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ABSTRACT 
We describe the activities of the Empirical Software Engi-
neering (ESE) group at Microsoft Research. We highlight 
our research themes and activities using examples from our 
research on socio technical congruence, bug reporting and 
triaging, and data-driven software engineering to illustrate 
our relationship to the CSCW community. We highlight our 
unique ability to leverage industrial data and developers and 
the ability to make near term impact on Microsoft via the 
results of our studies. We also present the collaborations 
our group has with academic researchers.  

Author Keywords 
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tracking and triaging, data-driven software engineering 

ACM Classification Keywords 
D.2.5 [Software Engineering]: Testing and Debugging; 
D.2.7 [Software Engineering]: Distribution, Maintenance, 
and Enhancement 

ACM General Terms 
Human Factors, Management, Measurement 

INTRODUCTION 
The Empirical Software Engineering (ESE) group at Mi-
crosoft Research focuses on working in the intersection of 
the Software Engineering and CSCW communities.  

“Over the last decade, it has become clear that empirical studies 
are a fundamental component of software engineering research 
and practice: Software development practices and technologies 
must be investigated by empirical means in order to be under-
stood, evaluated, and deployed in proper contexts. This stems 
from the observation that higher software quality and productivi-
ty have more chances to be achieved if well-understood, tested 
practices and technologies are introduced in software develop-
ment. Empirical studies usually involve the collection and analy-
sis of data and experience that can be used to characterize, evalu-
ate and reveal relationships between software development de-
liverables, practices, and technologies.” 

(Empirical Software Engineering journal,  
http://www.springer.com/computer/swe/journal/10664) 

At a high level the goals of the ESE follows two guiding 
principles, 

 Empower software development teams 
 To gain insight from product process, people 

and customers 

by employing a qualitative and quantitative approach to the 
software development process. 

In this paper we discuss three broad themes of the ESE 
group, 

 Socio technical congruence; 
 Bug reporting and triaging; and 
 Data-driven software engineering. 

In each of these sections our studies leverage techniques 
and methods from both the Software Engineering and 
CSCW communities to adapt case studies in practice from 
the empirical domain with the CSCW aspects as all soft-
ware systems which are built by teams inherently have a 
significant collaborative aspect. We also present our collab-
orations and discuss the uniqueness of our fit in the middle 
of these two communities. 

SOCIO TECHNICAL CONGRUENCE 
 “Design and programming are human activities;  

forget that and all is lost” 

– Bjarne Stroustrop 

As software projects grow in size and complexity, so do the 
teams of engineers that develop and maintain them.  
Brooks, in his seminal work, “The Mythical Man Month” 
[1] discussed coordination as one of the key problems of 
running a software project with many developers.  The co-
ordination effort required to help each member of a team 
stay in sync and keep a project on schedule is enormous.   

Socio Technical Congruence is a term that has emerged 
recently in the software engineering literature to describe 
the relationship between the “social” side of development, 
meaning the developers, their relationships to each other, 
how they communicate, work together on software, etc. and 
the “technical” side which encapsulates features of the 
software itself such as dependencies between components, 
component complexity, and software quality.  The idea 
behind the term has its origins in Conway’s Law, originally 
presented in Conway’s paper “How Do Committees Invent” 
[2]. This is of importance to the CSCW community because 
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of the emphasis placed on understanding how, and under 
what circumstances, developers should work together on 
projects. 

In an effort to aid the development effort at Microsoft and 
understand the effect of human factors, we have gathered 
data and investigated the relationship of software quality 
with developer attributes such as collaboration behavior, 
geographic location, position within the organization, and 
work assignment.  Below, we describe some of our key 
results. 

Contribution Behavior and Quality 
Is a study of collaboration behavior, Nachi, in joint work 
with Martin Pinzger, developed a developer-module net-
work, which characterized the contributions of developers 
to modules within a system [3].  Figure 1 shows an example 
developer-module network.  Gray circles represent devel-
opers and boxes represent modules within a system.  Edges 
connect developers to the modules that they have contribut-
ed to, with edge weights representing the number of source 
code repository commits.  Note that the developer-module 
network for Windows Vista is quite large, with thousands 
of developers and thousands of binaries – executables 
(.exe), shared libraries (.dll) and drivers (.sys). 

