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Abstract

Symbolic Automata extend classical automata by using sjimbo
alphabets instead of finite ones. Most of the classical aataral-
gorithms rely on the alphabet being finite, and generalittiegn to
the symbolic setting is not a trivial task. In this paper wedgtthe
problem of minimizing symbolic automata. We formally defared
prove the basic properties of minimality in the symbolictiset
and lift classical minimization algorithms (Huffman-Ma&is and
Hopcroft's algorithms) to symbolic automata. While Hodtsoal-
gorithm is the fastest known algorithm for DFA minimizatjome
show how, in the presence of symbolic alphabets, it can iaaur
exponential blowup. To address this issue, we introduceraate
gorithm that fully benefits from the symbolic representata the
alphabet and does not suffer from the exponential blowuppktle
vide comprehensive performance evaluation of all the #lyos
over large benchmarks and against existing state-of-thieagle-

mentations. The experiments show how the new symbolic algo-

rithm is faster than previous implementations.

Categories and Subject Descriptors  F.2.2 [Theory of Computa-
tion]: Automata over infinite objects, Regular languages

Keywords Minimization, Symbolic Automata

1. Introduction

Classical automata theory builds on two basic assumptthage is
afinite state spaceand there is dinite alphabet The topic of this
paper is along the line of work challenging the second assomp
Symbolic finite automat¢SFAS) are finite state automata in which
the alphabet is given by Boolean algebrahat may have an infi-
nite domain, and transitions are labeled with predicates such
algebra. Symbolic automata originated from the intent fopsut
regular expressions in the context of static and dynamigrara
analysis [43]. Lately, they were also used for supportirguiiar ex-
pressions (modulo label theories) in the context of modegichl
inference engines [9, 42].

Most classical automata algorithms view the gdiz#f the alpha-
bet as a constant and use specialized data structures ¢haptar
mized for this view [7]. Therefore, it is not clear if or howdual-
gorithms would work when the alphabet is infinite. Underdiag
how operations over the finite alphabet lift to the symboditting
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is a challenging task. Some classical automata constnsctoe
extended to SFAs in [26]. For example, th®duct (intersection)

My x M, of two symbolic automatd/; and M, is computed by

building product transitions of the forfp:, p2) RZULZN (q1,q2)

from transitionsp: 2% ¢, p2 22 g2, in My, Ms, where the
guardsy; and 2 are composed usingonjunctionand pruned
whenunsatisfiable The complexity of such constructions clearly
depends on the complexity of checking satisfiability in thbel
theory. In this particular case, constructing the prodwas bom-
plexity O(f(£)m?), wherem is the number of transitiong(1) is
the cost of checking satisfiability of predicates of dizethe label
theory, and is the size of the biggest predicate/ify, and M- .

This paper focuses on the problem of minimizing automata ove
symbolic alphabets and, to the best of our knowledge, itaditist
paper that investigates this problem. Minimizidgterministic fi-
nite automata(DFASs) is one of the fundamental concepts in au-
tomata theory. It occurs in numerous areas, such as progragmm
languages, text processing, computational linguisti@plgjcs, etc.

Before looking for an algorithm for minimizing SFAs we first
need to answer a fundamental question: what does it meamfor a
SFA to be minimal? Intuitively, any two distinct statesindq of
a minimal SFA must belistinguishablewhere two statep andq
are distinguishable if there exists an input sequenttet starting
from p leads to a final (non-final) state and starting frgheads to
a non-final (final) state. This notion is similar to DFA minilitya

The original algorithms for minimizing DFAs were given by
Huffman [29], Moore [34], and Hopcroft [27]. Since, all sualyo-
rithms use iterations over the finite alphabet, they do nohéuii-
ately extend to the symbolic setting. In the following paegs we
briefly describe how we extended the classical algorithn&R#as,
and how we designed a new minimization algorithm that fldkets
advantage of the symbolic representation of the alphabet.

Our first algorithm is called/in}, and takes inspiration from a
reformulation of Moore’s (Huffman’s) algorithm describied28].
The key idea from the algorithm in [28] is the following:

if two statesp andq are distinguishable, and there exists a
charactew, and transition$(a, p’) = p andé(a,q’) = g,
thenp’ andq’ are distinguishable.

This idea nicely translates to the symbolic setting as:

if two statesp and ¢ are distinguishable, and there exist

transitiongy’ % p andq’ BN q such thatp A is satisfiable,
thenp’ andq’ are distinguishable.

Starting with the fact that final and non-final states aredrmisish-

able, we can use a fixpoint computation for grouping states in

groups of indistinguishable states. This procedure usesreer

of iterations that is quadratic in the number of states. Moee,

each iteration is linear in the number of transitions.
Unfortunately, Min, does not scale in the case of a perfor-

mance critical application described in Section 7.1, wheFAs



| M,  Mintl, Mind,
Satisfiability checking, v v v v
Predicate negation v v
Minterm generation v

Table 1. Summary of operations needed over a given label theory
in the respective minimization algorithms.

end up having thousands of states, and the complexityaf}.,
was not acceptable. To this end, we studied a generalizafion
Hopcrofts algorithm, called/int.,. Hopcroft's algorithm is based
on a technique called partition refinement of states, artth, worst
case complexity) (kn log n) (n = number of states, and= num-

ber of alphabet symbols), it is the most efficient algorittonrhin-
imizing DFAs. The main idea behint{infl, is to subdivide all the
labels in the SFA into non-overlapping predicates calleatenms.
Such minterms can then be seen as atomic characters in the sen
of classical DFAs, allowing us to use the classical Hop&ait-
gorithm over the finite set of minterms. Even thouljfin', per-
forms well in the aforementioned application, it suffersnfr an-
other problem: in the worst case, the number of minterms ean b
exponential in the number of edges of the SFA. Moreover, gur e
periments showed that this factor can indeed be observed whe
considering more complex label theories, such as the thredfqgirs
overstring x int (§ 6.4).

This leads to our main algorithmic contribution in the pajke
designedMink,, a new algorithm for SFA minimization which
takes full advantage of the symbolic representation of tipati
alphabet.Mind, is inspired by the idea of refining the partition of
the state space used by Hopcroft's algorithm, but does piine
the pre-computation of minterms asifin!',. The key observation
is that the set of relevant predicates can be computed yocather
than using all the transitions of the SFA. Whiléinl, is similar
to Minkl, in terms of state complexity, it does not suffer from the
exponential complexity related to the minterm computatiofiact,
in all our experiments, bottVintl, and Min, are outperformed
by Minl,.

Table 1 presents a summary of the minimization algorithms,
illustrating their dependency on operations over the |#iebry.

We compared the performance of the three algorithms usj)ng: 1
the benchmark of randomly generated DFAs presented in )3], 2
the SFAs generated by common regular expressions takerttfieom
web, 3) a set of SFAs aimed at showing the exponential minterm
explosion, 4) a randomly generated set of SFAs over a congblex
phabet theory, and 5) the SFAs generated during the tranafam
from Monadic Second Order logic to DFAs [38]. In experiments
and 3 we also compared the performance of our implementafion
Minll, against the implementation of Hopcroft's algorithm in [3]
and in thebrics.automaton [1] library, and we observed similar
performance characteristics that validated our impleatant. In
the fifth experiment we compared our results against Mon [22
the state of the art tool for deciding Monadic Second Ordegiclo
Contributions. In summary, our contributions are:
¢ a formal study of the notion of minimality of SFA§3);

e two algorithms for minimizing SFAs based on classical DFA
algorithms §3 and§4);

e a completely new algorithm for minimizing SFAs togethertwit
a proof of its correctnes$%);

e a comprehensive evaluation of the algorithms using a yeoiet
different benchmarks;6); and

¢ adescription of several concrete applications of suchmiira-
tion algorithms §7).

2. Effective Boolean algebrasand SFAs

We first formally define the notion of effective Boolean algeebnd
symbolic finite automata. Next, we develop a theory whicHarg
what it means for a symbolic finite automata to be minimal.

An effective Boolean algebra.4 has components
(D,9,[-],L, T,V,A,—). D is an r.e. (recursively enumerable)
set ofdomain elementsl is an r.e. set opredicatesclosed under
the Boolean connectives and T € ¥. Thedenotation function
[.] : ¥ — 2° isre.andis such thaf,L] = 0, [T] = D, for
all g, € W, [ v o] = [¢] U], [ A 9] = [¢] N [¥], and
[¢] =D\ [¢]. Forg € ¥, we write IsSat () when[p] # 0
and say thap is satisfiable A is decidableif IsSat is decidable.

The intuition is that such an algebra is represented program
matically as an API with corresponding methods implemetire
Boolean operations and the denotation function. We aregpiiyn
going to use the following two effective Boolean algebragha
examples, but the techniques in the paper are fully generic.

