
Minimization of Symbolic Automata

Loris D’Antoni
University of Pennsylvania
lorisdan@cis.upenn.edu

Margus Veanes
Microsoft Research

margus@microsoft.com

Abstract
Symbolic Automata extend classical automata by using symbolic
alphabets instead of finite ones. Most of the classical automata al-
gorithms rely on the alphabet being finite, and generalizingthem to
the symbolic setting is not a trivial task. In this paper we study the
problem of minimizing symbolic automata. We formally defineand
prove the basic properties of minimality in the symbolic setting,
and lift classical minimization algorithms (Huffman-Moore’s and
Hopcroft’s algorithms) to symbolic automata. While Hopcroft’s al-
gorithm is the fastest known algorithm for DFA minimization, we
show how, in the presence of symbolic alphabets, it can incuran
exponential blowup. To address this issue, we introduce a new al-
gorithm that fully benefits from the symbolic representation of the
alphabet and does not suffer from the exponential blowup. Wepro-
vide comprehensive performance evaluation of all the algorithms
over large benchmarks and against existing state-of-the-art imple-
mentations. The experiments show how the new symbolic algo-
rithm is faster than previous implementations.

Categories and Subject Descriptors F.2.2 [Theory of Computa-
tion]: Automata over infinite objects, Regular languages

Keywords Minimization, Symbolic Automata

1. Introduction
Classical automata theory builds on two basic assumptions:there is
a finite state space; and there is afinite alphabet. The topic of this
paper is along the line of work challenging the second assumption.
Symbolic finite automata(SFAs) are finite state automata in which
the alphabet is given by aBoolean algebrathat may have an infi-
nite domain, and transitions are labeled with predicates over such
algebra. Symbolic automata originated from the intent to support
regular expressions in the context of static and dynamic program
analysis [43]. Lately, they were also used for supporting regular ex-
pressions (modulo label theories) in the context of modern logical
inference engines [9, 42].

Most classical automata algorithms view the sizek of the alpha-
bet as a constant and use specialized data structures that are opti-
mized for this view [7]. Therefore, it is not clear if or how such al-
gorithms would work when the alphabet is infinite. Understanding
how operations over the finite alphabet lift to the symbolic setting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

POPL ’14, January 22 - 24 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535849

is a challenging task. Some classical automata constructions are
extended to SFAs in [26]. For example, theproduct (intersection)
M1×M2 of two symbolic automataM1 andM2 is computed by
building product transitions of the form〈p1, p2〉

ϕ1∧ϕ2−−−−→ 〈q1, q2〉

from transitionsp1
ϕ1−−→ q1, p2

ϕ2−−→ q2, in M1,M2, where the
guardsϕ1 and ϕ2 are composed usingconjunctionand pruned
whenunsatisfiable. The complexity of such constructions clearly
depends on the complexity of checking satisfiability in the label
theory. In this particular case, constructing the product has com-
plexityO(f(ℓ)m2), wherem is the number of transitions,f(l) is
the cost of checking satisfiability of predicates of sizel in the label
theory, andℓ is the size of the biggest predicate inM1 andM2 .

This paper focuses on the problem of minimizing automata over
symbolic alphabets and, to the best of our knowledge, it is the first
paper that investigates this problem. Minimizingdeterministic fi-
nite automata(DFAs) is one of the fundamental concepts in au-
tomata theory. It occurs in numerous areas, such as programming
languages, text processing, computational linguistics, graphics, etc.

Before looking for an algorithm for minimizing SFAs we first
need to answer a fundamental question: what does it mean for an
SFA to be minimal? Intuitively, any two distinct statesp andq of
a minimal SFA must bedistinguishable, where two statesp andq
are distinguishable if there exists an input sequences that starting
from p leads to a final (non-final) state and starting fromq leads to
a non-final (final) state. This notion is similar to DFA minimality.

The original algorithms for minimizing DFAs were given by
Huffman [29], Moore [34], and Hopcroft [27]. Since, all suchalgo-
rithms use iterations over the finite alphabet, they do not immedi-
ately extend to the symbolic setting. In the following paragraphs we
briefly describe how we extended the classical algorithms toSFAs,
and how we designed a new minimization algorithm that fully takes
advantage of the symbolic representation of the alphabet.

Our first algorithm is calledMinM
SFA and takes inspiration from a

reformulation of Moore’s (Huffman’s) algorithm describedin [28].
The key idea from the algorithm in [28] is the following:

if two statesp andq are distinguishable, and there exists a
charactera, and transitionsδ(a, p′) = p andδ(a, q′) = q,
thenp′ andq′ are distinguishable.

This idea nicely translates to the symbolic setting as:

if two statesp and q are distinguishable, and there exist

transitionsp′
ϕ
−→ p andq′

ψ
−→ q such thatϕ∧ψ is satisfiable,

thenp′ andq′ are distinguishable.

Starting with the fact that final and non-final states are distinguish-
able, we can use a fixpoint computation for grouping states into
groups of indistinguishable states. This procedure uses a number
of iterations that is quadratic in the number of states. Moreover,
each iteration is linear in the number of transitions.

Unfortunately,MinM
SFA does not scale in the case of a perfor-

mance critical application described in Section 7.1, whereSFAs

MinM
SFA MinH

SFA MinN
SFA

Satisfiability checking, ∧, ∨ X X X

Predicate negation X X

Minterm generation X

Table 1. Summary of operations needed over a given label theory
in the respective minimization algorithms.

end up having thousands of states, and the complexity ofMinM
SFA

was not acceptable. To this end, we studied a generalizationof
Hopcrofts algorithm, calledMinH

SFA. Hopcroft’s algorithm is based
on a technique called partition refinement of states, and, with worst
case complexityO(kn log n) (n = number of states, andk = num-
ber of alphabet symbols), it is the most efficient algorithm for min-
imizing DFAs. The main idea behindMinH

SFA is to subdivide all the
labels in the SFA into non-overlapping predicates called minterms.
Such minterms can then be seen as atomic characters in the sense
of classical DFAs, allowing us to use the classical Hopcroft’s al-
gorithm over the finite set of minterms. Even thoughMinH

SFA per-
forms well in the aforementioned application, it suffers from an-
other problem: in the worst case, the number of minterms can be
exponential in the number of edges of the SFA. Moreover, our ex-
periments showed that this factor can indeed be observed when
considering more complex label theories, such as the theoryof pairs
overstring × int (§ 6.4).

This leads to our main algorithmic contribution in the paper. We
designedMinN

SFA, a new algorithm for SFA minimization which
takes full advantage of the symbolic representation of the input
alphabet.MinN

SFA is inspired by the idea of refining the partition of
the state space used by Hopcroft’s algorithm, but does not require
the pre-computation of minterms as inMinH

SFA. The key observation
is that the set of relevant predicates can be computed locally, rather
than using all the transitions of the SFA. WhileMinN

SFA is similar
to MinH

SFA in terms of state complexity, it does not suffer from the
exponential complexity related to the minterm computation. In fact,
in all our experiments, bothMinH

SFA andMinM
SFA are outperformed

byMinN
SFA.

Table 1 presents a summary of the minimization algorithms,
illustrating their dependency on operations over the labeltheory.

We compared the performance of the three algorithms using: 1)
the benchmark of randomly generated DFAs presented in [3], 2)
the SFAs generated by common regular expressions taken fromthe
web, 3) a set of SFAs aimed at showing the exponential minterm
explosion, 4) a randomly generated set of SFAs over a complexal-
phabet theory, and 5) the SFAs generated during the transformation
from Monadic Second Order logic to DFAs [38]. In experiments2
and 3 we also compared the performance of our implementationof
MinH

SFA against the implementation of Hopcroft’s algorithm in [3]
and in thebrics.automaton [1] library, and we observed similar
performance characteristics that validated our implementation. In
the fifth experiment we compared our results against Mona [22],
the state of the art tool for deciding Monadic Second Order logic.

Contributions. In summary, our contributions are:

• a formal study of the notion of minimality of SFAs (§2);

• two algorithms for minimizing SFAs based on classical DFA
algorithms (§3 and§4);

• a completely new algorithm for minimizing SFAs together with
a proof of its correctness (§5);

• a comprehensive evaluation of the algorithms using a variety of
different benchmarks (§6); and

• a description of several concrete applications of such minimiza-
tion algorithms (§7).

2. Effective Boolean algebras and SFAs
We first formally define the notion of effective Boolean algebra and
symbolic finite automata. Next, we develop a theory which explains
what it means for a symbolic finite automata to be minimal.

An effective Boolean algebra A has components
(D,Ψ, [[]],⊥,⊤,∨,∧,¬). D is an r.e. (recursively enumerable)
set ofdomain elements. Ψ is an r.e. set ofpredicatesclosed under
the Boolean connectives and⊥,⊤ ∈ Ψ. Thedenotation function
[[]] : Ψ → 2D is r.e. and is such that,[[⊥]] = ∅, [[⊤]] = D, for
all ϕ,ψ ∈ Ψ, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and
[[¬ϕ]] = D \ [[ϕ]]. Forϕ ∈ Ψ, we writeIsSat(ϕ) when[[ϕ]] 6= ∅
and say thatϕ is satisfiable.A is decidableif IsSat is decidable.

The intuition is that such an algebra is represented program-
matically as an API with corresponding methods implementing the
Boolean operations and the denotation function. We are primarily
going to use the following two effective Boolean algebras inthe
examples, but the techniques in the paper are fully generic.

2BVk is the powerset algebra whose domain is the finite setBVk,
for somek > 0, consisting of all nonnegative integers smaller
than2k, or equivalently, allk-bit bit-vectors. A predicate is rep-
resented by a BDD of depthk.1 The Boolean operations corre-
spond directly to the BDD operations,⊥ is the BDD represent-
ing the empty set. The denotation[[β]] of a BDDβ is the set of
all integersn such that a binary representation ofn corresponds
to a solution ofβ.

SMTσ is the decision procedure for a theory over some sortσ, say
integers, such as the theory of integer linear arithmetic. This
algebra can be implemented through an interface to an SMT
solver.Ψ contains in this case the set of all formulasϕ(x) in
that theory with one fixed free integer variablex. For example,
a formula(x mod k) = 0, saydivk, denotes the set of all
numbers divisible byk. Thendiv2 ∧ div3 denotes the set of
numbers divisible by six.

We can now define symbolic finite automata. Intuitively, a sym-
bolic finite automaton is a finite automaton over a symbolic al-
phabet, where edge labels are replaced by predicates. In order to
preserve the classical closure operations (intersection,complement,
etc.), the predicates must form an effective Boolean algebra.

