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Abstract—Traditional methods of spoken utterance classifica-
tion (SUC) adopt two independently trained phases. In the first
phase, an automatic speech recognition (ASR) module returns the
most likely sentence for the observed acoustic signal. In the second
phase, a semantic classifier transforms the resulting sentence into
the most likely semantic class. Since the two phases are isolated
from each other, such traditional SUC systems are suboptimal.
In this paper, we present a novel integrative and discriminative
learning technique for SUC to alleviate this problem, and thereby,
reduce the semantic classification error rate (CER). Our approach
revolves around the effective use of the -best lists generated
by the ASR module to reduce semantic classification errors. The

-best list sentences are first rescored using all the available
knowledge sources. Then, the sentence that is most likely to helps
reduce the CER are extracted from the -best lists as well as
those sentences that are most likely to increase the CER. These
sentences are used to discriminatively train the language and
semantic-classifier models to minimize the overall semantic CER.
Our experiments resulted in a reduction of CER from its initial
value of 4.92% to 4.04% in the standard ATIS task.

Index Terms—Automatic speech recognition (ASR), discrimina-
tive training, spoken language understanding (SLU), spoken utter-
ance classification (SUC), statistical language modeling.

I. INTRODUCTION

I N CONTRAST to automatic speech recognition (ASR),
which converts a speaker’s spoken utterance into a text

string, spoken language understanding (SLU) aims at inter-
preting users’ intentions from their speech utterances [1], [2].
As a special form of SLU, spoken utterance classification
(SUC) has found many practical applications including call
routing [3], dialog systems [4], [5], command and control [6],
and speech-to-speech translation [7].

The ultimate objective of an SUC system is to reduce the clas-
sification error rate (CER). There are two kinds of observed er-
rors: errors in ASR transcription and errors in utterance clas-
sification. Semantic classifiers typically require operation with
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significant freedom in utterance variations. In spite of such high
degree of freedom of expression, the semantic classifiers should
be able to interpret, for example, the two phrases “Show all
flights” and “Give me flights” as variants of the same semantic
class “Flight.”

Traditional SUC techniques adopt a sequential scheme with
two independent phases. In the first phase, an ASR module re-
turns the single-most likely sentence for the observed acoustic
signal. A semantic classifier then transforms the resulting sen-
tence into a semantic class in the second phase. However, this
approach is suboptimal because of the strong assumption that
the ASR and semantic classification phases are fully indepen-
dent. Relaxing this assumption by allowing the semantic clas-
sifiers to directly operate on the -best sentences helps reduce
CER by providing more information to the second phase. In ad-
dition, traditional SUC systems are such that CER is reduced in
semantic classification phase, yet it is the word error rate (WER)
that is reduced in the ASR phase. Ideally, both of the two phases
should reduce the CER.

In [8], the authors investigated discriminative language mod-
eling in a similar scenario. Their motivation is that a reduced
WER provides with ASR transcriptions that are more likely to
be classified correctly. Using the perceptron algorithm, the au-
thors trained joint language and classifier models either inde-
pendently or simultaneously, under various parameter update
conditions. Although, authors also select a one-best sequence to
train the system parameters, the discriminative language mod-
eling in SUC achieved reductions in both the ASR WER and the
semantic CER.

In [9], the authors describe how the parameters of an -gram
LM are trained to achieve minimum sentence error through im-
proving the separation of the correct sentence from the com-
peting sentences in the -best lists. Our work described in this
paper distinguishes itself in several ways. First of all, the goal
of the training in [9] is to reduce WER, whereas the goal of
the proposed method is to reduce CER. Second, in the proposed
method, there is a second phase where the ASR transcriptions
are used to train semantic classifiers. For this reason, the class-
discriminant function we use includes information regarding the
semantic class, whereas the discriminant function defined in [9]
includes information regarding only the ASR phase. Third, in
the proposed method, each -best list sentence is matched with
a semantic class. This helps improve CER by distinguishing
the sentence that is most likely to yield a correct classification
decision.