28V% is the powerset algebra whose domain is the finitesset,
for somek > 0, consisting of all nonnegative integers smaller
than2”, or equivalently, alk-bit bit-vectors. A predicate is rep-
resented by a BDD of depth® The Boolean operations corre-
spond directly to the BDD operations, is the BDD represent-
ing the empty set. The denotati§] of a BDD S is the set of
all integersn such that a binary representatiornvoforresponds
to a solution ofg.

SMT? is the decision procedure for a theory over some gpsay
integers, such as the theory of integer linear arithmetids T
algebra can be implemented through an interface to an SMT
solver. ¥ contains in this case the set of all formulaée) in
that theory with one fixed free integer variahleFor example,

a formula(z mod k) = 0, say divi, denotes the set of all
numbers divisible byk. Then divs A divs denotes the set of
numbers divisible by six.

We can now define symbolic finite automata. Intuitively, a sym
bolic finite automaton is a finite automaton over a symbolic al
phabet, where edge labels are replaced by predicates. én tuord
preserve the classical closure operations (intersea@nplement,
etc.), the predicates must form an effective Boolean algebr

DEFINITION 1. A symbolic finite automato(SFA M is a tuple
(A, Q,¢° F,A) where A is an effective Boolean algebra, called
thealphabet Q is a finite set ofstates ¢° € Q is theinitial state,
F C Q is the set ofinal statesandA C @Q x ¥4 x Q is a finite
set ofmovesor transitions X

Elements of9, are calleccharactersand finite sequences of char-
acters, elements @, are calledvords e denotes the empty word.
Amovep = (p, p,q) € Ais also denoted by 255, ¢ (orp %> ¢
when M is clear), where is thesourcestate, denote&rd(p), g is
thetargetstate, denotedgt(p), andy is theguard or predicateof
the move, denote@rd(p). A move isfeasibleif its guard is satisfi-
able. Given a characterc 94, ana-moveof M is a movep % ¢
such thata € [¢], also denotegp %>1s ¢ (orp = g when M is
clear). In the following letM = (A, Q, ¢°, F, A) be an SFA.

DEFINITION 2. Awordw = aiaz---ar € 9y, is accepted at
statep of M, denotedw € %, (M), if there existp;—1 —r pi
for 1 < i < k, such thatpy = p, andp, € F. Thelanguage

accepted by is Z(M) & Lo (M). X

1The variable order of the BDD is the reverse bit order of theahyj
representation of a number, in particular, the most sigmifibit has the
lowest ordinal.



Given a state; € @, we use the following definitions for the set
transitions from and tq:

R(g) E{peAlsp) =g}, Aq) L {peA|Tgtp) = q}.

The definitions are lifted to sets in the usual manner. THewahg
terminology is used to characterize various key propedigs/. A
statep of M is calledpartial if there exists a characterfor which
there exist nam-move with source state

e M isdeterministicforall p % ¢,p 2= ¢’ € A, if IsSat(p A
¢') theng = ¢'.
e M is completethere are no partial states.

e Misclean forallp £ ¢ € A, pis reachable frong® and
IsSat(yp),

e M is normalized for all p,q € @, there is at most one move
fromptogq.

e M isminimal M is deterministic, complete, clean, normalized,
and for allp,q € Q, p = g ifand only if %, (M) = £, (M).?

For the special case in whidll is deterministic and completave
denote the transition function using the functibn : D4 x Q —
Q, such that for alk € D4 andp € Q, dn(a,p) o q, whereg is
the state such that 2, ¢. Observe that, because of determinism,
if p 20 g1, p 22 M g2, anda € [p1 A 2], thengi = go.
Moreover, due to completeness, there exists sgraad ¢ such
thatp 2> g anda € lel-

Determinization of SFAs is always possible and is studied
in [42]. Completion is straightforward: il/ is not complete then

add a new statgy and the self-loopyy N qp, and for each par-
tial stateq add the movdg, /\pez(q) —Grd(p), gp). Observe that
completion requires negation of predicates.

Normalization is obvious: if there exist statgpsand ¢ and

two distinct transitiong 2 ¢ andp 2, q, then replace these

transitions with the single transitiqu) g. This does not affect
Zp (M) for anyp.

We always assume that is clean. Cleaning amounts to run-
ning a standard forward reachability algorithm that keeply o
reachable states, and eliminates infeasible moves. Ghb#atin-
feasible move® EN q do not add expressiveness and might cause
unnecessary state space explosion.

It is important to show that minimality of SFAs is in fact well
defined in the sense that minimal SFAs are unique up to regamin
of states and equivalence of predicates. To do so we usellbfo
ing construction.

AssumeM = (A4,Q,q°, F,A) to be deterministic and com-
plete. LetX 4 denote thefirst-order languagethat contains the
unary relation symboF and theunary function symbdi for each
a € . We define the: 4-structure of M, denoted by, to have
the univers&), and the interpretation function:

F"YF VaeXa peQ@™(p) £om(ap)).
Also, let
M(e) q°,
M(w - a) 6 (a, M(w))

In other words,M (w) is the state reached in/ for the word
w € 9j. Recall that twoX-structures arégsomorphicif there

def

def

for a € Q4 andw € 9.

2|t is sometimes convenient to define minimality over incoatISFAs, in
which case thelead-endstateq (¢ # ¢° and.Z, (M) = () is eliminated if
it is present.

exists a bijective mapping between their universes thatguues
the meaning of all symbols iH.

THEOREM 1. If M and N are minimal SFAs over the same alpha-
bet A such thatZ(M) = Z(N), then®t and 9t are isomorphic
3 4-structures.

Proof: AssumeM and N to be minimal SFAs overd such that
L(M) = Z(N). We define : 9t = 9 as follows:

vw € D (o(M(w)) E N(w)).

To show that is well-defined as a function, observe first that all
states of M correspond to some becauseM is clean. Second,
we prove that for all words) and w, if M(v) = M(w) then
N(v) = N(w). Fixv,w € D4 such thatM (v) = M(w). Then,
forallu € ©y,

u € Lnwy(N) & v-u € Z(N)
(by LOD=LIN ) e L(M)

A
(by M (w)=M (v))

u e gM(,U)(M)
u e ffj\/j(w)(M)

& w-u € ZL(M)
by LOL=ZO0) e AN)
- u e gN(w) (N)

S0, LNy (N) = Ln(w)(N), and thusN (v) = N(w) by mini-
mality of N. So, is well-defined as a function. By switching the
roles of M and N we also get the opposite direction. Thus,

(*) Vo, w € Dp (M (v) = M(w) & N(v) = N(w))

Next, we show that is an isomorphism.

First, we show that is bijective:s is onto becauséV is clean,
i.e., each state aV corresponds taV(w) for some wordw; ¢ is
into because ifVf (v) # M (w) then, by(x), «(M(v)) = N(v) #
N(w) = o(M(w)). _ o

Finally, we show that is an embedding dit into 91, i.e., that
1+ preserves all the functions and the relations: forpakk Qs,
p € F™ o u(p) € F", and for allp € Qur anda € Dy,
W@ (p)) = a™ (u(p))-

Letp € Q. Letw be any word such that= M (w). Then

peF" o Mw)e F " eowe M) e we ZN)
& N(w) e F* oo M(w)) € F* o a(p) € F™.
and, for anya € Qu,

@™ (p))

Thust and9t are isomorphic.
The theorem implies that minimal SFAs are unique up to rengmi
of states and up to equivalence of predicates due to noratializ

DEFINITION 3. Two statep, ¢ € @ are M-equivalentp = q,
when.%, (M) = £, (M). X

We have that= ), is an equivalence relation. # is an equivalence
relation overQ, then forq € @, g/= denotes the equivalence class
containingg, for X C Q, X,= denotes{q,= | ¢ € X}, andM =

denotes the SFAL, = o (A, Q=, q?a F/)=,A,=) where:

A/Ed:a{(p/27 \/ 907Q/E) |p7q€Q7390((p7907Q) GA)})
(p,p,q)EA



Observe thathM,= is normalized by construction. We need the
following theorem that shows that minimization of SFAs prees
their intended semantics.

THEOREM 2. Let M be a clean, complete and deterministic SFA.
ThenM =, is minimal andZ(M) = L(M/=,,).

