
Online Visualization of Geospatial Stream Data using the

WorldWide Telescope

Mohamed Ali
#
, Badrish Chandramouli

*
, Jonathan Fay

*
, Curtis Wong

*
,

Steven Drucker*, Balan Sethu Raman
#

#
Microsoft SQL Server, One Microsoft Way, Redmond WA 98052

{mali, sethur}@microsoft.com

*
Microsoft Research, One Microsoft Way, Redmond WA 98052

{badrishc, jfay, curtis.wong, sdrucker}@microsoft.com

ABSTRACT

This demo presents the ongoing effort to meld the stream query

processing capabilities of Microsoft StreamInsight with the

visualization capabilities of the WorldWide Telescope. This effort

provides visualization opportunities to manage, analyze, and

process real-time information that is of spatio-temporal nature.

The demo scenario is based on detecting, tracking and predicting

interesting patterns over historical logs and real-time feeds of

earthquake data.

1. INTRODUCTION
Real-time stream data acquisition has been widely used in

numerous applications such as network monitoring,

telecommunications data management, security, manufacturing,

and sensor networks. Besides the temporal nature of stream data,

various sources provide real-time data with spatial characteristics

– such as geographical locations and spatial extents such as point

coordinates, lines, or polygons. Beyond stationary sensors, data is

also continuously generated by moving objects thanks to advances

in GPS and wireless technologies. The term “geo-streaming”

refers to the ongoing effort in academia and industry to process

and analyze stream data with geographic and spatial information.

Microsoft StreamInsight (StreamInsight, for brevity) [1, 2, 3, 4, 5]

is a platform for stream query processing. StreamInsight monitors

stream data to extract meaningful patterns and trends.

StreamInsight analyzes and correlates data from multiple sources

incrementally to yield low latency response times. The key

features of StreamInsight are: a declarative query language with a

temporal algebra that is agnostic of whether data is real-time or

historical, the ability to natively handle stream disorder and

provide early results, the ability to issue correctness guarantees on

the output and the run-time query composability. Moreover,

StreamInsight incorporates a powerful extensibility framework

[13] that seamlessly integrates user defined modules into the

execution query pipeline. StreamInsight has been used in the past

to process geospatial data, e.g., in traffic monitoring [4, 5].

On the other hand, the WorldWide Telescope (WWT) [9] enables

a computer to function as a virtual telescope, bringing together

imagery from the various ground and space-based telescopes in

the world. WWT enables a wide range of user experiences, from

narrated guided tours from astronomers and educators featuring

interesting places in the sky, to the ability to explore the features

of planets. One interesting feature of WWT is its use as a 3-D

model of earth, enabling its use as an earth viewer.

This demo presents the ongoing work at Microsoft Research and

Microsoft SQL Server groups to meld the value of stream query

processing of StreamInsight with the unique visualization

capabilities of WWT. The key contributions of this demo are:

 We integrate a streaming engine (StreamInsight) with a

spatial visualization tool (WWT) in order to demonstrate

new forms of visualization for spatio-temporal data.

 We allow the seamless incorporation of real-time and

historical data querying/visualization using a single engine.

 We demonstrate the power of novel streaming queries for a

specific spatio-temporal application – earthquake early

detection and monitoring. We highlight the benefits of native

disorder support in order to minimize event detection

latency, while allowing eventual guarantees on result quality.

We note that the combination of real-time data processing with

WWT provides new visualization opportunities to manage,

analyze, and process spatio-temporal streaming information.

2. THE WORLDWIDE TELESCOPE
The WorldWide Telescope (WWT) [9] is powerful application

that allows end users to explore the earth, the planets, the solar

system and the sky. It serves as a tool and valuable resource for

both astronomical and educational communities, as well as a way

to make science interesting to the lay person. The WWT

application brings together imagery from the best ground- and

space-based observatories across the world. WWT uses a high-

performance Microsoft Visual Experience Engine to allow

seamless and interactive panning and zooming over terabytes of

stitched-together imagery data. Images are loaded on-demand in

order to converse network bandwidth, with several optimizations

to enhance the viewing experience. While the sky mode (for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 37th International Conference on Very Large Data Bases.

Proceedings of the VLDB Endowment, Vol. 4, No. 12.

Copyright 2011 VLDB Endowment 2150-8097/11/XX... $ 10.00.

Figure 1. The WorldWide Telescope (WWT) as a viewer of the earth, the sky and the planets.

visualizing stars and galaxies) is the most popular, the underlying

WWT engine is capable of supporting a wide range of image

sources, including panoramas, planets, as well as user-provided

equi-rectangular images with associated optional metadata.

