Having “wired these up”
graphically on-screen, it takes just a couple of minutes to
construct the corresponding physical hardware, Figure 4. The
basic operation of taking a photo, displaying it and saving it to a
memory card can be specified in essentially just five lines of
code. Auto-completion and dynamic syntax highlighting make
coding incredibly easy. Figure 5 shows the resulting application
in its entirety. When this application starts up, two methods which
serve as event handlers are registered. The first executes when the
“shutter” button is pressed, and this requests the camera to take a
picture. Once the picture is captured, the second method is
triggered and the picture is displayed and saved to the SD card.

Figure 4. An example digital camera built with Gadgeteer.

Figure 5. The entire camera application is just 5 lines of code.

3. CLASSROOM EXPERIENCES
In the 2011/2012 school year we trialed Gadgeteer in the
classroom to gain experience of its suitability for high school
computer science education. We ran a total of five pilot studies:
two in the UK with 11-17 year-olds and three in the US with 14-
18 year-olds. These pilots were implemented differently in the
two regions, and are described in more detail below.

3.1 UK Pilots
The two UK pilots involved 16 secondary schools, mostly state-
funded and mixed gender. Teachers willing to trial Gadgeteer in
the classroom were recruited and given initial training either in
groups or 1:1. They were also provided with session plans and
example projects; C# was used throughout. Gadgeteer was then
taught for around 12 weeks, mostly in extra-curricular ‘lunchtime’
or ‘after-school’ clubs attended by students ranging from 11 to 17
years old. The students typically worked in groups of 3-4 with
one Gadgeteer Fez Spider7 starter kit from GHI electronics per
group.

The session plans consisted of 8 separate modules with
approximately one hour’s teaching material in each. They
contained all the instructions for carrying out the tasks including
code samples. Following the first UK pilot all the materials were
refined based on feedback and observations and they are available
online8. Towards the end of the 12 week duration of each pilot,
students were invited to invent and program a device of their own
design, and enter this into a competition. The students enjoyed
being creative and implementing their own ideas. Prizes were
given for originality and technical merit.

Approximately 150 students were involved in the UK pilot,
attending an average of 8 sessions each, although this varied
significantly from school to school. More details of the first pilot
are presented in [10]. Feedback gathered from students and staff
is presented in Section 3.3.

3.2 US Pilots
In the US Gadgeteer was used in direct support of computer
science curriculum teaching in three suburban public high schools
around Seattle, WA. Two courses were offered, ‘Introduction to
Computer Science’ and ‘High School Computer Programming’.
The latter class provided an option for college credits. Both
courses were one semester long, about 75 class hours of
instruction, and as a result covered much more depth than the UK
pilots. One course was taught by an accredited teacher and one
was taught under supervision of an accredited teacher. Both
classes were open to students from freshman through senior (14-
18 years old).

The courses were intended to raise the students’ proficiency in
computer science concepts and computer programming to allow
them to progress to more advanced high school classes like
Advanced Placement (AP) and International Baccalaureate (IB) or
to pursue engineering at college level. In addition to material on
computer organization, data structures, algorithms and
programming constructs (looping, conditional logic, variables) the
courses focused on ‘computational thinking’ [14]. This provided
students with exposure to generally applicable problem
decomposition and analysis techniques.

7 http://www.ghielectronics.com/catalog/product/297
8 http://netmf.com/gadgeteer/forum/

In the ‘Introduction to Computer Science’ course, the students
spent several weeks becoming familiar with programming
constructs by using Scratch to create several games, one of which
they controlled using an Xbox Kinect gaming controller.

Following the introductory period, for the remainder of the
semester the students worked in Visual Studio C# Express Edition
and used Gadgeteer. They completed several small projects and
one larger one. The large project involved creating a fully
functional digital camera. The students programmed the camera
so that it could take multiple pictures, store them to an SD card,
scroll through them, etc. User interaction with the camera was
supported via a large Gadgeteer touch screen, requiring the
students to create an on-screen menu system and interpret user
input. The hardware modules were encased in a laser-cut wooden
enclosure provided to the students which allowed them to take the
camera out of the classroom to take part in a photo contest.