Proof: Let= be=,. Clearly,M = is clean and complete because
M is clean and complete. To show determinismple%M/E q1,
andp < ur,_ q2. Takepi, p2 € p, 1 € qu andgz € g2 such that

p1 S qpandpe s ge. Since%y, (M) = £, (M), and M
is deterministic, it follows that#,, (M) = %, (M) i.e.,q1 = q2.
Thus,

(*)  VaeDu,p€Qudnm,_(a,p/=)=0m(ap)=)

Minimality of M, follows from the definition. Next, we show by
induction over the length ab that

(*)  Ywe DR M(w))= = M/=(w))
Forw = e we have thatM(e) = ¢y, M,=(e) = Q?M/E: and

0 _ 0
M- = (an)/=-
Forw = v - a, wherea € Q4 andv € 9}, we have that

M(v-a),= Sar(a, M(v)) = X7 631, (a, M(v) =)

(by IH)

5M/E(a, M/E('U)) = M/E(U . a).

It follows that, for all wordsw € D4, w € L M) iff M(w) €
Fyr iff M(w)/z € FIVI/; iff (by (*)) M/E(w) S FIVI/; iff
we L(M)=). ThusLA M) = L(M,=). X

Theorems 1 and 2 are classical theorems lifted to arbitparysibly
infinite) alphabets. Theorem 2 implies that SFAs have edpriva
minimal forms that, by Theorem 1, are unique up to relabetihg
states, and modulo equivalence of predicateslinn particular,
since for allQ and all equivalence relations over Q, |Q,g| <
|Q|, each equivalent form has minimal number of states.

3. Moore'salgorithm over symbolic alphabets

Moore’s minimization algorithm [34] of DFAs (also due to Huf
man [29]) is commonly known as thetandard algorithm. Even
though the classical version of Moore’s algorithm dependshe
alphabet being finite, the general idea can be lifted to SFAs a
follows. Given an SFAM, initially, let D be the binary relation
(F x F)U (F° x F),whereF°is @ \ F. Compute the fixpoint

of D as follows: if(p, ¢} € D and there exist move®’, ¢, p) and

(¢', v, q) whereyp A v is satisfiablé then add(p’, ¢') to D. This
process clearly terminates. Upon terminatiih= (Q x Q) \ D is

the equivalence relatios s, and the SFAV/,  is therefore min-
imal. We refer to this algorithm as/inl,. Observe that\finl,
checks onlysatisfiability of conjunction®f conditions and does
not depend on the full power of the alphabet algebra, in @aer

it does not require the ability to complement predicatesyiasng
the initial completion ofM is viewed as a separate preprocessing
step). This is in contrast with the generalization of Hof's@lgo-
rithm discussed in the next section.

Complexity. In the finite alphabet case Moore’s algorithm can
be implemented inO(knlog n) (using the approach described
in [10]), wheren is the number of states of the DFA, arid
the number of characters in the input alphabet. However suc
implementation relies on the alphabet being finite.

3In a concrete implementation a dictionary can be used to taiaiD
similar to the case of DFAs [28, Section 3.4].

Figurel. The idea behind afu, R)-split of a partP.

Our implementation of the version of Moore’s algorithm pre-
sented above has the following complexity. Given an SEAetn
be the number of states of, m the number of moves afl, and
¢ the size of the largest guard appearing in a transitior ¢the
biggest predicate). If the complexity of the alphabet thidor in-
stances of sizéis (1), then Minit, has complexityd(m?f(£)),
which isO(n* f(£)) assuming normalized wherem is O(n?).

4. Hopcroft'salgorithm over symbolic alphabets

Hopcroft's algorithm [27] for minimizing DFAs is based onexh-
nique calledpartition refinemenbof states. The symbolic version of
Hopcroft's algorithm is given in Figure 3. Initially the set states
is partitioned into two setdinal states andon-final states, i.e.,
P = {F,Q\ F}. Here we assume that the SBA is complete and
nontrivial, so that bothF” and@ \ F' are nonempty. The partition
P induces the equivalence relatien (or = whenP is clear from
the context) ovet), such that) ,= = P. At a high level,P is re-
fined as follows: suppose there exist pdftdR € P and a character
a € D4 such that some-move fromP goes intoR, and some-
move fromP goes intoR° (Q \ R). Then the(a, R)-split of P is
the set{ P1, P>}, whereP, (resp.P) is the set of alp € P from
which there is am-move intoR (resp.R°). P is then replaced if?
by P, and P;. See Figure 1. Théa, R)-split of P is well-defined
by determinism and completenessit The following invariant is
maintained by splitting.

LEMMA 1. After each refinement step &f, for all p,q € Q, if
p # qthenZ, (M) # Zo(M).

Proof: Initially, for py € F:e € £, (M) ,andp: € Q \ F:
€ ¢ Lp,(M). So, the statement holds for step= 0. To see that
the statement holds after step 1, fix P, R € P; anda € D4 such
that( Py, P») is the(a, R)-split of P. It is enough to show that, for
allp1 € Pi,p2 € Py, Zp (M) # %, (M). Considerps 2 ¢
andp2: = ¢2. Sinceq; andg. belong to distinct parts aP;, by IH,
there exists a woreh such thatw € 2, (M) iff w ¢ £, (M).
Moreover, by determinism of\/, we havea - w € %, (M)
iff w e Z,(M)forj € {1,2}. So,a - w € £ (M) iff
a-wé¢ %, (M), and thus?,, (M) # 2, (M). X

Assuming a simple iterative refinement loop Bf splitting is
repeated until no further splits are possible, i.e., uptils finest
at which point the following property holds.

LEMMA 2. Upon termination of refinement &, for all p, q € Q,
if p = gthen%,(M) = £, (M).

Proof: By way of contradiction. Suppose

(x) there exists a word and stateg: = po,
such thatr € %, (M) & x ¢ £, (M).

Choosew to be ashortestsuchz. Sincew cannot bec (because
{p1,p2} C F or{p1,p2} C Q\ F), there arez andv such that
a-v = w,and movep; =5 ¢ andpz 225 ¢o such thai € [i1]
anda € [¢2]. The choice ofg; andg. is unique for giveru by
determinism, thusv € .%,, (M) < v € £, (M) fori € {1,2}.
So, by(x),v € Ly (M) & v ¢ Ly (M).



ef

1 Minterms 4 (1) =
2 tree:= new Tree(T 4, null, null),
s foreach (3 in 1) tree Refine(v);

4 return Leavestree); //return the set of all the leaf predicates

5 class Tree

6 Predicatey; Tree left Tree right

7 Refingy) &

8 if (IsSat o (p A4 1) and IsSat 4(p Aa —47))

9 if (left = null) //if the tree is a leaf then spli into two parts

10 left := new Tree A4 ,null,null); /] N [¢]

11 right := new Tredp A 4 —av,null,null); /] \ [¥]

12 eseleft.Refingy); right.Refing); //refine subtrees recursively

Figure 2. Minterm generation for) C ¥4 modulo A.

We now have the following contradiction. There are two cases
1) if 1 #Z q2, sayq1 € R andg. € R° for some partR, thenP is
not finestbecause we can split the p@tte P such thap,p: € P
using the(a, R)-split of P. 2) if g1 = g2 then, becaus@| < |w|
and(x) holds forz = v andgqi, g2 in place ofp1, p2, it follows that
w is not the shortest such that(x) holds b . X

In addition to the state partition refinement, in the symbohse,
we also useredicate refinemenPredicate refinement builds a set
of minterms A minterm is a minimal satisfiable Boolean combina-
tions of all guards that occur in the SFA. The algorithm isvemo
in Figure 2. It uses a binary tree whose leaves define theiparti
Initially the tree is the leafl . Each time a predicat¢ is used to re-
fine the tree it may cause splitting of its leaves into finedmates.
The following example illustrates such minterm generation

EXAMPLE 1. Consider the alphabet alget2®’” (ASCII charac-
ters). We use standard regex notation for character claSsgs
pose that the following two guards occur in the given SKA:
([\w] = [[a-zA-Z0-9_1]), and\d ([\d] = [[0-91]). Then, the
value of tree in Mintermsqevz({\w, \d}) in line 4 in Figure 2 is
either the first of the two trees below \fs is selected first in the
loop of line 3, or else the second tree (note that] < [\w] so
\d A\w] = [\d]):
T T

W \aT =

\d \w A —=\d \w A —=\d
The minterms are the leavi&d, \w A —=\d and—\w. X

ﬁ\d

W —

Next, we analyze a property of the set of minterms. Given dipre
catey € U4 and a state € @, define:

5(,p) £ {Tgtp) | p e X(p), IsSat(Grd(p) A )}
pp) E{Sdp) | pe Ap), IsSat(Grd(p) A )}
P £ U8 N wp) (forPCQ)

peEP

Let Minterms(M) = Minterms a(, » Grd(p)). The follow-
ing proposition implies that all characters that occur ie orinterm
are indistinguishable.