A particularly interesting use of WWT is as a viewer of a 3-D

model of earth, similar to Microsoft Virtual Earth and Google

Earth. This application uses Virtual Earth’s satellite and map

images, but is instead powered by the WWT engine. The aerial,

street, and night views allow a seamless experience while

navigating the globe. Figure 1 shows a screenshot of WWT in

action as an earth and a sky viewer.

The World Wide Telescope Software Development Kit (SDK)

enables the customization of data and the development of

customized interfaces through an API, such as allowing us to

import our own data into the software. Of particular interest to our

demonstration proposal is the ability to feed temporal (i.e., time-

series) data such as logs of earthquake data including latitude,

longitude, label, magnitude, and depth below the surface. In this

case, the WWT visualizer allows us to “travel through time” while

visualizing earthquakes along with their magnitudes.

3. MICROSOFT STREAMINSIGHT
A streaming system allows applications to execute long-running

continuous queries (CQs) that monitor and process data streams in

real time. Our demo focuses on Microsoft StreamInsight [3, 4, 5]

which is based on the CEDR [1, 2] research project. Some

distinguishing features of StreamInsight include a deterministic

underlying temporal algebra, a powerful LINQ-based querying

interface [7, 8], debuggability, native support for out-of-order

events, high availability, scalability, speculative event processing,

and a powerful extensibility framework. Out of the mentioned

features, we select few features that are relevant to our demo to

discuss next: StreamInsight’s temporal algebra and extensibility

model; other issues such as time progress and state cleanup are

covered in [2, 6].

3.1 Disorder Handling and Compensations
Each event consists of an event generation time, and a duration,

which indicates the period of time over which an event can

influence output. We capture these by defining the control

parameter associated with events as <LE, RE>, where the interval

[LE, RE) specifies the period (or lifetime) over which the event

contributes to output. The left endpoint (LE) of this interval, also

called start time or event timestamp, is the application time of

event generation. Assuming the event lasts for x time units, the

right endpoint of an event (called end time), is RE = LE + x.

Compensations. StreamInsight can natively process disordered

events, thus avoiding the need to buffer data at the source.

Disorder is very common, e.g., due to network delays, merging

data from multiple sources, etc. Native disorder processing is

particularly useful in spatio-temporal applications such as

earthquake detection, where an early detection is often very

useful, even at the expense of potential false-positives. In order to

compensate for results that are deemed incorrect at a later point,

StreamInsight supports compensations (or corrections) for earlier

reported events, using the notion of revisions [11]. A revision

indicates a modification (or deletion) of the lifetime of an earlier

event. This is supported by an optional third parameter REnew,

that indicates the new right endpoint of the corresponding event.

Canonical History Table (CHT). This is the logical representation

of a physical stream [1, 2]. Each entry in a CHT consists of a

lifetime and the payload. Thus, StreamInsight models a data

stream as a time-varying relation, and all operators have

deterministic well-understood semantics based on their effect on

the CHT. Time is a part of the application-provided event, and

thus query results are the same regardless of whether we are

processing real-time or historical data, which allows deterministic

back-testing [12].

3.2 Extensibility Framework
The extensibility framework in StreamInsight [13] connects the

user defined module (UDM) writer (who writes the extension

libraries) and the query writer (who writes StreamInsight queries

that may invoke UDMs). The extensibility framework provides

flexibility and efficiency to both the UDM writer and the query

writer. It allows domain experts to seamlessly integrate years of

expertise in a specific domain with the processing capabilities of a

streaming system. A typical use case of the extensibility

framework is the development of user defined pattern detection

algorithms [10]. Of particular interest to this demo is a set of

pattern detection UDMs for earthquake data.

4. System Overview

Data Streaming Engine O
u

tp
u

t A
d

a
p

te
rs

In
p

u
t A

d
a

p
te

rs Event

Event sources Event targets

`

Devices, Sensors

Web servers

Historical earthquake data

Live earthquake data

Event

Event

Event

Event

Event

Event stores & Databases

WWT

Event

Event

Static reference data

Query

+
Custom-view preprocessing

predicates

Figure 2. System overview.

Figure 2 provides an overview of the proposed system. The data

streaming engine constitutes the heart of the system. The engine

imports historical data from database systems and accepts real

time feeds from sensors, device and web servers. All input data

are fed to the engine through the appropriate input adapters. Input

adapters have the ability to interact with the stream data source

and to push the stream events to the streaming engine. The engine

processes all queries issued by the user and streams the resultant

output to the consumer through output adapters. In this demo, the

output is sent to the WWT and “probably” stored in databases for

archiving purposes. Also, the streaming engine has the ability to

access and join reference data, e.g., maps, road information and

topological data, with stream data.