We found that topological properties of this network were 
highly related to post-release faults.  For instance, modules 
that were more central, as defined by traditional social net-
work analysis centrality measures, tended to have more 
faults than other modules.  We also found that less complex 
measures, such as the number of distinct authors and num-
ber of distinct commits were both significant predictors for 
the probability of post-release failures.  By using a host of 
social network measures (we refer the reader to the original 
paper for details and descriptions) in conjunction with prin-
cipal component analysis, we were able to train a logistic 
regression module for predicting failure-prone modules that 
achieved an average precision of 83% and recall of 89%.  
We summarize our important results: 

 Network centrality measures can predict failure-
prone binaries in Windows Vista. 

 Network centrality measures can predict the num-
ber of post-release failures. 

 Advanced centrality measures can improve the 
prediction of number of post-release failures. 

In summary, we found that a strong relationship exists be-
tween the developers’ commit behavior and the software 
quality of modules within the system. 

Adding Technical Relationships 
In later work, Christian and Nachi built upon this result by 
adding module dependencies to the developer-module net-
work [4].  In previous work, Tom and Nachi found that 
dependencies can predict failures in both modules [5] and 
subsystems [6].  A network that incorporates both develop-
er contributions and dependencies is a socio-technical net-
work because edges may represent contributions from peo-
ple to modules or dependencies between modules within a 
system.  Figure 2 depicts a portion of a socio-technical net-
work.  Circles represent modules and boxes are developers.  
Solid directed edges are dependencies, indicating that one 
module may use functions or types defined in another, may 
make RPC calls to another, etc.  Dashed lines indicate that a 
developer contributed to a module (we used weights in our 
analysis, but do not depict them in the figure). 

By combining both types of relationships into one graph, 
we were able to increase the power of fault predicting re-
gression models.  Using principal component analysis, we 
found that models based on this network had higher recall 
than networks with only contribution edges (developer-
module networks) or only dependency edges to a statistical-
ly significant degree in Vista (recall was similar to previous 
models). 

To see if such models are specific to Microsoft or if they 
are more generally applicable, we also applied the same 
techniques to 6 major releases of the Eclipse Java IDE (2.0 
through 3.3) and achieved precision and recall rates of fail-
ure-prone plug-ins ranging from 75% to 86%.  Further, we 
were able to train a regression model on one release of 
Eclipse and achieve recall and precision values ranging 
from 75% to 93% on the next release, showing that cross 
release prediction works well for network based regression 
models. 

 

Figure 2. A socio-technical network between modules (circles) 
and developers (boxes). 

 

Figure 1. A developer-module network characterizes the con-
tributions of developers within a system. 



The key contributions of this work were: 

 We found that using technical and contribution re-
lationships together have more power than either 
in isolation for predicting bugs. 

 We showed that such techniques are general by us-
ing them on projects that differ in size, domain, 
and process (commercial vs. open source). 

 We demonstrated how such techniques can be 
used in practice to accurately predict failure prone 
modules in one release using data from a prior re-
lease. 

In all of these models, the inclusion of developer behavior 
significantly improved the results over models that did not.  
Clearly, the human side of software engineering has a pro-
found effect on quality.   

Does Organizational Structure Affect Bugs? 
One of the unique advantages of working within an organi-
zation like Microsoft is that we have access to types of data 
that may not be available in academia.  One such form of 
data is the organizational structure of the teams that develop 
the software. 

Brooks stated that product quality is strongly affected by 
organization structure [1].  In order to empirically evaluate 
this claim, Nachi and a visiting researcher, Vic Basili,  de-
veloped a suite of metrics to quantify organizational com-
plexity [7] and investigated the relationship of these 
measures with software quality that we summarize below.  
The term “owning organization” is used to denote the or-
ganization that owns the binary.  

 Number of engineers that worked on a binary 
 Number of engineers who worked on a binary and 

left the organization prior to release 
 Total number of contributions to a binary 
 Number of levels up the organization required to 

reach the person who oversees the engineers mak-
ing at least 75% of the contributions to a binary 

 Proportion of engineers in the owning organization 
who contributed to a binary 

 Proportion of edits to a binary that were made by 
the owning organization 

 Ratio of proportion of engineers reporting to the 
owning manager relative to the total number of 
engineers editing a binary 

 Number of different organizations that contribute 
at least 10% of the edits to a binary 

Each of these measures is based on a hypothesis related to 
software quality.  For instance, a large loss of team mem-
bers (2nd measure) affects knowledge retention and thus 
quality.  The more cohesive the contributors are (organiza-
tionally, 5th measure) the higher the quality. 