PROPOSITION 1. Let M be deterministic and complete. For all
1 € Minterms(M) andp € Q, |6(¢¥,p)| = 1.

We can therefore tredtas afunctionfrom Minterms x @Q to @ and
reduce minimization of the SFA to minimization of the DFA kvit
alphabetMinterms and transition functiod. In particular, we can

1 Minf,(M = (A4,Q.q" F,A)) £

2 P:={F,Q\F}, /initial partition

W = {if (|F| < |Q \ F|) then F dse Q \ F};

4 W := Minterms A({Grd(p) | p € A}); //compute the minterms
s while (W #0) /literate over unvisited parts

6 R = choose(W); W =W \ {R};

w

7 foreach (v in W) /literate over all minterms

8 S :=&"1(y, R); /all states leading int& for given minterm
9 while (exists (P in P) where PN S # O and P\ S # 0)

10 (P,W) := Splitp  (P,PNS,P\S); /splitP

u return M,=_;

12 Splitp y (P, P1, P2) € (P, W') where

13 P'=(P\{P})U{P1, P} /refineP

14 W' =if (Pe€W)then (W \{P})U{P1, P2} //both parts

15 dse W U{if (|P1| < |P2|) then Py ese P>} //smaller part

Figure 3. Hopcroft's minimization algorithm lifted to determin-
istic SFAs. M is assumed to be clean, complete, and nontrivial
(F # 0andQ \ F # 0).

use Hopcroft's algorithm. We refer to the resulting aldamit by
Mindt,. Such an algorithm is shown in Figure 3.

Lifting the transition relation to be ovenintermss a powerful
hammer that can be used to adapt most classical automata algo
rithms to the symbolic setting. However, one drawback ofterim
generation is that, in the worst case, the number of mintefras
SFA is exponential in the number of guards occurring in th&.SF
The following example illustrates a worst case scenario hirchy,
due to such a problerd/in!l, runs in exponential time.

EXAMPLE 2. Let the character domain be nonnegative integers
< 2", Supposes;(z) is a predicate that is true for iff the i'th
bit of the binary representation af is 1, e.g.33(8) is true and
B3(7) is false. Predicatggs can be defined as((z&8) = 0),
provided that, besides equality, the bitwise-and operé&tds a
built-in function symbol ofl4 (e.g., consider the bit-vector theory
of an SMT solver). Similarly, we may also use the alge2?4",
where the size of the concrete BDD representatiorfas linear in

k, it has one node that is labeled bgnd whose left child (case bit
is 0) is false and whose right child (case bit is 1) is true. pbimt

is that predicates are small (essentially constant) in Slpasider
the following SFAM;, with such an alphabed.

B ROGRCRISHEC
D) - €

ThenMinterms(My) = Minterms a({—08i, Bi}i<k) = {N}ncor
has2* elements, whergi] = {n}. For example, suppose = 3,
then[B2 A =81 A Bo] = {5}. The minimal automaton is

The dead-end statg necessary for completion is implicit. X

Complexity. In the finite alphabet case, Hopcroft’s algorithm has
complexity O(kn logn), wheren is the number of states of the
DFA andk is the number of characters in the input alphabet [27],
assumingk is treated as a constant. It is shown in [31] thak if

is O(n) then the complexity of the algorithm presented in [27] is



1 Mind, (M = (A,Q,q°, F,A)) def

2 P:={F,Q\ F}, /initial partition
s W= {if (IF| < |Q\ F|) then F else Q \ F});
4 while (W # Q) //main loop
5 R :=choose(W); W :=W \ {R};
6 S:={sr(r) | T € Z(R)}; //all states leading inté&
//I'(p) denotes the set of all characters leading fiorm S into R
\/ Grd(r) | p € S}
reX(R),Sro(r)=p
8 while (exists (P in P) where PN S # @ and P\ S # ()

7 ={p—

o (P, W) := Splitp v (P, PN S, P\ S); /(, R)-split
10 while (exists (P in P) where PN S # () and

1 exists (p1, p2 in P) where IsSat(—~(I'(p1) < I'(p2))))
12 a := choose([~(T'(p1) & T'(p2))]);

13 Pr:={pePlac[l(p]}h

14 (P, W) := Splitp v (P, P1, P\ P1); /(a, R)-split

15 return M;—=_;

Figure 4. Minimization of deterministic SFAsM is assumed to
be clean, complete and nontrividiplit » v, is defined in Figure 3.

O(n?), but it is also shown tha®(knlogn) complexity can be
maintained with a more careful implementation.

Given an SFA, let» be the number of states, let be the num-
ber of moves, and let be the size of the largest label (guard) of
a move. In a normalized SFA there are at me$tmoves. Letu
be the number of minterms of the SFAjs bounded by2™. Each
minterm is of the formp: A ... A ¢, Where eachp; is a guard
or a negated guard, and thus minterms have@ize/). The com-
putation of minterms i€ (2™ f(m¥)) where f is the complexity
to decide satisfiability of formulas of given size. The rekthe
algorithm (after line 4) can be seen as a standard impleniemta
of Hopcroft's algorithm, where the SFA is first transformetbi a
DFA with an alphabet of minterm identifiers where each SFA la-
bel has been replaced by identifiers of all relevant mintefrhen
U is viewed as a concrete alphabet (of such minterm idenfjfiers
In the final result, the identifiers are mapped back to minseand
the resulting SFA is normalized. The overall complexity hien
O™ f(ml) +2™nlogn).

5.  Minimization without minterm generation

When inspecting the worst case complexityMint.,, the factor
that stands out the most is the exponential blowup causeticdoy t
predicate refinement (minterm generation). In this sectienin-
vestigate a new technique which is based on the symboliesepr
tation of the alphabet, and that avoids minterm generakiiure 4
showsMinlY,, a new minimization algorithm, that does not require
predicate refinement.

The intuition behindMinl., is the following: when splitting a
partition’s part, it is not necessary to provide the exathess that
defines the split, instead it is enough to check if some witrfes
witness set) exists. The main steps are the two inner wiolgsiin
Figure 4, they both refine the partition with respect taR. In the
first loop (lines 8-9) a pat® is splitinto P N.S and P \ S without
using a fixed witness (see Figure 5(a) whéfeq, p’ }, {p2, p2}}
is a(_, R)-split of P, but it is neither ar(a, R)-split nor a(b, R)-
split of P). The second loop (lines 10-14) spli&sif there exists
somea that produces arfa, R)-split of P. Such an element

(@) (-, R)-spli

S

Q
a,b '(

N

)
b
a

(b) (a, R)-split

Figure5. Split cases of? in Mind,. Supposéds = {a,b}.

must somehow distinguish at least two stagesand p, of P,
(see Figure 5(b)), so that the split is indeed proper andagiees
progress.

The first loop (lines 8-9) is an optimization that can be ogalitt

without sacrificing correctness, provided that for¢ S we let
def

I'(p) = L. The conditions?\ S # 0§ andPNS # () together imply
that there exisp; € P NS andps € P\ S and thug['(p1)] # 0
but[I'(p2)] = 0, so—~(T'(p1) < T'(p2)) is satisfiable.

The concrete implementation is shown in Figure 6. It differs
from the abstract algorithm in that it computes local mimterand
does not compute any concrete witnesses (the eleméstnot
computed) in the second loop. In the concrete implememtatio
is important to keep the first loop for the following reasoBse is
efficiency, the first loop is cheaper. Second is simplicttig useful
to work with " as a dictionary or array whose index sefSisand
it is practical to assume that the invariagtC S holds during the
second loop.

Next, we formally prove the correctness &finl.,. The proof
provides more intuition on how the algorithm works. We then
provide more details on how the concrete implementatiorksior

THEOREM 3. MindA(M) is minimal, and Z(Mind.(M)) =
LM).

Proof: We show first that the invariant of Lemma 1 holds. The
invariant clearly holds initially. We show that itis presed by each
split (lines 8-9, and lines 10-14).

First, consider the first(iplitting loop in Figure 4. Fix € P
and letS = {Src(r) | = € A(R)}, and choosé® € P such that
Pi=PnS#PandP, = P\ S # (. Fixp, € Py andps € P».
Then, there is a move; 2% ¢; for someg: € R. Leta € [p1].
Sincep: ¢ S and M is complete, for someg. € R° there exist
a moveps =2 g» such thaiu € [p2]. The situation is illustrated
in Figure 5(a). By using the invarian¥, (M) # 4,,(M), there
is a wordw such thatw € .2, (M) & w ¢ 2%, (M). Thus, by
using the fact thad/ is deterministica- w € £, (M) & a-w ¢
Zpy (M). Therefore, %, (M) # £, (M).

