
Resource Sharing in Continuous Sliding-Window Aggregates

Arvind Arasu Jennifer Widom

Stanford University
{arvinda,widom}@cs.stanford.edu

Abstract

We consider the problem of resource sharing
when processing large numbers of continuous
queries. We specifically address sliding-window
aggregates over data streams, an important class
of continuous operators for which sharing has not
been addressed. We present a suite of sharing
techniques that cover a wide range of possible sce-
narios: different classes of aggregation functions
(algebraic, distributive, holistic), different win-
dow types (time-based, tuple-based, suffix, histor-
ical), and different input models (single stream,
multiple substreams). We provide precise theo-
retical performance guarantees for our techniques,
and show their practical effectiveness through ex-
perimental study.

1 Introduction
We consider continuous-query based applications involv-
ing a large number of concurrent queries over the same
data. Examples of such applications include publish-
subscribe systems (such as Traderbot [29]) that allow a
large number of users to independently monitor published
information of interest using subscriptions. Another ex-
ample is intrusion detection, where a large number of rules
are used to continuously monitor system and network activ-
ity [24, 30]. In these applications, subscriptions and rules
are continuous queries.

Handling each continuous query separately is ineffi-
cient, and may be infeasible for large numbers of queries
and high data rates. Queries must be handled collectively,
by exploiting similarities and sharing resources such as
computation, memory, and disk bandwidth among them.
Numerous papers [8–10, 14, 25] have highlighted the im-
portance of resource sharing in continuous queries.

One avenue for resource sharing is based on detecting
and exploiting common subexpressions in queries, related
to traditional multi-query optimization [27, 28]. However,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

we are interested in more basic sharing—at the operator
level. If several queries use different instances of opera-
tors belonging to a same class, it is sometimes possible to
process all the operator instances more efficiently using a
single generic operator. A good example of operator level
sharing is processing many range predicates using a single
predicate index [11, 16, 25]. The predicate index identifies
all the indexed range predicates that a given tuple satisfies
more efficiently than the naı̈ve method that checks each
predicate separately.

Previous work on operator-level sharing has focused pri-
marily on filters, which are stateless and have simple se-
mantics. In this paper, we address operator-level shar-
ing for an important class of operators based on aggre-
gations over sliding windows, detailed in the next subsec-
tion. The importance of these operators has been identi-
fied before [12], but the sharing problem is largely unstud-
ied. (The problem is considered just briefly in PSoup [10].
PSoup is discussed in detail in Section 3.1.3.) We show that
there exist significant opportunities for sharing in sliding-
window aggregates, and by exploiting them we obtain dra-
matic improvements in performance over the naı̈ve, non-
sharing approaches.

1.1 Sliding-Window Aggregates

Continuous queries typically work on unbounded data
streams, rather than static data sets. For many applica-
tions, recent elements of a stream are more important than
older ones. This preference for recent data is commonly ex-
pressed using sliding windows over a stream [7]. The size
of a window is often specified using a time interval (time-
based), but may use number of tuples instead (tuple-based).
The window usually ends at the current time, called a suf-
fix window, but nonsuffix (historical) windows may also be
used.

An aggregation over a sliding window (ASW) operator
continuously applies an aggregation function over the con-
tents of a sliding window. The aggregation value changes
over time as the window slides. ASW is widely recognized
as a fundamental operation over streams, and is the subject
of numerous previous papers [4, 10, 12, 18].

Example 1.1 Consider a stream of stock trades, and two
ASW operators. One operator asks for the “average num-
ber of shares in the last 10,000 stock trades” (a suffix,
tuple-based sliding window), while the other asks for “av-
erage number of shares in trades between 1 and 2 minutes

336

ago” (a time-based historical window). Assuming the win-
dows may overlap, using our techniques we can share state
and computation between these two operators. In practice
our techniques are most important when there are hundreds
or thousands of such operators, as would occur in Trader-
bot [29] or other publish-subscribe systems. �

Although historical windows are less frequent than suf-
fix windows, most of our algorithms are no simpler for the
suffix-only case. In those cases where suffix-only is sim-
pler, we explicitly say so (e.g., Algorithm L-INT in Sec-
tion 3.1.2).

1.1.1 Sliding-Window Aggregates on Substreams

Some streams can be partitioned logically into sub-
streams [31], each identified by a key. For example, our
stock trade stream can be partitioned into substreams based
on the stock symbol (key). Similarly, a stream of net-
work packets can be partitioned into substreams, one per
flow [15].

With partitioning, a useful primitive is the application
of an ASW operator over each substream [31]. This opera-
tion conceptually produces a dynamic relation: at any point
in time, there is one tuple for each substream in the rela-
tion, containing the current answer of the ASW operator
for that substream. The sharing techniques that we develop
for general ASW operators are applicable for substreams
as well. However, we show that when an ASW operator
over substreams is followed by a range predicate over the
conceptual dynamic relation—a class of operators we call
SubStream Filters (SSF)—there are additional sharing pos-
sibilities.

Example 1.2 Consider the class of operators “find all
stocks whose trading volume during a certain sliding win-
dow exceeds a certain threshold.” These are SSF opera-
tors. If we have many such operators, with different thresh-
olds and windows, our techniques let us share resources by
maintaining a single index-like structure over all the differ-
ent ASW operators and range predicates. �

1.1.2 Additional Examples

We briefly illustrate that realistic queries are composed of
aggregations over sliding windows. The following two
queries were taken directly from the Traderbot site [29].

1. NASDAQ Short-term Downward Momentum:
Find all NASDAQ stocks between $20 and $200 that
have moved down more than 2% in the last 20 minutes
and there has been significant buying pressure (70% or
more of the volume has traded toward the ask price) in
the last 2 minutes.

2. High Volatility with Recent Volume Surge: Find all
stocks between $20 and $200 where the spread be-
tween the high tick and the low tick over the past 30
minutes is greater than 3% of the last price and in the
last 5 minutes the average volume has surged by more
than 300%.

Both queries apply ASW operators over stock sub-
streams. Query 1 uses a SUM aggregate over a 2-minute
suffix sliding window. Query 2 uses MAX (high-tick), MIN
(low-tick), and AVG aggregates over two different windows
(“last 5 minutes” and “last 30 minutes”). Various relational
operators like filters and joins are performed over the dy-
namic relations output by the ASW operators.

1.1.3 Output Model

We assume that an ASW or SSF operator does not actively
stream its current answer, but instead produces answers
only when requested. We call such a request an answer
lookup (or simply lookup). We chose the lookup model
over the streaming model for several reasons:

1. The lookup model is more general, i.e., it can emulate
the streaming model.

2. In many cases, the current ASW result is needed at
most when new stream tuples arrive, and certainly not
at every time instant (e.g., correlated aggregates [17]).

3. Reference [10] cites several applications that prefer to
periodically refresh continuous query answers, rather
than keep them fully up-to-date.

1.2 Space-Update-Lookup Tradeoff and Our Ap-
proach

Any algorithm for processing a large number of continuous
queries with the lookup model involves three cost param-
eters: the memory required to maintain state (space), the
time to compute an answer (lookup time), and the time to
update state when a new stream tuple arrives (update time).
There is a tradeoff among these three costs and generally
no single, optimal solution.