Focusing on the communication between the streaming engine

and the WWT, we notice a bidirectional relationship:

First, the streaming engine (a) streams output events and (b)

drives the observing time of the WWT according to the

application time. Thanks to the disorder handling and

compensations (as described in Section 3.1), WWT users can

navigate in the future (through the observing time pane – Figure

3) to browse tentative but early results. As time proceeds and as

more input tuples are received, the results are stabilized.

Second, the WWT has the ability to stitch a custom-view

preprocessing query in front of the user issued query to: (a) filter

out data points that are outside the visualization range, and (b) to

adjust the sampling rate of the output according to the zoom level.

The purpose of the custom-view preprocessing query is to inject

filters and sampling operators in the query pipeline. The engine

pushes these filters down the query plan to the input adapters to

filter output tuples that consume processing resources and that

produce output that is outside the user’s visualization area.

Similarly, as the user zooms out, the sampling rate is reduced to

deliver good-enough images. As the user zooms in to a specific

region, the sampling rate is increased to deliver more detailed

output in that region.

5. DEMO SCENARIO
The demo scenario has been prepared to deliver five key

messages. We summarize these messages as follows:

 StreamInsight processes, analyzes and mines streams of “real

time” data.

 StreamInsight processes, analyzes, and mines for interesting

patterns in “historical” temporal data.

 StreamInsight is a full-fledged relational query processor,

where queries that contain operators like select, project, join,

etc are executed efficiently.

 StreamInsight is an extensible system where user-specific

logic and domain expertise are integrated seamlessly in the

query pipeline.

 The WWT visualization capabilities, the real time processing

capabilities and the knowledge gained from historical data

analysis, help take better decision about the future.

To achieve the above goals, the demo presents several

StreamInsight queries that are issued against historical logs of

earthquake data that have been accumulated over years. These

queries range from simple queries that filter earthquake data based

on location and magnitude to complex queries that involve pattern

detection of interesting earthquake patterns. The queries include

both relational operators as well as user defined operators built by

domain experts. Moreover, the demo features a set of queries that

run against real time earthquake data to detect interesting patterns,

where the notion of “interesting” is defined based on the past

experience with earthquake patterns that looked indicative to

major disasters in the past.

Figure 3 represents the graphical interface of the WWT. We

highlight that the interface has (1) a “layer manager” pane, where

the output of each query is visualized in a separate layer. The

output of several queries can be layered on top of each other to

contrast and differentiate the results, (2) an “observing time”

pane, which is an essential part in real time as well as historical

temporal data. With its forward and backward buttons, the user

can travel in the past as well as in the future (thanks to the

speculative nature of StreamInsight), and (3) a “query output

visualization” pane, where the magnitude and the depth of the

earthquake (with respect to the earth surface) are visualized using

color schemes at the earthquake’s observed latitude and longitude.

6. REFERENCES
[1] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and

Mingsheng Hong. Consistent Streaming Through Time: A Vision

for Event Stream Processing. In Proceedings of CIDR, 412-422,

2007.

[2] Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and

Roger Barga. Consistency Sensitive Streaming Operators in

CEDR. Technical Report, MSR-TR-2007-158, Microsoft

Research, Dec 2007.

[3] Mohamed Ali et al. Microsoft CEP Server and Online

Behavioral Targeting. VLDB 2009.

 [4] Mohamed Ali, Badrish Chandramouli, Balan Sethu Raman,

Ed Katibah. Spatio-Temporal Stream Processing in Microsoft

StreamInsight. IEEE Data Eng. Bull. 33(2): 69-74 (2010).

[5] Seyed J. Kazemitabar, Ugur Demiryurek, Mohamed Ali, Afsin

Akdogan, Cyrus Shahabi, Geospatial Stream Query Processing

using Microsoft SQL Server StreamInsight, In VLDB, 2010.

[6] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly

Progress Detection in Iterative Stream Queries. In VLDB, 2009.

[7] Paolo Pialorsi, Marco Russo. Programming Microsoft LINQ,

Microsoft Press, May 2008.

[8] Microsoft LINQ. http://tinyurl.com/42egdn.

[9] World Wide Telescope project.

http://www.worldwidetelescope.org/.

[10] B. Chandramouli, J. Goldstein, and D. Maier. High-

Performance Dynamic Pattern Matching over Disordered Streams.

In VLDB, 2010.

[11] E. Ryvkina et al. Revision processing in a stream processing

engine: A high-level design. In ICDE, 2006.

[12] Alex Raizman et al. An Extensible Test Framework for the

SQL Server StreamInsight Query Processor, In DBTest, 2010.

[13] Mohamed Ali, Badrish Chandramouli, Jonathan Goldstein,

Roman Schindlauer. The Extensibility Framework in Microsoft

StreamInsight, In ICDE, 2011.