In this paper, we describe a discriminative training technique
to tie these two phases so that each phase can use the output of
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the other phase to help reduce the classification error rate. This
is achieved by training the language and the semantic classifier
models in an SUC system to minimize the CER directly. We
follow the minimum error classification (MCE) framework
[10] to model the training objective as functions of system
parameters. The -best lists generated by the ASR phase are
first rescored using all the available knowledge sources. The
rescored -best lists are then used to discriminatively learn
the system parameters. Our motivation in this paper is to make
explicit use of the -best lists generated by the ASR systems in
the semantic classification phase to reduce the CER. In similar
studies, the -best lists are used just to extract the sentence that
gives the lowest WER. In our paper, the -best lists are used
not only to find the sentence that gives the lowest CER (instead
of lowest WER) but also to find out those sentences which are
most likely to yield incorrect decisions. The LM and classifier
model parameters are trained so that the scores of those sen-
tences that yield correct classification are increased, while the
scores of those sentences that yield incorrect classification are
reduced.

We have conducted experiments to evaluate the proposed
technique on the standard DARPA Air Travel Information
System (ATIS) task [11], [12]. Our experimental results have
demonstrated significant improvement over the earlier best
system reported in the literature on the identical task. We
trained a baseline classification phase with the one-best output
of the ASR phase that uses an LM trained using the manual
transcriptions. The resulting CER was 4.92%. By training all
system parameters to reduce CER, our method described in
this paper yielded a WER of 4.04%. The reduction shows that
the -best list sentence that yields the lowest CER instead of
lowest WER should be used in the classification phase.

This paper is organized as follows: In Section II, the basic
building blocks in a traditional SUC system architecture are pre-
sented. In Section III, the proposed technique is described in de-
tail. Experimental results are reported in Section IV. Finally, the
concluding remarks and directions for future work are discussed
in Section V.

II. GENERAL SPOKEN UTTERANCE CLASSIFICATION

SYSTEM ARCHITECTURE

An SUC system classifies the th spoken speech utterance
, , into one of semantic classes,

. is chosen so that the class-posterior proba-
bility given , , is maximized. Formally

(1)

As depicted in Fig. 1, standard SUC techniques typically in-
volve a speech recognizer to transform the speech utterance into
words, and a text classifier to transform the resulting sentence
into a semantic class [13]–[17]. In most of the conventional SUC
approaches, the ASR phase is designed so that the WER is re-
duced. Reducing the errors in the automatic transcription can
improve the CER by virtue of providing better transcriptions to
the semantic classifier. However, it has been reported that reduc-
tions in WER do not necessarily translate into reductions in CER
[18]. This is because the sentence that gives the lowest WER

Fig. 1. Traditional spoken utterance classification system is composed of two
isolated stages: an automatic speech recognition system is followed by a se-
mantic classification system.

might not be the sentence that gives the lowest CER. Hence,
training the system parameters using the sentence that gives the
lowest CER may result in an increased WER.

A. Automatic Speech Recognition (ASR)

Modern architectures for ASR [19], [20] aim to generate the
mostly likely sentence hypotheses, given , i.e.,

(2)

where is the acoustic model (AM) score, and
is the language model (LM) score.

Current state-of-the-art ASR systems make use of word
graphs and word lattices [21]–[23], and statistical -gram
LMs [24]. The AM and LM scores often have vastly different
dynamic ranges. By introducing the so-called LM scaling factor

to account for this complication and using Bayes’ rule, (2)
is rewritten as

(3)

B. Semantic Classification

In this paper, we use binary -gram features with
to capture the likelihood of the -grams to be generated to ex-
press the user intent for the semantic class . As an example,
binary bigram feature functions are in the following form:

if
otherwise.

(3a)

That is, if the event appears in the sentence and if the
class is the class of interest , the binary feature function takes
on a value of 1, and 0 otherwise. Once the features are extracted
from the text, the task becomes a text classification problem, and
traditional text categorization techniques are used to maximize
the class-posterior probability , i.e., the probability
of observing given [8], [25]–[29].

III. INTEGRATION OF THE ASR AND SEMANTIC

CLASSIFICATION PHASES

A block diagram of the proposed method is shown in Fig. 2.
Instead of using the one-best sentence in the -best list, the
proposed method scores all of the word sequences. First, the
sentence that yields lowest CER instead of lowest WER is ex-
tracted. Then, the remaining sentences are scored so that those
that are likely to yield incorrect classification are found.