DEFINITION 1. A symbolic finite automaton(SFA) M is a tuple
(A, Q, q0, F,∆) whereA is an effective Boolean algebra, called
thealphabet, Q is a finite set ofstates, q0 ∈ Q is the initial state,
F ⊆ Q is the set offinal states, and∆ ⊆ Q × ΨA × Q is a finite
set ofmovesor transitions. ⊠

Elements ofDA are calledcharactersand finite sequences of char-
acters, elements ofD∗A , are calledwords; ǫ denotes the empty word.
A moveρ = (p, ϕ, q) ∈ ∆ is also denoted byp

ϕ
−→M q (or p

ϕ
−→ q

whenM is clear), wherep is thesourcestate, denotedSrc(ρ), q is
the targetstate, denotedTgt(ρ), andϕ is theguardor predicateof
the move, denotedGrd(ρ). A move isfeasibleif its guard is satisfi-
able. Given a charactera ∈ DA, ana-moveof M is a movep

ϕ
−→ q

such thata ∈ [[ϕ]], also denotedp
a
−→M q (or p

a
−→ q whenM is

clear). In the following letM = (A, Q, q0, F,∆) be an SFA.

DEFINITION 2. A wordw = a1a2 · · · ak ∈ D
∗
A , is accepted at

statep of M , denotedw ∈ Lp(M), if there existpi−1
ai−→M pi

for 1 ≤ i ≤ k, such thatp0 = p, andpk ∈ F . The language
accepted byM is L(M)

def
= Lq0(M). ⊠

1 The variable order of the BDD is the reverse bit order of the binary
representation of a number, in particular, the most significant bit has the
lowest ordinal.

Given a stateq ∈ Q, we use the following definitions for the set
transitions from and toq:
−→
∆(q)

def
= {ρ ∈ ∆ | Src(ρ) = q},

←−
∆(q)

def
= {ρ ∈ ∆ | Tgt(ρ) = q}.

The definitions are lifted to sets in the usual manner. The following
terminology is used to characterize various key propertiesof M . A
statep of M is calledpartial if there exists a charactera for which
there exist noa-move with source statep.

• M is deterministic: for all p
ϕ
−→ q, p

ϕ′

−→ q′ ∈ ∆, if IsSat(ϕ ∧
ϕ′) thenq = q′.

• M is complete: there are no partial states.

• M is clean: for all p
ϕ
−→ q ∈ ∆, p is reachable fromq0 and

IsSat(ϕ),

• M is normalized: for all p, q ∈ Q, there is at most one move
from p to q.

• M is minimal:M is deterministic, complete, clean, normalized,
and for allp, q ∈ Q, p = q if and only if Lp(M) = Lq(M).2

For the special case in whichM is deterministic and complete, we
denote the transition function using the functionδM : DA × Q →

Q, such that for alla ∈ DA andp ∈ Q, δM (a, p)
def
= q, whereq is

the state such thatp
a
−→M q. Observe that, because of determinism,

if p
ϕ1−−→M q1, p

ϕ2−−→M q2, anda ∈ [[ϕ1 ∧ ϕ2]], thenq1 = q2.
Moreover, due to completeness, there exists someq andϕ such
thatp

ϕ
−→M q anda ∈ [[ϕ]].

Determinization of SFAs is always possible and is studied
in [42]. Completion is straightforward: ifM is not complete then

add a new stateq∅ and the self-loopq∅
⊤
−→ q∅, and for each par-

tial stateq add the move(q,
∧
ρ∈
−→
∆(q)
¬Grd(ρ), q∅). Observe that

completion requires negation of predicates.
Normalization is obvious: if there exist statesp and q and

two distinct transitionsp
ϕ
−→ q and p

ψ
−→ q, then replace these

transitions with the single transitionp
ϕ∨ψ
−−−→ q. This does not affect

Lp(M) for anyp.
We always assume thatM is clean. Cleaning amounts to run-

ning a standard forward reachability algorithm that keeps only
reachable states, and eliminates infeasible moves. Observe that in-
feasible movesp

⊥
−→ q do not add expressiveness and might cause

unnecessary state space explosion.
It is important to show that minimality of SFAs is in fact well-

defined in the sense that minimal SFAs are unique up to renaming
of states and equivalence of predicates. To do so we use the follow-
ing construction.

AssumeM = (A, Q, q0, F,∆) to be deterministic and com-
plete. LetΣA denote thefirst-order languagethat contains the
unary relation symbol̄F and theunary function symbol̄a for each
a ∈ DA. We define theΣA-structure ofM , denoted byM, to have
the universeQ, and the interpretation function:

F̄M def
= F, ∀ā ∈ ΣA, p ∈ Q (āM(p)

def
= δM (a, p)).

Also, let

M(ǫ)
def
= q0,

M(w · a)
def
= δM (a,M(w)) for a ∈ DA andw ∈ D

∗
A .

In other words,M(w) is the state reached inM for the word
w ∈ D

∗
A . Recall that twoΣ-structures areisomorphic if there

2 It is sometimes convenient to define minimality over incomplete SFAs, in
which case thedead-endstateq (q 6= q0 andLq(M) = ∅) is eliminated if
it is present.

exists a bijective mapping between their universes that preserves
the meaning of all symbols inΣ.

THEOREM 1. If M andN are minimal SFAs over the same alpha-
betA such thatL(M) = L(N), thenM andN are isomorphic
ΣA-structures.

Proof: AssumeM andN to be minimal SFAs overA such that
L(M) = L(N). We defineı : M ∼= N as follows:

∀w ∈ D
∗
A(ı(M(w))

def
= N(w)).

To show thatı is well-defined as a function, observe first that all
states ofM correspond to somew becauseM is clean. Second,
we prove that for all wordsv andw, if M(v) = M(w) then
N(v) = N(w). Fix v, w ∈ D

∗
A such thatM(v) = M(w). Then,

for all u ∈ D
∗
A ,

u ∈ LN(v)(N) ⇔ v · u ∈ L(N)

(by L(M)=L(N))
⇔ v · u ∈ L(M)

⇔ u ∈ LM(v)(M)

(by M(w)=M(v))
⇔ u ∈ LM(w)(M)

⇔ w · u ∈ L(M)

(by L(M)=L(N))
⇔ w · u ∈ L(N)

⇔ u ∈ LN(w)(N)

So,LN(v)(N) = LN(w)(N), and thusN(v) = N(w) by mini-
mality of N . So,ı is well-defined as a function. By switching the
roles ofM andN we also get the opposite direction. Thus,

(∗) ∀v, w ∈ D
∗
A(M(v) =M(w)⇔ N(v) = N(w))

Next, we show thatı is an isomorphism.
First, we show thatı is bijective:ı is onto becauseN is clean,

i.e., each state ofN corresponds toN(w) for some wordw; ı is
into because ifM(v) 6= M(w) then, by(∗), ı(M(v)) = N(v) 6=
N(w) = ı(M(w)).

Finally, we show thatı is an embedding ofM into N, i.e., that
ı preserves all the functions and the relations: for allp ∈ QM ,
p ∈ F̄M ⇔ ı(p) ∈ F̄N, and for allp ∈ QM and a ∈ DA,
ı(āM(p)) = āN(ı(p)).

Let p ∈ QM . Letw be any word such thatp =M(w). Then

p ∈ F̄M ⇔ M(w) ∈ F̄M ⇔ w ∈ L(M)⇔ w ∈ L(N)

⇔ N(w) ∈ F̄N ⇔ ı(M(w)) ∈ F̄N ⇔ ı(p) ∈ F̄N.

and, for anya ∈ DA,

ı(āM(p)) = ı(āM(M(w))) = ı(δM (a,M(w)))

= ı(M(w · a)) = N(w · a) = δN (a,N(w))

= āN(N(w)) = āN(ı(M(w))) = āN(ı(p))

ThusM andN are isomorphic. ⊠

The theorem implies that minimal SFAs are unique up to renaming
of states and up to equivalence of predicates due to normalization.

DEFINITION 3. Two statesp, q ∈ Q areM -equivalent, p ≡M q,
whenLp(M) = Lq(M). ⊠

We have that≡M is an equivalence relation. If≡ is an equivalence
relation overQ, then forq ∈ Q, q/≡ denotes the equivalence class
containingq, forX ⊆ Q,X/≡ denotes{q/≡ | q ∈ X}, andM/≡

denotes the SFAM/≡
def
= (A, Q/≡, q

0
/≡, F/≡,∆/≡) where:

∆/≡
def
= {(p/≡,

∨

(p,ϕ,q)∈∆

ϕ, q/≡) | p, q ∈ Q,∃ϕ((p,ϕ, q) ∈ ∆)})

Observe thatM/≡ is normalized by construction. We need the
following theorem that shows that minimization of SFAs preserves
their intended semantics.

THEOREM 2. LetM be a clean, complete and deterministic SFA.
ThenM/≡M

is minimal andL(M) = L(M/≡M
).

Proof: Let≡ be≡M . Clearly,M/≡ is clean and complete because
M is clean and complete. To show determinism, letp

a
−→M/≡

q1,

andp
a
−→M/≡

q2. Takep1, p2 ∈ p, q1 ∈ q1 andq2 ∈ q2 such that

p1
a
−→M q1 andp2

a
−→M q2. SinceLp1(M) = Lp2(M), andM

is deterministic, it follows thatLq1 (M) = Lq2(M) i.e.,q1 = q2.
Thus,

(∗) ∀a ∈ DA, p ∈ QM (δM/≡
(a, p/≡) = δM (a, p)/≡).

Minimality of M/≡ follows from the definition. Next, we show by
induction over the length ofw that

(⋆) ∀w ∈ D
∗
A(M(w)/≡ =M/≡(w))

For w = ǫ we have thatM(ǫ) = q0M , M/≡(ǫ) = q0M/≡
, and

q0M/≡
= (q0M)/≡.

Forw = v · a, wherea ∈ DA andv ∈ D
∗
A , we have that

M(v · a)/≡ = δM (a,M(v))/≡
(by (∗))
= δM/≡

(a,M(v)/≡)

(by IH)
= δM/≡

(a,M/≡(v)) =M/≡(v · a).

