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Abstract

Many participatory sensing applications use data col-
lected by participants to construct a public model of a syste
or phenomenon. For example, a health application might
compute a model relating exercise and diet to amount of
weight loss. While the ultimately computed model could be
public, the individual input and output data traces used to
construct it may be private data of participants (e.g. rtimei
dividual food intake, lifestyle choices, and resulting gi).

This paper proposes and experimentally studies a technique
that attempts to keep such input and output data traces pri-1

vate, while allowing accurate model construction. This is
significantly different from perturbation-based techr@gin

perturbation schemes.
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K.4.1 [Computing Milieux]: Computers and Society—
Privacy, G.0 [Mathematics of Computing]: General
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Algorithms, Design, Experimentation
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I ntroduction

This paper develops a privacy-aware scheme for sharing
participatory sensing data towards the computation of gene

that no noise is added. The main contribution of the paper is alizable models from the data pool. We consider application
to show a certain data transformation at the client side thatwhere construction of such models requires data that are pri
helps keeping the client data private while not introducing vate, whereas the models themselves are not. For example,
any additional error to model construction. We particylarl individuals might not want to share their weight, food irdak
focus on linear regression models which are widely used in and exercise habits on daily basis, yet a quantitative model
participatory sensing applications. We use the data set fro on how food intake, weight loss, exercise, and other lifesty

a map-based participatory sensing service to evaluate ourchoices are generally related could be of interest to many.
scheme. The service in question is a green navigation ser- Participatory sensing applications have recently become
vice that constructs regression models from participate da a popular trend in providing community-wide services that
to predict the fuel consumption of vehicles on road segments “crowdsource” the task of data sensing[[1[7] [16, 23]. One
We evaluate our proposed mechanism by providing empir- can generally distinguish between at least two types of ser-
ical evidence that: i) an individual data trace is generally vices from the perspective of the end-result computed by the
hard to reconstruct with any reasonable accuracy, andsi) th service. The first type represents services where soms-stati
regression model constructed using the transformed tracesic is computed from input data. For example, the service
has a much smaller error than one based on additive datamight compute the quality of air, speed, potholes, or pollen
levels on city streets. These statistics pertain only to the
neighborhoods where data was collected. It is not the pur-
pose of the service to generalize; the existence of potholes
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or pollution in one neighborhood does not necessarily entai
their existence in a different neighborhood.

In this paper, we consider a different type of participatory
sensing applications; one where the collected data aré-mult
dimensional and sparse. Hence, the objective is to gererali
from data we collected to extrapolate and predict data we do
not have. An example might be to collect, in addition to pol-
lution data, some context information as well, such as pop-
ulation density and eco-friendly behaviors of the popolati
This can then be used to build a model relating these factors
to pollution levels and use it to predict pollution elsewder
where we do not have measured pollution data. We particu-
larly consider linear regression modeling since it hasaalye
been employed for similar purposes in participatory sensin



applications (e.g.[[19]). Itis often the case, that theegah Particpating Clent Modeling Server
models thus computed are themselves not private, but some  |==================5 ImTTT TS
or all inputs of those models are private data. | Sersng W | Features

example, consider a participatory sensing service that mod
els the energy consumption of a household based ontheus- ' ___________1______ [T I S |
age of various appliances and the time of year in order to help
users save on the energy costs. Although the constructed Hoh Feaysnetion Low Modeling Error
model (for energy consumption) is public, the input and out- ) o :
put values contain users’ private information that canreot b Figure 1. A privacy-aware participatory sensing model.
easily shared; a user may not wish to reveal the usage of _
the appliances at specific times. This paper focuses on in-matrices are extracted from the data segments. They repre-
creasing the privacy of individual user data while enabling sent the information shared by each user with the commu-
community-wide datanodelingfor prediction and extrapo-  Nity. Although our paper lacks formal proofs of its privacy
lation purposes. properties, it presents intuitions and empirical evideoge
Several options exist for sharing private data. The most Why it is often hard to reverse the process and recover pri-
popular include ensuring anonymity of the data source. To Vate user data based on the information shared.
make service architecture simple and boost trust, we idstea ~ We evaluate our technique using a sensory date set [21]
allow users to share their identities with the aggregation collected for a green navigation service from currentditer
server openly but give them means to alter their data in a wayture [19]. This map-based service enables finding the most
that makes the original values hard to recover. It remains fuel efficient path between two points for a specific car. The
an open issue whether the average user will be more trust-service relies on data collected from vehicles equippeld wit
ing of security mechanisms that promise to fully anonymise a diagnostic fuel-efficiency scanner device. Results sstgge
their identity or data alteration mechanisms that promise t thatin most cases user data cannot be recovered without sig-
irrecoverably alter their data. One advantage of the latter nificant error, while model reconstruction is always cotrec
is that it can be entirely implemented on the client side,  The rest of this paper is organized as follows: We present
whereas some of the former need support from other nodesthe motivation and the exact definition of the problem in Sec-
as well. Whether the perceived difference in the needed trus tion[2. Sectiofi3 describes the detailed steps involvedan th
base is of consequence to the average user remains to bgrivacy framework. In Sectidd 4, we present the computation
seen, which is an argument for exploring both types of ap- of a linear regression model using the data shared by users.
proaches and letting deployment experience decide on theirWe show that our proposed scheme does not change model-
relative usability advantages. This paper investigatesigia ~ ing error compared to model construction from the original
alteration approach. raw private data. We discuss the privacy protection of such
Additive data perturbation (noise) is the most common transformations in Sectidd 5. In Sectigh 6, we evaluate the
way to alter data for privacy [4, 17. 20.]34]. The main idea Privacy achieved by our technique using a case study based
behind the perturbation is to mask each individual user dataon the data set from a green navigation service. SeCtion 7
with noise in such a way that the noise cancels out or candiscusses the potential cases leading to privacy breacides a
be decomposed in aggregate calculations. However, erroropen questions regarding the approach. We discuss related
is always introduced to the modeling process depending onWork on privacy in participatory sensing applications icSe
the number of data streams and type of the application. Ourtion[8. Finally, the paper concludes with Section 9.
appro_ach is different in that it aims to introduce no additio 2  Problem Formulation
error in modeling, regardless of the number of users or data