For example, we can make lookups efficient by main-
taining up-to-date answers for all queries. However, this
approach has a high update cost, since arrival of a new
stream tuple potentially requires updating answers of all
the queries, and a large space requirement, since current
answers for all the queries need to be stored. Alternatively,
we can maintain a single historical snapshot of the input
that is large enough to compute the answer for any given
query, but defer actual answer computation to lookup time.
This approach has small update and space costs, but poten-
tially high lookup cost.

These two approaches are appropriate only for the
extreme scenarios—very high update rates compared to
lookups, or vice-versa. Many applications lie between the
extremes. Our techniques are designed to capture a wide
range of these “in between” scenarios, by performing par-
tial answer computation at update time and using the partial
results to compute the final answer at lookup time. Further-
more, our partial answer schemes are designed specifically
so that partial answers can be shared by a large number of
queries.

337

Operator Type Aggregation Function Update Time Lookup Time Space

ASW Algebraic, Distributive O(1) O(log W) O(Nmax)

ASW Algebraic, Distributive O(γ) O(1) O(γNmax)

ASW Subtractable O(1) O(1) O(Nmax)

ASW Holistic: QUANTILE O(log Nmax) O(log2 W log log W) O(Nmax log Nmax)

SSF COUNT O(1

ε
log |K|) O(|Ko|) O(1

ε
log |K| log Nmax)

SSF SUM O(1

ε
log |K| log Am) O(|Ko|) O(1

ε
log |K| log(NmaxAm))

SSF MAX, MIN O(log2 Nmax) O(log2 Nmax+ |Ko|) O(Nmax log Nmax)

Figure 1: Summary of results. Nmax = Max left end of a window; W = width of lookup window; |K|= # substreams; |Ko|= output
size for SSF operators; ε = error parameter; γ = “spread” of window widths; A m = Max value of aggregated attribute.

1.3 Summary of Contributions

General

Our high-level contribution is that of identifying the re-
source sharing possibilities in sliding-window aggregations
and devising a suite of algorithms to exploit them. We pre-
cisely formulate the sharing problem for this class of oper-
ators, indicate the basic tradeoffs involved, and study tech-
niques for a wide variety of scenarios. While many of the
sharing techniques are our original contributions, some are
a synthesis of existing ideas from other fields such as data
structures and computational geometry. The entire suite of
results is summarized in Table 1.

ASW Operators

For ASW operators, we present general sharing techniques
based on properties of aggregation functions. As in [20],
we divide aggregation functions into distributive, alge-
braic, and holistic.

1. For distributive and algebraic aggregates, we present
two techniques: one has low update and space costs,
while the other has low lookup cost.

2. We identify a subclass of distributive and algebraic ag-
gregates, which we call subtractable, and show that
they can be handled more efficiently than the general
class.

3. Since there is no common property for the class of
holistic aggregates (they are defined as aggregates that
are not algebraic), we cannot have a general tech-
nique. However, we present sharing techniques for
the well-known holistic QUANTILE aggregate.

SSF Operators

For SSF operators, one simple approach is to use ASW
sharing techniques for processing the ASW suboperators
corresponding to each substream. At SSF lookup time,
we perform an ASW lookup for each substream and return
those substreams that satisfy the range predicate. There-
fore, the SSF lookup operation depends linearly on the
number of substreams. For specific aggregation functions
(COUNT, SUM over positive values, MAX, MIN) and window
types (suffix, time-based), we show that we can achieve a

lookup cost that is sublinear in the number of substreams,
without significantly increasing update cost. Our tech-
niques for SUM and COUNT are approximate: they slightly
relax the range predicate. However the approximation is
controlled by a parameter ε, which can be made as small as
desired at the expense of increased space and update time.
Further, exact answers can be obtained by postprocessing.

1.4 Outline of Paper

Section 2 presents formal definitions and notation. Sec-
tions 3 and 4 present our algorithms for resource sharing
in ASW and SSF operators, respectively. Section 6 con-
tains a thorough experimental evaluation of the algorithms.
Section 7 covers related work, and Section 8 contains our
conclusions and directions for future work.

All proofs and some of the algorithms (ASW algorithms
for time-based windows, SSF algorithms for MAX and MIN)
have been omitted due to space constraints. These can be
found in the full version of the paper [5].

2 Formal Preliminaries

Streams and Substreams

A stream S is a sequence of tuples arriving at a continuous
query processing system. Tuples of S are timestamped on
arrival using the system clock. At a given point in time, we
refer to the number of tuples of S that have arrived so far
as the current length of S.

Stream S may be partitioned into substreams based on
a set of key attributes. We assume a single key attribute;
generalizing is trivial. Let K denote the key attribute and
K the domain of K. Every value k ∈ K identifies a unique
substream, which we denote Sk, and k is called the key of
Sk. All tuples of S with a value k for attribute K belong to
the substream Sk, and their relative ordering within Sk is
the same as their relative ordering in S.

Sliding Windows

Consider a stream S with the sequence of tuples s1, s2, . . .
and corresponding timestamps τ1, τ2, For any two non-
negative integers NL > NR, S[NL, NR] denotes a tuple-
based sliding window over S: When the current length of
S is r, S[NL, NR] contains the set of tuples {si | max{r−
NL + 1, 1} ≤ i ≤ (r − NR)}. Similarly, for any two time

338

periods TL > TR, S[TL, TR] denotes a time-based sliding
window over S: When the current time is τ , S[TL, TR] con-
tains the set of tuples {si | (τ −TL +1) ≤ τi ≤ (τ −TR)}.
Note that we use the same notation for time-based and
tuple-based windows. The type of window is usually clear
from context and our different conventions for numbers
(e.g., N , NL, Ni) and time intervals (e.g., T , TL, Ti).
Whenever the window type is not important to the discus-
sion, we abuse this naming convention further and denote a
generic window over S by S[XL, XR].

Aggregation Functions

We use the classification from [20] that divides aggrega-
tion functions into three categories: distributive, algebraic,
and holistic. Let X , X1, and X2 be arbitrary bags of ele-
ments drawn from a numeric domain. An aggregation func-
tion f is distributive if f(X1 ∪X2) can be computed from
f(X1) and f(X2) for all X1, X2. An aggregation function
f is algebraic if there exists a “synopsis function” g such
that for all X , X1, X2: (1) f(X) can be computed from
g(X); (2) g(X) can be stored in constant memory; and
(3) g(X1 ∪X2) can be computed from g(X1) and g(X2).
An aggregation function is holistic if it is not algebraic.
Among the standard aggregates, SUM, COUNT, MAX, and MIN
are distributive, AVG is algebraic, since it can be computed
from a synopsis containing SUM and COUNT, and QUANTILE

is holistic.

ASW and SSF Operators

An ASW operator over a stream S with window specifi-
cation [XL, XR] and aggregation function f over attribute
S.A is denoted fA(S[XL, XR]). At any point in time,
its current answer is obtained by applying the aggregation
function f over the values of attribute A of all the tuples
that are currently in the window S[XL, XR]. An SSF oper-
ator is denoted by: {k ∈ K | fA(Sk[XL, XR]) ∈ (v1, v2)},
where fA(Sk[XL, XR]) denotes the ASW operator that is
applied to each Sk and (v1, v2) denotes the predicate range.