It follows that, for all wordsw ∈ D
∗
A , w ∈ L(M) iff M(w) ∈

FM iff M(w)/≡ ∈ FM/≡
iff (by (⋆)) M/≡(w) ∈ FM/≡

iff
w ∈ L(M/≡). ThusL(M) = L(M/≡). ⊠

Theorems 1 and 2 are classical theorems lifted to arbitrary (possibly
infinite) alphabets. Theorem 2 implies that SFAs have equivalent
minimal forms that, by Theorem 1, are unique up to relabelingof
states, and modulo equivalence of predicates inA. In particular,
since for allQ and all equivalence relationsE overQ, |Q/E| ≤
|Q|, each equivalent form has minimal number of states.

3. Moore’s algorithm over symbolic alphabets
Moore’s minimization algorithm [34] of DFAs (also due to Huff-
man [29]) is commonly known as thestandardalgorithm. Even
though the classical version of Moore’s algorithm depends on the
alphabet being finite, the general idea can be lifted to SFAs as
follows. Given an SFAM , initially, let D be the binary relation
(F × F c) ∪ (F c × F), whereF c isQ \ F . Compute the fixpoint
of D as follows: if〈p, q〉 ∈ D and there exist moves(p′, ϕ, p) and
(q′, ψ, q) whereϕ ∧ ψ is satisfiable3 then add〈p′, q′〉 to D. This
process clearly terminates. Upon termination,E = (Q×Q)\D is
the equivalence relation≡M , and the SFAM/E is therefore min-
imal. We refer to this algorithm asMinM

SFA. Observe thatMinM
SFA

checks onlysatisfiability of conjunctionsof conditions and does
not depend on the full power of the alphabet algebra, in particular
it does not require the ability to complement predicates (assuming
the initial completion ofM is viewed as a separate preprocessing
step). This is in contrast with the generalization of Hopcroft’s algo-
rithm discussed in the next section.

Complexity. In the finite alphabet case Moore’s algorithm can
be implemented inO(knlog n) (using the approach described
in [10]), wheren is the number of states of the DFA, andk
the number of characters in the input alphabet. However, such
implementation relies on the alphabet being finite.

3 In a concrete implementation a dictionary can be used to maintain D
similar to the case of DFAs [28, Section 3.4].

QP R

Rc
P1

P2

a

a

Figure 1. The idea behind an(a,R)-split of a partP .

Our implementation of the version of Moore’s algorithm pre-
sented above has the following complexity. Given an SFAA, let n
be the number of states ofA, m the number of moves ofA, and
ℓ the size of the largest guard appearing in a transition ofA (the
biggest predicate). If the complexity of the alphabet theory for in-
stances of sizel is f(l), thenMinM

SFA has complexityO(m2f(ℓ)),
which isO(n4f(ℓ)) assuming normalizedA wherem isO(n2).

4. Hopcroft’s algorithm over symbolic alphabets
Hopcroft’s algorithm [27] for minimizing DFAs is based on a tech-
nique calledpartition refinementof states. The symbolic version of
Hopcroft’s algorithm is given in Figure 3. Initially the setof states
is partitioned into two sets:final states andnon-final states, i.e.,
P = {F,Q\F}. Here we assume that the SFAM is complete and
nontrivial, so that bothF andQ \ F are nonempty. The partition
P induces the equivalence relation≡P (or≡ whenP is clear from
the context) overQ, such thatQ/≡ = P . At a high level,P is re-
fined as follows: suppose there exist partsP,R ∈ P and a character
a ∈ DA such that somea-move fromP goes intoR, and somea-
move fromP goes intoRc (Q \ R). Then the(a,R)-split ofP is
the set{P1, P2}, whereP1 (resp.P2) is the set of allp ∈ P from
which there is ana-move intoR (resp.Rc).P is then replaced inP
by P1 andP2. See Figure 1. The(a,R)-split of P is well-defined
by determinism and completeness ofM . The following invariant is
maintained by splitting.

LEMMA 1. After each refinement step ofP , for all p, q ∈ Q, if
p 6≡ q thenLp(M) 6= Lq(M).

Proof: Initially, for p1 ∈ F : ǫ ∈ Lp1(M) , andp2 ∈ Q \ F :
ǫ /∈ Lp2(M). So, the statement holds for stepi = 0. To see that
the statement holds after stepi+1, fix P,R ∈ Pi anda ∈ DA such
that(P1, P2) is the(a,R)-split of P . It is enough to show that, for
all p1 ∈ P1, p2 ∈ P2, Lp1(M) 6= Lp2(M). Considerp1

a
−→ q1

andp2
a
−→ q2. Sinceq1 andq2 belong to distinct parts ofPi, by IH,

there exists a wordw such thatw ∈ Lq1(M) iff w /∈ Lq2 (M).
Moreover, by determinism ofM , we havea · w ∈ Lpj (M)
iff w ∈ Lqj (M) for j ∈ {1, 2}. So, a · w ∈ Lp1(M) iff
a · w /∈ Lp2(M), and thusLp1(M) 6= Lp2(M). ⊠

Assuming a simple iterative refinement loop ofP , splitting is
repeated until no further splits are possible, i.e., untilP is finest,
at which point the following property holds.

LEMMA 2. Upon termination of refinement ofP , for all p, q ∈ Q,
if p ≡ q thenLp(M) = Lq(M).

Proof: By way of contradiction. Suppose

(∗) there exists a wordx and statesp1 ≡ p2,
such thatx ∈ Lp1(M)⇔ x /∈ Lp2(M).

Choosew to be ashortestsuchx. Sincew cannot beǫ (because
{p1, p2} ⊆ F or {p1, p2} ⊆ Q \ F), there area andv such that
a ·v = w, and movesp1

ϕ1−−→ q1 andp2
ϕ2−−→ q2 such thata ∈ [[ϕ1]]

anda ∈ [[ϕ2]]. The choice ofq1 andq2 is unique for givena by
determinism, thusw ∈ Lpi(M) ⇔ v ∈ Lqi(M) for i ∈ {1, 2}.
So, by(∗), v ∈ Lq1(M)⇔ v /∈ Lq2 (M).

1 MintermsA(ψ̄)
def
=

2 tree := new Tree(⊤A, null , null);

3 foreach (ψ in ψ̄) tree.Refine(ψ);

4 return Leaves(tree); //return the set of all the leaf predicates

5 class Tree

6 Predicateϕ; Tree left; Tree right;

7 Refine(ψ)
def
=

8 if (IsSatA(ϕ ∧A ψ) and IsSatA(ϕ ∧A ¬Aψ))

9 if (left = null) //if the tree is a leaf then splitϕ into two parts

10 left := new Tree(ϕ ∧A ψ,null ,null); //[[ϕ]] ∩ [[ψ]]

11 right := new Tree(ϕ ∧A ¬Aψ,null ,null); //[[ϕ]] \ [[ψ]]

12 else left.Refine(ψ); right.Refine(ψ); //refine subtrees recursively

Figure 2. Minterm generation for̄ψ ⊆ ΨA moduloA.

We now have the following contradiction. There are two cases:
1) if q1 6≡ q2, sayq1 ∈ R andq2 ∈ Rc for some partR, thenP is
not finestbecause we can split the partP ∈ P such thatp1, p2 ∈ P
using the(a,R)-split of P . 2) if q1 ≡ q2 then, because|v| < |w|
and(∗) holds forx = v andq1, q2 in place ofp1, p2, it follows that
w is not the shortestx such that(∗) holds	. ⊠

In addition to the state partition refinement, in the symbolic case,
we also usepredicate refinement. Predicate refinement builds a set
of minterms. A minterm is a minimal satisfiable Boolean combina-
tions of all guards that occur in the SFA. The algorithm is shown
in Figure 2. It uses a binary tree whose leaves define the partition.
Initially the tree is the leaf⊤. Each time a predicateψ is used to re-
fine the tree it may cause splitting of its leaves into finer predicates.
The following example illustrates such minterm generation.

EXAMPLE 1. Consider the alphabet algebra2BV7 (ASCII charac-
ters). We use standard regex notation for character classes. Sup-
pose that the following two guards occur in the given SFA:\w
([[\w]] = [[[a-zA-Z0-9_]]]), and\d ([[\d]] = [[[0-9]]]). Then, the
value of tree in Minterms2BV7({\w, \d}) in line 4 in Figure 2 is
either the first of the two trees below if\w is selected first in the
loop of line 3, or else the second tree (note that[[\d]] ([[\w]] so
[[\d ∧ \w]] = [[\d]]):

⊤
\w

\d \w ∧ ¬\d
¬\w

⊤
\d ¬\d
\w ∧ ¬\d ¬\w

The minterms are the leaves\d, \w ∧ ¬\d and¬\w. ⊠

Next, we analyze a property of the set of minterms. Given a predi-
cateψ ∈ ΨA and a statep ∈ Q, define:

δ(ψ, p)
def
= {Tgt(ρ) | ρ ∈

−→
∆(p), IsSat(Grd(ρ) ∧ ψ)}

δ
−1(ψ, p)

def
= {Src(ρ) | ρ ∈

←−
∆(p), IsSat(Grd(ρ) ∧ ψ)}

δ
−1(ψ, P)

def
=

⋃

p∈P

δ
−1(ψ, p) (for P ⊆ Q)

Let Minterms(M)
def
= MintermsA(

⋃
ρ∈∆ Grd(ρ)). The follow-

ing proposition implies that all characters that occur in one minterm
are indistinguishable.

PROPOSITION 1. Let M be deterministic and complete. For all
ψ ∈ Minterms(M) andp ∈ Q, |δ(ψ, p)| = 1.

We can therefore treatδ as afunctionfromMinterms×Q toQ and
reduce minimization of the SFA to minimization of the DFA with
alphabetMinterms and transition functionδ. In particular, we can

1 MinH
SFA(M = (A, Q, q0, F,∆))

def
=

2 P := {F,Q \ F}; //initial partition

3 W := {if (|F | ≤ |Q \ F |) then F else Q \ F};

4 Ψ := MintermsA({Grd(ρ) | ρ ∈ ∆}); //compute the minterms

5 while (W 6= ∅) //iterate over unvisited parts

6 R := choose(W); W := W \ {R};

7 foreach (ψ in Ψ) //iterate over all minterms

8 S := δ
−1(ψ, R); //all states leading intoR for given minterm

9 while (exists (P in P) where P ∩ S 6= ∅ and P \ S 6= ∅)

10 〈P,W 〉 := SplitP,W (P,P ∩ S, P \ S); //split P

11 return M/≡P
;

12 SplitP,W (P, P1, P2)
def
= 〈P ′,W ′〉 where

13 P ′ = (P \ {P}) ∪ {P1, P2} //refineP

14 W ′ = if (P ∈W) then (W \ {P}) ∪ {P1, P2} //both parts

15 else W ∪{if (|P1| ≤ |P2|) then P1 else P2} //smaller part

Figure 3. Hopcroft’s minimization algorithm lifted to determin-
istic SFAs.M is assumed to be clean, complete, and nontrivial
(F 6= ∅ andQ \ F 6= ∅).

use Hopcroft’s algorithm. We refer to the resulting algorithm by
MinH

SFA. Such an algorithm is shown in Figure 3.
Lifting the transition relation to be overmintermsis a powerful

hammer that can be used to adapt most classical automata algo-
rithms to the symbolic setting. However, one drawback of minterm
generation is that, in the worst case, the number of mintermsof an
SFA is exponential in the number of guards occurring in the SFA.
The following example illustrates a worst case scenario in which,
due to such a problem,MinH

SFA runs in exponential time.