3.3 Feedback and outcomes
Students were generally very positive about the way that
Gadgeteer gave them the freedom to develop their own devices:

“You’re allowed to be sort of creative and sort of like make
anything – so you weren’t really limited to what you can
make. You’re in control; you can take an idea anywhere and
use the hardware that’s available...” (Student, 1st UK pilot)

“It’s nice when you finish a product …and you’re always
looking to improve in certain areas, like can I make this
camera function better, could I make it hook to an SD card,
could I enable it so that it has internet connectivity. It’s asking
those sort of questions .. that’s really enabled me to enjoy
such projects.” (Student, 1st UK pilot)

 “I thought overall this semester was a success. It got really
confusing sometimes but once you got it, it was awesome.”
(Student, 1st Semester US Pilot)

“Overall it was a great learning experience for me and has
helped me to want to get into the computer field more.”
(Student, 1st Semester US Pilot)

“Now I have an idea of how most of the electronics I own
works. It gave me higher expectations for the future.”
(Student, 1st Semester US Pilot)

Feedback from the teachers confirmed the students’ views, they
felt that the Gadgeteer kits were engaging to use and in particular
developed determination and resilience in students because they
were motivated to get their devices to work and to extend them:

“The technology of gadgets inspired them to work a little
harder & play with ideas more.” (Teacher, second UK pilot)

“… they actually wanted to solve it and they would keep
trying to solve it … that kind of resilience you need to have to
be able to keep going” (Teacher, first UK pilot)

Interestingly, several students indicated that they would like to
gain a deeper understanding of and experience with Gadgeteer:

“I would much rather this class be a year long instead of a
semester.” (Student, 1st Semester US Pilot)

 “Now that I know how to use it, I want to learn more with it. I
think that it is amazing how you can make something work
with simple computer code.” (Student, 1st Semester US Pilot)

Devices built by our high school participants included iSpyder
and Gadgesketch. The iSpyder (Figure 6) is a double-sided device

in a wooden case built by the students. One side has a touch
screen which displays the temperature when a button is pressed.
The other side acts as a coaster for a hot drink. The iSpyder tests
the temperature of the drink; when it reaches a temperature cool
enough to drink an internal buzzer will sound to alert the user.

Gadgesketch (Figure 6) is a remake of a classic children’s
sketching toy, by a pair of 17 year-olds. The students
programmed the device by reading potentiometer values and
translating them to on-screen graphics. The housing was designed
in the Pro/Desktop CAD package and then vacuum formed from
acrylic. The modules were mounted inside using engineering
materials. The students are now planning to revise the housing
and add a tilt switch via the extender module allowing the iconic
“shake to erase” feature.

Other devices built by students demonstrated their ability to
design graphics for the 3.5” touch screen and build engaging and
interactive games, for example the “How wide is your goal”
game, “FaceBooth” and “Rainbow Press”, all shown in Figure 6.

3.4 Discussion
The pilots were successful in their primary objective of assessing
whether Gadgeteer has potential for computer science education
in the classroom. In our work with high-school students of a range
of ages from both the US and the UK its tangible nature seemed
to engender curiosity and motivate the students to push
themselves. They enjoyed the creativity the platform supports and
gained a great deal of satisfaction from building real, tangible
devices. We also saw how Gadgeteer lends itself to collaborative
working, whereby students with a range of skills and abilities can
support and learn from each other. In this way we believe that
Gadgeteer engenders valuable inter-personal skills in addition to
the specific technical skills which are actively being taught.

We were pleased how quickly the students mastered the VS
professional development environment. One 13 year-old student
commented that he was using a “proper programming language”
and appreciated that he was using real tools rather than an
educational environment. Initial feedback from the first UK pilot
suggested that the younger students (aged 11-13) found the
programming difficult unless they had had some prior experience.
More engagement was experienced with students in the 14-18 age
range. We also saw more engagement from those pupils who were
able to use Gadgeteer within the curriculum rather than solely as
an extra-curricular activity.