streams in the system. We should note that the perturbation Many participatory sensing applications calculate com-

schemes apply to a more general class of models than "neagunity statistics using data shared by the commuiily [7].
regression Fr)rﬁ)o)élels as Ion% as the noise distribution fallow revious privacy-preserving approaches mostly focused on
closely the user data distribution. deriving community statistics while keeping individuaktaa

M eA , . . y
We transform the sensitive data at the client side to a Settraces private [20. 34]. This paper considers a differetd-ca

-~ “gory of participatory sensing applications where the aapli
of aggregate features that usually do not reveal much infor- G0, %o 2 b 6lates and predicts unavailable data using teode
mation on original data. Community-wide models that are

computed from these features are exactly the same as the? fthe system.
b y Given the nature of applications we target, the follow-

models computed from the original community data. Users ina summarizes the assumptions and requirements of our
can control their degree of privacy by controlling the amioun sc%eme' P q

of aggregation involved in feature computation. To compute ] ] ) ]
the features, time-series data are first segmented based on ® The model relating user inputs to the outputs is public.
some prior knowledge about the system. The segmentation e Each data sample collected by an individual is private
is on intervals long-enough to eliminate short-scale dynam and may not be revealed.

ics of the system. This way, the system can be represented as
an approximately static (time-independent) relation leetv
various attributes of a data segment. Next, specific feature e The time-series data can be packed into uncorrelated

|
| |
. ! I
Many prospective applications fall into this category. For | D /VH Privacy Firewl H ] |
| ! |
| ! ]
1

e The models used in the service are linear in coefficients.



data samples by aggregation (over time for example). vate data traces were used.

2.1 Modeling in Participatory Sensing Appli- e Perfect neutrality: Reconstruction of private user data
cations from shared data yields the same error as if no addi-
Consider an example participatory sensing service aimed  tional information was available to the outside world
to reduce household energy consumption. Each user collects  (j.e., to an attacker) besides the computed public phe-
the following data traces daily: i) the total time that varso nomenon model. Note, however, that the neutrality
appliances are in use (e.g., TV), i) the temperature inide condition does not exclude information leaks that result
house, and iii) the outside temperature. By sharing the, data from computing the public model itself. For example,
a regression model can be constructed and used to predict  if the model suggests that all adults in some popula-

the energy consumption for a given usage pattern and sea- tion are between 5 and 6 feet high, then something is

son. Eventually, the service helps other residents to save o leaked about individual user data in that population. A
energy costs by adapting their appliance usage. . perfectly neutral scheme should not introduce ady
Figured illustrates our model of privacy-aware patrticipa- ditional leaks.

tory SenSing applications that construct a model Of .USGH.dat This paper presents and empirica”y evaluates a privacy-
In our architecture, data tra}ces collected by participants aware scheme for app]ica’[ions that aim to compute a lin-
transformed on the client side teutral features The data ear regression model of some measured phenomenon_ Our
can typically be divided into a variable we are interested in scheme satisfies the perfect modeling condition while empir

(e.g., household energy consumption) and other varialdes w jcal evidence suggests that it is also neutral in many cases.
believe are good predictors of the former. The objective is