EXAMPLE 2. Let the character domain be nonnegative integers
< 2k. Supposeβi(x) is a predicate that is true forx iff the i’th
bit of the binary representation ofx is 1, e.g.β3(8) is true and
β3(7) is false. Predicateβ3 can be defined as¬((x&8) = 0),
provided that, besides equality, the bitwise-and operator& is a
built-in function symbol ofΨA (e.g., consider the bit-vector theory
of an SMT solver). Similarly, we may also use the algebra2

BVk,
where the size of the concrete BDD representation forβi is linear in
k, it has one node that is labeled byi and whose left child (case bit
is 0) is false and whose right child (case bit is 1) is true. Thepoint
is that predicates are small (essentially constant) in size. Consider
the following SFAMk with such an alphabetA.

q0 q1 q2 qk-1 qk

p1 p2 pk-1

β0 β1 · · · βk-1

¬β0

β1 · · ·

βk-1

ThenMinterms (Mk) = MintermsA({¬βi, βi}i<k) = {n̂}n<2k

has2k elements, where[[n̂]] = {n}. For example, supposek = 3,
then[[β2 ∧ ¬β1 ∧ β0]] = {5}. The minimal automaton is

q0 q1 q2 qk-1 qk⊤ β1 · · · βk-1

The dead-end stateq∅ necessary for completion is implicit. ⊠

Complexity. In the finite alphabet case, Hopcroft’s algorithm has
complexityO(kn log n), wheren is the number of states of the
DFA andk is the number of characters in the input alphabet [27],
assumingk is treated as a constant. It is shown in [31] that ifk
is O(n) then the complexity of the algorithm presented in [27] is

1 MinN
SFA(M = (A, Q, q0, F,∆))

def
=

2 P := {F,Q \ F}; //initial partition

3 W := {if (|F | ≤ |Q \ F |) then F else Q \ F};

4 while (W 6= ∅) //main loop

5 R := choose(W); W := W \ {R};

6 S := {Src(τ) | τ ∈
←−
∆(R)}; //all states leading intoR

//Γ(p) denotes the set of all characters leading fromp ∈ S intoR

7 Γ := {p 7→
∨

τ∈
←−
∆(R),Src(τ)=p

Grd(τ) | p ∈ S};

8 while (exists (P in P) where P ∩ S 6= ∅ and P \ S 6= ∅)

9 〈P,W 〉 := SplitP,W (P,P ∩ S, P \ S); //(, R)-split

10 while (exists (P in P) where P ∩ S 6= ∅ and

11 exists (p1, p2 in P) where IsSat(¬(Γ(p1)⇔ Γ(p2))))

12 a := choose([[¬(Γ(p1)⇔ Γ(p2))]]);

13 P1 := {p ∈ P | a ∈ [[Γ(p)]]};

14 〈P,W 〉 := SplitP,W (P,P1, P \ P1); //(a, R)-split

15 return M/≡P
;

Figure 4. Minimization of deterministic SFAs.M is assumed to
be clean, complete and nontrivial.SplitP,W is defined in Figure 3.

O(n3), but it is also shown thatO(kn log n) complexity can be
maintained with a more careful implementation.

Given an SFA, letn be the number of states, letm be the num-
ber of moves, and letℓ be the size of the largest label (guard) of
a move. In a normalized SFA there are at mostn2 moves. Letµ
be the number of minterms of the SFA;µ is bounded by2m. Each
minterm is of the formφ1 ∧ . . . ∧ φm, where eachφi is a guard
or a negated guard, and thus minterms have sizeO(mℓ). The com-
putation of minterms isO(2mf(mℓ)) wheref is the complexity
to decide satisfiability of formulas of given size. The rest of the
algorithm (after line 4) can be seen as a standard implementation
of Hopcroft’s algorithm, where the SFA is first transformed into a
DFA with an alphabet of minterm identifiers where each SFA la-
bel has been replaced by identifiers of all relevant minterms. Then
Ψ is viewed as a concrete alphabet (of such minterm identifiers).
In the final result, the identifiers are mapped back to minterms and
the resulting SFA is normalized. The overall complexity is then
O(2mf(mℓ) + 2mn log n).

5. Minimization without minterm generation
When inspecting the worst case complexity ofMinH

SFA, the factor
that stands out the most is the exponential blowup caused by the
predicate refinement (minterm generation). In this sectionwe in-
vestigate a new technique which is based on the symbolic represen-
tation of the alphabet, and that avoids minterm generation.Figure 4
showsMinN

SFA, a new minimization algorithm, that does not require
predicate refinement.

The intuition behindMinN
SFA is the following: when splitting a

partition’s part, it is not necessary to provide the exact witness that
defines the split, instead it is enough to check if some witness (or
witness set) exists. The main steps are the two inner while loops in
Figure 4, they both refine the partitionP with respect toR. In the
first loop (lines 8–9) a partP is split intoP ∩S andP \S without
using a fixed witness (see Figure 5(a) where{{p1, p′1}, {p2, p

′
2}}

is a (, R)-split of P , but it is neither an(a, R)-split nor a(b, R)-
split of P). The second loop (lines 10–14) splitsP if there exists
somea that produces an(a,R)-split of P . Such an elementa

P

Q

S q1
q′1

q′′2

R

q2
q′2

p1

p′1

p2

p′2

a

b

a
a, b

b

a, b

(a) (, R)-split

P

Q

S q1

R

q2

p1

p2

a, b

a

b

(b) (a, R)-split

Figure 5. Split cases ofP in MinN
SFA. SupposeDA = {a, b}.

must somehow distinguish at least two statesp1 and p2 of P ,
(see Figure 5(b)), so that the split is indeed proper and guarantees
progress.

The first loop (lines 8–9) is an optimization that can be omitted
without sacrificing correctness, provided that forp /∈ S we let
Γ(p)

def
= ⊥. The conditionsP \S 6= ∅ andP∩S 6= ∅ together imply

that there existp1 ∈ P ∩ S andp2 ∈ P \ S and thus[[Γ(p1)]] 6= ∅
but [[Γ(p2)]] = ∅, so¬(Γ(p1)⇔ Γ(p2)) is satisfiable.

The concrete implementation is shown in Figure 6. It differs
from the abstract algorithm in that it computes local minterms, and
does not compute any concrete witnesses (the elementa is not
computed) in the second loop. In the concrete implementation it
is important to keep the first loop for the following reasons.One is
efficiency, the first loop is cheaper. Second is simplicity, it is useful
to work withΓ as a dictionary or array whose index set isS, and
it is practical to assume that the invariantP ⊆ S holds during the
second loop.

Next, we formally prove the correctness ofMinN
SFA. The proof

provides more intuition on how the algorithm works. We then
provide more details on how the concrete implementation works.

THEOREM 3. MinN
SFA(M) is minimal, andL(MinN

SFA(M)) =
L(M).

Proof: We show first that the invariant of Lemma 1 holds. The
invariant clearly holds initially. We show that it is preserved by each
split (lines 8–9, and lines 10–14).

First, consider the first splitting loop in Figure 4. FixR ∈ P
and letS = {Src(τ) | τ ∈

←−
∆(R)}, and chooseP ∈ P such that

P1 = P ∩ S 6= ∅ andP2 = P \ S 6= ∅. Fix p1 ∈ P1 andp2 ∈ P2.
Then, there is a movep1

ϕ1−−→ q1 for someq1 ∈ R. Let a ∈ [[ϕ1]].
Sincep2 /∈ S andM is complete, for someq2 ∈ Rc there exist
a movep2

ϕ2−−→ q2 such thata ∈ [[ϕ2]]. The situation is illustrated
in Figure 5(a). By using the invariant,Lq1(M) 6= Lq2(M), there
is a wordw such thatw ∈ Lq1(M) ⇔ w /∈ Lq2(M). Thus, by
using the fact thatM is deterministic,a ·w ∈ Lp1(M)⇔ a ·w /∈
Lp2(M). Therefore,Lp1(M) 6= Lp2(M).

Second, consider the second splitting loop. FixP andp1, p2 ∈
P that satisfy the loop condition. All parts inP that intersect with
S must be subsets ofS due to the first splitting loop, so, since
M is clean,P ⊆ S, IsSat(Γ(p1)) andIsSat(Γ(p2)). The condi-

MinSFA(Automaton<S> fa)

{
var fB = new Block(fa.GetFinalStates());

var nfB = new Block(fa.GetNonFinalStates());
var blocks = new Dictionary<int, Block>();
foreach (var q in fa.GetFinalStates()) blocks[q] = fB;

foreach (var q in fa.GetNonFinalStates()) blocks[q] = nfB;
var W = new BlockStack();

if (nfB.Count < fB.Count) W.Push(nfB); else W.Push(fB);

while (!W.IsEmpty) {
var R = W.Pop();
var G = ... //Γ in Figure 4
var S = G.Keys;
var relevant = ... //blocks intersecting with S
foreach (var P in relevant){ //lines 8-9 in Figure 4

var P1 = ... //P ∩ S
if (P1.Count < P.Count) { //(, R)-split of P

foreach (var p in P1) { P.Remove(p); blocks[p] = P1;}
if (W.Contains(P)) W.Push(P1);

else if (P.Count <= P1.Count) W.Push(P);
else W.Push(P1);

}}
bool iterate = true;
while (iterate) { //lines 10-14 in Figure 4

iterate = false;
relevant = ... //blocks intersecting with S
foreach (var P in relevant) {

var P1 = new Block();
var psi = G[P.Current]; //start with some element of P
bool splitterFound = false;
P1.Add(P.Current);

while (P.MoveNext()) {

var q = P.Current;
var phi = G[q];
if (splitterFound) {

if (IsSat(psi & phi)) { P1.Add(q); psi = psi & phi;}
} else {

if (IsSat(psi & !phi)) {
psi = psi & !phi; //refine the local minterm
splitterFound = true;