We gathered these metrics for Windows Vista and correlat-
ed each with post-release faults in the first six months.  We 
also evaluated the accuracy of a predictive model based on 

these metrics.  Our results indicate that all eight measures 
are important because a step-wise regression retained every 
measure.  We also created a predictor based on principal 
component analysis (due to high correlation between some 
measures) and compared it to prior approaches that includ-
ed attributes such as code churn, code complexity, depend-
encies, code coverage during testing, and pre-release bugs.  
Surprisingly, the model based purely on organizational met-
rics performed better, in terms of precision and recall, than 
all of these models to a statistically significant degree. 

We were able to build a better predictor using attributes of 
the organization that developed the software instead of us-
ing attributes of the software itself.  This finding highlights 
the importance of coordination and collaboration in soft-
ware development, as it implies that perhaps high levels of 
coordination are able maintain code quality in the face of 
factors known to result in faults such as higher levels of 
complexity or code churn. 

Vista is a large project, in terms of code and developers.  In 
an attempt to determine how large a project needs to be 
before these organizational measures begin to have an ef-
fect, we replicated our study on a smaller data set and found 
that a team size of 30 engineers and three levels of organi-
zational depth should be sufficient for a model to predict 
failure-proneness. 

Investigating the Effects of Geographic Distribution 
An additional form of information that we have related to 
software development is the geographic location of all de-
velopers.  This enabled us to address an issue that many 
have wondered about and that may have consequences for 
Microsoft’s development process, “Does distributed devel-
opment affect software quality?”   

In 2009, Chris and Nachi investigated this question by ex-
amining the locations of the developers that worked on each 
binary that shipped with Windows Vista [8].  We grouped 
binaries into 6 categories depending on how spread out the 
developers were that contributed to them.  Some binaries 
were developed mostly by developers in the same building 
while others had a team that spanned multiple countries. 

When we compared the defect rates for the different groups, 
we found that no group had more than 16% more defects 
than binaries developed by engineers in the same building.  
While this is not a trivial increase, we had expected the 
effect of geographic distribution to be much larger due to 
the barriers imposed such as lack of familiarity, time zone 
issues, and less-rich communication.  Following a similar 
type of analysis to that of Herbsleb and Mockus [9], we 
examined the effects of distribution when controlling for 
team size.  There was very little difference in failures, 6% 
at most, between distributed and collocated binaries. 

We also examined attributes of the binaries in each group in 
order to determine if, for instance, managers only distribut-
ed binaries that were smaller, less critical to the system, or 
made up for distribution by testing more.  In all, we exam-



 

ined over 50 measures in categories such as complexity, 
churn, test coverage, dependencies, and organizational met-
rics, and determined that there is very little difference be-
tween distributed and collocated binaries other than team 
size.  Thus, it appears that within Microsoft, distributed 
development doesn’t negatively affect quality.  There are a 
number of reasons that we believe this may be (and we in-
vite the reader to examine them in the original paper [8]), 
but we have yet to empirically verify them. 

This result is all the more surprising in light of the findings 
of our study on organizational metrics, as it may seem to be 
at odds with those findings.  The resolution of it lies in the 
fact that organizational structure spans geography at low 
levels within Microsoft.  While some companies have an 
Asian organization, a European organization, etc., within 
Microsoft, it is not uncommon to have a team with devel-
opers in India and others in Beijing who report to a second 
line manager in Redmond.  This approach may be one rea-
son that geography has less of an effect, but we plan to 
study this further to provide more conclusive evidence. 

BUG REPORTING AND TRIAGING 
In the past years, Tom Zimmermann has collaborated with 
other researchers on studies on bug tracking systems.  The 
advantage of these collaborations is that academic research-
ers can analyze open-source projects, while we can analyze 
projects at Microsoft.  Thus findings come with a higher 
generality. 

Bug reports are a perfect data source for CSCW research. 
They capture collaboration, communication, and coordina-
tion among people. Especially in open source projects, bug 
tracking systems directly involve the users of a software 
and not just the engineers. This leads to communities of 
several thousand people who discuss and work towards a 

resolution of software bugs. In our research we studied bug 
tracking in open source and a closed source environments.. 

What Makes a Good Bug Report? 
Tom, in joint work with Rahul Premraj, Nicolas Betten-
burg, Sascha Just, Adrian Schröter, and Cathrin Weiss,  
conducted a survey among developers and users of the 
Apache, Eclipse, and Mozilla projects [10].  The 466 re-
sponses revealed several interesting findings on how to 
improve bug tracking systems. 

