
Empirical Software Engineering at Microsoft Research
http://research.microsoft.com/en-us/projects/esm/

Christian Bird
cbird@microsoft.com

Brendan Murphy
bmurphy@microsoft.com

Nachiappan Nagappan
nachin@microsoft.com

Thomas Zimmermann
tzimmer@microsoft.com

Microsoft Research, Redmond, USA and Cambridge, UK
(Authors are in alphabetical order.)

ABSTRACT
We describe the activities of the Empirical Software Engi-
neering (ESE) group at Microsoft Research. We highlight
our research themes and activities using examples from our
research on socio technical congruence, bug reporting and
triaging, and data-driven software engineering to illustrate
our relationship to the CSCW community. We highlight our
unique ability to leverage industrial data and developers and
the ability to make near term impact on Microsoft via the
results of our studies. We also present the collaborations
our group has with academic researchers.

Author Keywords
Software engineering, Socio technical congruence, bug
tracking and triaging, data-driven software engineering

ACM Classification Keywords
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

ACM General Terms
Human Factors, Management, Measurement

INTRODUCTION
The Empirical Software Engineering (ESE) group at Mi-
crosoft Research focuses on working in the intersection of
the Software Engineering and CSCW communities.

“Over the last decade, it has become clear that empirical studies
are a fundamental component of software engineering research
and practice: Software development practices and technologies
must be investigated by empirical means in order to be under-
stood, evaluated, and deployed in proper contexts. This stems
from the observation that higher software quality and productivi-
ty have more chances to be achieved if well-understood, tested
practices and technologies are introduced in software develop-
ment. Empirical studies usually involve the collection and analy-
sis of data and experience that can be used to characterize, evalu-
ate and reveal relationships between software development de-
liverables, practices, and technologies.”

(Empirical Software Engineering journal,
http://www.springer.com/computer/swe/journal/10664)

At a high level the goals of the ESE follows two guiding
principles,

 Empower software development teams
 To gain insight from product process, people

and customers

by employing a qualitative and quantitative approach to the
software development process.

In this paper we discuss three broad themes of the ESE
group,

 Socio technical congruence;
 Bug reporting and triaging; and
 Data-driven software engineering.

In each of these sections our studies leverage techniques
and methods from both the Software Engineering and
CSCW communities to adapt case studies in practice from
the empirical domain with the CSCW aspects as all soft-
ware systems which are built by teams inherently have a
significant collaborative aspect. We also present our collab-
orations and discuss the uniqueness of our fit in the middle
of these two communities.

SOCIO TECHNICAL CONGRUENCE
 “Design and programming are human activities;

forget that and all is lost”

– Bjarne Stroustrop

As software projects grow in size and complexity, so do the
teams of engineers that develop and maintain them.
Brooks, in his seminal work, “The Mythical Man Month”
[1] discussed coordination as one of the key problems of
running a software project with many developers. The co-
ordination effort required to help each member of a team
stay in sync and keep a project on schedule is enormous.

Socio Technical Congruence is a term that has emerged
recently in the software engineering literature to describe
the relationship between the “social” side of development,
meaning the developers, their relationships to each other,
how they communicate, work together on software, etc. and
the “technical” side which encapsulates features of the
software itself such as dependencies between components,
component complexity, and software quality. The idea
behind the term has its origins in Conway’s Law, originally
presented in Conway’s paper “How Do Committees Invent”
[2]. This is of importance to the CSCW community because

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.
Copyright 2011 ACM 978-1-4503-0556-3/11/3...$10.00..

of the emphasis placed on understanding how, and under
what circumstances, developers should work together on
projects.

In an effort to aid the development effort at Microsoft and
understand the effect of human factors, we have gathered
data and investigated the relationship of software quality
with developer attributes such as collaboration behavior,
geographic location, position within the organization, and
work assignment. Below, we describe some of our key
results.

Contribution Behavior and Quality
Is a study of collaboration behavior, Nachi, in joint work
with Martin Pinzger, developed a developer-module net-
work, which characterized the contributions of developers
to modules within a system [3]. Figure 1 shows an example
developer-module network. Gray circles represent devel-
opers and boxes represent modules within a system. Edges
connect developers to the modules that they have contribut-
ed to, with edge weights representing the number of source
code repository commits. Note that the developer-module
network for Windows Vista is quite large, with thousands
of developers and thousands of binaries – executables
(.exe), shared libraries (.dll) and drivers (.sys).