} else { //psi implies phi
if (IsSat(phi & !psi)) {

P1.Clear(); P1.Add(q); //set P1 to {q}
psi = phi & !psi; //swap the local minterm
splitterFound = true;

} else P1.Add(q); //psi is equivalent to phi
}}}

if (P1.Count < P.Count) { //(a, R)-split of P for some a

iterate = (iterate || (P.Count > 2));

foreach (var p in P1) { P.Remove(p); blocks[p] = P1; }
if (W.Contains(P)) W.Push(P1);
else if (P.Count <= P1.Count) W.Push(P);

else W.Push(P1);
}}}}

... //construct the result using blocks and normalize it
}

Figure 6. Concrete implementation ofMinN
SFA.

tion IsSat(¬(Γ(p1) ⇔ Γ(p2))) means that eitherIsSat(Γ(p1) ∧
¬Γ(p2)) or IsSat(Γ(p2) ∧ ¬Γ(p1)). Assume the former case and
choosea ∈ [[Γ(p1) ∧ ¬Γ(p2)]]. By definition ofΓ, we know that
there is a movep1

ϕ1−−→ q1 whereq1 ∈ R such thata ∈ [[ϕ1]]. More-
over, sincea /∈ [[Γ(p2)]], andΓ(p2) coversall the characters that
lead fromp2 to R, there must be (by completeness and determin-
ism ofM) a movep2

ϕ2−−→ q2 whereq2 ∈ Rc anda ∈ [[ϕ2]]. See
Figure 5(b). It follows as above, by usingLq1(M) 6= Lq2(M),
that Lp1(M) 6= Lp2(M). Since each step properly refines the
partition, Lemma 1 follows.

We now show that Lemma 2 holds. The proof is by way of
contradiction.

(*) Assume there exists a wordx, a partP ∈ P , and two states
p1, p2 ∈ P such thatx ∈ Lp1(M)⇔ x /∈ Lp2(M).

Letw beshortestsuchx. Sincew cannot beǫ, there exista andv
such thatw = a·v. So, there are, by determinism and completeness
ofM , uniqueq1 andq2 such thatp1

a
−→ q1 andp2

a
−→ q2. It follows

thatv ∈ Lq1(M) ⇔ v /∈ Lq2(M). Soq1 6≡ q2 or elsev satisfies
(*) andv is shorter thatw.

Consider any fixed computation ofMinN
SFA. It follows from the

definition ofSplitP,W , thatW is always a subset ofP and (due
to the first condition of the update toW), if W ever contains a
part containing a stateq, thenW will keep containing a part that
containsq until such a part is removed fromW in line 5.

Next, we show that the followingW -invariant must hold at all
times: for allR ∈ W , q1 ∈ R ⇔ q2 ∈ R. Let {ι, ι̂} = {1, 2}.
Suppose, by way of contradiction, that at some point in line 5a part
R is chosen fromW such thatqι ∈ R, andqι̂ /∈ R. So,pι ∈ S,
with S as in line 6. We then have two following cases.

1. If pι̂ /∈ S, thenpι andpι̂ are split apart in the first splitting loop.
This contradicts the fact thatp1 ≡ p2.

2. Assumepι̂ ∈ S and consider the second splitting loop. By
choice of the charactera above, we know that there exist moves
pι

ϕι−→ qι andpι̂
ϕι̂−→ qι̂ wherea ∈ [[ϕι]] anda ∈ [[ϕι̂]]. It fol-

lows thata /∈ [[Γ(pι̂)]] (becauseM is deterministic andqι̂ /∈ R)
while a ∈ [[Γ(pι)]]. So a ∈ [[Γ(pι)]] \ [[Γ(pι̂)]], or, in other
words,a ∈ [[Γ(pι)∧¬Γ(pι̂)]], and thereforeIsSat(¬(Γ(pι)⇔
Γ(pι̂))) holds. Consequently,pι andpι̂ end up in distinct parts
upon termination of the second splitting loop. This again con-
tradicts the fact thatp1 ≡ p2.

So, initially q1 ∈ F ⇔ q2 ∈ F , or else the initial part ofW
violates the invariant. But now consider the point when the part
containing bothq1 andq2 is split into two parts containingq1 and
q2 respectively. But at this point, at least one of those parts will be
added toW by definition ofSplitP,W . Thus, we have reached the
desired contradiction, because theW -invariant is violated at that
point.

We have shown that, upon termination ofMinN
SFA(M), ≡P co-

incides with≡M . It follows from Theorem 2 thatM/≡P
is minimal

and acceptsL(M). ⊠

Implementation. A simplified version of our concrete C# imple-
mentation ofMinN

SFA is shown in Figure 6. Parts of a state partition
are represented by mutable sets calledblocks, i.e., objects of type
Block, and states are represented by integers. Each block contains
aHashSet of states. The search frontierW is maintained as a stack
of blocks, and the partitionP is an array of blocks, calledblocks,
that is indexed by states.

The first inner while loop (lines 8–9 in Figure 4) is implemented
by iterating over all blocksP that intersect withS. The content of
blockP1 becomesP ∩ S, while the content of blockP is updated to
P \ S. Observe that blocks are objects (pointers), thus ifW contains
P, after the(, R)-split it will still contain P as well as the new block
P1.

The second inner while loop (lines 10–14 in Figure 4) is im-
plemented by en efficient encoding of the search forp1 andp2 in
line 11 of Figure 4. Moreover, no concrete witnessa is computed.
Instead, a “local minterm” (calledpsi or ψ in Figure 6), is com-
puted usingΓ. This avoids the use ofmodel generationthat is more
expensive than satisfiability checking (i.e. checking if thereexists
a model).4 Thus, the implementation does not rely on model gen-
eration. Observe also that the second inner while loop relies on
the fact that all remaining (relevant) blocks that intersect withS
must becontainedin S due to the first inner loop. The split ofP

4 Although IsSatA(ϕ) is formally defined as[[ϕ]]A 6= ∅, satisfiability
checking is a more lightweight operation than actual model generation, in
particular, in the context of SMT solvers.

then happens with respect toψ, which, by construction, is a mem-
ber ofMinterms ({Γ(p) | p ∈ P}), so some membera of [[ψ]]
would have produced the same split.

Relation to classical techniques. Implementation of Hopcroft’s
algorithm is discussed in detail in [7]. In the classical setting, the
notions of blocks and(a,R)-splits are standard, the pair(R,a) is
called asplitter in classical algorithms, where it plays a key role.
The idea of splitting a block into two and keeping only the smaller
block in the waiting setW is a core classical feature. In the case
of partial DFAs, the algorithms are similar except thatW must be
initialized with bothF andF c [40].

In classical implementations the waiting setW consists ofsplit-
ters rather than blocks, where characters have beenpreselected.
The same is true for partial DFAs except that only those characters
that are relevant for a given block are being used, which is benefi-
cial for DFAs with sparse transition graphs. In the symbolicsetting
the character selection is indirect and achieved only through the
satisfiability checks using local minterms during the second loop.
The alphabet algebra may be infinite in the case of SFAs, this is
not possible in the classical setting. As far as we know, the idea
behind the first inner loop ofMinN

SFA and the notion of(, R)-splits
(recall Figure 5), sayfree splitters(R,), have not been studied in
the classical setting.

Complexity. The complexity ofMinN
SFA depends on several fac-

tors, most importantly on the representation of predicatesand the
concrete representation of the partition refinement data structure,
that is explained above.

First of all, observe that eachΓ(p) has size at mostO(nℓ), and
the total size ofΓ isO(n2ℓ). Since the split operator always adds
toW only the smallest partition, the outer loop is run at mostlog n
times. The two internal loops have different running times:

• the first loop is run at mostn times, with an internal complexity
of O(n), due to the split operation, and

• the second loop is run at mostn times, and if the complexity of
the label theory for instances of sizel is f(l), the complexity
of each iteration is at mostO(nf(nℓ)). This is due to then
internal iterations over the current partP. We also notice that
each iteration calls the solver on a predicate of size at most
O(nℓ).

We can conclude thatMinN
SFA has complexityO(n2log n · f(nℓ)).

As we will observe in the next section, the quadratic behavior is not
observed in practice.

6. Evaluation
We evaluate the performance ofMinN

SFA, MinH
SFA, andMinM

SFA with
the following experiments:

1. We minimize the randomly generated DFAs from the bench-
mark presented in [3]. This experiment analyzes the perfor-
mance in the presence of small finite alphabets and allows us
to validate our implementation ofMinH

SFA against the results
shown in [3];

2. We minimize the SFAs generated by common regular expres-
sions taken from the web. This experiment measures perfor-
mance in the case of typical character alphabets (Unicode);

3. We minimize the SFAsMk from Example 2 to show the worst
case exponential behavior ofMinH

SFA. In this experiment we also
compare against thebrics library, a state-of-the-art automata
library that uses character ranges as a symbolic representations
of finite alphabets;

Figure 7. Running times on benchmark of randomly generated
DFAs. The corresponding SFAs are over the theory of bitvectors
and each set of input symbols is represented as a predicate using a
binary decision diagram (BDD).

4. We minimize randomly generated SFAs over the theory of pairs
of integers and strings. Here, we analyze the performance inthe
case in which the alphabet is infinite; and

5. We implemented the classical procedure for transforming
Monadic Second Order (MSO) logic formulae into DFAs [38]
and measure how the running time of such transformation is af-
fected by different minimization algorithms. This last test aims
at understanding the performance in the case of very large al-
phabets. We also compare our implementation against the tool
Mona [22], the state of the art library for deciding MSO formu-
lae.

All the experiments are run on a 64 bits Intel(R) Xeon(R) 3.60GHz
processor with 8 GB of RAM memory.

6.1 Small randomly generated DFAs

In [3] the performance of several minimization algorithms are com-
pared against a set of randomly generated DFAs. Such benchmark
contains 5 million DFAs with number of states ranging between 5
and 1000, and alphabet sizes ranging between 2 and 50. The set
of DFAs in [3] is uniformly generated at random, and therefore it
offers good statistical coverage of the set of all possible DFAs with
such number of states and alphabet sizes.