Example 2.1 The ASW operator AVGA(S[120, 0]) contin-
uously computes the average value of attribute A over
S tuples in the last 120 time units. The SSF operator
{k ∈ K | SUMA(Sk[300, 0]) ∈ (1000,∞)} continuously
computes all substreams for which the sum over attribute
A values in the last 300 time units is greater than or equal
to 1000. Using a SQL-like syntax (e.g., in CQL [3]) this
SSF operation is expressed as follows:

Select K, SUM (A)
From S [Range 300]
Group By K
Having SUM(A) > 1000

3 ASW Operators
In this section, we present our algorithms for collectively
processing a set of ASW operators. Sharing resources
is not possible between operators over different streams,
or between operators with different aggregated attributes,
since their input data is completely different: there is no

benefit to processing them collectively. Sharing is some-
times possible between operators with different aggrega-
tion functions (e.g., AVG and SUM) over the same input
stream and aggregated attribute. However, for presentation
clarity, we do not address this special case.

Therefore, our algorithms are designed for collectively
processing a set of ASW operators with the same input
stream, aggregation function, and aggregated attribute. The
only difference between different operators is the sliding
window specification. One exception is the QUANTILE ag-
gregation function, where we allow the quantile parameter
to be different; see Section 3.3.

Due to space constraints, we only present algorithms for
the case where all the windows are tuple-based. Algorithms
that handle time-based windows are described in the full
version of the paper [5].

Notation: For the rest of this section, let o1, . . . , on denote
the input set of operators. Let S denote the common in-
put stream, f the common aggregation function, and A the
common aggregated attribute. For these operators, only the
sequence of attribute A values are relevant, which we de-
note a1, a2, We call each ai a stream element. Further,
let each oi = fA(S[NLi, NRi]).

Intervals: The notion of an interval over positions of S is
useful to describe our algorithms. The interval I = (l, r)
(l ≤ r) denotes the positions l, l + 1, . . . , r of S, and the
elements al, . . . , ar belong to interval I . For an interval I ,
f(I) denotes the aggregation over the elements of S be-
longing to I .

For each algorithm, we specify: (1) the state that it
maintains; (2) an operation UPDATE(am+1) that describes
how the state is updated when element am+1 arrives; and
(3) an operator LOOKUP(I) that describes, for certain in-
tervals I , how f(I) can be computed using the current
state. LOOKUP(I), as the name suggests, is used to per-
form answer-lookups for operators oi: when the current
size of S is m, the current answer for oi can be obtained
using LOOKUP(I) where I = (m − NLi + 1, m − NRi).
Therefore, for correctness, when the current length of S is
m, we require that LOOKUP(I) correctly compute f(I) for
all intervals I = (m−NLi + 1, m−NRi) (1 ≤ i ≤ n); it
may or may not compute f(I) correctly for other intervals.

3.1 Distributive, Algebraic Aggregates

In this section, we present two algorithms, B-INT and L-
INT, for the case where f is distributive or algebraic. For
presentation clarity, we assume that f is distributive; the
generalization to the algebraic case is straightforward.

Both algorithms are based on a simple, but fairly
general approach: For certain intervals I , precompute
f(I) and store it as part of the state. The basic in-
tuition behind this step is that, since f is distributive,
the precomputed aggregate values can be used to com-
pute lookups more efficiently. For example, f(101, 200)
and f(201, 300) can be used to compute f(101, 300), and
therefore, LOOKUP(101, 300). More generally, f(I) can

339

potentially help compute LOOKUP(I ′) for any I ′ that con-
tains I .

For what intervals I should we precompute f(I)? Se-
lecting more intervals for precomputation is likely to im-
prove lookup efficiency, but at the cost of space and update
time—a manifestation of the space-lookup-update tradeoff
discussed in Section 1.2. Also, any precomputed aggregate
f(I) loses its utility eventually, once all the windows of oi

slide past I . (In fact, the answer to this question of which
intervals to precompute is not very obvious even for pro-
cessing a single operator, i.e., n = 1.)

Next we present our two algorithms, which are essen-
tially two different schemes for dynamically selecting the
intervals I to precompute, along with the details of how
f(I) aggregates for selected intervals are (pre)computed
and used for lookups.

3.1.1 B-INT Algorithm

Our first algorithm is called B-INT (for Base-Intervals),
since it precomputes aggregate values f(Ib) for intervals
Ib that belong to a special class called base-intervals. In-
tuitively, base-intervals form a “basis” for intervals: any
interval can be expressed as a disjoint union of a small
number of base-intervals. Using this property, any f(I)
can be computed using a small number of precomputed
f(Ib) values. At any point in time, B-INT stores f(Ib) val-
ues for only recent or “active” base-intervals—only these
are potentially useful for future lookups of the operators
o1, . . . , on.

Figure 2 abstractly illustrates the state maintained by al-
gorithm B-INT, when the current length of S is m. The
active base-intervals, for which the B-INT precomputes ag-
gregate values, are shown as solid rectangles. The base-
intervals which are not active are shown using dotted rect-
angles. The figure also shows how the aggregate value for a
lookup interval is computed using precomputed aggregates
for active base-intervals.

Definition 3.1 (Base-Interval) An interval Ib is a base-
interval if it is of the form (2`i + 1, 2`(i + 1)) for some
integer i ≥ 0, in which case it is called a level-` base-
interval. �

For example, (385, 512) = (27 · 3 + 1, 27 · 4) is a level-7
base-interval. A level-` base-interval has a width 2` and is
a disjoint union of exactly two level-(`− 1) base-intervals.

Base intervals turn out to be the same concept as dyadic
intervals, which have been used in [19] for approximate
quantile computation over updatable relations. In the con-
text of sliding windows, in related work [4] we have used
base (dyadic) intervals for computing approximate statis-
tics over sliding windows.

The following theorem, whose proof is straightforward,
formally states that any interval can be expressed as a union
of a small number of base-intervals.

Theorem 3.1 Any interval I = (l, r) of width W =
(r − l + 1) can be expressed as a disjoint-union of k =

max(m−N)

��
����������

���������
���������
���������
���

	�	�	
�
�

��
Lookup(I)

l = 3

l = 0
l = 1
l = 2

l = 4

m

Figure 2: Base-intervals used by B-INT when current length of S
is m

STATE:
For each currently active base-interval Ib, store f(Ib).

UPDATE (am+1):
1. Compute and store f(am+1).
2. Let z = number of trailing 0’s in binary

representation of m + 1.
3. For i = 1 to z do

/∗ assert: (m−2i+2, m+1) is a base-interval ∗/
4. If (l, r) = (m − 2i + 2, m + 1) is active
5. Compute f(l, r) using f(l, l+r−1

2
) and

f(l+r+1

2
, r) and store it.

6. For each Ib that ceases to be active, discard f(Ib).

LOOKUP(I):
1. Express I as a union of base-intervals Ib1, . . . , Ibk

as in Theorem 3.1.
2. Compute and return f(I) using f(Ib1), . . . , f(Ibk).

Figure 3: Algorithm B-INT

O(log W) base-intervals of the form Ibi = (li, ri) (1 ≤
i ≤ k), where l1 = l, rk = r, and ri = li+1 − 1,
(1 ≤ i < k). Given interval I , the intervals Ib1, . . . , Ibk

can be determined in O(k) = O(log W) time.

Example 3.1 The interval (1, 43) can be expressed as
a union of base-intervals (1, 2), (3, 4), (5, 8), (9, 16),
(17, 32), (33, 40), (41, 42), (43, 43). �

Active Intervals: Let Nmax = maxi(NLi) denote the
“earliest” left end of a window in o1, . . . , on. When the
current size of S is m, we call an interval I = (l, r) active
if (l > m − Nmax) and (r ≤ m). Intuitively, an interval is
active at some point of time, if it is completely within the
last Nmax positions of the stream.