First, we observed a mismatch between the information 
considered most useful by developers and the information 
provided by reporters (see Figure 3). Developers want steps 
to reproduce, stack traces, and test cases in bug reports; 
however, this is not the information that reporters provide. 
Yet, when asked, the reporters’ responses indicated that 
they know what is most helpful to developers and the rank-
ings matched almost perfectly (see Figure 4). There are two 
implications for bug tracking systems:  (1) Tell users while 
they are reporting a bug what information is important.  (2) 
At the same time, systems should provide better tools to 
collect important information automatically, because often 
this information is difficult to obtain for users. 

Next, we analyzed the comments by the survey respondents 
to identify additional design recommendations: 

 Support different levels of users (novice, expert) 
and provide different user interfaces for each level. 
Inexperienced users should receive more guidance 
when reporting bugs. 

 Integrate bug report reputation. Several develop-
ers pointed out that reporters who are well known, 
either personally or through well-written past bug 
reports, will get more attention. Experienced re-
porters could be marked in their user profiles. 

 

Figure 3. Information in bug reports that is considered most 
helpful by developers vs. information provided by reporters.

 

Figure 4. Information in bug reports that is considered most 
helpful by developers vs. what reporters believe is important.



 Provide a powerful, yet simple and easy-to-use 
search feature. Several respondents to our survey 
complaint about the limited search functionality, 
which is often only basic keyword search. 

For a complete list of recommendations, we refer to our 
main publication on this work [10]. 

Reassignment of Bug Reports  
Many people collaborate on fixing bugs and bug reports are 
often reassigned to other developers. Together with Gaeul 
Jeong and Sung Kim, Tom proposed bug tossing graphs 
[11] to capture frequent reassignment patterns. In these 
graphs, nodes represent developers and weighted edges 
represent the number of reassignments between two devel-
opers. On two large open-source projects, we showed that 
bug tossing graphs combined with Markov chains can re-
duce the number of reassignments substantially (also 
known as ticket routing problem [12]). 

However, not all bug reassignments are necessarily bad. 
Sometimes reassignments are actually needed to locate the 
root cause for a bug and to find the right person who can fix 
the bug. Such “beneficial” reassignments can increase the 
chances of a bug report getting fixed (see next subsection). 
We are currently working on a characterization of bug re-
port reassignments to identify potential improvements for 
bug tracking systems. 

Characterizing which Bugs Get Fixed 
Often, the cost or risk of fixing a bug can be too high, or the 
impact of a bug report can be too low (only few people af-
fected, easy workaround). Thus not all bug reports get fixed 
in real software development. In joint work, with Philip 
Guo, we characterized which bugs get fixed in Windows 
Vista and Windows 7 [13]. We made several observations 
related to how people collaborate and coordinate: 

 People who have been more successful in getting 
their submitted bugs fixed are more likely to get 
their bugs fixed in the future. 

 Reassignments are not always detrimental to bug-
fix likelihood; several might be needed to find the 
optimal bug fixer. 

 Bugs assigned across teams or locations are less 
likely to get fixed, due to less communication and 
lowered trust. 

Collaboration and Information Needs in Bug Reports 
Especially in open source, bug tracking systems play a cen-
tral role in supporting collaboration between the developers 
and the users of the software. To better understand this col-
laboration, we quantitatively and qualitatively analyzed the 
questions asked in a sample of 600 bug reports from the 
MOZILLA and ECLIPSE projects (joint work with Silvia 
Breu, Rahul Premraj, and Jonathan Sillito) [14].  

We categorized the questions into a catalogue of frequently 
asked questions (eight categories, 40 subcategories) and 
then analyzed response rates and times by category and 
project. Key findings of this study include: 

 Empirical analysis of response rate and time. Out 
of all questions, 67.66% were responded to. Of the 
questions with responses, 79.4% received respons-
es within the day.  

 Evolving information needs. We learned that the 
kind of questions and thus the information needs 
change over a bug’s life cycle. 

 Community-based bug tracking. Bug reporting and 
tracking should be understood as a social activity 
within a community, supported by the bug tracking 
system. 

Our results showed that the role of users goes beyond simp-
ly reporting bugs: their active and ongoing participation is 
important for making progress on the bugs they report. 
Based on the results, we suggested four ways in which bug 
tracking systems can be improved (see the main publication 
on this work [14]). 