We runMinN
SFA, MinM

SFA andMinH
SFA on such set of DFAs. Fig-

ure 7 shows the results. For simplicity we only plot the results for
DFAs with 10, 20, 50, and 100 states. Each plot contains the run-
ning time for each algorithm, where thex axis represents the num-
ber of symbols in the alphabet. In [3], Moore’s algorithm is not
considered and we weren’t therefore able to validate the accuracy
of our implementation ofMinM

SFA. However, we were able to repli-
cate the behavior of Hopcroft’s algorithm shown [3] usingMinH

SFA.
Figure 7 shows how the complexity ofMinM

SFA highly depends
on the number of states, while the complexity ofMinH

SFA is mainly
affected by the number of input alphabets. We can indeed see that,
already for 100 states,MinM

SFA performs worse thanMinH
SFA. In this

experiment, for most of the input DFAs the number of minterms
was the same as the number of input symbols.

It is not a surprise thatMinN
SFA is much faster than bothMinM

SFA

andMinH
SFA. Indeed,MinN

SFA’s performance seems to be resistant
to both bigger state space and bigger alphabets. Moreover, for no
single inputMinN

SFA is slower thanMinM
SFA or MinH

SFA.

Figure 8. Running times on regexes from regexlib. Both axes are
in log-scale.

6.2 Unicode regular expressions

Next, we compared the performance of different minimization al-
gorithms over a sample set of 1850 SFAs over the alphabet2BV16 (of
Unicode characters) constructed from typical regexes (taken from
a public web-site5 of popular regexes). Figure 8 shows the running
times. The figure clearly shows howMinN

SFA is faster than both
MinH

SFA andMinM
SFA for every input instance. Moreover, it can be

appreciated how for bigger state sizes (70-80 states)MinH
SFA starts

outperformingMinM
SFA.

In all cases, the number of minterms turned out to besmaller
(by a factor between 2 and 3) than the total number of predicates,
and the exponential blowup of minterms never occurred. The size
of the generated SFAs ranged from 2 states to 15800 states with an
average of 100 states. After the minimization each SFA was 32%
smaller (number of states) than the original SFA.

The following is a typical regex from the sample set:

[NS]\d{1,}(\:[0-5]\d){2}.{0,1}\d{0,},[EW]\d{1,}(\:[0-5]\d){2}

The generated SFA uses 16 predicates (such as\d)6 while there
are only 7 minterms (such as[:]). For this regex, the determinized
SFA has 47 states and the minimized SFA has 23 states.

Since the number of minterms does not blowup, is there a
performance incentive in usingMinN

SFA in this context? The answer
is yes since the total time used to minimize all 1700 SFAs was
20 seconds when usingMinH

SFA, and only 0.8 seconds when using
MinN

SFA, thus showing a 24x speedup.
We also measured the performance of the minimization algo-

rithm implemented in thebrics.automaton library (version 1.11-
8) that usessymbolic integer rangesto represent Unicode char-
acters, but does not implement them as a Boolean algebra (since
ranges are not closed under complement and union). We observed
that thebrics implementation of Hopcroft’s algorithms is compa-
rable to our implementation ofMinH

SFA, and for 95% of the regexes
the running times ofbrics Hopcroft’s algorithm andMinH

SFA were
at most 5% apart. The trend ofMinH

SFA in Figure 8 is very simi-
lar to that of the Hopcroft’s implementation in thebrics library.
We decided not to include the latter in the plot for the following
reasons: 1)brics is implemented in Java, while our implemen-
tations are all in C#, and 2) inbrics, the code corresponding to
the minterm computation is not part of the minimization algorithm,
therefore the comparison would not be completely fair (especially
for big instances).

5http://regexlib.com/
6 We use standard regex character class notation for character predicates.

Figure 9. Running times on theMk SFAs of Example 2. They-
axis is in log-scale.

6.3 Alphabet corner cases

The next experiment shows the importance of avoiding the minterm
generation used byMinH

SFA. We consider the SFAsMk from Exam-
ple 2, for values ofk ranging between1 and31, over the alphabet
2

BV32 of 32-bit bit-vectors. Figure 9 shows the running times for
MinN

SFA, MinH
SFA, andMinM

SFA.
As expected, the performance ofMinH

SFA degrades exponen-
tially. Already fork = 11, minimizing the SFA usingMinH

SFA took
1 second due to minterm generation, while bothMinM

SFA andMinN
SFA

took less than 1ms. ForMinM
SFA the time increased from 1ms to

.1sec withk = 31, while forMinN
SFA the time remained below 1ms

for all the values ofk.
Similarly to the previous experiment, we also compared the run-

ning time of the sample set against Hopcroft’s and Moore’s mini-
mization algorithm in thebrics.autmaton library (version 1.11-
8). For this experiment, we decided to show thebrics performance
in order to appreciate how this particular example causes the num-
ber of ranges to grow exponentially, causing Hopcroft’s algorithm
to be very slow. It is interesting to notice that thebrics implemen-
tation of Moore’s algorithm is also slow. This is again due tothe
alphabet’s blowup caused by the ranges algebra.

6.4 Complex theories

We compare the performance ofMinN
SFA, MinH

SFA andMinM
SFA over

a sample set of 220 randomly generated SFAs over the theory of
pairs overstring× int. The guards of each SFAs are conjunctions
of simple predicates over strings and integers. In the theory of
strings we only allow comparison against a constant string,while
for integers we generate unary predicates containing+,−, <,=
and integer constants. The set of generated SFAs is created as
follows. We first generated a setS of 10 SFAs with at most 10
states. For each SFAa ∈ S we also compute the complement, and
for every paira, b ∈ S we compute the union, intersection, and
difference ofa andb.

Figure 10 shows the running time of each algorithm for dif-
ferent numbers of states. We first observe how the performance
of MinH

SFA quickly degrades when increasing the number of states.
This is mainly due to the large number of minterms. Since the pred-
icates are randomly generated, many overlaps are possible and the
number of minterms grows quickly. Next, we can see how the per-
formance ofMinM

SFA is affected by the increasing number of states.
Finally,MinN

SFA can quickly minimize SFAs with up to 96 states in
less than 1.5 seconds. This experiment shows howMinN

SFA is not
affected by complex theories, whileMinH

SFA andMinM
SFA are both

impractical in this setting.

Figure 10. Running times for SFAs over the theoryString× Int
with 20 seconds timeout.

6.5 From Monadic Second-Order logic predicates to DFAs

The relation between regular languages and logic has been exten-
sively investigated in the past [38]. Particularly, every regular lan-
guage can be expressed as a formula in Monadic Second-Order
logic (MSO) over strings, and vice versa. In the rest of the sec-
tion we assume the alphabet to be a finite setΣ, say{a, b}. The
following is an example of an MSO formula:φ = ∃x.â(x) where
â is a unary relation symbol. A strings ∈ Σ∗ is a model ofφ,
iff there exists apositionx in the string with labela. Transform-
ing MSO formulas to automata gives us an algorithm for deciding
satisfiability of MSO formulas.

The procedure for converting an MSO formula into a DFA in-
ductively transforms each sub-formula into the corresponding DFA
and then combines such DFAs using classical regular language
operations. The complexity arises from the presence of freevari-
ables, that range over positions. For example, in the formula â(x),
x occurs free. In order to represent such a language, the alpha-
bet Σ is extended with one extra bit toΣ × {0, 1}. The string
〈a, 0〉〈b, 0〉〈a, 1〉 over the extended alphabet will then represent
that the third position of the stringaba is assigned to variablex.
Following this intuition, every sub-formulaψ is compiled into a
DFA over the alphabetΣ×{0, 1}n wheren is the number of quan-
tified variables aroundψ. For each existential quantification a pro-
jection is performed which leads to a non-deterministic automaton
that must be determinized when a negation on it is performed.This
means that each quantifier alternation might therefore leadto an ex-
ponential blowup, and in general the procedure has non-elementary
complexity.

Despite the non-elementary complexity, practical algorithms
that can translate non-trivial MSO formulas are presented in [22].
The tool implementing such algorithms is called Mona. The two
key-features of such algorithms are:

1. determinizing and minimizing the intermediate DFA at every
step in the transformation, and

2. using BDDs for representing the lifted bit-vector alphabets.

We implemented the same transformation using the BDD solver
in our library, and compared the performance using different mini-
mization algorithms.

Figure 11 shows the performance of the transformation for dif-
ferent MSO formulas. The running time for Mona are also shown.
The four sub-figures depict the running time for the MSO to DFA
transformation for the following formulas:

a)∃x1, . . . , xk. x1 < . . . < xk, for k between 2 and 40,

b) ∃x1, . . . , xk. x1 < . . . < xk ∧ a(x1) ∧ . . . ∧ a(xk), for k
between 2 and 40,

(a) (b)

(c) (d)

Figure 11. MSO to DFA running times. They-axes are in log-
scale.

c) (∃x1, . . . , xk. x1 < . . . < xk∧a(x1)∧ . . .∧a(xk))∨∃y.c(y),
for k between 2 and 40,

d) ∃x1, . . . , xk. fk wheref2 = (x1 < x2 ∧ a(x1)) ∨ c(x1), and
for n > 2, fn = fn−1∧((xn−1 < xn∧a(xn−1))∨c(xn−1)),
for k between 2 and 17.

All the values missing from the graphs are due to the algorithms
running out of memory. The figure shows the following behaviors:

• for all of the four classes of formulas, the transformation based
on MinN

SFA is able to create the DFAs for higher values ofk
(number of nested variables) than those supported by Mona;

• for small instances Mona is faster than our implementation.
However for higher values ofk our implementation is faster,
even when usingMinH

SFA or MinM
SFA;

• while Mona immediately shows an exponential behavior (very
steep slope), we couldn’t observe such trend in our implemen-
tation; and

• MinN
SFA is faster thanMinH

SFA andMinM
SFA, and it is also less

memory intensive (it runs out of memory for higherk).

Even though such formulas are only a small benchmark, they are
quite representative of the kind of inputs that cause Mona’strans-
formation to be impractical. We believe that the performance im-
provement of our implementation with respect to Mona is primar-
ily due to a better use of the BDD solver, rather than due to the
minimization algorithm.

7. Applications
The development of the theory of symbolic automata, including
use of minimization, is motivated by several concrete practical
problems. Here we discuss three such applications. In each case
we illustrate what kind of character theory we are working with,
the role of minimization, and focus on the benefits of the symbolic
representation.