Figure 3 contains the formal description of B-INT.
When the current size of S is m, LOOKUP(I) computes
f(I) for all intervals I = (m − NLi + 1, m − NRi) (1 ≤
i ≤ n) that correspond to lookups of operators o1, . . . , on.
By definition, any such interval (m−NLi +1, m−NRi) is
active, and therefore each interval Ib1, . . . , Ibk in Step 1 of
LOOKUP(I) is active as well, implying that f(Ibi) is stored
as part of the state.

Conceptually, UPDATE(am+1) computes f(Ib) for all
base-intervals Ib that become newly active and adds
it to the current state (Steps 1–5), and discards f(Ib)
for all intervals that cease to be active (Step 6).
UPDATE(am+1) always introduces at least one new base-
interval: (am+1, am+1). In general, if 2z denotes

340

the largest power of 2 that divides (m + 1), then
UPDATE(am+1) introduces z + 1 new base-intervals. One
obvious technique for computing f(Ib) is to do so from
scratch, using the elements of S that belong to Ib. A more
efficient technique is to compute it recursively, using ag-
gregate values corresponding to base-intervals of the next
lower-level, as shown in Step 5 of UPDATE(am+1).

Theorem 3.2 Algorithm B-INT requires O(Nmax) space,
has an amortized update time complexity of O(1), and has
a worst-case lookup time complexity of O(log W), where
W denotes the width of the lookup interval.

3.1.2 L-INT Algorithm

Our second algorithm for distributive and algebraic aggre-
gates, called L-INT (for Landmark Intervals), uses an in-
terval scheme based on certain landmarks or specific posi-
tions of the stream. L-INT is more efficient than B-INT for
lookups, but its update and space costs are higher. Further,
L-INT is more input-specific: while B-INT depends only
on Nmax , L-INT, in addition to Nmax , depends on the dis-
tribution of window widths.

We first present L-INT for a special case, where all the
window widths are close to equal. Specifically, we assume
that they are within a small constant factor c of each other,
i.e., Wmax/Wmin ≤ c, where Wmax = maxi(NLi −NRi)
denotes the maximum width, and Wmin = mini(NLi −
NRi), the minimum width of a window. For this special
case, L-INT is optimal: it uses O(Nmax) space and has
O(1) update and lookup time. (Clearly, we cannot do better
than O(1) update and lookup time and O(Nmax) space.)
Then, we show how we can extend L-INT to handle the
general case.

Definition 3.2 (Landmark Interval) Landmark intervals
are defined for two width parameters Wmin ≤ Wmax . A
landmark interval is of the form (αWmin , αWmin + d) or
of the form (αWmin− d, αWmin− 1), for some α ≥ 0 and
d ≤ Wmax . �

We call stream positions of the form αWmin (α ≥ 0) land-
marks. A landmark interval is one that begins at or ends
just before a landmark, and has a width less than Wmax .
For example, if Wmax = 2000 and Wmin = 1000, in-
tervals (75, 999), (1762, 2999), and (5000, 6542) are land-
mark intervals, while (5000, 7162) is not, since its width is
greater than 2000. Figure 4 schematically illustrates land-
mark intervals that begin or end at the landmark αWmin .

The following theorem states that any interval with
width between Wmin and Wmax can be expressed as a
union of at most two landmark intervals.

Theorem 3.3 Any interval I = (l, r), such that Wmin ≤
(r − l + 1) ≤ Wmax , can be expressed as a disjoint union
of at most two landmark intervals defined for parameters
Wmin and Wmax .

Example 3.2 Let Wmax = 2000 and Wmin = 1000. The
interval (3257, 5164) can be expressed as a union of land-
mark intervals (3257, 3999) and (4000, 5164). �

Wα minWmax Wmax

��������������������������������

��

��

Figure 4: Landmark intervals that begin or end at the landmark
αWmin for some α ≥ 0

STATE:
1. For each currently active landmark interval Il,

store f(Il).
2. For each currently active element ai, store f(ai).

UPDATE (am+1):
1. Compute and store f(am+1).
2. If m+1 = αWmin

3. For d = 2 to Wmax

4. Compute f(m+1−d, m) from f(m+2−d, m)
and f(am+1−d) and store it.

5. For each β such that m+1 − Wmax ≤ βWmin ≤ m
6. Compute f(βWmin , m+1) from f(βWmin , m)

and f(am+1)
7. Drop f(Il) for intervals Il that cease being active.

LOOKUP(I):
1. Express I as a union of landmark intervals Il1 and

Il2 as in Theorem 3.3
2. Compute and return f(I) using f(Il1) and f(Il2).

Figure 5: Algorithm L-INT for Wmax/Wmin ≤ c

Figure 5 contains the formal description of L-INT for
the special case of Wmax/Wmin ≤ c. Using a reason-
ing similar to that for algorithm B-INT, we can argue that
algorithm L-INT is correct, i.e., it can be used to compute
lookups corresponding to the operators o1, . . . , on. The up-
date operation is also similar to that of B-INT: it computes
f(Il) for all landmark intervals Il that newly become ac-
tive, and discards f(Il) for intervals Il that cease to be ac-
tive.

Theorem 3.4 Algorithm L-INT presented in Figure 5 re-
quires O(Nmax) space, has an amortized update time of
O(1), and has a worst case lookup time of O(1).

Extending L-INT algorithm for the general case is
straightforward: partition the set of operators o1, . . . , on

into γ partitions P1, P2, . . . , Pγ , such that for the operators
belonging to each partition, the property Wmax/Wmin ≤ c
is satisfied. Use γ instances of the special-case version
of the L-INT algorithm (Figure 5) to process these par-
titions independently. This extended algorithm requires
O(γNmax) space, has an update cost of O(γ) and a lookup
cost of O(1).

For any set of operators o1, . . . , on, we can always de-
fine a partitioning scheme with γ = O(log Nmax). How-

341

ever, for many real-world applications, it seems natural to
expect the window widths to be clustered around a few val-
ues. For such applications, γ could be significantly smaller
than log Nmax .

Further, if all the operators o1, . . . , on have suffix win-
dows, or even “approximately” suffix windows, we can re-
duce the space required from O(γNmax) to O(Nmax). A
tuple-based window [NL, NR] is approximately suffix if
(NL − NR) is comparable in value to NL.

3.1.3 PSoup Algorithm

PSoup [10] proposes a different algorithm for distributive
and algebraic aggregates, that uses an augmented n-ary
search tree. Each leaf of the search tree contains an ele-
ment of the stream (only the last Nmax elements need to be
stored), and the leaves are ordered based on insertion times
of the elements. Each internal node stores the value of the
aggregation function computed over the descendant leaves
(elements) of that node. This algorithm has an update and
lookup cost of O(log Nmax). Both B-INT and L-INT al-
gorithms perform asymptotically better than PSoup for at
least one of update or lookup operations. Also, note that
the lookup cost of B-INT depends only on the window size
W of the operator involved in the lookup (the lookup cost
is O(log W)), and is independent of Nmax . In Section 6,
we compare empirically the performance of PSoup against
our algorithms.

3.2 Subtractable Aggregates

An algebraic aggregation function f is subtractable if its
synopsis function g has the following property: for any
bags X1 ⊆ X2, g(X2−X1) is computable from g(X1) and
g(X2). Among the standard algebraic aggregation func-
tions SUM, COUNT, and AVG are subtractable, while MAX

and MIN are not. For instance, SUM is subtractable since
SUM(X2 − X1) = SUM(X2) − SUM(X1), if X1 ⊆ X2.