DATA-DRIVEN SOFTWARE ENGINEERING 
A significant proportion of empirical research is done via 
case studies which collect and analyze data from software 
artifacts and the associated processes and variables to quan-
tify, characterize and explore the relationship between dif-
ferent variables to deliver high quality secure software on 
time and within budget. Data-Driven Software Engineering 
forms a crucial part of empirical software engineering as it 
can be used to understand the successful development of 
software systems.  Nachi Nagappan and Brendan Murphy 
were some of the first at Microsoft to begin collecting and 
analyzing software engineering artifact data for this pur-
pose. 

In this section we will explain three of our projects at a very 
high level that involve data driven software engineering. 
They range from software product to software practice is-
sues. The three projects are, 

1. Software product – Failure-prediction/Risk analysis: 
Using software development data obtained during the 
development process to predict failures and identify the 
best predictors. 

2. Software practice – Does test-driven development 
work? If so is there any supporting data for teams to 
make decisions to use test-driven development. 

3. Software practice – Is there data available on how 
effective Unit testing is? What is the cost associated 
with unit testing and do developers offer a resistance to 
unit testing. 

Failure-Prediction/Risk Analysis 
An important application of data-driven software engineer-
ing is in the field of failure-prediction. Failure prediction 
can be used to understand the overall success of the devel-
opment process and plan for maintenance activities. Soft-
ware organizations can benefit greatly from an early estima-
tion regarding the quality of their product. Because product 
quality information is available late in the process, correc-
tive actions tend to be expensive [15].  



 

During the development cycle different metrics can be col-
lected that can be related to product quality. The goal is to 
use such metrics to make estimates of post-release failures 
early in the software development cycle, during the imple-
mentation and testing phases. Such estimates can for exam-
ple help focus testing, code and design reviews and afford-
ably guide corrective actions. Across a span of several 
years, Nachi and Brendan (in collaboration with others) 
have used different metrics for failure prediction: code cov-
erage [16]; code churn [17]; code complexity [18]; code 
dependencies [19]; people and organizational metrics [7]. 

Based on the results from using these various metrics either 
individually or in as a composite model effective failure 
prediction models have been built and is used in a wide 
variety of products at Microsoft. These failure-prediction 
models are built as services which allow engineers to pre-
dict risk; identify other engineers who share dependencies 
with their code which might be affected by changes; priori-
tize testing; identify ownership to have the best person fix 
bugs and plan for staffing up for maintenance activities. 

Test-Driven Development 
Test-driven development (TDD) [20] is an “opportunistic” 
software development practice that has been used sporadi-
cally for decades.  With this practice, a software engineer 
cycles minute-by-minute between writing failing unit tests 
and writing implementation code to pass those tests. Test-
driven development has recently re-emerged as a critical 
enabling practice of agile software development methodol-
ogies [21], in particular Extreme Programming (XP) [22].  
However, little empirical evidence supports or refutes the 
utility of this practice in an industrial context.  

For this purpose, Nachi collected and analyzed [23] data 
from three different teams at Microsoft (in Windows, MSN 
and Visual Studio) to build up an empirical body of 
knowledge on the efficacy of TDD. This has enabled teams 
to decide on the utility of TDD as a development practice. 
Further, by documenting the contextual information about 
the human factors about the engineers involved (their expe-
rience, programming expertise, whether collocated or dis-
tributed) team can make a data-driven decision on their 
move to following a TDD for software development.  

Software Unit Testing  
Unit testing is the testing of individual hardware or soft-
ware units or groups of related units (IEEE [24]) and has 
been widely used in commercial software development for 
decades. But academic research has produced little empiri-
cal evidence via a large scale industrial case study on the 
experiences, costs, and benefits of unit testing. Does auto-
mated unit testing produce higher quality code? 

To help other teams make a data-driven decision, Nachi, 
Laurie Williams, and Gunnar Kudrjavets observed [25] one 
large Microsoft team consisting of 32 developers transi-
tioned from ad hoc and individualized unit testing practices 
to the utilization of the NUnit automated unit testing 
framework by all members of the team. We quantified the 

quality and effort required to transition from the ad-hoc 
testing to a more formal unit testing process. Also to further 
quantify developer perceptions we conducted a survey and 
interviews with the team to determine the tradeoffs of doing 
unit testing. These results can help other teams decide on 
the cost and overhead to transition towards a more formal 
unit testing process.  