Second, consider the second splitting loop. Piandp:, p2 €
P that satisfy the loop condition. All parts iR that intersect with
S must be subsets o due to the first splitting loop, so, since
M is clean,P C S, IsSat(I'(p1)) and IsSat(I'(p2)). The condi-



MinSFA(Automaton<S> fa)
{
var fB = new Block(fa.GetFinalStates());
var nfB = new Block(fa.GetNonFinalStates());
var blocks = new Dictionary<int, Block>();
foreach (var q in fa.GetFinalStates()) blocks[q]l = £fB;
foreach (var q in fa.GetNonFinalStates()) blocks[q] = nfB;
var W = new BlockStack();
if (nfB.Count < fB.Count) W.Push(nfB); else W.Push(fB);

while (!W.IsEmpty) {

var R = W.Pop();
var G = //T" in Figure 4
var S = G.Keys;

var relevant = ... //blocks intersecting with S
foreach (var P in relevant){ //lines 8-9 in Figure 4
var P1 = ... //PNS
if (P1.Count < P.Count) { //(.,R)-split of P
foreach (var p in P1) { P.Remove(p); blocks[p] = P1;}
if (W.Contains(P)) W.Push(P1);
else if (P.Count <= P1.Count) W.Push(P);
else W.Push(P1);
3
bool iterate = true;
while (iterate) {
iterate = false;
relevant = ... //blocks intersecting with S
foreach (var P in relevant) {
var P1 = new Block();
var psi = G[P.Current]; //start with some element of P
bool splitterFound = false;
P1.Add(P.Current);

//lines 10-14 in Figure 4

while (P.MoveNext()) {
var q = P.Current;
var phi = G[ql;
if (splitterFound) {
if (IsSat(psi & phi)) { P1.Add(q); psi = psi & phi;}
} else {
if (IsSat(psi & !phi)) {
psi = psi & !phi; //refine the local minterm
splitterFound = true;
} else { //psi implies phi
if (IsSat(phi & !psi)) {
P1.Clear(); P1.Add(q); //set P1 to {q}
psi = phi & !psi; //swap the local minterm
splitterFound = true;
} else P1.Add(q); //psi is equivalent to phi
3}
if (P1.Count < P.Count) { //(a,R)-split of P for some a
iterate = (iterate || (P.Count > 2));
foreach (var p in P1) { P.Remove(p); blocks[p] = P1; }
if (W.Contains(P)) W.Push(P1);
else if (P.Count <= P1.Count) W.Push(P);
else W.Push(P1);
13

//construct the result using blocks and normalize it

Figure6. Concrete implementation dfinlL,.

tion IsSat(—(T'(p1) < I'(p2))) means that eithefsSat(I'(p1) A
—I'(p2)) or IsSat(I'(p2) A —I'(p1)). Assume the former case and
choosea € [I'(p1) A —I'(p2)]. By definition ofI", we know that
there is amove; = ¢, wheregq; € R suchthat € [¢1]. More-
over, sincez ¢ [I'(p2)], andI'(p2) coversall the characters that
lead fromp- to R, there must be (by completeness and determin-
ism of M) a movep: 22 g2 wheregz € R° anda € [g2]. See
Figure 5(b). It follows as above, by using,, (M) # £, (M),
that £, (M) # %, (M). Since each step properly refines the
partition, Lemma 1 follows.

We now show that Lemma 2 holds. The proof is by way of
contradiction.

(*) Assume there exists a word, a partP € P, and two states
p1,p2 € Psuchthat € .4, (M) &« ¢ £, (M).

Let w be shortestsuchz. Sincew cannot be:, there existt andv
such thatv = a-v. So, there are, by determinism and completeness
of M, uniqueq: andg- such thap; < g1 andps = ¢o. It follows
thatv € £, (M) & v ¢ %4, (M). Soq1 # g2 or elsev satisfies
(*) andv is shorter thato.

Consider any fixed computation afinl.,. It follows from the
definition of Split, y,, thatW is always a subset dP and (due
to the first condition of the update @), if W ever contains a
part containing a state, thenW will keep containing a part that
containsg until such a part is removed frof¥ in line 5.

Next, we show that the followingV -invariant must hold at all
times: forallR € W, q1 € R & ¢2 € R. Let{,,i} = {1,2}.
Suppose, by way of contradiction, that at some point in liagart
R is chosen froniV such thaty, € R, andg; ¢ R. So,p, € S,
with S as in line 6. We then have two following cases.

1. If p; ¢ S, thenp, andp; are split apart in the first splitting loop.
This contradicts the fact that = p.

2. Assumep; € S and consider the second splitting loop. By
choice of the characterabove, we know that there exist moves
. 2% ¢ andp; 25 ¢; wherea € [,] anda € [g;]. It fol-
lows thata ¢ [I'(p;)] (becauseV! is deterministic and; ¢ R)
while a € [['(p.)]. Soa € [I'(p.)] \ [I'(p:)], or, in other
words,a € [['(p.) A—I'(p;)], and therefordsSat (—(I'(p.) <
T'(p:))) holds. Consequently, andp; end up in distinct parts
upon termination of the second splitting loop. This again-co
tradicts the fact thgt; = po.

So, initially g1 € F < g2 € F, or else the initial part oft/
violates the invariant. But now consider the point when thet p
containing bothy; andgs is split into two parts containing; and
g2 respectively. But at this point, at least one of those paifisoe
added tolV by definition of Split, y,. Thus, we have reached the
desired contradiction, because thé-invariant is violated at that
point.

We have shown that, upon terminationMﬁnQFA(M), =p CO-
incides with=,. It follows from Theorem 2 thad/,— , is minimal
and acceptsZ(M). X

Implementation. A simplified version of our concrete C# imple-
mentation ofMinl., is shown in Figure 6. Parts of a state partition
are represented by mutable sets caldemtks i.e., objects of type
Block, and states are represented by integers. Each block centain
aHashSet of states. The search frontiBr is maintained as a stack
of blocks, and the partitiof is an array of blocks, callesilocks,
that is indexed by states.

The first inner while loop (lines 8-9 in Figure 4) is implemeaht
by iterating over all block® that intersect witls. The content of
blockP1 become® N S, while the content of block is updated to
P\ S. Observe that blocks are objects (pointers), thulsabntains
P, after the(_, R)-split it will still contain P as well as the new block
P1.

The second inner while loop (lines 10-14 in Figure 4) is im-
plemented by en efficient encoding of the searchpfoandps in
line 11 of Figure 4. Moreover, no concrete witnesis computed.
Instead, a “local minterm” (calledsi or ¢ in Figure 6), is com-
puted usind". This avoids the use afiodel generatiothat is more
expensive than satisfiability checking (i.e. checking drthexists
a model)* Thus, the implementation does not rely on model gen-
eration. Observe also that the second inner while loop galie
the fact that all remainingrélevant) blocks that intersect witl§
must becontainedin S due to the first inner loop. The split d?

4 Although IsSat 4 (¢) is formally defined agp]4 # 0, satisfiability
checking is a more lightweight operation than actual moéglegation, in
particular, in the context of SMT solvers.



then happens with respect¢q which, by construction, is a mem-

10 -é 10 states -7 B 20 states -
ber of Minterms({I'(p) | p € P}), so some member of 1] . 8 i *s Pt
would have produced the same spilit. o |2 s ® 8 e

4 E // 10 E ,a’/
Relation to classical techniques. Implementation of Hopcroft's 2 e s _h_—_;::_/_._.———-
algorithm is discussed in detail in [7]. In the classicaliget the o — sz)mbolsso 0 = —  Symbols_
notions of blocks anda, R)-splits are standard, the pdiR, a) is
called asplitter in classical algorithms, where it plays a key role. s S,
The idea of splitting a block into two and keeping only the Bera w B 50 statey o w E 100states | e =
block in the waiting set¥ is a core classical feature. In the case % 2 et g ; g
of partial DFAs, the algorithms are similar except th&t must be 0 E ,,fj: .................. ©E e /,/
initialized with both " and * [40]. o e R g

In classical implementations the waiting $8tconsists obplit- . mEEE symbols ) me===m symhals

ters rather than blocks, where characters have h@eselected 0 02 30 4w 5 o 2 3 o S0
The same is true for partial DFAs except that only those dters. —New  ---Hopcroft - Moore
that are relevant for a given block are being used, which iiefie - - -
cial for DFAs with sparse transition graphs. In the symbs#tting Figure 7. Running times on benchmark of randomly generated
the character selection is indirect and achieved only tyncilne DFAs. The corresponding SFAs are over the theory of bitvecto
satisfiability checks using local minterms during the sectmop. and each set of input symbols is represented as a predidateais

The alphabet algebra may be infinite in the case of SFAs, shis i Pinary decision diagram (BDD).
not possible in the classical setting. As far as we know, tea i

behind the first inner loop affinl.,, and the notion of_, R)-splits

(recall Figure 5), safree splitters(R, _), have not been studied in

the classical setting. 4. We minimize randomly generated SFAs over the theory abpai
of integers and strings. Here, we analyze the performanitein
Complexity. The complexity ofMinl, depends on several fac- case in which the alphabet is infinite; and

tors, most importantly on the representation of predicatasthe
concrete representation of the partition refinement datectsire,
that is explained above.