One key contribution of this paper is the way in which the
-best hypotheses generated by the ASR module are used in
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Fig. 2. ASR and semantic classification phases are integrated using theN -best
lists.

the discriminative training of the system parameters. The pro-
posed technique associates a score to each pair formed by the

-best list sentences and the semantic classes of interest. These
scores not only integrate information from all the avail-

able knowledge sources but also represent how likely it is that
each sentence classifies into the associated semantic class.
Therefore, it also provides information about which -best list
sentences are most likely to yield the correct and incorrect clas-
sification decisions. The role of the discriminative training is to
increase the scores of the sentence that yields lowest CER while
reducing the scores of all other sentences.

Suppose that we are given the AM score , the
class-posterior probability and the LM probability

. Then, the classification decision rule in (1) can be ap-
proximated as

(4)

where the probability is rewritten as the sum of
over all possible . This summation is ex-

panded in the second line, and is substituted
with in the third line. In the last line, the summation
term is replaced with the selection of the sentence among the

-best list, which we denote as .
Upon a closer look at (4), we see that the classification deci-

sion involves calculating the so-called class-discriminant func-
tion for each pair and given by

(5)
is an integrative score that shows how likely it

is that yields for a given . Since the computation of
integrates the acoustic, language and classifier scores, all avail-
able knowledge sources are being used to rescore and rerank
the -best sentences in a way that will be most useful for dis-
crimination. Therefore, is a natural choice to
discriminate the sentence that is most likely to yield the correct
classification decision.

A. Illustrative Example

In this section, we consider an example from the ATIS data-
base in Table I to clarify our formulation.

In training stage, we aim to rescore the sentences and adjust
the LM and classifier parameters. The goal is to ensure that the

-best list sentences are ranked with regard to their strength to
yield the correct classification. For notational convenience, we
reserve the superscript 0 for the correct class and its associated
word sequence, whereas the superscript , , for
the incorrect classes and their associated word sequences.

As a first step, the pair is found. In this example,
the correct class, , is GROUND SERVICE, and is the sen-
tence that maximizes the score with . Hence, it is the
most likely sentence to yield correct classification decision. Fol-
lowing that, is found, which is the most likely pair to
yield an incorrect classification. For doing so, the sentence other
than that has the highest score with any class other than

is found. This procedure is repeated until either all -best
list sentences or all the classes in are used.

If this spoken utterance were used in the test stage, it would be
assigned to the class that has the highest score
with any -best list sentence. In this example, is

20.04, whereas is 17.56. The classification de-
cision would yield FARE class, which implies a misclassification
for .

B. Rescoring in the Training Stage

For training, first of all, is found so that

(6)

Because is extracted among all the -best list sentences, it
is the most likely sentence to yield the correct decision indepen-
dent of whether or not it has the most correct ASR transcription.
Hence, it may yield a higher WER than the sentence top-ranking
in the -best list.

After determining , the remaining -best list sen-
tences are paired with the other semantic classes. Let ,

, denote the set of the semantic classes
that are not yet paired with any word sequence, i.e.,

. Also let denote the set of
the sentences in the -best list that are not yet paired with any
semantic class, i.e., . Then, the
classes in and the sentences in are paired according to
the following rule:

We define the class-specific misclassification function
and a class-specific loss function for each

speech utterance
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TABLE I
ASSIGNMENT OF SEMANTIC CLASSES TO WORD SEQUENCES

where , , and are the standard parameters in MCE training.
The total classification loss approximating CER that the LM
model and the semantic classifier model induce is
then

More details about training the parameters of and are
described in Sections III-D and III-E, respectively.

C. Decision Rule and Rescoring in the Test Stage

In the test stage, the decision rule

(7)

is implemented. Doing so requires rescoring of the -best
lists sentences using , as indicated by
the max operation inside the square brackets of (7). In
rescoring, scores are computed for each

and for each of the semantic classes. Then, each
sentence is paired with a semantic class , where

, that gives the greatest
. Eventually, the scores are ranked and the

semantic class with the greatest is selected
as .