7.1 Regex processing

Practical applications of regular expressions orregexesis ubiqui-
tous. Practical regexes differ from schoolbook regular expressions
in the following aspects:

• they support, besides non-regular features that go beyond capa-
bilities of finite state automata representations, constructs such

asbounded quantifiersandcharacter classes, that make them
more appealing (more succinct) than their classical counter-
parts, and

• the size of the alphabet is216 due to the widely adopted UTF16
standard of Unicode characters.

As a somewhat unusual example, the regex^[\uFF10-\uFF19]$
matches the set of digits in the so-called Wide Latin range of
Unicode. We let the alphabet algebra be2

BV16. Let the BDDβ7
w

represent all ASCII word characters as the set of character codes
{‘0’, . . . , ‘9’, ‘A’, . . . , ‘Z’, ‘ ’, ‘a’, . . . , ‘z’}. We write ‘0’

for the code 48,‘a’ for the code 97, etc. Let alsoβ7
d repre-

sent the set of all decimal digits{‘0’, . . . , ‘9’} and letβ rep-
resent underscore{‘ ’}. By using the Boolean operations, e.g.,
β7
w ∧ ¬(β

7
d ∨ β) represents the set of all upper- and lower-

case ASCII letters. As a regex character class it is expressible as
[\w-[\d_\x7F-\uFFFF]].

Regexes are used in many different contexts. A common use of
regexes is as a constraint language over strings forcheckingpres-
ence or absence of different patterns, e.g., forsecurity validationof
packet headers in network protocols. Another application,is the use
of regexes forgeneratingstrings that match certain criteria, e.g.,
for fuzz testingapplications. As another application consider the
password generationproblem based on constraints given in form
of regexes. Here is a concrete set of constraints adopted in pass-
word generation:7

1. Length isk and characters are in visible ASCII range:
^[\x21-\x7E]{k}$

2. There are at least two letters:[a-zA-Z].*[a-zA-Z]

3. There is at least one digit:\d

4. There is at least one non-word character:\W

The smallest feasible value fork is obviously 4. Consider SFAs
A1, A2, A3, andA4 for each case and letA be their product. For
k = 4 the minimized version ofA has 12 states, and minimizing
A with any ofMinN

SFA, MinH
SFA, or MinM

SFA takes a few ms. When
k is increased to 40,8 the number of states increases to 444 and
minimizing usingMinN

SFA or MinH
SFA takes respectively 15 and 90

ms, whileMinM
SFA becomes impractical, taking more than 43 sec

(450x slower).
The minimal (canonical) form ofA plays an important role here.

Together with finiteness of the language accepted byA, minimality
is used to guarantee auniform distributionof the passwords gener-
ated fromA. Uniformity is achieved by using the canonical form
of the state graph together with the canonical form of the guards.
While uniform sampling ofa ∈ [[ϕ]] is not possible for arbitrary
alphabet theories, it is a well-known feature of BDDs.

7.2 Sanitizer analysis

Sanitizers are string transformation routines (special purpose en-
coders) that are extensively used in web applications, in particular
as the first line of defense against cross site scripting (XSS) attacks.
There are at least three, semantically very different, string sanitizers
involved in a single web page: CssEncoder, UrlEncoder, and Htm-
lEncoder. A large class of sanitizers (including all the ones men-
tioned above) can be described and analyzed usingsymbolic finite
state transducers(SFTs) [25]. SFAs are used in that context for cer-
tain operations over SFTs, for example for checking domain equiv-
alence of SFTs [44]. Since several basic operations are quadratic

7 Recall the standard convention: a regex without the start-anchor^ matches
any prefix and a regex without the end-anchor$ matches any suffix.
8 Relevant values ofk in the above scenario depend on the concrete context,
but range between 4 and 128

in the number of states (product, union), minimization comes in
handy as a tool for reducing the state space size,

In this setting we choose a different character theory. We use
integer linear modular arithmetic (or bit-vector arithmetic of an
SMT solver, in our case Z3 [19]) in place of BDDs. The main
advantage of this choice is that it makes it possible to seamlessly
combine the guards over characters with expressions overyields,
i.e. thesymbolic outputsof SFT moves. A concrete example of
a yield is the following transformation that takes a character and
encodes it as a sequence of five other characters:

f : λx.[‘&’, ‘#’, (((x÷ 10) mod 10) + 48),
((x mod 10) + 48), ‘;’]

In general, a yield denotes a function fromDA to D
∗
A (or to DB

when the output alphabetB is different from the input alpha-
betA). In the yield above, for example,f(‘a’) is the sequence
[‘&’, ‘#’, ‘9’, ‘7’, ‘;’] (or the string"a"). Given f as
above, a typical SFT moveρ looks like:

ρ : q
(λx.0<x<32)/λx.f(x)
−−−−−−−−−−−−−−→ q

This specific rule happens to be an HtmlEncoder rule for encoding
control characters in stateq and remaining in that state. What
is the connection with SFAs and the theory mentioned above?
For analyzing the idempotence of an encoder with such rules,the
encoder is sequentially composed with itself. As a result, this leads
to an SFT with more complex guards and outputs (SFTs are closed
under composition). When composing the moveρ with itself (i.e.,
roughly speaking, feeding the five output characters as its inputs
again five times in a row), the guard of the composed rule will
have sub-conditions such as0 < (((x ÷ 10) mod 10) + 48) <
32, which may involve nontrivial arithmetic operations (in this
particular case the guard of the composed move will be infeasible).
One of the operations performed duringidempotenceanalysis is
checking whether the original SFT and the composed one have
the samedomain. This reduces tolanguage equivalenceof SFAs
for which the guards involve arithmetic operations of the above
kind, that are not readily expressible using the earlier BDDbased
approach. Domain equivalence of two SFTs checks that both the
SFTs accept/reject the same input sequences. Maintaining the SFAs
minimal speeds up the equivalence check, and in general provides
a better understanding of the structure of the domain language.

In general, the alphabet theory may be a Boolean combination
of other decidable theories that are available for example in state-
of-the-art SMT solvers. In the context of sanitizers, encoders, and
decoders, the alphabet theory is a combination of lists, tuples, bit-
vectors and integer linear arithmetic. Lists are used for example to
represent composite characters or characters that represent “looka-
head” [17]. We demonstrated in the evaluation section that,when
the alphabet theory is complex the algorithmMinN

SFA outperforms
bothMinH

SFA andMinM
SFA by several orders of magnitude enabling

analysis of bigger sanitizers/encoders.

7.3 Solving Monadic Second Order logic

We already anticipated in Section 6.5 how Monadic Second Order
(MSO) logic predicates can be transformed into equivalent DFAs
using a non-elementary algorithm. Such algorithm also provides a
decision procedure for MSO.

We already discussed how several techniques have been intro-
duced by the tool Mona [22] in order to make such transformation
practical. Keeping the DFA minimal at any step in the transforma-
tion is one of the key techniques. We gave experimental evidence
of the fact that the new algorithm presented in this paper, and in
general the use of symbolic automata, can further move the barrier
of solvable MSO formulas, in terms of both formula’s size (number
of nested quantifiers) and running times.

8. Related work
DFA Minimization: The classical algorithms for DFA minimiza-
tion have been studied and analyzed extensively in several dif-
ferent aspects. In particular, Moore’s algorithm is studied in [10]
where it is shown that, by a clever change of data structures,its
complexity can be reduced fromO(kn2) to O(kn log n). The
boundO(kn log n) has been shown to be tight for Hopcroft’s al-
gorithm [6, 8]. Brzozowski [13] observed that a DFA can be mini-
mized by reversing its transitions, then determinizing, then revers-
ing its transitions again, and finally determinizing again.However,
due to the determinization steps, this procedure is exponential and
we decided not to consider it in this paper. Linear time algorithms
have been studied for minimizing acyclic automata [32, 36] and
automata containing only simple cycles [2]. The book chapter [7]
provides an in-depth study of the state-of-the-art techniques for au-
tomata minimization, including the approaches mentioned above
and several other ones. Watson [45] also provides an elegantclas-
sification of the classical minimization algorithms based on their
structural properties.

In the case of DFAs, it matters whether the DFA to be mini-
mized is partial (incomplete), because it may be useful to avoid
completion of DFAs with sparse transition graphs. Minimization of
partial DFAs is studied in [5, 39, 40]. In this setting the complex-
ity of the algorithm depends on the number of transitions rather
than on the size of the alphabet, however, in the case of DFAs these
two quantities are generally related. In contrast, in a normalized
SFA the number of transitions is independent of the alphabetsize,
and it is at mostn2 wheren is the number of states. One concrete
difference between the minimization algorithms of complete DFAs
versus partial DFAs is that the initial value of the waiting setW
(see Figure 3) for the partial case must contain both the setsF and
F c [40]. We believe that similar modifications may be applied to
MinN

SFA, even though we expect that in the case of SFAs the benefit
of using partiality might not be as visible. In fact, a complete SFA
has at mostn transitions more than a partial one. Moreover, in the
case of SFAs, there are different ways for completing an SFA,e.g.,
one can effectively restrict the alphabet to only those characters that
are mentioned in the trimmed SFA (SFA without dead-end states)
prior to completion.

Different Notions of Minimization: A notion of incremental
minimization is investigated in [47]. An incremental minimiza-
tion algorithm can be halted at any point and produce a partially
minimal DFA which is equivalent to the starting DFA, and has less
or equal number of states. If the algorithm runs till completion, a
minimal DFA is computed. In this paper we did not address in-
cremental computation, however it would be interesting to identify
variants of the presented algorithms with such a property. Asim-
ilar idea, based on intermediate computation results, is used for a
modular minimization algorithm in [14]. An algorithm for building
a minimal DFA accepting a given finite set of strings is presented
in [15]. The same paper investigates the problem of “maintaining”
a minimal DFA when applying modification such as node, edge, or
string deletion and insertion to an already minimal DFA. This class
of problems is called dynamic minimization.

A parallel version of Moore’s algorithm is presented in [37].
We are not aware of a parallel version of Hopcroft’s algorithm.
We leave as an open problem identifying parallel algorithmscor-
responding toMinH

SFA andMinN
SFA.

A variant of minimization called hyper-minimization is investi-
gated in [24]. Given an input DFAA, a DFAA′ is hyper minimal
with respect toA if it is the smallest DFA that differs fromA only
on a finite number of strings. In the case of symbolic automata,
this definition doesn’t extend naturally due to potentiallyinfinite
alphabet. A less restrictive notion calledk-minimization is studied

in [21]. Given an input DFAA, a DFAA′ is k-minimal with re-
spect toA if it is the smallest DFA that differs fromA only on
strings of length smaller or equal thank. This second restriction
naturally extends to symbolic automata. A more general notion is
that of minimization up toE-equivalence, where given a regular
languageE, the DFAA′ is allowed to differ fromA on a set of
stringsL ⊆ E [23]. Extending the results of [21, 23] to symbolic
automata is an interesting open research direction. Relationships
between minimality and selection of final states are studiedin [35]
whereuniform minimality is defined as minimality for any choice
of final states.