First of all, observe that eadh(p) has size at mosP(n¢), and
the total size of" is O(n?¢). Since the split operator always adds
to W only the smallest partition, the outer loop is run at mostn
times. The two internal loops have different running times:

5. We implemented the classical procedure for transforming
Monadic Second Order (MSO) logic formulae into DFAs [38]
and measure how the running time of such transformation is af
fected by different minimization algorithms. This lastttaéns
at understanding the performance in the case of very large al
phabets. We also compare our implementation against the too
Mona [22], the state of the art library for deciding MSO formu

e the first loop is run at most times, with an internal complexity lae.

of O(n), due to the split operation, and . .
(n) ) Pitop ) ) ) All the experiments are run on a 64 bits Intel(R) Xeon(R) &bz
» the second loop is run at mosttimes, and if the complexity of  processor with 8 GB of RAM memory.

the label theory for instances of sizés f(I), the complexity
of each iteration is at mosP(n f(nf)). This is due to then
internal iterations over the current patWe also notice that ~ 6.1 Small randomly generated DFAs

eaCh iteration Ca||S the SOIVer on a predicate Of Size at most In [3] the performance of several minimization a|gorithm aom-
O(nd). pared against a set of randomly generated DFAs. Such benichma
contains 5 million DFAs with number of states ranging betwbe

and 1000, and alphabet sizes ranging between 2 and 50. The set
of DFAs in [3] is uniformly generated at random, and therefir
offers good statistical coverage of the set of all possitf#a®with

such number of states and alphabet sizes.

We can conclude that/ind, has complexity®(n?log n - f(nf)).
As we will observe in the next section, the quadratic behdsinot
observed in practice.

6. Evaluation We run Minlk,, Mint, and Mintl, on such set of DFAs. Fig-
N o YR ure 7 shows the results. For simplicity we only plot the resfdr
We evaluate the performance bfinge,, Minsga, and Minge, with DFAs with 10, 20, 50, and 100 states. Each plot contains the ru

the following experiments: ning time for each algorithm, where theaxis represents the num-

1. We minimize the randomly generated DFAs from the bench- ber qf symbols in the alphabet. In [3], Moore’s .algorithm Btn
mark presented in [3]. This experiment analyzes the perfor- considered and we weren't therefore able to validate tharacg
mance in the presence of small finite alphabets and allows us ©f OUr implementation ofMingz,. However, we were able to repli-

to validate our implementation affin', against the results ~ C&t€ the behavior of Hopcroft's algorithm shown [3] usiGngt,.
shown in [3]; Figure 7 shows how the complexity afinM, highly depends

o on the number of states, while the complexityMint., is mainly

2. We minimize the SFAs generated by common regular expres- affacted by the number of input alphabets. We can indeechsge t
sions ta}ken from the wgb. This experiment measures perfor- already for 100 states/in, performs worse thatfin!.,. In this
mance in the case of typical character alphabets (Unicode);  experiment, for most of the input DFAs the number of minterms

3. We minimize the SFA4/, from Example 2 to show the worst ~ was the same as the number of input symbols.
case exponential behavior dfintl,. In this experiment we also It is not a surprise thatfinl., is much faster than both/inM,
compare against therics library, a state-of-the-art automata and Mintl,. Indeed, Mindl,’s performance seems to be resistant
library that uses character ranges as a symbolic reprégsta  to both bigger state space and bigger alphabets. Morearenof
of finite alphabets; single inputMinl., is slower thanMin, or Minki,.
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Figure 8. Running times on regexes from regexlib. Both axes are
in log-scale.

6.2 Unicoderegular expressions

Next, we compared the performance of different minimizatid-
gorithms over a sample set of 1850 SFAs over the alptzijét (of
Unicode characters) constructed from typical regexes(tdfom

a public web-site of popular regexes). Figure 8 shows the running
times. The figure clearly shows how/inl., is faster than both
Minlt, and MinM, for every input instance. Moreover, it can be
appreciated how for bigger state sizes (70-80 statéisif, starts
outperformingMin.,.

In all cases, the number of minterms turned out tcshmller
(by a factor between 2 and 3) than the total number of preskcat
and the exponential blowup of minterms never occurred. Tte s
of the generated SFAs ranged from 2 states to 15800 statesmvit
average of 100 states. After the minimization each SFA wésé 32
smaller (number of states) than the original SFA.

The following is a typical regex from the sample set:

[nsI\a{1,}(\: [0-51\d) {2}.{0,1}\d{0,}, [EWI\d{1,} (\: [0-5]1\d) {2}

The generated SFA uses 16 predicates (suckdjswhile there
are only 7 minterms (such ds1). For this regex, the determinized
SFA has 47 states and the minimized SFA has 23 states.

Since the number of minterms does not blowup, is there a
performance incentive in usingfinlL, in this context? The answer
is yes since the total time used to minimize all 1700 SFAs was
20 seconds when usintfindt,, and only 0.8 seconds when using
MindL,, thus showing a 24x speedup.

We also measured the performance of the minimization algo-
rithm implemented in thérics.automaton library (version 1.11-
8) that usessymbolic integer range® represent Unicode char-
acters, but does not implement them as a Boolean algebrze(sin
ranges are not closed under complement and union). We @aserv
that thebrics implementation of Hopcroft's algorithms is compa-
rable to our implementation dffin!l,, and for 95% of the regexes
the running times obrics Hopcroft's algorithm and/intl, were
at most 5% apart. The trend dfin, in Figure 8 is very simi-
lar to that of the Hopcroft's implementation in theics library.
We decided not to include the latter in the plot for the foliogy
reasons: lprics is implemented in Java, while our implemen-
tations are all in C#, and 2) ibrics, the code corresponding to
the minterm computation is not part of the minimization aitjon,
therefore the comparison would not be completely fair (eisly
for big instances).

Shttp://regexlib.com/
6We use standard regex character class notation for chapetdicates.
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Figure 9. Running times on thé/, SFAs of Example 2. Thg-
axis is in log-scale.

6.3 Alphabet corner cases

The next experiment shows the importance of avoiding theéarim
generation used b¥/inll,. We consider the SFA&/;, from Exam-
ple 2, for values ok ranging between and31, over the alphabet
28v32 of 32-hit bit-vectors. Figure 9 shows the running times for
Mind,, Mint,, andMin,.

As expected, the performance ofintl, degrades exponen-
tially. Already fork = 11, minimizing the SFA usind/ink., took
1 second due to minterm generation, while bdfinM, and Min.,
took less than 1ms. Fal/ind, the time increased from 1ms to
.1sec withk = 31, while for Mind., the time remained below 1ms
for all the values of.

Similarly to the previous experiment, we also comparedine r
ning time of the sample set against Hopcroft's and Moore’simi
mization algorithm in thérics.autmaton library (version 1.11-
8). For this experiment, we decided to showheécs performance
in order to appreciate how this particular example causesitim-
ber of ranges to grow exponentially, causing Hopcroft'oetgm
to be very slow. It is interesting to notice that theics implemen-
tation of Moore’s algorithm is also slow. This is again duetie
alphabet’s blowup caused by the ranges algebra.

6.4 Complex theories

We compare the performance bfinll,, Minfl, and MinM, over

a sample set of 220 randomly generated SFAs over the theory of
pairs overstring x int. The guards of each SFAs are conjunctions
of simple predicates over strings and integers. In the thedr
strings we only allow comparison against a constant striridle

for integers we generate unary predicates contairing-, <, =

and integer constants. The set of generated SFAs is created a
follows. We first generated a sét of 10 SFAs with at most 10
states. For each SFA € S we also compute the complement, and
for every paira,b € S we compute the union, intersection, and
difference ofa andb.

Figure 10 shows the running time of each algorithm for dif-
ferent numbers of states. We first observe how the perforenanc
of Minll, quickly degrades when increasing the number of states.
This is mainly due to the large number of minterms. Since tiedp
icates are randomly generated, many overlaps are possitltha
number of minterms grows quickly. Next, we can see how the per
formance ofMinll, is affected by the increasing number of states.
Finally, Mind., can quickly minimize SFAs with up to 96 states in
less than 1.5 seconds. This experiment shows héinl., is not
affected by complex theories, whil/in!l, and Min, are both
impractical in this setting.
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Figure 10. Running times for SFAs over the thea$yring x Int
with 20 seconds timeout.