We found that topological properties of this network were
highly related to post-release faults. For instance, modules
that were more central, as defined by traditional social net-
work analysis centrality measures, tended to have more
faults than other modules. We also found that less complex
measures, such as the number of distinct authors and num-
ber of distinct commits were both significant predictors for
the probability of post-release failures. By using a host of
social network measures (we refer the reader to the original
paper for details and descriptions) in conjunction with prin-
cipal component analysis, we were able to train a logistic
regression module for predicting failure-prone modules that
achieved an average precision of 83% and recall of 89%.
We summarize our important results:

 Network centrality measures can predict failure-
prone binaries in Windows Vista.

 Network centrality measures can predict the num-
ber of post-release failures.

 Advanced centrality measures can improve the
prediction of number of post-release failures.

In summary, we found that a strong relationship exists be-
tween the developers’ commit behavior and the software
quality of modules within the system.

Adding Technical Relationships
In later work, Christian and Nachi built upon this result by
adding module dependencies to the developer-module net-
work [4]. In previous work, Tom and Nachi found that
dependencies can predict failures in both modules [5] and
subsystems [6]. A network that incorporates both develop-
er contributions and dependencies is a socio-technical net-
work because edges may represent contributions from peo-
ple to modules or dependencies between modules within a
system. Figure 2 depicts a portion of a socio-technical net-
work. Circles represent modules and boxes are developers.
Solid directed edges are dependencies, indicating that one
module may use functions or types defined in another, may
make RPC calls to another, etc. Dashed lines indicate that a
developer contributed to a module (we used weights in our
analysis, but do not depict them in the figure).

By combining both types of relationships into one graph,
we were able to increase the power of fault predicting re-
gression models. Using principal component analysis, we
found that models based on this network had higher recall
than networks with only contribution edges (developer-
module networks) or only dependency edges to a statistical-
ly significant degree in Vista (recall was similar to previous
models).

To see if such models are specific to Microsoft or if they
are more generally applicable, we also applied the same
techniques to 6 major releases of the Eclipse Java IDE (2.0
through 3.3) and achieved precision and recall rates of fail-
ure-prone plug-ins ranging from 75% to 86%. Further, we
were able to train a regression model on one release of
Eclipse and achieve recall and precision values ranging
from 75% to 93% on the next release, showing that cross
release prediction works well for network based regression
models.

Figure 2. A socio-technical network between modules (circles)
and developers (boxes).

Figure 1. A developer-module network characterizes the con-
tributions of developers within a system.

The key contributions of this work were:

 We found that using technical and contribution re-
lationships together have more power than either
in isolation for predicting bugs.

 We showed that such techniques are general by us-
ing them on projects that differ in size, domain,
and process (commercial vs. open source).

 We demonstrated how such techniques can be
used in practice to accurately predict failure prone
modules in one release using data from a prior re-
lease.

In all of these models, the inclusion of developer behavior
significantly improved the results over models that did not.
Clearly, the human side of software engineering has a pro-
found effect on quality.

Does Organizational Structure Affect Bugs?
One of the unique advantages of working within an organi-
zation like Microsoft is that we have access to types of data
that may not be available in academia. One such form of
data is the organizational structure of the teams that develop
the software.

Brooks stated that product quality is strongly affected by
organization structure [1]. In order to empirically evaluate
this claim, Nachi and a visiting researcher, Vic Basili, de-
veloped a suite of metrics to quantify organizational com-
plexity [7] and investigated the relationship of these
measures with software quality that we summarize below.
The term “owning organization” is used to denote the or-
ganization that owns the binary.

 Number of engineers that worked on a binary
 Number of engineers who worked on a binary and

left the organization prior to release
 Total number of contributions to a binary
 Number of levels up the organization required to

reach the person who oversees the engineers mak-
ing at least 75% of the contributions to a binary

 Proportion of engineers in the owning organization
who contributed to a binary

 Proportion of edits to a binary that were made by
the owning organization

 Ratio of proportion of engineers reporting to the
owning manager relative to the total number of
engineers editing a binary

 Number of different organizations that contribute
at least 10% of the edits to a binary

Each of these measures is based on a hypothesis related to
software quality. For instance, a large loss of team mem-
bers (2nd measure) affects knowledge retention and thus
quality. The more cohesive the contributors are (organiza-
tionally, 5th measure) the higher the quality.