As with the UK experience, in the US the age of the students
played a role in the level of difficulty that they encountered
mastering programming. Students who had at least been taught
geometry seemed to be better equipped for the challenge.
However, all students were able to complete the projects with
support from the instructors, in part because of the larger time
commitment in these courses.

In summary, the qualitative feedback to date indicates that
Gadgeteer is a motivating environment for teaching programming
to 14-18 year-olds. Recent changes in the computer science
curriculum [9] mean that this will now be possible in the UK, as it
was during our US pilot. With Gadgeteer we hope to engage
students of all abilities, many ages and both genders. In addition
to teaching computing, we hope to give students a better
understanding of modern devices and technology in general.

Figure 6. Example devices built during our high-school pilots.
The “i-Spyder” (top left) alerts you when your drink is cool;
"How wide is your goal" is a football game (top right); the
GadgeSketch drawing device with its vacuum-formed case
(middle left); “FaceBooth” (middle right) lets you take a

photo and then annotate it with cartoon eyes, nose and mouth;
“Rainbow Press” is a reaction game. The bottom row shows

digital camera construction in the US trials.

4. FUTURE PLANS
As an initial pilot study with a new platform, our work with
Gadgeteer has inevitably highlighted a large number of interesting
avenues for future research. We discuss some of these here.

Initial feedback from teachers in indicates that Visual Basic
would have a much wider appeal than C# because it is relatively
well-established for high-school teaching. Following recent
technical improvements to the Gadgeteer software framework, the
platform now supports VB and we are currently developing new
teaching materials which cover key programming concepts in the
K-12 CS curriculum such as variables, functions, conditionals,

file handling, looping and arrays. We would like to get experience
with VB in the classroom and compare this with C#.

We hope to leverage the appeal of building real, tangible devices
to engage a more diverse set of students than has traditionally
been the case in computer science. We would also like to gain
experience of a more holistic approach to education which cuts
across the wider curriculum by including Gadgeteer in the
teaching of subjects beyond computer science. Perhaps the most
obvious example is the creation of enclosures for devices built
with Gadgeteer, which could be integrated with design and
technology teaching. Each Gadgeteer module includes
standardized mounting holes which facilitate the use of a number
of physical construction tools ranging from hot melt glue and self-
adhesive tape right up to 3D CAD tools and rapid prototyping
equipment such as laser cutters and 3D printers. Other examples
of potential cross-curriculum integration include building an
environmental sensor and recorder which could be deployed and
subsequently analyzed in an environmental studies session, or the
creation of experimental equipment such as a light-beam-
triggered digital timer as part of a physics experiment.

We want to create a wider range of example projects that will
inspire students and teach deeper computer science principles in a
way which is particularly relevant to today’s sophisticated
consumer electronics devices. Examples would include a portable
games console, an MP3 player and even a smartphone – the
elements of which are all available as Gadgeteer modules.

At the same time as extending the depth and breadth of our
Gadgeteer teaching materials, we think it is also very important to
investigate the ways in which Gadgeteer can facilitate the
students’ understanding and acquisition of programming
concepts. We want to maintain the exploratory and experiential
approach which seemed to work so well in our pilots to date, and
enhance it with more staged support which leverages the sense of
challenge and creativity we saw in our participants. We hope to
explore whether Gadgeteer can assist and motivate students who
typically find it harder to engage with computer science and in
particular address the gender imbalance which has traditionally
been seen in the uptake of computing. Ultimately we hope to
facilitate a secure and robust understanding of computer science.

Finally, we would like to trial Gadgeteer at university level for
teaching undergraduate computer science courses. There is a lot
of headroom in Gadgeteer for supporting sophisticated
programming concepts such as threading, inter-process
communication, device drivers, algorithms, data structures, and
advanced networking.