For subtractable aggregates, we present a simple algo-
rithm called R-INT (for running intervals) that has O(1)
update and lookup cost. For presentation clarity, we as-
sume that f is subtractable and distributive, i.e., f(X2 −
X1) is computable from f(X2) and f(X1), whenever
X1 ⊆ X2. Generalizing to the case where f is algebraic
and subtractable is straightforward.

A running interval is an interval of the form (1, r),
whose left end is at the beginning of S. Any interval (l, r)
can be expressed as a difference of two running intervals:
(1, r) − (1, l − 1). R-INT (Figure 6) is based on this ob-
servation. R-INT stores aggregate values corresponding to
currently active running intervals, and uses these to com-
pute lookup answers. When the current length of S is m, a
running interval (1, r) is active, if m − Nmax ≤ r ≤ m. It
can be easily shown that R-INT uses O(Nmax) space and
has O(1) update and lookup time.

3.3 Quantiles

The quantile aggregation function is specified using a pa-
rameter φ ∈ (0, 1] and is denoted QUANTILE(φ). The out-
put of QUANTILE(φ) for a bag of N elements is the element

STATE:
1. For each currently active running interval Ir, store f(Ir).

UPDATE (am+1):
1. Compute f(1, m+1) using f(1, m) and f(am+1).
2. For each Ir that is no longer active, discard f(Ir).

LOOKUP(I = (l, r)):
1. Compute and return f(l, r) using f(1, l − 1) and f(1, r).

Figure 6: Algorithm R-INT

at position bφ · Nc in a sorted sequence of these elements.
We briefly sketch one algorithm (called B-INT-QNT) for

processing ASW operators with quantiles (possibly with
different parameters φ) that uses the base-intervals de-
fined in Section 3.1.1: Corresponding to each active base-
interval Ib store a sorted array of the elements of S that
belong to Ib. To perform LOOKUP(I) for a quantile param-
eter φ, express I as a union of base-intervals Ib1, . . . , Ibk,
using Theorem 3.1, and compute QUANTILE(φ) using the
sorted arrays corresponding to Ib1, . . . , Ibk. In general,
given a set of p sorted arrays of length ≤ q, we can com-
pute any quantile over all the elements in the sorted arrays
in O(p log p log q) time, using a greedy algorithm.

4 SSF Operators
We now consider the problem of processing a collection
of SSF operators o1, . . . , on. As in Section 3, we assume
that all operators have the same input stream S, the same
aggregation function f , the same aggregated attribute A.
So they differ only in their window specification and range
predicate. Therefore each operator oi has the form {k ∈
K | fA(Sk[XLi, XRi]) ∈ (vli, vhi)}.

A simple strategy for processing these operators is
as follows: For each substream Sk, process the set of
ASW suboperators fA(Sk[XLi, XRi]) (1 ≤ i ≤ n) us-
ing the algorithms of Section 3. To perform a lookup
for operator oi, perform a lookup on the ASW subopera-
tor fA(Sk[XLi, XRi]) for each substream Sk, and return
those substreams for which the lookup output lies within
(vli, vhi). Clearly, the SSF lookup cost for this approach
depends linearly on |K|, the number of substreams.

In this section, we present algorithms for certain com-
binations of aggregation functions (COUNT, SUM over pos-
itive values) and window types (suffix, time-based) that
have lookup cost sublinear in |K|. (The full version of the
paper [5] contains algorithms for MAX and MIN for suffix,
time-based windows.) We call our algorithms CI-COUNT

and CI-SUM. CI stands for collective index) since, concep-
tually, the algorithms can be thought of as a collection of
search indexes, one for each ASW suboperator.

Notation: Throughout this section, let ak1, ak2, . . . denote
the sequence of attribute A values for substream Sk. As
before, we call them elements of Sk. Let τk1, τk2, . . . de-
note the timestamps of these elements. As in Section 3,
for each algorithm we present: (1) the state that it main-
tains; (2) an operation UPDATE(akm, τkm) that describes

342

how the state is modified when element akm with times-
tamp τkm arrives on substream Sk; and (3) an operation
LOOKUP(τ, T, (v1, v2)) that describes how the current an-
swer for the SSF operator {k ∈ K | fA(Sk[T, 0]) ∈
(v1, v2)} can be computed using the current state.

4.1 CI-COUNT

CI-COUNT is an approximate algorithm for processing a
collection of SSF operators of the form oi = {k ∈ K |
COUNTA(Sk[Ti, 0]) ∈ R}, where R is a one-sided range
condition of the form (v,∞) or (0, v). The approxima-
tion produced by CI-COUNT for LOOKUP(τ, T, R) is as
follows. If Kco denotes the correct output, the output Kao

produced by CI-COUNT has the following guarantees:

1. The approximate output Kao is a superset of the exact
output Kco.

2. The current ASW answer for each substream in the
approximate output satisfies a relaxed version of the
range condition R. Specifically, if R is of the form
(v,∞), for every key k ∈ Kao, COUNTA(Sk[T, 0]) ∈
(v(1− ε),∞), for some approximation parameter ε ∈
(0, 1). Similarly, if R is of the form (0, v), for every
key k ∈ Kao, COUNTA(Sk[T, 0]) ∈ (0, v(1 + ε)).

The approximation parameter ε in the above guarantees can
be made as small as desired, but decreasing ε increases the
required space and update cost: both grow linearly in 1

ε
.

Although CI-COUNT supports only approximate
lookups, it can be used along with our ASW algorithms
for performing exact lookups. Specifically, we can
compute the correct answer Kco from the approximate
output Kao by checking for each k ∈ Kao whether
COUNTA(Sk[T, 0]) ∈ R using an ASW-lookup.

We first present a non-parameterized version of CI-
COUNT that yields a fixed ε = 0.75, and then describe
how this algorithm is modified to produce the parameter-
ized version. Also, for clarity, we assume that the range
conditions of all the operators are of the form (v,∞). Han-
dling range conditions of the form (0, v) is a straightfor-
ward generalization. In the rest of this subsection, we ab-
breviate LOOKUP(τ, T, (v,∞)) as LOOKUP(τ, T, v).

4.1.1 Non-Parameterized CI-COUNT

To get an intuition for CI-COUNT, consider the
LOOKUP(τ, T, v). This operation seeks all substreams Sk

which have received more than v elements in the last T
time units. An alternate, but equivalent, view of this oper-
ation is that it seeks all substreams Sk, for which the vth

element from the end has a timestamp greater than τ − T .
Based on this observation, one idea for improving the effi-
ciency of lookup is as follows: Maintain an index over the
timestamp values of the vth element from the end of all the
substreams. Use this index to determine, in O(log |K |)
time, all the substreams for which the timestamp of the vth

element from the end is greater than τ − T .
Since v is a parameter in LOOKUP(τ, T, v), we would

need to maintain such an index for every possible v in or-

STATE:
1. For each substream Sk

2. For each level-` with at least one element
3. Let i be unique position of Sk such that:
4. (a) i currently belongs to level-`, and
5. (b) i is a multiple of 2`

6. TSTAMP[k, `] = τki

7. For each level-`
8. Store TSTAMP[k, `], for all valid k, using a search

tree SEARCHTREE [`].