We gathered these metrics for Windows Vista and correlat-
ed each with post-release faults in the first six months. We
also evaluated the accuracy of a predictive model based on

these metrics. Our results indicate that all eight measures
are important because a step-wise regression retained every
measure. We also created a predictor based on principal
component analysis (due to high correlation between some
measures) and compared it to prior approaches that includ-
ed attributes such as code churn, code complexity, depend-
encies, code coverage during testing, and pre-release bugs.
Surprisingly, the model based purely on organizational met-
rics performed better, in terms of precision and recall, than
all of these models to a statistically significant degree.

We were able to build a better predictor using attributes of
the organization that developed the software instead of us-
ing attributes of the software itself. This finding highlights
the importance of coordination and collaboration in soft-
ware development, as it implies that perhaps high levels of
coordination are able maintain code quality in the face of
factors known to result in faults such as higher levels of
complexity or code churn.

Vista is a large project, in terms of code and developers. In
an attempt to determine how large a project needs to be
before these organizational measures begin to have an ef-
fect, we replicated our study on a smaller data set and found
that a team size of 30 engineers and three levels of organi-
zational depth should be sufficient for a model to predict
failure-proneness.

Investigating the Effects of Geographic Distribution
An additional form of information that we have related to
software development is the geographic location of all de-
velopers. This enabled us to address an issue that many
have wondered about and that may have consequences for
Microsoft’s development process, “Does distributed devel-
opment affect software quality?”

In 2009, Chris and Nachi investigated this question by ex-
amining the locations of the developers that worked on each
binary that shipped with Windows Vista [8]. We grouped
binaries into 6 categories depending on how spread out the
developers were that contributed to them. Some binaries
were developed mostly by developers in the same building
while others had a team that spanned multiple countries.

When we compared the defect rates for the different groups,
we found that no group had more than 16% more defects
than binaries developed by engineers in the same building.
While this is not a trivial increase, we had expected the
effect of geographic distribution to be much larger due to
the barriers imposed such as lack of familiarity, time zone
issues, and less-rich communication. Following a similar
type of analysis to that of Herbsleb and Mockus [9], we
examined the effects of distribution when controlling for
team size. There was very little difference in failures, 6%
at most, between distributed and collocated binaries.

We also examined attributes of the binaries in each group in
order to determine if, for instance, managers only distribut-
ed binaries that were smaller, less critical to the system, or
made up for distribution by testing more. In all, we exam-

ined over 50 measures in categories such as complexity,
churn, test coverage, dependencies, and organizational met-
rics, and determined that there is very little difference be-
tween distributed and collocated binaries other than team
size. Thus, it appears that within Microsoft, distributed
development doesn’t negatively affect quality. There are a
number of reasons that we believe this may be (and we in-
vite the reader to examine them in the original paper [8]),
but we have yet to empirically verify them.

This result is all the more surprising in light of the findings
of our study on organizational metrics, as it may seem to be
at odds with those findings. The resolution of it lies in the
fact that organizational structure spans geography at low
levels within Microsoft. While some companies have an
Asian organization, a European organization, etc., within
Microsoft, it is not uncommon to have a team with devel-
opers in India and others in Beijing who report to a second
line manager in Redmond. This approach may be one rea-
son that geography has less of an effect, but we plan to
study this further to provide more conclusive evidence.

BUG REPORTING AND TRIAGING
In the past years, Tom Zimmermann has collaborated with
other researchers on studies on bug tracking systems. The
advantage of these collaborations is that academic research-
ers can analyze open-source projects, while we can analyze
projects at Microsoft. Thus findings come with a higher
generality.

Bug reports are a perfect data source for CSCW research.
They capture collaboration, communication, and coordina-
tion among people. Especially in open source projects, bug
tracking systems directly involve the users of a software
and not just the engineers. This leads to communities of
several thousand people who discuss and work towards a

resolution of software bugs. In our research we studied bug
tracking in open source and a closed source environments..