In general the three projects in the data –drive software 
engineering domain are more focused towards the empirical 
data analysis with making the results accessible to engi-
neers via tools, techniques and processes. 

Analytics for Software Development 
The previous subsection presented studies where the ESE 
group collaborated with product teams at Microsoft. Our 
future work will focus on making data-driven software en-
gineering accessible to a wider audience of engineers and 
managers. 

We plan to build tools that allow an easy access to data to 
simplify data-driven decision making. For example, existing 
development environments such Microsoft's Team Founda-
tion Server and IBM's Jazz provide dashboards to inform 
engineers of the status of various events. However, while 
showing status and indicators is fairly straightforward, it is 
unclear what are the most important factors are for devel-
opment teams to make data-driven decisions. What do we 
need to surface so that development data becomes actiona-
ble for teams so that they can improve how they work to-
gether? 

Furthermore, we plan to evangelize empirical methods in 
software development and will provide analytics tools to 
empower development teams to run studies that go beyond 
the use of simple dashboards. In particular, we foresee the 
role of a software development analyst who combines the 
expertise in collecting and analyzing data with the 
knowledge of processes specific to the product team. Right 
now, this expertise is often split across Microsoft Research 
(who have the analytics knowledge) and product teams 
(who have the domain knowledge). 

WHAT MAKES EMPIRICAL SOFTWARE ENGINEERING 
RESEARCH AT MICROSOFT UNIQUE? 
An industrial research lab such as Microsoft Research has 
several advantages to conduct research.  

Easy access to industrial data. During software develop-
ment a large amount of data is generated and recorded in 
software repositories. Being inside Microsoft simplifies the 
access to such data and enables empirical studies as the 
ones presented in this paper. 

Easy access to developers. Not only is the access to data 
easier, but also the access to engineers. This allows valida-
tion of empirical findings, user studies of prototypes, inter-
views, surveys, etc. and makes an ideal environment to 
study collaboration in software development. 

Near term impact. Since Microsoft’s core business is de-
veloping software, findings that result from our studies can 



b
s
q

C
p
in
m
a
s

C
o
o
w
ic
th
r
d
r

F
ic
lo
a
lo
a
t
g
ti
a

C
I
c
s
a
a
e

F

be put into prac
serves to valida
quality and pro

Collaboration 
plenty opportu
nside Microso

more than 80
around the wor
sible and allow

Collaboration 
opportunities fo
outside Micros
we analyze dat
c researcher an
he generality o

researchers also
data either as 
researchers (for

Figure 5 shows
cal Software 
ocations. In th

and 7 professo
ooking for out

about visits or
tact one of the
group members
ime (Nachi Na

and Christian B

CONCLUSION
In this paper, w
case the researc
sis of socio tec
allows us to un
and to build too
er. With data-d

Figure 5. Colla

ctice immediat
ate the findings
ductivity. 

with other Mic
unities to colla
oft. At the mo
0 researchers,
rld. For most a

w for multidiscip

with external 
for our group t
soft. Often we
ta from Micros
nalyzes open-s
of our empiric
o get the oppo
interns (typica
r example, pro

s a Bing map w
Engineering G

he past years w
ors from all ov
tstanding visito
r internships v
e authors of t
s interned befo
agappan in 200
Bird in 2008 an

 
we presented 
ch of the ESE 

chnical congru
nderstand how d
ols that help th
driven software

aborations of t

tely within the
s and results in

crosoft researc
aborate with o
oment Microso
, working in 
areas, experts a
plinary researc

researchers. T
to collaborate 
e conduct rese
soft projects, w
source projects
al findings. Se

ortunity to acc
ally PhD stud
fessors during 

with the locatio
Group and th

we have worke
ver the world.
ors and interns.
visit our web-s
this paper. In
ore they joined
05, Tom Zimm
nd 2009) 

three main the
group at Micr
ence and bug t
development te
hem collaborat
e engineering, 

the Empirical 

e company.  Th
n higher levels 

chers. There a
other researche
oft Research h

eight locatio
are easily acce
ch when needed

There are man
with researche

earch in tandem
while an academ
s. This increas
elected academ
ess to Microso
ents) or visitin
a sabbatical). 

ons of the Empi
he collaborator
ed with 8 inter

We are alwa
. To learn mo
site and/or co
 fact, three ES
d Microsoft fu

mermann in 200

emes that show
rosoft: the anal
tracking system
eams collabora
te with each ot
we want to tak