D. Discriminative Training of the LM Parameters

In this section, we analyze the training of only bigram
probabilities to simplify the algorithm description. The de-
scribed procedure is also valid for learning other -grams,
and our experimental design includes the use of unigrams and
trigrams as well.

Let denote the bigram log-probabilities defined as
. The LM model parameters are trained

to minimize the total loss function using the
steepest descent method. This training results in the following
update rule for the bigram LM probabilities:

(8)

where is an appropriately chosen step-size. Suppose that
the bigram appears times in the sen-
tence . Then

This gives us

where the weighting coefficients are given by

(9)

When , only the correct and the most competitive
hypothesis contribute in (8). The LM parameters corresponding
to the bigrams that are present in but not in (in
the example, THE TRANSPORTATION, TRANSPORTATION IN, IN

ATLANTA) are increased. In contrast, the LM parameters cor-
responding to the bigrams in but not in (THE ROUND,
ROUND TRIP, TRIP FARE, FARE FROM, FROM ATLANTA) are
decreased. The updates for the bigrams common to both
and (WHAT IS, IS THE) cancel out and the corresponding
LM parameters are left unchanged.

E. Discriminative Training of the Classifier Parameters

Let denote the weight of the th feature function
. The weights are trained to minimize the total loss

function . This gives us the following update rule
for the classifier parameters, , :

where is appropriately chosen step-size, and
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In this paper, the classifiers are initialized with maximum en-
tropy training using the one-best ASR transcriptions as input.
Given the classifier parameters and the lexical -gram feature
functions , the distributions yielding maximal entropy
are in the following form [30]:

where is a normalization factor

Let denote the partial derivative of
with respect to . Noting that and do not
depend on , we obtain

where the weighting factors of the feature functions are

As with LM parameters, when , the classifier parame-
ters, , associated with the bigrams that are present in but
not in are increased. In contrast, the classifier parameters

associated with the bigrams that are present in but not
in are decreased. In addition, the updates for the bigrams
common to both and cancel out and the corresponding
classifier parameters are left unchanged.

IV. EXPERIMENTS

We used the ATIS database to evaluate the discriminative LM
and semantic classifier model learning methods described in this
paper. In this section, we first describe the details of the experi-
mental setup and then report the results of the experiments.

The ATIS task involves typical air travel planning scenarios
such as flight schedules, fares, and ground transportation that
were obtained from a relational database using spoken natural
language. Following [28], ATIS2 and ATIS3 Category A data
are used for training (5798 utterances), ATIS3 1993 and 1994
Category A test set (914 utterances) for testing, and the ATIS3
development set (410 utterances). The task involves 14 semantic
classes.

In the ASR stage, we use the recognizer that is provided as
part of the Microsoft Speech API (SAPI) without adaptations
to its acoustic model. Also, was fixed at 1, was fixed at a
constant, and whereas was heuristically adjusted for each
class. The heuristics we used is such that the that are
small in magnitude are summed, averaged, and used as . The
idea behind the adopted heuristics is to associate more loss to

TABLE II
PERFORMANCE OF THE BASELINE SYSTEM ON TEXT INPUTS

AND SPEECH INPUTS FOR ATIS DOMAIN

TABLE III
PROPOSED DT METHOD IMPROVES CER IMPROVES. SIGNIFICANT

IMPROVEMENT OVER THE BASELINE SYSTEM IS ACHIEVED

those samples for which is close to 0.5, which
represent the more confusable examples to the classifier.

A. Baseline System Performance

The baseline training system is composed of two separate
stages [28]. The first stage involves the extraction of the best
matching word sequence for each spoken speech utterance

. In the second stage, maximum entropy classifiers are
trained with steepest gradient descent method. Both the classi-
fier and the trigram LM for ASR are trained from the in-domain
manual transcriptions. The best-scenario ASR WERs and CERs
for the baseline system are tabulated in Table II. These results
were the best on this standard SUC task in the literature prior
to the work described in this paper.

B. Performance of the Proposed Method

In our experiments, a trigram LM was obtained using the
CMU-Cambridge toolkit [31], and 14 semantic classifier
models based on the maximum entropy principle [28] were
trained using the manual transcriptions. These seed models are
denoted as and , respectively. In the very first (0th)
iteration, is used in ASR stage to generate the -best
lists. is also used as the initial LM for discriminative
LM training, which then yields . Then, and
are used to rescore the -best list for discriminative classifier
training, which yields the classifier model .