What Makes a Good Bug Report?
Tom, in joint work with Rahul Premraj, Nicolas Betten-
burg, Sascha Just, Adrian Schröter, and Cathrin Weiss,
conducted a survey among developers and users of the
Apache, Eclipse, and Mozilla projects [10]. The 466 re-
sponses revealed several interesting findings on how to
improve bug tracking systems.

First, we observed a mismatch between the information
considered most useful by developers and the information
provided by reporters (see Figure 3). Developers want steps
to reproduce, stack traces, and test cases in bug reports;
however, this is not the information that reporters provide.
Yet, when asked, the reporters’ responses indicated that
they know what is most helpful to developers and the rank-
ings matched almost perfectly (see Figure 4). There are two
implications for bug tracking systems: (1) Tell users while
they are reporting a bug what information is important. (2)
At the same time, systems should provide better tools to
collect important information automatically, because often
this information is difficult to obtain for users.

Next, we analyzed the comments by the survey respondents
to identify additional design recommendations:

 Support different levels of users (novice, expert)
and provide different user interfaces for each level.
Inexperienced users should receive more guidance
when reporting bugs.

 Integrate bug report reputation. Several develop-
ers pointed out that reporters who are well known,
either personally or through well-written past bug
reports, will get more attention. Experienced re-
porters could be marked in their user profiles.

Figure 3. Information in bug reports that is considered most
helpful by developers vs. information provided by reporters.

Figure 4. Information in bug reports that is considered most
helpful by developers vs. what reporters believe is important.

 Provide a powerful, yet simple and easy-to-use
search feature. Several respondents to our survey
complaint about the limited search functionality,
which is often only basic keyword search.

For a complete list of recommendations, we refer to our
main publication on this work [10].

Reassignment of Bug Reports
Many people collaborate on fixing bugs and bug reports are
often reassigned to other developers. Together with Gaeul
Jeong and Sung Kim, Tom proposed bug tossing graphs
[11] to capture frequent reassignment patterns. In these
graphs, nodes represent developers and weighted edges
represent the number of reassignments between two devel-
opers. On two large open-source projects, we showed that
bug tossing graphs combined with Markov chains can re-
duce the number of reassignments substantially (also
known as ticket routing problem [12]).

However, not all bug reassignments are necessarily bad.
Sometimes reassignments are actually needed to locate the
root cause for a bug and to find the right person who can fix
the bug. Such “beneficial” reassignments can increase the
chances of a bug report getting fixed (see next subsection).
We are currently working on a characterization of bug re-
port reassignments to identify potential improvements for
bug tracking systems.

Characterizing which Bugs Get Fixed
Often, the cost or risk of fixing a bug can be too high, or the
impact of a bug report can be too low (only few people af-
fected, easy workaround). Thus not all bug reports get fixed
in real software development. In joint work, with Philip
Guo, we characterized which bugs get fixed in Windows
Vista and Windows 7 [13]. We made several observations
related to how people collaborate and coordinate:

 People who have been more successful in getting
their submitted bugs fixed are more likely to get
their bugs fixed in the future.

 Reassignments are not always detrimental to bug-
fix likelihood; several might be needed to find the
optimal bug fixer.

 Bugs assigned across teams or locations are less
likely to get fixed, due to less communication and
lowered trust.

Collaboration and Information Needs in Bug Reports
Especially in open source, bug tracking systems play a cen-
tral role in supporting collaboration between the developers
and the users of the software. To better understand this col-
laboration, we quantitatively and qualitatively analyzed the
questions asked in a sample of 600 bug reports from the
MOZILLA and ECLIPSE projects (joint work with Silvia
Breu, Rahul Premraj, and Jonathan Sillito) [14].

We categorized the questions into a catalogue of frequently
asked questions (eight categories, 40 subcategories) and
then analyzed response rates and times by category and
project. Key findings of this study include:

 Empirical analysis of response rate and time. Out
of all questions, 67.66% were responded to. Of the
questions with responses, 79.4% received respons-
es within the day.

 Evolving information needs. We learned that the
kind of questions and thus the information needs
change over a bug’s life cycle.