Automata with Predicates: The concept of automata with predi-
cates instead of concrete symbols was first mentioned in [46]and
was first discussed in [41] in the context of natural languagepro-
cessing. A symbolic generalization of Moore’s algorithm was first
discussed in [43]. To the best of our knowledge, no other minimiza-
tion algorithms have been studied for SFAs. The MONA implemen-
tation [22] provides decision procedures for monadic second-order
logic, and it relies on a highly-optimized BDD-based representa-
tion for automata which has seen extensive engineering effort [30].
Therefore, the use of BDDs in the context of automata is not new,
but is used here as an example of a Boolean algebra that seems
particularly well suited for working with Unicode alphabets.

Minimization of Other Automata: The problem of automata
minimization has been investigated in several other settings. A new
approach for minimizingnondeterministicautomata and nondeter-
ministic Büchi automata has been studied in [33]. The problem
of minimizing weighted automata (automata computing functions
from strings to a semi-ring) is studied in [20]. Classical minimiza-
tion algorithms are used in this setting, and we hope that theresults
shown in this paper can extend to such domain. The minimization
problem has also been studied for timed automata [11] and register
automata [16]. These models are able to represent infinite domains,
but not arbitrary theories. An orthogonal direction is to extend the
techniques presented in this paper to minimization of symbolic tree
automata [18].

Other Applications: The problem of learning of symbolic trans-
ducers has recently been studied in [12]. Classical automata learn-
ing is based on Angluin’s algorithm [4], which fundamentally relies
on DFA minimality. An almost unexplored topic is whether such
learning techniques can be extended to SFAs.

9. Conclusions
We presented three algorithms for minimizing Symbolic Finite Au-
tomata (SFAs). We first extended Moore’s algorithm and Hopcroft’s
algorithm to the symbolic setting. We then show that, while in the
classical setting Hopcroft’s algorithm is the fastest known mini-
mization algorithm, in the presence of symbolic alphabets,it might
incur in an exponential blowup. To address this issue, we intro-
duced a new minimization algorithm that fully benefits from the
symbolic representation of the alphabet and does not sufferfrom
the exponential blowup. The new algorithm is a refinement of
Hopcroft’s one in which splits are computed locally withouthav-
ing to consider the entire input alphabet. The new algorithmcan
also be adopted in the classical setting. Finally, we implemented
all the algorithms and provided experimental evidence thatthe new
minimization algorithm is the most efficient one in practice.

Acknowledgments. We thank Marco Almeida for helping us
accessing his benchmark of randomly generated DFAs. Loris
D’Antoni was supported by the NSF Expeditions in Computing
award CCF 1138996, and this work was done as part of an intern-
ship at Microsoft Research. We also thank the anonymous review-
ers for their insightful comments.

References
[1] BRICS finite state automata utilities. http://www.brics.dk/automaton/.

[2] J. Almeida and M. Zeitoun. Description and analysis of a bottom-
up DFA minimization algorithm. Information Processing Letters,
107(2):52–59, 2008.

[3] M. Almeida, N. Moreira, and R. Reis. On the performance ofautomata
minimization algorithms. Technical Report DCC-2007-03, University
of Porto, 2007.

[4] D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[5] M.-P. Béal and M. Crochemore. Minimizing incomplete automata. In
Finite-State Methods and Natural Language Processing, 7thInterna-
tional Workshop, pages 9–16, 2008.

[6] J. Berstel, L. Boasson, and O. Carton. Hopcroft’s automaton mini-
mization algorithm and Sturmian words. InDMTCS’2008, pages 355–
366, 2008.

[7] J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Minimization of
automata. To appear in Handbook of Automata, 2011.

[8] J. Berstel and O. Carton. On the complexity of Hopcroft’sstate
minimization algorithm. InCIAA’2004, volume 3317, pages 35–44,
2004.

[9] N. Bjørner, V. Ganesh, R. Michel, and M. Veanes. An SMT-LIB
format for sequences and regular expressions. In P. Fontaine and
A. Goel, editors,SMT’12, pages 76–86, 2012.

[10] N. Blum. An 0(n logn) implementation of the standard method for
minimizing n-state finite automata.Information Processing Letters,
57:65–69, 1996.

[11] M. Bojaczyk and S. Lasota. A machine-independent characterization
of timed languages. In A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wat-
tenhofer, editors,Automata, Languages, and Programming, volume
7392 ofLNCS, pages 92–103. Springer Berlin Heidelberg, 2012.

[12] M. Botinčan and D. Babić. Sigma*: symbolic learning of input-output
specifications. InPOPL ’13, pages 443–456, New York, NY, USA,
2013. ACM.

[13] J. A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. InProc. Sympos. Math. Theory of Au-
tomata, pages 529–561, New York, 1963.

[14] D. Bustan. Modular minimization of deterministic finite-state ma-
chines. InIn 6th International Workshop on Formal Methods for In-
dustrial Critical Systems, pages 163–178, 2001.

[15] R. C. Carrasco and M. L. Forcada. Incremental construction and
maintenance of minimal finite-state automata.Comput. Linguist.,
28(2):207–216, June 2002.

[16] S. Cassel, B. Jonsson, F. Howar, and B. Steffen. A succinct canonical
register automaton model for data domains with binary relations. In
S. Chakraborty and M. Mukund, editors,ATVA 2012, volume 7561 of
LNCS, pages 57–71. Springer, 2012.

[17] L. D’Antoni and M. Veanes. Equivalence of extended symbolic finite
transducers. In N. Sharygina and H. Veith, editors,CAV 2013, volume
8044 ofLNCS, pages 624–639. Springer, 2013.

[18] L. D’Antoni, M. Veanes, B. Livshits, and D. Molnar. Fast: A
transducer-based language for tree manipulation. Technical Report
MSR-TR-2012-123, Microsoft Research, November 2012.

[19] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
TACAS’08, LNCS. Springer, 2008.

[20] M. Droste, W. Kuich, and H. Vogler.Handbook of Weighted Automata.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[21] P. Gawrychowski, A. Jež, and A. Maletti. On minimisingautomata
with errors. InMFCS’11, pages 327–338, Berlin, Heidelberg, 2011.
Springer.

[22] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In
TACAS ’95, volume 1019 ofLNCS. Springer, 1995.

[23] M. Holzer and S. Jakobi. From equivalence to almost-equivalence,
and beyond – minimizing automata with errors. In H.-C. Yen and

O. Ibarra, editors,Developments in Language Theory, volume 7410 of
LNCS, pages 190–201. Springer, 2012.

[24] M. Holzer and A. Maletti. An nlogn algorithm for hyper-minimizing
a (minimized) deterministic automaton.Theor. Comput. Sci., 411(38-
39):3404–3413, 2010.

[25] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M.Veanes. Fast
and precise sanitizer analysis with Bek. InUSENIX Security, August
2011.

[26] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms
for string analysis. InVMCAI’11, volume 6538 ofLNCS, pages 248–
262. Springer, 2011.

[27] J. Hopcroft. Annlogn algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi, editor,Theory of machines and computations,
Proc. Internat. Sympos., Technion, Haifa, 1971, pages 189–196, New
York, 1971. Academic Press.

[28] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

[29] D. Huffman. The synthesis of sequential switching circuits. Journal
of the Franklin Institute, 257(3–4):161–190,275–303, 1954.

[30] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implemen-
tation secrets.International Journal of Foundations of Computer Sci-
ence, 13(4):571–586, 2002.

[31] T. Knuutila. Re-describing an algorithm by Hopcroft.Theor. Comput.
Sci., 250(1-2):333–363, 2001.

[32] S. L. Krivol. Algorithms for minimization of finite acyclic automata
and pattern matching in terms.Cybernetics, 27:324–331, 1991.

[33] R. Mayr and L. Clemente. Advanced automata minimization. In
POPL’13, pages 63–74, 2013.

[34] E. F. Moore. Gedanken-experiments on sequential machines. Au-
tomata studies, Annals of mathematics studies, (34):129–153, 1956.

[35] A. Restivo and R. Vaglica. Some remarks on automata minimality. In
G. Mauri and A. Leporati, editors,DLT’2011, volume 6795 ofLNCS,
pages 15–27. Springer, 2011.

[36] D. Revuz. Minimisation of acyclic deterministic automata in linear
time. Theoret. Comput. Sci., 92:181–189, 1992.

[37] A. Tewari, U. Srivastava, and P. Gupta. A parallel DFA minimization
algorithm. In HiPC 2002, volume 2552 ofLNCS, pages 34–40.
Springer, 2002.

[38] W. Thomas. Languages, automata, and logic. InHandbook of Formal
Languages, pages 389–455. Springer, 1996.

[39] A. Valmari. Fast brief practical DFA minimization.Information
Processing Letters, 112:213–217, 2012.

[40] A. Valmari and P. Lehtinen. Efficient minimization of DFAs with
partial transition functions. In S. Albers and P. Weil, editors,STACS
2008, pages 645–656, Dagstuhl, 2008.

[41] G. van Noord and D. Gerdemann. Finite state transducerswith predi-
cates and identities.Grammars, 4(3):263–286, 2001.

[42] M. Veanes, N. Bjørner, and L. de Moura. Symbolic automata con-
straint solving. In C. Fermüller and A. Voronkov, editors,LPAR-17,
volume 6397 ofLNCS/ARCoSS, pages 640–654. Springer, 2010.

[43] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolicregular
expression explorer. InICST’10, pages 498–507. IEEE, 2010.

[44] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N.Bjørner.
Symbolic finite state transducers: Algorithms and applications. In
POPL’12, pages 137–150, 2012.

[45] B. W. Watson. A taxonomy of finite automata minimizationalgo-
rithms. Computing Science Report 93/44, Eindhoven University of
Technology, January 1995.

[46] B. W. Watson. Implementing and using finite automata toolkits. In
Extended finite state models of language, pages 19–36, New York, NY,
USA, 1999. Cambridge University Press.

[47] B. W. Watson and J. Daciuk. An efficient incremental DFA minimiza-
tion algorithm.Nat. Lang. Eng., 9(1):49–64, Mar. 2003.