6.5 From Monadic Second-Order logic predicatesto DFAs

The relation between regular languages and logic has been-ex
sively investigated in the past [38]. Particularly, eveegular lan-

guage can be expressed as a formula in Monadic Second-Order

logic (MSO) over strings, and vice versa. In the rest of the se
tion we assume the alphabet to be a finite Sesay {a, b}. The
following is an example of an MSO formulé: = 3x.a(x) where

a is a unary relation symbol. A string € ¥* is a model ofg,

iff there exists goositionz in the string with labek. Transform-
ing MSO formulas to automata gives us an algorithm for degdi
satisfiability of MSO formulas.

The procedure for converting an MSO formula into a DFA in-
ductively transforms each sub-formula into the correspun®FA
and then combines such DFAs using classical regular lamguag
operations. The complexity arises from the presence ofvage
ables, that range over positions. For example, in the faad@a(t),

x occurs free. In order to represent such a language, the-alpha

bet ¥ is extended with one extra bit t8 x {0,1}. The string
(a,0)(b,0)(a, 1) over the extended alphabet will then represent
that the third position of the stringba is assigned to variable.
Following this intuition, every sub-formula is compiled into a
DFA over the alphabeX x {0, 1}" wheren is the number of quan-
tified variables aroung. For each existential quantification a pro-
jection is performed which leads to a non-deterministioma&ton
that must be determinized when a negation on it is perforiieid.
means that each quantifier alternation might thereforettead ex-
ponential blowup, and in general the procedure has noneslitary
complexity.

Despite the non-elementary complexity, practical aldoni
that can translate non-trivial MSO formulas are presend@2].
The tool implementing such algorithms is called Mona. The tw
key-features of such algorithms are:

1. determinizing and minimizing the intermediate DFA atrgve
step in the transformation, and

2. using BDDs for representing the lifted bit-vector alpbizsh

We implemented the same transformation using the BDD solver
in our library, and compared the performance using diffenaimi-
mization algorithms.

Figure 11 shows the performance of the transformation fier di
ferent MSO formulas. The running time for Mona are also shown
The four sub-figures depict the running time for the MSO to DFA
transformation for the following formulas:

a)3dxi,...,zk. T1 < ... < xg, fOr k between 2 and 40,

b) Jz1,...,zk. 1 < ... < xx Aa(z1) A ... Aa(x), for k
between 2 and 40,
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Figure 11. MSO to DFA running times. Theg-axes are in log-
scale.

C) (Fz1,...,zh.z1 < ... <zpAa(zi)A...Aa(zi))VIy.cly),
for k between 2 and 40,

d) Jxi,...,Tk. fk Wheref2 = (£C1 < T2 N a(ml)) V C(£C1), and
forn > 2, fn = faci A((Tn—1 < ZnAa(Tn-1))Ve(Tn-1)),
for k between 2 and 17.

All the values missing from the graphs are due to the algmsth
running out of memory. The figure shows the following behesiio

o for all of the four classes of formulas, the transformatiasdd
on Minl, is able to create the DFAs for higher values/of
(number of nested variables) than those supported by Mona;

o for small instances Mona is faster than our implementation.
However for higher values of our implementation is faster,
even when usind/infl, or MinM.,;

¢ while Mona immediately shows an exponential behavior (very
steep slope), we couldn’t observe such trend in our implemen
tation; and

o Minll, is faster thanMinl, and MinM,, and it is also less
memory intensive (it runs out of memory for higher

Even though such formulas are only a small benchmark, they ar
quite representative of the kind of inputs that cause Motralss-
formation to be impractical. We believe that the perforngaim-
provement of our implementation with respect to Mona is pirim

ily due to a better use of the BDD solver, rather than due to the
minimization algorithm.

7. Applications

The development of the theory of symbolic automata, incigdi
use of minimization, is motivated by several concrete fratt
problems. Here we discuss three such applications. In eash c
we illustrate what kind of character theory we are workinghwi
the role of minimization, and focus on the benefits of the syliob
representation.

7.1 Regex processing

Practical applications of regular expressiongemexess ubiqui-
tous. Practical regexes differ from schoolbook regularesgions
in the following aspects:

o they support, besides non-regular features that go beyapal ¢
bilities of finite state automata representations, congrsuch



asbounded quantifierand character classeghat make them
more appealing (more succinct) than their classical counte
parts, and

o the size of the alphabet 2° due to the widely adopted UTF16
standard of Unicode characters.

As a somewhat unusual example, the reg&€xuFF10-\uFF19]$
matches the set of digits in the so-called Wide Latin range of
Unicode. We let the alphabet algebra 2&*®. Let the BDD 57,
represent all ASCII word characters as the set of charaocuesc

{907, ...,997 A7 ..., 927 ¢ far L. ‘20 . We wrrite <0°
for the code 48,a’ for the code 97, etc. Let alsg, repre-
sent the set of all decimal digits‘0’,..., 9’} and lets. rep-

resent underscorg_’}. By using the Boolean operations, e.g.,
BL A —(B7 v B.) represents the set of all upper- and lower-
case ASCII letters. As a regex character class it is exjresas
[\w-[\d_\x7F-\uFFFF]].

in the number of states (product, union), minimization cerire
handy as a tool for reducing the state space size,

In this setting we choose a different character theory. \We us
integer linear modular arithmetic (or bit-vector arithinedf an
SMT solver, in our case Z3 [19]) in place of BDDs. The main
advantage of this choice is that it makes it possible to sesshi
combine the guards over characters with expressions yoekets
i.e. thesymbolic outputof SFT moves. A concrete example of
a yield is the following transformation that takes a chagaend
encodes it as a sequence of five other characters:

fo Az @, ‘4, (((x+10) mod 10) + 48),
((z mod 10) + 48), ;]

In general, a yield denotes a function frady to D1 (or to o3
when the output alphabéf is different from the input alpha-
bet A). In the yield above, for examplg,(‘a’) is the sequence
[‘&?, ‘#°,¢9° <72 ;] (or the string"&#97;"). Given f as

Regexes are used in many different contexts. A common use of above, a typical SFT movelooks like:

regexes is as a constraint language over stringsteckingpres-
ence or absence of different patterns, e.g.sémurity validatiorof
packet headers in network protocols. Another applicatiotie use

of regexes forgeneratingstrings that match certain criteria, e.g.,
for fuzz testingapplications. As another application consider the
password generatioproblem based on constraints given in form
of regexes. Here is a concrete set of constraints adoptedss p
word generatior:

1. Length isk and characters are in visible ASCII range:
~[\x21-\x7E1{k}$

2. There are at least two letterfgi-zA-Z] . * [a-zA-Z]
3. There is at least one digkd
4. There is at least one non-word charact@r:

The smallest feasible value faris obviously 4. Consider SFAs
A1, Az, Az, and A4 for each case and let be their product. For
k = 4 the minimized version ofA has 12 states, and minimizing
A with any of Minll,, Minfl,, or Min), takes a few ms. When
k is increased to 48,the number of states increases to 444 and
minimizing using Minl\., or Min!, takes respectively 15 and 90
ms, while Min, becomes impractical, taking more than 43 sec
(450x slower).

The minimal (canonical) form ofl plays an important role here.
Together with finiteness of the language accepted pyinimality
is used to guaranteeumiform distributionof the passwords gener-
ated fromA. Uniformity is achieved by using the canonical form
of the state graph together with the canonical form of therdgia
While uniform sampling ot € [¢] is not possible for arbitrary
alphabet theories, it is a well-known feature of BDDs.

7.2 Sanitizer analysis

Sanitizers are string transformation routines (speciap@se en-
coders) that are extensively used in web applications, iiticoar

as the first line of defense against cross site scripting P>&88cks.
There are at least three, semantically very differenhgsanitizers
involved in a single web page: CssEncoder, UrlEncoder, ana H
IEncoder. A large class of sanitizers (including all the ©ngen-
tioned above) can be described and analyzed usingbolic finite
state transduceréSFTs) [25]. SFAs are used in that context for cer-
tain operations over SFTs, for example for checking domairive
alence of SFTs [44]. Since several basic operations arerafimd

7Recall the standard convention: a regex without the steoiar ~ matches
any prefix and a regex without the end-ancignatches any suffix.