 Community-based bug tracking. Bug reporting and
tracking should be understood as a social activity
within a community, supported by the bug tracking
system.

Our results showed that the role of users goes beyond simp-
ly reporting bugs: their active and ongoing participation is
important for making progress on the bugs they report.
Based on the results, we suggested four ways in which bug
tracking systems can be improved (see the main publication
on this work [14]).

DATA-DRIVEN SOFTWARE ENGINEERING
A significant proportion of empirical research is done via
case studies which collect and analyze data from software
artifacts and the associated processes and variables to quan-
tify, characterize and explore the relationship between dif-
ferent variables to deliver high quality secure software on
time and within budget. Data-Driven Software Engineering
forms a crucial part of empirical software engineering as it
can be used to understand the successful development of
software systems. Nachi Nagappan and Brendan Murphy
were some of the first at Microsoft to begin collecting and
analyzing software engineering artifact data for this pur-
pose.

In this section we will explain three of our projects at a very
high level that involve data driven software engineering.
They range from software product to software practice is-
sues. The three projects are,

1. Software product – Failure-prediction/Risk analysis:
Using software development data obtained during the
development process to predict failures and identify the
best predictors.

2. Software practice – Does test-driven development
work? If so is there any supporting data for teams to
make decisions to use test-driven development.

3. Software practice – Is there data available on how
effective Unit testing is? What is the cost associated
with unit testing and do developers offer a resistance to
unit testing.

Failure-Prediction/Risk Analysis
An important application of data-driven software engineer-
ing is in the field of failure-prediction. Failure prediction
can be used to understand the overall success of the devel-
opment process and plan for maintenance activities. Soft-
ware organizations can benefit greatly from an early estima-
tion regarding the quality of their product. Because product
quality information is available late in the process, correc-
tive actions tend to be expensive [15].

During the development cycle different metrics can be col-
lected that can be related to product quality. The goal is to
use such metrics to make estimates of post-release failures
early in the software development cycle, during the imple-
mentation and testing phases. Such estimates can for exam-
ple help focus testing, code and design reviews and afford-
ably guide corrective actions. Across a span of several
years, Nachi and Brendan (in collaboration with others)
have used different metrics for failure prediction: code cov-
erage [16]; code churn [17]; code complexity [18]; code
dependencies [19]; people and organizational metrics [7].

Based on the results from using these various metrics either
individually or in as a composite model effective failure
prediction models have been built and is used in a wide
variety of products at Microsoft. These failure-prediction
models are built as services which allow engineers to pre-
dict risk; identify other engineers who share dependencies
with their code which might be affected by changes; priori-
tize testing; identify ownership to have the best person fix
bugs and plan for staffing up for maintenance activities.

Test-Driven Development
Test-driven development (TDD) [20] is an “opportunistic”
software development practice that has been used sporadi-
cally for decades. With this practice, a software engineer
cycles minute-by-minute between writing failing unit tests
and writing implementation code to pass those tests. Test-
driven development has recently re-emerged as a critical
enabling practice of agile software development methodol-
ogies [21], in particular Extreme Programming (XP) [22].
However, little empirical evidence supports or refutes the
utility of this practice in an industrial context.

For this purpose, Nachi collected and analyzed [23] data
from three different teams at Microsoft (in Windows, MSN
and Visual Studio) to build up an empirical body of
knowledge on the efficacy of TDD. This has enabled teams
to decide on the utility of TDD as a development practice.
Further, by documenting the contextual information about
the human factors about the engineers involved (their expe-
rience, programming expertise, whether collocated or dis-
tributed) team can make a data-driven decision on their
move to following a TDD for software development.

Software Unit Testing
Unit testing is the testing of individual hardware or soft-
ware units or groups of related units (IEEE [24]) and has
been widely used in commercial software development for
decades. But academic research has produced little empiri-
cal evidence via a large scale industrial case study on the
experiences, costs, and benefits of unit testing. Does auto-
mated unit testing produce higher quality code?

To help other teams make a data-driven decision, Nachi,
Laurie Williams, and Gunnar Kudrjavets observed [25] one
large Microsoft team consisting of 32 developers transi-
tioned from ad hoc and individualized unit testing practices
to the utilization of the NUnit automated unit testing
framework by all members of the team. We quantified the

quality and effort required to transition from the ad-hoc
testing to a more formal unit testing process. Also to further
quantify developer perceptions we conducted a survey and
interviews with the team to determine the tradeoffs of doing
unit testing. These results can help other teams decide on
the cost and overhead to transition towards a more formal
unit testing process.