5. CONCLUSIONS
This paper presented the Microsoft .NET Gadgeteer platform,
highlighting in particular the various features which lend
themselves to teaching computer science at high school level. In
particular, Gadgeteer exposes students to many of the concepts
which are an intrinsic part of modern software development. It
facilitates a pedagogy based around teaching events first and
object orientation naturally follows the modular hardware. The
platform is growing rapidly and the increasing range of modules
means it can be incorporated in cross-curricular contexts.

Our experience of using Gadgeteer and the initial feedback from
teachers and students alike has been favorable. In addition to
technical skills, Gadgeteer also appears to support the de-

velopment of personal and inter-personal skills such as creativity,
problem-solving, independent learning and collaborative working.

The Gadgeteer platform is still in its infancy and there are clearly
a great many unanswered research questions relating to its use as
a tool for teaching. Nonetheless, we hope that others will find our
initial experiences valuable and build on them in future work.

6. ACKNOWLEDGMENTS
We would like to thank to the many teachers and students who
supported our pilots so enthusiastically and the large number of
people who have contributed to the Gadgeteer platform.

7. REFERENCES
[1] Ben-Ari, M. Constructivism in Computer Science Education.

In proceedings of the 29th SIGCSE Technical Symposium,
ACM. 1998.

[2] T. Brinda, H. Puhlmann and C. Schulte. Bridging ICT & CS
- Educational Standards for Computer Science in Lower
Secondary Education. In Proceedings of ITICSE, July 2009.

[3] T. Crick and S. Sentance. Computing At School: Stimulating
Computing Education in the UK. In Proceedings of the 11th
Koli Calling International Conference on Computing
Education Research, pages 122-123, ACM, 2011.

[4] O. Hazzan, J. Gal-Ezer and L. Blum. A Model for High
School Computer Science Education: The Four Key
Elements That Make It! In Proceedings of the 39th SIGCSE
Technical Symposium, pages 281–285. ACM, 2008.

[5] A. Millner and E. Baafi. Modkit: Blending and Extending
Approachable Platforms for Creating Computer Programs
and Interactive Objects, In Proceedings of the 2011 ACM
Interaction Design and Children Conference.

[6] S. Papert. Mindstorms: Children, Computers and Powerful
Ideas. Basic Books, 1993. 92053249.

[7] M. Richards, M. Petre and A. K. Bandara. Starting with
UbiComp: Using the Senseboard to Introduce Computing. In
Proceedings of the 43rd SIGCSE Technical Symposium,
pages 583-588, ACM, 2012.

[8] The Royal Society. Shut Down or Restart? The Way
Forward for Computing in UK Schools. Technical Report,
January 2012 DES2448, The Royal Society, 2012.

[9] S. Sentance. Changes Afoot in the UK. CSTA Voice,
Volume 8 Issue 3. July 2012. Available at:
http://csta.acm.org/Communications/sub/CSTAVoice.html

[10] S. Sentence and S. Schwiderski-Grosche, Challenge and
Creativity: Using .NET Gadgeteer in Schools, In
Proceedings of the 7th Workshop on Primary and Secondary
Computing Education, WIPCSE 2012.

[11] N. Villar, J. Scott and S. Hodges. Prototyping with Microsoft
.NET Gadgeteer. In Proceedings of the 5th International
Conference on Tangible, Embedded, and Embodied
Interaction, TEI '11, pages 377-380. ACM.

[12] N. Villar, et al., .NET Gadgeteer: A Platform for Custom
Devices. In Proceedings of Pervasive 2012, Lecture Notes in
Computer Science.

[13] C. Wilson, L. A. Sudol, C. Stephenson and M. Stehlik.
Running on Empty: The Failure to Teach K-12 Computer
Science in the Digital Age. Technical Report CSTA. 2010.

[14] J. Wing “Computational Thinking”, Communications of the
ACM, March 2006.