8 Relevant values df in the above scenario depend on the concrete context,
but range between 4 and 128

(Az.0<2<32)/Az. f ()

p:

This specific rule happens to be an HtmIEncoder rule for eingod
control characters in statg¢ and remaining in that state. What
is the connection with SFAs and the theory mentioned above?
For analyzing the idempotence of an encoder with such rthes,
encoder is sequentially composed with itself. As a reshi, leads
to an SFT with more complex guards and outputs (SFTs arectlose
under composition). When composing the meoweith itself (i.e.,
roughly speaking, feeding the five output characters aspats
again five times in a row), the guard of the composed rule will
have sub-conditions such as< (((z + 10) mod 10) 4 48) <
32, which may involve nontrivial arithmetic operations (inigh
particular case the guard of the composed move will be iitikgs
One of the operations performed durildempotenceanalysis is
checking whether the original SFT and the composed one have
the samedomain This reduces tdanguage equivalencef SFAs
for which the guards involve arithmetic operations of thewb
kind, that are not readily expressible using the earlier BiziSed
approach. Domain equivalence of two SFTs checks that beth th
SFTs accept/reject the same input sequences. MaintahlergRAs
minimal speeds up the equivalence check, and in generaide®ov
a better understanding of the structure of the domain laggua

In general, the alphabet theory may be a Boolean combination
of other decidable theories that are available for exampkate-
of-the-art SMT solvers. In the context of sanitizers, emzedand
decoders, the alphabet theory is a combination of listdeg,bit-
vectors and integer linear arithmetic. Lists are used fangxe to
represent composite characters or characters that repféseka-
head” [17]. We demonstrated in the evaluation section thh&n
the alphabet theory is complex the algorithifinl., outperforms
both Mint., and Min, by several orders of magnitude enabling
analysis of bigger sanitizers/encoders.

7.3 Solving Monadic Second Order logic

We already anticipated in Section 6.5 how Monadic Secon&©Ord
(MSO) logic predicates can be transformed into equivalefA®
using a non-elementary algorithm. Such algorithm alsoiges/a
decision procedure for MSO.

We already discussed how several techniques have been intro
duced by the tool Mona [22] in order to make such transforomati
practical. Keeping the DFA minimal at any step in the tranmsfa-
tion is one of the key techniques. We gave experimental acile
of the fact that the new algorithm presented in this papet,ian
general the use of symbolic automata, can further move tiveeba
of solvable MSO formulas, in terms of both formula’s sizer(riner
of nested quantifiers) and running times.



8. Related work

DFA Minimization: The classical algorithms for DFA minimiza-
tion have been studied and analyzed extensively in sevéfal d
ferent aspects. In particular, Moore’s algorithm is stddie [10]
where it is shown that, by a clever change of data structutes,
complexity can be reduced fro®(kn?) to O(knlogn). The
boundO(knlogn) has been shown to be tight for Hopcroft's al-
gorithm [6, 8]. Brzozowski [13] observed that a DFA can be imin
mized by reversing its transitions, then determinizingnthevers-
ing its transitions again, and finally determinizing ag&liowever,
due to the determinization steps, this procedure is expmiemd
we decided not to consider it in this paper. Linear time atbors
have been studied for minimizing acyclic automata [32, 3&] a
automata containing only simple cycles [2]. The book chapte
provides an in-depth study of the state-of-the-art tealesdgor au-
tomata minimization, including the approaches mentioneove
and several other ones. Watson [45] also provides an eletgsit
sification of the classical minimization algorithms basedtoeir
structural properties.

In the case of DFAs, it matters whether the DFA to be mini-
mized is partial (incomplete), because it may be useful widav
completion of DFAs with sparse transition graphs. Minintiaa of
partial DFAs is studied in [5, 39, 40]. In this setting the quex-
ity of the algorithm depends on the number of transitionhenat
than on the size of the alphabet, however, in the case of Dies®t
two quantities are generally related. In contrast, in a ratizad
SFA the number of transitions is independent of the alphsizet
and it is at mosk? wheren is the number of states. One concrete
difference between the minimization algorithms of compBFAs
versus partial DFAs is that the initial value of the waitiref 8/
(see Figure 3) for the partial case must contain both the/Setsd
F° [40]. We believe that similar modifications may be applied to

MindL,, even though we expect that in the case of SFAs the benefit

of using partiality might not be as visible. In fact, a coniplSFA
has at most: transitions more than a partial one. Moreover, in the
case of SFAs, there are different ways for completing an S,
one can effectively restrict the alphabet to only thoseattars that
are mentioned in the trimmed SFA (SFA without dead-end s}tate
prior to completion.

Different Notions of Minimization: A notion of incremental
minimization is investigated in [47]. An incremental minza-
tion algorithm can be halted at any point and produce a plartia
minimal DFA which is equivalent to the starting DFA, and hess

or equal number of states. If the algorithm runs till comipiet a
minimal DFA is computed. In this paper we did not address in-
cremental computation, however it would be interestingitmtify
variants of the presented algorithms with such a propertgin:

ilar idea, based on intermediate computation results,esl tisr a
modular minimization algorithm in [14]. An algorithm for bding

a minimal DFA accepting a given finite set of strings is présén

in [15]. The same paper investigates the problem of “maniirigl’

a minimal DFA when applying modification such as node, edge, o
string deletion and insertion to an already minimal DFA.sT¢lass

of problems is called dynamic minimization.

A parallel version of Moore’s algorithm is presented in [37]
We are not aware of a parallel version of Hopcroft's alganth
We leave as an open problem identifying parallel algorittoms
responding taVfin{l, and Minl.,.

A variant of minimization called hyper-minimization is iesti-
gated in [24]. Given an input DFA, a DFA A’ is hyper minimal
with respect toA if it is the smallest DFA that differs fronl only
on a finite number of strings. In the case of symbolic automata
this definition doesn’t extend naturally due to potentiaiifinite
alphabet. A less restrictive notion calléeminimization is studied

in [21]. Given an input DFAA, a DFA A’ is k-minimal with re-
spect toA if it is the smallest DFA that differs fromd only on
strings of length smaller or equal th@n This second restriction
naturally extends to symbolic automata. A more generabnas
that of minimization up taF-equivalence, where given a regular
languageFE, the DFA A’ is allowed to differ fromA on a set of
stringsL C F [23]. Extending the results of [21, 23] to symbolic
automata is an interesting open research direction. Raktips
between minimality and selection of final states are stuii¢ds]
whereuniform minimality is defined as minimality for any choice
of final states.

Automata with Predicates. The concept of automata with predi-
cates instead of concrete symbols was first mentioned ingAé]
was first discussed in [41] in the context of natural langugige
cessing. A symbolic generalization of Moore’s algorithmsviiast
discussed in [43]. To the best of our knowledge, no othermmiza-
tion algorithms have been studied for SFAs. The MONA implame
tation [22] provides decision procedures for monadic sdemaer
logic, and it relies on a highly-optimized BDD-based reprea-
tion for automata which has seen extensive engineering: ¢%0).
Therefore, the use of BDDs in the context of automata is nat ne
but is used here as an example of a Boolean algebra that seems
particularly well suited for working with Unicode alphabet

Minimization of Other Automata: The problem of automata
minimization has been investigated in several other gttiA new
approach for minimizingnondeterministi@utomata and nondeter-
ministic Buchi automata has been studied in [33]. The pobl
of minimizing weighted automata (automata computing fiomst
from strings to a semi-ring) is studied in [20]. Classicahimiiza-
tion algorithms are used in this setting, and we hope thaiethalts
shown in this paper can extend to such domain. The mininozati
problem has also been studied for timed automata [11] ansteeg
automata [16]. These models are able to represent infinitadts,
but not arbitrary theories. An orthogonal direction is téeexi the
techniques presented in this paper to minimization of syiniee
automata [18].

Other Applications: The problem of learning of symbolic trans-
ducers has recently been studied in [12]. Classical autofeatn-
ing is based on Angluin’s algorithm [4], which fundamengatlies
on DFA minimality. An almost unexplored topic is whether Buc
learning techniques can be extended to SFAs.

9. Conclusions

We presented three algorithms for minimizing Symbolic téifiu-
tomata (SFAs). We first extended Moore’s algorithm and Hofb'sr
algorithm to the symbolic setting. We then show that, whil¢hie
classical setting Hopcroft's algorithm is the fastest knomini-
mization algorithm, in the presence of symbolic alphakietaijght
incur in an exponential blowup. To address this issue, w®-nt
duced a new minimization algorithm that fully benefits frohe t
symbolic representation of the alphabet and does not siuffer
the exponential blowup. The new algorithm is a refinement of
Hopcroft’s one in which splits are computed locally withdnatv-
ing to consider the entire input alphabet. The new algoritan
also be adopted in the classical setting. Finally, we impleted
all the algorithms and provided experimental evidencettrahew
minimization algorithm is the most efficient one in practice
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