In general the three projects in the data –drive software
engineering domain are more focused towards the empirical
data analysis with making the results accessible to engi-
neers via tools, techniques and processes.

Analytics for Software Development
The previous subsection presented studies where the ESE
group collaborated with product teams at Microsoft. Our
future work will focus on making data-driven software en-
gineering accessible to a wider audience of engineers and
managers.

We plan to build tools that allow an easy access to data to
simplify data-driven decision making. For example, existing
development environments such Microsoft's Team Founda-
tion Server and IBM's Jazz provide dashboards to inform
engineers of the status of various events. However, while
showing status and indicators is fairly straightforward, it is
unclear what are the most important factors are for devel-
opment teams to make data-driven decisions. What do we
need to surface so that development data becomes actiona-
ble for teams so that they can improve how they work to-
gether?

Furthermore, we plan to evangelize empirical methods in
software development and will provide analytics tools to
empower development teams to run studies that go beyond
the use of simple dashboards. In particular, we foresee the
role of a software development analyst who combines the
expertise in collecting and analyzing data with the
knowledge of processes specific to the product team. Right
now, this expertise is often split across Microsoft Research
(who have the analytics knowledge) and product teams
(who have the domain knowledge).

WHAT MAKES EMPIRICAL SOFTWARE ENGINEERING
RESEARCH AT MICROSOFT UNIQUE?
An industrial research lab such as Microsoft Research has
several advantages to conduct research.

Easy access to industrial data. During software develop-
ment a large amount of data is generated and recorded in
software repositories. Being inside Microsoft simplifies the
access to such data and enables empirical studies as the
ones presented in this paper.

Easy access to developers. Not only is the access to data
easier, but also the access to engineers. This allows valida-
tion of empirical findings, user studies of prototypes, inter-
views, surveys, etc. and makes an ideal environment to
study collaboration in software development.

Near term impact. Since Microsoft’s core business is de-
veloping software, findings that result from our studies can

b
s
q

C
p
in
m
a
s

C
o
o
w
ic
th
r
d
r

F
ic
lo
a
lo
a
t
g
ti
a

C
I
c
s
a
a
e

F

be put into prac
serves to valida
quality and pro

Collaboration
plenty opportu
nside Microso

more than 80
around the wor
sible and allow

Collaboration
opportunities fo
outside Micros
we analyze dat
c researcher an
he generality o

researchers also
data either as
researchers (for

Figure 5 shows
cal Software
ocations. In th

and 7 professo
ooking for out

about visits or
tact one of the
group members
ime (Nachi Na

and Christian B

CONCLUSION
In this paper, w
case the researc
sis of socio tec
allows us to un
and to build too
er. With data-d

Figure 5. Colla

ctice immediat
ate the findings
ductivity.

with other Mic
unities to colla
oft. At the mo
0 researchers,
rld. For most a

w for multidiscip

with external
for our group t
soft. Often we
ta from Micros
nalyzes open-s
of our empiric
o get the oppo
interns (typica
r example, pro

s a Bing map w
Engineering G

he past years w
ors from all ov
tstanding visito
r internships v
e authors of t
s interned befo
agappan in 200
Bird in 2008 an

we presented
ch of the ESE

chnical congru
nderstand how d
ols that help th
driven software

aborations of t

tely within the
s and results in

crosoft researc
aborate with o
oment Microso
, working in
areas, experts a
plinary researc

researchers. T
to collaborate
e conduct rese
soft projects, w
source projects
al findings. Se

ortunity to acc
ally PhD stud
fessors during

with the locatio
Group and th

we have worke
ver the world.
ors and interns.
visit our web-s
this paper. In
ore they joined
05, Tom Zimm
nd 2009)

three main the
group at Micr
ence and bug t
development te
hem collaborat
e engineering,

the Empirical

e company. Th
n higher levels

chers. There a
other researche
oft Research h

eight locatio
are easily acce
ch when needed

There are man
with researche

earch in tandem
while an academ
s. This increas
elected academ
ess to Microso
ents) or visitin
a sabbatical).