1) Parameter Refinement After an ASR Phase: After the 0th
iteration, there are two ways to proceed. First, we can use
for another speech recognition step, and follow the same steps
as in 0th iteration to get and , and so on. The WERs
and CERs on both the development set and the test set at each
iteration are listed in Table III, where we set ,

, , , and .
In the 0th iteration, the WER of 5.8% was obtained with

and the CER of 4.92% was obtained with using and . In
the first iteration, the WER increased to 6.2% by using the dis-
criminatively trained . However, the CER reduced to 4.60%
by using and .
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Fig. 3. With four outer and two inner iterations.

Fig. 4. With four outer and three inner iterations.

The CER has been reduced from 4.92% to 4.04% at the
fifth iteration when the CER for the development set is at the
minimum.

2) Parameter Refinement Without an ASR Phase: We can
also schedule inner iterations, which do not require repeating
the ASR phase. Since the classifier model is replaced
with and at the end of 0th iteration, we can use
to rescore the -best list for training without performing
speech recognition step. This is followed by training a new clas-
sifier model , and so on.

In Figs. 3 and 4, we plotted our experimental results where
we run four outer iterations with two and three inner iterations,
respectively. First of all, the inner iterations provide the advan-
tage of refining the models without repeating the (expensive)
ASR step. (In the ATIS dataset, the ASR step takes two hours of
CPU time for the training data using Microsoft SAPI, whereas
discriminative training takes only 15 to 20 min.) For larger data
sets, the saving in computation would be even greater. In ad-
dition, we observe that with three inner iterations, as shown in
Fig. 4, the lowest CER of 3.92% in the test data is achieved with
the lowest CER of 4.63% in the development data. We conclude

that inner iterations can yield as good and even better perfor-
mance while offering the advantage of reduction in computa-
tional load.

V. CONCLUSION AND FUTURE WORK

Our motivation in this paper was to make an explicit use of
the -best lists generated by the ASR systems to alleviate the
problems due to the isolation of the ASR and semantic classi-
fication phases in traditional SUC methods. For this purpose,
the -best lists generated in the ASR phase are rescored using
all available knowledge sources—in this paper, the language,
acoustic, and classifier models—and are utilized to discrimina-
tively learn system parameters. More specifically, the sentence
that is most likely to yield correct classification decision as well
as those sentences that are more likely to yield incorrect deci-
sions are found. These sentences are then used to discrimina-
tively train the language and semantic-classifier models to min-
imize the overall semantic CER.

Our experiments demonstrate that when ASR transcriptions
are sufficiently accurate, the proposed scheme can reduce CER
obtained with ASR word transcriptions compared to the CER
obtained with manual word transcriptions. Our experimental re-
sults on the standard ATIS SUC task demonstrated significant
performance improvement, measured by the reduced amount of
CER, from the earlier best system on the identical task. Specif-
ically, the CER was reduced from 4.92% to 3.94%.

There are many directions of research that can be undertaken.
One such direction is extending the current implementation to
the estimation of other SUC system parameters. In this paper,
we assumed the lexical, pronunciation, and acoustic model were
fixed. The method described in this paper can be extended to up-
dating the lexical and acoustic model parameters as well. Using
the proposed method for lexical modeling introduces an ad-
ditional term into the class discriminant function. This would
mean the -best sentences would be listed considering the lex-
ical effects as well. This would also mean that the lexical model
parameters would be updated so as to reduce CER.

It is also possible to develop a more general method using a
noise robust front-end, and analyze the sensitivity of the system
performance to the set of system parameters that are difficult
to learn automatically. Furthermore, we plan to extend our
approach in the context of SUC as discussed in this paper to
more general spoken language understanding tasks, including
slot filling, which is a sequence labeling task, using conditional
random fields (CRFs). Finally, the application of our integrative
technique to large-scale, realistic tasks will potentially create a
more significant impact of the research presented in this paper.
One such realistic research scenario is the investigation of what
would happen when there are thousands of semantic classes
instead of only 14 in the ATIS task or when there are thousands
of hours of spoken speech data available.
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