Software Eng

his 
of 

are 
ers 
has 
ns 

es-
d. 

ny 
ers 
m: 
m-
ses 

mic 
oft 
ng 

ir-
r’s 
rns 
ays 
re 
n-

SE 
ull-
06, 

w-
ly-
ms 
ate 
th-
ke 

this on
knowle
themse

Being 
opportu
softwa
ent.  R
ing (lik
field d
pens.  
cooper
needed

For m
and/or 

h

ACKNO
We tha
visitors
William
Basili 
our int
Kalaik
Tosun 
(both 2
the gre

We als
many p
us and 

REFER

1. Bro
We

2. Co
14,

gineering and 

ne step further
edge and tools
elves and moni

located inside 
tunities to purs
are projects and
Rather than just 

ke many studi
do), we can wat

We can also t
rative work a
d and when eng

more informatio
to apply for an

http://research.m

OWLEDGMEN
ank Tom Ball
s Sung Kim (2
ms (2009), An
(2007), Neera
terns Ray Bus

kumaran Rama
(both 2009),

2007); and we
eat work! 

so thank our co
product group
helped with st

RENCES 

ooks Jr., F.P. T
esley, 1975. 

onway, M.E. H
, 4 (1968), 28-

Main location
Redmond (US

Collaboration
Microsoft Res
Asia (Beijing)
(Aachen, Germ

Interns 2007-
University of 
National Instit
(Kalaikumaran
(Philip Guo); 
Darmstadt Un
North Carolin
Meiyappan Na

Visitors 2007
Technology (S
Martin Pinzge
North Carolin
University of 
University of 

Measurement

r: developmen
s to analyze the
itor their impro

Microsoft off
ue our goals. M
d the “coopera
t coming in afte
ies in the mini
tch software d
test tools relat
and understan
gineers can wo

on about the E
n internship, lo

microsoft.com/

NTS 
, Robin Moeu

2010), Harald G
ndreas Zeller 
aj Suri (2007),
se, Ken Hullet
amurthy (all 2
, Lucas Laym
e thank our co

olleagues at Mi
ps at Microsoft
tudies. You roc

The mythical m

How do commit
31. 

ns of the ESM gr
SA), Cambridge (

ns with other Mi
search India (Ban
), European Micro
many) 

-2010: University
California, Santa
tute of Technolog
n Ramamurthy); 
Boğaziçi Univers

niversity of Techn
na State University
agappan) 

7-2010: Hong Kon
Sung Kim); Univ
er); Saarland Univ
na State University
Maryland (Victor
Technology (Nee

t (ESM) Group

nt teams should
eir collaboratio
ovement over t

fers us with ma
Microsoft has m
ative” aspect is
er the fact and 
ing software r

development wh
ted to helping 

nd when coop
ork on their ow

ESE group at 
ogon to 

/en-us/projects

ur, Wolfram Sc
Gall (2008, 200
(2005, 2009), 
, Martin Pinzg
tt, Meiyappan 

2010), Philip G
man, Andreas 
ollaborators. T

icrosoft Resear
ft who have wo
ck! 

man-month. Ad

ttees invent. Da

roup (black pins
(UK) 

icrosoft Researc
ngalore), Microso
osoft Innovation 

y of Virginia (Ray
a Cruz (Ken Hulle
gy, Tiruchirappal
Stanford Univers
sity, Turkey (Ays
nology (Andreas J
y (Lucas Layman

ng University of 
versity of Zurich (
versity (Andreas 
y (Laurie William
r Basili); Darmst
eraj Suri). 

p at Microsoft 

d have the 
on patterns 
time. 

any unique 
many large 
s omnipres-

investigat-
repositories 
hile it hap-
to support 

peration is 
wn.   

Microsoft 

s/esm/ 

chulte; our 
09), Laurie 
 Victor R. 

ger (2007); 
Nagappan 

Guo, Ayse 
Johansson 

Thanks for 

rch and the 
orked with 

ddison-

atamation, 

s): 

ch Labs: 
oft Research 

Center  

y Buse); 
ett);  
lli, India 
sity  
se Tosun); 
Johansson); 
n,  

Science and 
(Harald Gall, 
Zeller); 

ms);  
adt  

Research. 



 

3. Pinzger, M., Nagappan, N., and Murphy, B. Can 
developer-module networks predict failures? In 
Proceedings of the 16th ACM SIGSOFT International 
Symposium on Foundations of Software Engineering 
(2008), 2-12. 