ons of the Empi
he collaborator
ed with 8 inter

We are alwa
. To learn mo
site and/or co
 fact, three ES
d Microsoft fu

mermann in 200

emes that show
rosoft: the anal
tracking system
eams collabora
te with each ot
we want to tak

Software Eng

his
of

are
ers
has
ns

es-
d.

ny
ers
m:
m-
ses

mic
oft
ng

ir-
r’s
rns
ays
re
n-

SE
ull-
06,

w-
ly-
ms
ate
th-
ke

this on
knowle
themse

Being
opportu
softwa
ent. R
ing (lik
field d
pens.
cooper
needed

For m
and/or

h

ACKNO
We tha
visitors
William
Basili
our int
Kalaik
Tosun
(both 2
the gre

We als
many p
us and

REFER

1. Bro
We

2. Co
14,

gineering and

ne step further
edge and tools
elves and moni

located inside
tunities to purs
are projects and
Rather than just

ke many studi
do), we can wat

We can also t
rative work a
d and when eng

more informatio
to apply for an

http://research.m

OWLEDGMEN
ank Tom Ball
s Sung Kim (2
ms (2009), An
(2007), Neera
terns Ray Bus

kumaran Rama
(both 2009),

2007); and we
eat work!

so thank our co
product group
helped with st

RENCES

ooks Jr., F.P. T
esley, 1975.

onway, M.E. H
, 4 (1968), 28-

Main location
Redmond (US

Collaboration
Microsoft Res
Asia (Beijing)
(Aachen, Germ

Interns 2007-
University of
National Instit
(Kalaikumaran
(Philip Guo);
Darmstadt Un
North Carolin
Meiyappan Na

Visitors 2007
Technology (S
Martin Pinzge
North Carolin
University of
University of

Measurement

r: developmen
s to analyze the
itor their impro

Microsoft off
ue our goals. M
d the “coopera
t coming in afte
ies in the mini
tch software d
test tools relat
and understan
gineers can wo

on about the E
n internship, lo

microsoft.com/

NTS
, Robin Moeu

2010), Harald G
ndreas Zeller
aj Suri (2007),
se, Ken Hullet
amurthy (all 2
, Lucas Laym
e thank our co

olleagues at Mi
ps at Microsoft
tudies. You roc

The mythical m

How do commit
31.

ns of the ESM gr
SA), Cambridge (

ns with other Mi
search India (Ban
), European Micro
many)

-2010: University
California, Santa
tute of Technolog
n Ramamurthy);
Boğaziçi Univers

niversity of Techn
na State University
agappan)

7-2010: Hong Kon
Sung Kim); Univ
er); Saarland Univ
na State University
Maryland (Victor
Technology (Nee

t (ESM) Group

nt teams should
eir collaboratio
ovement over t

fers us with ma
Microsoft has m
ative” aspect is
er the fact and
ing software r

development wh
ted to helping

nd when coop
ork on their ow

ESE group at
ogon to

/en-us/projects

ur, Wolfram Sc
Gall (2008, 200
(2005, 2009),
, Martin Pinzg
tt, Meiyappan

2010), Philip G
man, Andreas
ollaborators. T

icrosoft Resear
ft who have wo
ck!

man-month. Ad

ttees invent. Da

roup (black pins
(UK)

icrosoft Researc
ngalore), Microso
osoft Innovation

y of Virginia (Ray
a Cruz (Ken Hulle
gy, Tiruchirappal
Stanford Univers
sity, Turkey (Ays
nology (Andreas J
y (Lucas Layman

ng University of
versity of Zurich (
versity (Andreas
y (Laurie William
r Basili); Darmst
eraj Suri).

p at Microsoft

d have the
on patterns
time.

any unique
many large
s omnipres-

investigat-
repositories
hile it hap-
to support

peration is
wn.

Microsoft

s/esm/

chulte; our
09), Laurie
 Victor R.

ger (2007);
Nagappan

Guo, Ayse
Johansson

Thanks for

rch and the
orked with

ddison-

atamation,

s):

ch Labs:
oft Research

Center

y Buse);
ett);
lli, India
sity
se Tosun);
Johansson);
n,

Science and
(Harald Gall,
Zeller);

ms);
adt

Research.