UPDATE(akm, τkm):
1. p = 1
2. Let z = number of trailing 0s in binary

representation of m + p.
3. For ` = z downto 1 do:
4. TSTAMP[k, `] = TSTAMP[k, ` − 1]
5. TSTAMP[k, 0] = τkm

LOOKUP(τ, T, v):
1. Let ` = blog2 vc − 1
2. Determine A = {k ∈ K | TSTAMP[k, `] ≥ τ − T}

using SEARCHTREE [`].
3. Return A.

Figure 7: Algorithm CI-COUNT

der to use the above idea. However, doing so would dra-
matically increase the update cost: every new element aki

of substream Sk changes the timestamp of the vth element
from the end for every v, and so requires updating all the
indexes.

However, if we are permitted to approximate v, i.e., use
a different value v′ that is close to v, we can reduce the
number of different indexes that need to be maintained,
since many values v can use the same approximation v′.

This observation forms the basis for algorithm CI-
COUNT: CI-COUNT divides the positions from the end of a
substream Sk into different levels (not to be confused with
levels of base-intervals in Section 3.1.1). It maintains one
search index for each level. The index for level-` contains,
for each substream Sk, the timestamp of some element that
currently belongs to level-`. These indexed timestamps are
used for approximate answer lookups.

Definition 4.1 (Level) Let m be the current length of sub-
stream Sk. Then the current level of a position p ≤ m of
Sk is defined to be blog2(m − p + 1)c. �

The last position, m, of substream Sk belongs to level-0,
the previous two (m − 1 and m − 2) to level-1, and so on.
In general, 2` positions belong to level-`.

Figure 7 contains the formal description of algorithm
CI-COUNT. The variable TSTAMP[k, `] contains the times-
tamp of the element of Sk that currently belongs to level-
` and whose position is a multiple of 2`. Note that, at
any point of time, such an element (if it exists) is unique,
since at most 2` contiguous positions belong to level-`. For
each level `, all the TSTAMP[k, `] values are indexed us-
ing a search tree SEARCHTREE[`]. In order to perform

343

K1

K2

K3

80 82 86 90 93 94 96 98 100 101 103 104 105 106

66 71 73 82 85 87 92 93 96 97 98 100 102 103 105

47 50 53 60 68 73 76 80 81 85 91 94 97 100 102

76

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

36 4129 30 31 32 33 34 35 37 38 39 40 42 43

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Level 3 Level 2 Level 1 Lvl 0

Figure 8: CI-COUNT Example

LOOKUP(τ, T, v), CI-COUNT uses SEARCHTREE[`] for
` = blog2 vc − 1 to determine all substreams Sk such that
TSTAMP[k, `] ≥ (τ − T).

Example 4.1 Figure 8 shows the timestamps (within
boxes) and positions (above boxes) of elements belong-
ing to three substreams. The elements themselves are not
shown. The timestamps that are stored in TSTAMP[k, `] are
circled. For example, TSTAMP[k3, 2] = 85. The search
trees over TSTAMP[k, `] values are not shown.

Consider LOOKUP(106, 20, 11) which seeks at time 106
all substreams that have received more than 11 tuples in
the last 20 time units, i.e., in the time interval (87, 106).
Clearly, the correct output is {k1}. The same output can
also be obtained by checking if the timestamp of the 11th
tuple from the end (which is 90, 85, and 68, for Sk1

, Sk2
,

and Sk3
, respectively) is ≥ 87.

Since blog2 11c − 1 = 2, CI-COUNT returns those sub-
stream keys k for which TSTAMP[k, 2] ≥ 87, which is
{k1, k2} for this example. In other words, for each sub-
stream, CI-COUNT uses the timestamp of a position at
a distance 4–7 from the end of the substream, instead of
the timestamp of the position that is at a distance 11, and
checks if it is greater than 87. �

We now briefly comment the on update operation. Con-
sider any one particular TSTAMP[k, `] for ` > 1. By defini-
tion, TSTAMP[k, `] stores the timestamp of the element that
currently belongs to level-` and whose position is i2` for
some i. Clearly, TSTAMP[k, `] changes only when this ele-
ment moves to level-(`+1), and the element corresponding
to position (i+1)2` enters level-`. Since (i+1)2` is also a
multiple of 2`−1, the timestamp of this element would pre-
viously have been stored in TSTAMP[k, ` − 1]. Therefore,
TSTAMP[k, `] can be updated by just copying the previous
value of TSTAMP[k, `− 1] (Step 4 in UPDATE(akm, τkm)).

Lemma 4.1 Algorithm CI-COUNT presented in Figure 7
has approximation parameter ε = 0.75: If k ∈
K is returned in the output of LOOKUP(τ, T, v), then
COUNTA(Sk[T, 0]) ∈ (v/4,∞) at time τ . If at time τ ,
COUNTA(Sk[T, 0]) ∈ (v,∞), then k is returned in the out-
put of LOOKUP(τ, T, v).

Theorem 4.1 Let Tmax denote maximum time interval of
a sliding window that CI-COUNT supports, and let Nmax

denote the current number of elements belonging to all
substreams with timestamps in the last Tmax time-units.
The CI-COUNT algorithm presented in Figure 7 requires
O(| K | log Nmax) space, has an amortized update time
complexity of O(log |K|), and a lookup time complexity of
O(|Ko|), where |Ko|, the number of substreams in the out-
put of lookup. Further, the lookup has an approximation
parameter ε = 3/4.

4.1.2 Parameterized CI-COUNT

The technique that we use to parameterize CI-COUNT is
well-known and has been suggested before [12]. We only
present the main ideas the statement of the results. Con-
sider a simple generalization of the non-parameterized CI-
COUNT. The generalized version has p levels of size 1, p
levels of size 2, and so on. As before, for each level whose
size is 2`, CI-COUNT stores the timestamp of the element
that belongs to the level, and whose position is a multiple
of 2`. We can extend the lookup and update operations pre-
sented earlier to the general case in a straightforward man-
ner. The update complexity is now O(p), while the lookup
complexity remains unchanged at O(|Kao|).

As we increase p, the relative error, ε, of the generalized
version reduces. For example, we can show that relative
error for the case p = 2 is ε = 1/2 instead of ε = 3/4
for p = 1. In general, we can prove that as p increases the
relative error falls roughly as 2/p. Therefore, by setting p
to be roughly 2/ε, we can achieve any desired relative error
ε. The results claimed in Table 1 follow directly from this
relation between p and ε.

4.2 CI-SUM

CI-SUM is derived from CI-COUNT in a straightforward
manner: Replace the SUM aggregation functions in the input
operators with COUNT aggregation functions, and process
a modified stream S ′ using algorithm CI-COUNT. Corre-
sponding to every element aki of Sk, there are aki copies
of the same element in S ′

k with the same timestamp τki.
Any lookup involving the SUM aggregation function can be
translated into an equivalent lookup involving COUNT ag-
gregation function on the modified stream S ′, and therefore
can be processed using CI-COUNT. The only problem with
this approach is that naı̈vely performing an update for each
of the aki copies of an element aki of the original stream
Sk would result in an update operation whose time com-
plexity grows linearly in aki. However, we can show that
the updates corresponding to all the aki duplicate copies
can be collectively performed with O(log aki) multiplica-
tive overhead.