4. Bird, C., Nagappan, N., Devanbu, P., Gall, H., and 
Murphy, B. Putting it All Together: Using Socio-
Technical Networks to Predict Failures. In Proceedings 
of the 17th International Symposium on Software 
Reliability Engineering (2009), 109-119. 

5. Zimmermann, T. and Nagappan, N. Predicting Defects 
using Social Network Analysis on Dependency Graphs. 
In Proceedings of the 30th International Conference on 
Software Engineering (2008), 531-540. 

6. Zimmermann, T. and Nagappan, N. Predicting subsystem 
failures using dependency graph complexities. In 
Predicting subsystem failures using dependency graph 
complexities (2007), 227-236. 

7. Nagappan, N., Murphy, B., and Basili, V. The influence 
of organizational structure on software quality: an 
empirical case study. In Proceedings of the 30th 
International Conference on Software Engineering 
(2008), 521-530. 

8. Bird, C., Nagappan, N., Devanbu, P., Gall, H., and 
Murphy, B. Does Distributed Development Affect 
Software Quality? An Empirical Case Study of Windows 
Vista. In Proceedings of the International Conference on 
Software Engineering (2009), 518-528. 

9. Herbsleb, J.D. and Mockus, A. An empirical study of 
speed and communication in globally distributed 
software development. IEEE Transactions on Software 
Engineering, 29, 6 (2003), 481 - 494. 

10. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., 
Schröter, A., and Weiss, C. What Makes a Good Bug 
Report? IEEE Transactions on Software Engineering. To 
appear. 
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.63.

11. Jeong, G., Kim, S., and Zimmermann, T. Improving bug 
triage with bug tossing graphs. In Proceedings of the the 
7th joint meeting of the European Software Engineering 
Conference and the ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (2009), 111-120. 

12. Shao, Q., Chen, Y., Tao, S., Yan, X., and Anerousis, N. 
Efficient ticket routing by resolution sequence mining. In 
Proceedings of the 14th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining 
(2008), 605-613. 

13. Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy, 
B. Characterizing and predicting which bugs get fixed: 

an empirical study of Microsoft Windows. In 
Proceedings of the 32nd ACM/IEEE International 
Conference on Software Engineering (2010), 495-504. 

14. Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. 
Information needs in bug reports: improving cooperation 
between developers and users. In Proceedings of the 
ACM Conference on Computer Supported Cooperative 
Work (2010), 301-310. 

15. Boehm, B.W. Software Engineering Economics. Prentice 
Hall, 1981. 

16. Mockus, A., Nagappan, N., and Dinh-Trong, T.T. Test 
coverage and post-verification defects: A multiple case 
study. In Proceedings of the 3rd International 
Symposium on Empirical Software Engineering and 
Measurement (2009), 291-301. 

17. Nagappan, N. and Ball, T. Use of relative code churn 
measures to predict system defect density. In 
Proceedings of the 27th International Conference on 
Software Engineering (2005), 284-292. 

18. Bhat, T. and Nagappan, N. Building Scalable Failure-
proneness Models Using Complexity Metrics for Large 
Scale Software Systems. In Proc. of the Asia Pacific 
Software Engineering Conference (2006), 361-366. 

19. Nagappan, N. and Ball, T. Using Software Dependencies 
and Churn Metrics to Predict Field Failures: An 
Empirical Case Study. In Proceedings of the First 
International Symposium on Empirical Software 
Engineering and Measurement (2007), 364-373. 

20. Beck, K. Test Driven Development: By Example. 
Addison-Wesley Professional, 2002. 

21. Cockburn, A. Agile Software Development. Addison-
Wesley Professional, 2001. 

22. Beck, K. and Andres, C. Extreme Programming 
Explained: Embrace Change. Addison-Wesley 
Professional, 2004. 

23. Bhat, T. and Nagappan, N. Evaluating the efficacy of 
test-driven development: industrial case studies. In 
Proceedings of the ACM/IEEE International Symposium 
on Empirical Software Engineering (2006), 356-363. 

24. IEEE. IEEE Standard 610.12-1990, IEEE Standard 
Glossary of Software Engineering Terminology. , 1990. 

25. Williams, L., Kudrjavets, G., and Nagappan, N. On the 
Effectiveness of Unit Test Automation at Microsoft. In 
Proceedings of the IEEE International Symposium on 
Software Reliability Engineering (2009). 

 