3. Pinzger, M., Nagappan, N., and Murphy, B. Can
developer-module networks predict failures? In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(2008), 2-12.

4. Bird, C., Nagappan, N., Devanbu, P., Gall, H., and
Murphy, B. Putting it All Together: Using Socio-
Technical Networks to Predict Failures. In Proceedings
of the 17th International Symposium on Software
Reliability Engineering (2009), 109-119.

5. Zimmermann, T. and Nagappan, N. Predicting Defects
using Social Network Analysis on Dependency Graphs.
In Proceedings of the 30th International Conference on
Software Engineering (2008), 531-540.

6. Zimmermann, T. and Nagappan, N. Predicting subsystem
failures using dependency graph complexities. In
Predicting subsystem failures using dependency graph
complexities (2007), 227-236.

7. Nagappan, N., Murphy, B., and Basili, V. The influence
of organizational structure on software quality: an
empirical case study. In Proceedings of the 30th
International Conference on Software Engineering
(2008), 521-530.

8. Bird, C., Nagappan, N., Devanbu, P., Gall, H., and
Murphy, B. Does Distributed Development Affect
Software Quality? An Empirical Case Study of Windows
Vista. In Proceedings of the International Conference on
Software Engineering (2009), 518-528.

9. Herbsleb, J.D. and Mockus, A. An empirical study of
speed and communication in globally distributed
software development. IEEE Transactions on Software
Engineering, 29, 6 (2003), 481 - 494.

10. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S.,
Schröter, A., and Weiss, C. What Makes a Good Bug
Report? IEEE Transactions on Software Engineering. To
appear.
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.63.

11. Jeong, G., Kim, S., and Zimmermann, T. Improving bug
triage with bug tossing graphs. In Proceedings of the the
7th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (2009), 111-120.

12. Shao, Q., Chen, Y., Tao, S., Yan, X., and Anerousis, N.
Efficient ticket routing by resolution sequence mining. In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(2008), 605-613.

13. Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy,
B. Characterizing and predicting which bugs get fixed:

an empirical study of Microsoft Windows. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (2010), 495-504.

14. Breu, S., Premraj, R., Sillito, J., and Zimmermann, T.
Information needs in bug reports: improving cooperation
between developers and users. In Proceedings of the
ACM Conference on Computer Supported Cooperative
Work (2010), 301-310.

15. Boehm, B.W. Software Engineering Economics. Prentice
Hall, 1981.

16. Mockus, A., Nagappan, N., and Dinh-Trong, T.T. Test
coverage and post-verification defects: A multiple case
study. In Proceedings of the 3rd International
Symposium on Empirical Software Engineering and
Measurement (2009), 291-301.

17. Nagappan, N. and Ball, T. Use of relative code churn
measures to predict system defect density. In
Proceedings of the 27th International Conference on
Software Engineering (2005), 284-292.

18. Bhat, T. and Nagappan, N. Building Scalable Failure-
proneness Models Using Complexity Metrics for Large
Scale Software Systems. In Proc. of the Asia Pacific
Software Engineering Conference (2006), 361-366.

19. Nagappan, N. and Ball, T. Using Software Dependencies
and Churn Metrics to Predict Field Failures: An
Empirical Case Study. In Proceedings of the First
International Symposium on Empirical Software
Engineering and Measurement (2007), 364-373.

20. Beck, K. Test Driven Development: By Example.
Addison-Wesley Professional, 2002.

21. Cockburn, A. Agile Software Development. Addison-
Wesley Professional, 2001.

22. Beck, K. and Andres, C. Extreme Programming
Explained: Embrace Change. Addison-Wesley
Professional, 2004.

23. Bhat, T. and Nagappan, N. Evaluating the efficacy of
test-driven development: industrial case studies. In
Proceedings of the ACM/IEEE International Symposium
on Empirical Software Engineering (2006), 356-363.

24. IEEE. IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology. , 1990.

25. Williams, L., Kudrjavets, G., and Nagappan, N. On the
Effectiveness of Unit Test Automation at Microsoft. In
Proceedings of the IEEE International Symposium on
Software Reliability Engineering (2009).