5 Implementation Issues
We have implemented all of the algorithms in this paper,
and we briefly touch on some of the more important imple-
mentation issues. All of our algorithms permit an imple-
mentation that uses simple arrays. In particular, they do not
require pointer manipulations or dynamic memory man-
agement. For example, our implementation of Algorithm
R-INT (Figure 6) uses an array of Nmax values (recall that

344

Nmax is the earliest left-end of a supported window). Each
array location is used to store the value f(Ir) for some ac-
tive running interval Ir. The array is conceptually treated
is a circular buffer, and values f(1, r) and f(1, r + 1) are
stored in adjacent locations of the buffer. Clearly, this orga-
nization lets us access any active f(Ir) in a single memory
lookup.

A similar implementation strategy is used for Algorithm
B-INT: We use an array of size Nmax for the level-0 inter-
vals, an array of size Nmax

2
for level-1 intervals, and so on.

Further, all common operations in the B-INT algorithm,
such as expressing a lookup interval as a union of base-
intervals (Step 1 of the Lookup operation in Figure 3) can
be implemented using low-level, highly efficient bit-level
operations. Details are omitted due to space constraints.

6 Experiments
A wide variety of experiments evaluating the empirical per-
formance of our algorithms can be conducted. Due to space
limitations, here we report on three sets of experimental re-
sults that are representative of overall performance.

1. Comparison against alternate approaches: For SUM,
we compare the performance of the R-INT and B-INT

algorithms against the PSoup algorithm sketched in
Section 3.1.3 and the two naı̈ve extreme approaches
discussed in Section 1. We see that our algorithms
outperform the alternatives.

2. Performance of ASW algorithms: We present raw per-
formance numbers for three basic ASW algorithms,
showing they are capable of handling very high
lookup and stream update rates (millions of events per
second).

3. Performance of CI-COUNT: Using real stock trade
data, we compare the performance of algorithm CI-
COUNT against the alternative approach of processing
each ASW suboperator independently as described in
Section 4. We show that there exist cases where CI-
COUNT provides orders of magnitude improvement in
overall performance.

The first two experiments are data-independent, since
the performance of none of the relevant algorithms depend
on the actual data values, while the third experiment is data
dependent. Therefore, we use synthetically generated data
for the first two, and real financial data for the third experi-
ment.

All experiments were performed on a 4-processor 700
Mhz. Pentium III machine running Linux with 4 GB of
main memory RAM.

6.1 Comparison with alternate approaches

For the SUM aggregation function, we compared the perfor-
mance of the R-INT and B-INT algorithms against PSoup,
as well as against the naı̈ve approaches discussed in Sec-
tion 1: (1) Materialize the results of all operators at all
times (materialize all); (2) Maintain the maximum required

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 0.2 0.4 0.6 0.8 1

T
ot

al
 r

at
e

of
 in

pu
ts

 h
an

dl
ed

Fraction of inputs that are stream updates

materialize all
materialize none

R-Int
B-Int

PSoup

Figure 9: Comparing R-INT and B-INT against alternatives

window of the input stream and perform all answer com-
putations only at lookup time (materialize none). Since
PSoup [10] does not provide implementation details, we
adapted libavl [23], a publicly available implementation of
red-black (binary) search trees.

We used 1000 operators of the form SUMAS[N, 0] with
tuple-based windows varying in size from N = 0 to N =
999. For each algorithm, we measured the total input rate
that it was able to handle. Each input consisted of a mix-
ture of query lookups and stream updates. We constructed
different inputs by varying the ratio of updates to lookups.
Lookups were picked uniformly at random from one of the
1000 operators.

Figure 9 shows the results. As expected the performance
of the full materialization approach is good when update
rates are low, while that of the on-demand approach is good
when lookup rates are low. However, both approaches dete-
riorate quickly as we move away from their favorable ends.
The performance of the other three algorithms remains rel-
atively stable for all inputs. As expected, R-INT outper-
forms the other two. The performance of B-INT and PSoup
are similar when there are no stream updates, however the
performance of PSoup falls and B-INT improves as the ra-
tio of updates in the input increases. This occurs because
the actual cost of updates in PSoup is higher than the ac-
tual cost of lookups although their asymptotic costs are the
same, while for B-INT updates are cheaper than lookups
(asymptotically and empirically).

6.2 Performance of ASW algorithms

We present raw performance numbers for three basic al-
gorithms: R-INT (for SUM), B-INT (for MAX), and B-INT-
QNT (for QUANTILE). For each one we measured its perfor-
mance handling updates and handling lookups separately.
From these numbers we can easily derive the expected per-
formance for a combined workload. Update handling was
measured for different values of maximum window left-
end Nmax , and lookup handling was measured for differ-
ent values of the query windows (W). For lookups, we set
Nmax = 100, 000. Individual operator windows were dis-
tributed uniformly over the entire permitted range, i.e., we
considered both suffix and historical windows.

345

 5e+06

 1e+07

 1.5e+07

 2e+07

 10 100 1000 10000 100000 1e+06

R
at

e
of

 s
tr

ea
m

 in
pu

ts

Maximum window size (Nm)

R-Int
B-Int

B-Int-Qnt

Figure 10: Stream update rates for the ASW algorithms

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 10 100 1000 10000 100000 1e+06

R
at

e
of

 a
ns

w
er

 lo
ok

up
s

Query window size (Nq)

B-Int
B-Int-Qnt

Figure 11: Maximum lookup rates for the ASW algorithms

Figures 10 and 11 present the results, showing that our
algorithms handle up to millions of events per second, de-
pending on window sizes. Note that the y-axis in these
figures does not go to zero. For example, in Figure 11 B-
INT-QNT handles a lookup rate of about 22,000 per second
even at the maximum window size (not obvious from the
graph). In Figure 11 we deleted the plot for R-INT in order
to better depict those for B-INT and B-INT-QNT. The per-
formance of R-INT is uniformly around 107 lookups per
second. Note that all of these results are for tuple-based
windows only. Time-based windows have similar perfor-
mance characteristics with a slight degradation due to ad-
ditional overhead.

6.3 Performance of CI-COUNT

Unlike the algorithms in our first two sets of experiments,
the performance of CI-COUNT is highly dependent on ac-
tual data and operators, specifically the selectivity of range
conditions and the “spread” of aggregation answers across
different substreams. Further, picking the right value of
ε represents a tradeoff between update performance and
lookup performance. A detailed study of these issues is
left as future work.

Here, we report on one particular experiment for CI-
COUNT. We used a one-day stream of real stock trades
from the TAQ database, containing approximately 5000

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2 4 6 8 10 12 14 16 18 20

T
ot

al
 r

at
e

of
 in

pu
ts

 p
er

 s
ec

.

p-parameter of CI-COUNT

CI-Count

Figure 12: Performance of CI-COUNT for various values of p.
The na ı̈ve approach processes 1000 inputs/second.

substreams based on ticker symbol. Our queries were syn-
thetically generated by specifying a suffix window rang-
ing from 15 minutes to 3 hours, monitoring stocks over the
window with total trades above a given threshold. We se-
lected the threshold to make its selectivity roughly .03–.05.
Lookups and updates were equally interleaved.

We compared the performance of two approaches: (1)
The naı̈ve approach that uses algorithm R-INT to process
each substream independently; (2) The approach that uses
CI-COUNT in conjunction with R-INT to produce exact an-
swers. For the second approach we varied the parameter p,
which directly affects the relative error ε.

The naı̈ve approach processes only about 1000 inputs
(lookups and updates) per second. In Figure 12 we see that
CI-COUNT with an appropriately chosen value of p (or ε)
processes about 25, 000 inputs per second. Note that the
selectivity of the range condition imposes a upper bound on
the relative performance of CI-COUNT when compared to
the simple approach, suggesting that we can expect greater
benefits for more selective range conditions.

7 Related Work
One class of techniques for resource sharing between dif-
ferent queries is based on detecting and exploiting common
subexpressions. All of the multiquery optimization tech-
niques for conventional one-time queries, e.g., [27, 28], be-
long to this class. In the context of continuous queries,
similar techniques have been used in the NiagaraCQ sys-
tem [11]. Recent work in the TelegraphCQ project [9, 25]
suggests using the Eddy operator [6] for sharing, and ar-
gues that since the Eddy operator does not fix a query plan,
it exposes greater sharing possibilities.

The second class of techniques, which is the focus of
this paper, is sharing resources at the operator level. Most
previous work on operator-level sharing has focused on fil-
ters. All traditional pub-sub systems, e.g., [1, 16, 21], and
some continuous query processing systems, e.g., [11, 25],
use variants of predicate indexes for resource sharing in fil-
ters. Work on resource sharing for XML-based filters, e.g.,
[2, 13, 22, 26], also belongs to this class. Recently, refer-
ence [14] considers the problem of sharing sketches for

346

approximate join-based processing. As described in Sec-
tion 3.1.3, PSoup briefly considers the problem of resource
sharing and proposes an algorithm for ASW operators.

Lot of research on sliding window aggregates has fo-
cused on computing approximate aggregates (statistics)
over sliding windows in limited space, e.g., [4, 12, 18]. Our
goal in this paper is to compute exact aggregates. For many
applications (e.g., applications over financial data) the abil-
ity to compute exact answers is crucial. Also, aggregation
functions like MAX and MIN are inherently difficult to ap-
proximate [12].

8 Conclusions
We presented new techniques for scalable processing of
large numbers of operators based on sliding-window aggre-
gates. Our techniques have precise theoretical guarantees,
and they perform extremely well in practice.

We have identified at least two avenues for future work.
First, the techniques in this paper represent alternatives,
rather than a single “optimal” solution. An optimal solution
depends on the exact rates of answer requests and stream
updates, and may change as these rates change. Thus, one
direction is to consider adaptive techniques that factor in
relative answer/update rates. A second direction is to ex-
tend the class of operators we handle to include arbitrary
filters, both before and after the sliding window is applied.

Acknowledgments
We thank Mayur Datar and Gurmeet Manku for useful
feedback.

References
[1] M. K. Aguilera, R. E. Strom, et al. Matching events in a content-

based subscription system. In Proc. of the 18th Annual ACM Symp.
on Principles of Distributed Computing, pages 53–61, May 1999.

[2] M. Altinel and M. J. Franklin. Efficient filtering of XML documents
for selective dissemination of information. In Proc. of the 26th Intl.
Conf. on Very Large Data Bases, pages 53–64, Sept. 2000.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution. Techni-
cal report, Stanford University, Oct. 2003. http://dbpubs.
stanford.edu/pub/2003-67.

[4] A. Arasu and G. Manku. Approximate counts and quantiles over
sliding windows. In Proc. of the 23rd ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, June 2004.

[5] A. Arasu and J. Widom. Resource sharing in continuous slid-
ing window aggregates. Technical Report http://dbpubs.
stanford.edu/pub/2004-15, Stanford University, 2004.

[6] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive
query processing. In Proc. of the 2000 ACM SIGMOD Intl. Conf.
on Management of Data, pages 261–272, May 2000.

[7] B. Babcock, S. Babu, et al. Models and issues in data stream sys-
tems. In Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, pages 1–16, June 2002.

[8] D. Carney, U. Centintemel, et al. Monitoring streams - a new class
of data management applications. In Proc. of the 28th Intl. Conf. on
Very Large Data Bases, pages 215–226, Aug. 2002.

[9] S. Chandrasekharan, O. Cooper, et al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In Proc. of the 1st Conf.
on Innovative Data Systems Research, pages 269–280, Jan. 2003.

[10] S. Chandrasekharan and M. J. Franklin. Streaming queries over
streaming data. In Proc. of the 28th Intl. Conf. on Very Large Data
Bases, pages 203–214, Aug. 2002.

[11] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable
continuous query system for internet databases. In Proc. of the 2000
ACM SIGMOD Intl. Conf. on Management of Data, pages 379–390,
May 2000.

[12] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. In Proc. of the 13th Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 635–644, Jan. 2002.

[13] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter: Efficient
and scalable filtering of XML documents. In Proc. of the 18th Intl.
Conf. on Data Engineering, pages 341–344, Feb. 2002.

[14] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-based
multi-query processing over data streams. In Proc. of the 9th Intl.
Conf. on Extending Database Technology, Mar. 2004.

[15] C. Estan and G. Varghese. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. ACM
Transactions on Computer Systems, 21(3):270–313, Aug. 2003.

[16] F. Fabret, H. Jacobsen, et al. Filtering algorithms and implemen-
tation for very fast publish/subscribe. In Proc. of the 2000 ACM
SIGMOD Intl. Conf. on Management of Data, pages 115–126, May
2001.

[17] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated
aggregates over continual data streams. In Proc. of the 2001 ACM
SIGMOD Intl. Conf. on Management of Data, pages 13–24, May
2001.

[18] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for
sliding windows. In Proc. of the 14th Annual ACM Symp. on Parallel
Algs. and Architectures, pages 63–72, Aug. 2002.

[19] A. C. Gilbert, Y. Kotidis, et al. How to summarize the universe:
Dynamic maintenance of quantiles. In Proc. of the 28th Intl. Conf.
on Very Large Data Bases, pages 454–465, Aug. 2002.

[20] J. Gray, S. Chaudhuri, et al. Data cube: A relational aggregation op-
erator generalizing group-by, cross-tab, and sub totals. Data Mining
and Knowledge Discovery, 1(1):29–53, Mar. 1997.

[21] R. E. Gruber, B. Krishnamurthy, and E. Panagos. READY: A high
performance event notification system. In Proc. of the 16th Intl.
Conf. on Data Engineering, pages 668–669, Mar. 2000.

[22] A. K. Gupta and D. Suciu. Stream processing of XPath queries
with predicates. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, pages 419–430, June 2003.

[23] libavl: Library for balanced binary trees. Available at http://
www.gnu.org/directory/GNU/libavl.html.

[24] U. Lindqvist and P. A. Porras. Detecting computer and network mis-
use through the production-based expert system toolset (P-BEST).
In Proc. of the IEEE Symp. on Security and Privacy, pages 146–
161, May 1999.

[25] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman. Continu-
ously adaptive continuous queries over streams. In Proc. of the 2002
ACM SIGMOD Intl. Conf. on Management of Data, pages 49–60,
June 2002.

[26] F. Peng and S. S. Chawathe. XPath queries on streaming data. In
Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of
Data, pages 431–442, June 2003.

[27] P. Roy, S. Seshadri, et al. Efficient and extensible algorithms for
multi query optimization. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pages 249–260, May 2000.

[28] T. K. Sellis. Multiple-query optimization. ACM Trans. on Database
Systems, 13(1):23–52, Mar. 1988.

[29] Traderbot home page. http://www.traderbot.com, 2003.

[30] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion
detection approach. In Proc. of the 14th Annual Computer Security
Appln. Conf., pages 25–38, Dec. 1998.

[31] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thou-
sands of data streams in real time. In Proc. of the 28th Intl. Conf. on
Very Large Data Bases, pages 358–369, Aug. 2002.

347