to compute a model relating the predictors (model input) to 3 Privacy Filter
the variable of interest (model output). The neutral fezgur A participant in a participatory-sensing application uses
computed from user data do not easily reveal user data and/arious sensing devices to collect data samples about a phe-
can thus be made available to any entity that needs them. nomenon (e.g., a thermometer to measure temperature inside
The process of attempting to compute the private dataa house, a GPS device to measure location, or an OBD-II
from the features is callececonstruction An important ~ port to measure vehicular fuel consumption). A privacy fil-
question is: given the information that each user sends toter converts such data to features to be used for phenomenon
the service, how accurately it is possible to reconstrugt th modeling. In order to attain the goals of a perfect privacy-
values in the original data traces? To measure privacy, weenabling scheme, our approach is first to convert the traces
calculate the sum of squared difference between each valudnto a set of uncorrelated samples, we call segments. This
in the original trace and the corresponding value in themeco  is to foil correlation-based attacks. Clients then reper-n
structed trace. A lower value means that the reconstructedtral features computed over a set of segments. They are used
trace is more similar to the original one and reveals more later for model construction.
private information about the user. This section details the various algorithmic steps invdlve
The participatory sensing service includes a server thaton the client side and presents the structure of the features
collects the neutral features of all participants to corape ~ which are sent to the server. Later in Secfibn 4, we describe
regression model of the underlying measured phenomenonhow our scheme achieves the perfect modeling property. In
The model has a predictive property and can thus be of inter-Section [5, we present empirical evidence to support some
est to a broad population besides the participants who con-level of neutrality for our scheme and describe how it can be
tributed data to its construction. used to personalize the level of privacy provided.
2.2 Design Goalsand Metrics The data collected by a user is usually in form of time-

There are two challenges in designing a system accordingSeries. For example, a sensing device might record the value
to our model. First, we need a scheme that converts the datef temperature every second. However, the phenomenon
traces to features that reduces reconstruction accurabgof ~model is typically concerned with predicting quantities at
data traces. Second, we need to perform the modeling usJonger time-scales. For example, how much gas a vehicle
ing the shared features instead of the data traces theraselve Will spend on a given route? How much energy a household
This immediately leads to the two objectives for the system: Will save if they installed motion-activated light conts@l

e Minimize the modeling error: It is desirable to reach How much W_e|ght a 300|b. person might lose if engaged in

the same level of modeling accuracy as one attained ind particular diet and exercise routine? At those time-scale

a system not employing any data alterations. fast system dynam|c_s are average(_j out. The aggregate output
of a system in a sufficiently large time-interval is more cor-

e Maximize the reconstruction (breach) error: The  related with the aggregate input in that interval and nottwha
higher the error in reconstruction of individual user happens in other intervals. For example, one’s weight loss
data, the more it is ensured that the privacy of the user in one month might be more correlated with food intake in

is not breached. . . that month, rather than the month before. This is not neces-
We define gperfectprivacy-enabling data sharing scheme - g5y trye of fluctuations at shorter timescales. This pssc

in participatory sensing applications to be a scheme that sa f aggregation over appropriate timescales is the firstistep
isfies two conditions: our client-side data alteration. It is callddta segmentation
e Perfect modelingModel construction from shared data The segment aggregate can be the sum (e.g. of consumed
produces exactly the same model as if the original pri- energy) or in some cases the average. The main reason to do



the segmentation is to eliminate correlations between sam-tation used to represent input and output values in each data
ples taken at different times. point. LetY ={y;:1<i<n}andX={xj/1<i<n1<

This section first describes how the segmentation is donej < d}. We should note that a linear regression model is
and why the segmented data cannot be shared without possienly linear with respect to the regression coefficients. The
bly violating privacy of the individual. The next step in our predictor variables can be any arbitrary function of theutnp
scheme is to convert the segmented data into neutral f@atureattributes. Several general purpose regression techsmeyie
that are less of a threat to users’ privacy. plore a range of feature spaces (e.g., quadratic featureewh
3.1 Data Segmentation the predictors are product of two input attributes). To gene

In order to perform segmentation on raw data traces, we alize, we usavij = gj(Xi1,...,Xd) and denot®V = {w;;|1 <
first need to decide on the time interval to use. This often i <N, 1< j <k }. Alinear regression model of this system
requires application specific knowledge. There are thriee cr describes the system using:
teria involved: i) a large enough time interval ensures that
the system can be described using a static model and hence Y =Wn+e
remove correlations among samples, ii) the time interval
should result in an accurate prediction, and iii) the time in Wheree is assumed to be a zero-mean error term with a con-
terval should be usable by the participatory-sensingservi ~ stant variance?. n is the model coefficient matrix and can

In our household energy consumption example, various be estimated by various regression techniques [29]. Conse-
time intervals such as a day, a month, or a year ensure aquently, the output estimat¥, is given using:
static description of the system and so the first property is
achieved. Very small time intervals like daily energy con- Y =wn
sumption usually highlight the effect of modeling noise and
therefore fail to achieve the second property. On the other Inour household energy consumption examg)és sim-
hand, the energy consumption over a year may not be as useply an identity function (i.eW = X). In many cases, sharing
ful since laws of large numbers may make such averages conW instead ofX does not resolve the issue of privacy since
verge, resulting in ill-condition matrices. Hence, comsidg ~ gj's are simple reversible functions makixgdiscoverable
the data collected by each user in a given application s il from any giverw.
trated in the previous example, the data might be segmented ~Since the goal of our system is to calculgt®r the whole
into one-month intervals before being shared with the com- community, a simple idea is that each user computesthe
munity. Table[dl presents sample values for such segmentausing its local information and only shares the regresstn ¢
tion. The above discussion is to present general guidelines efficients. There is no way of reconstructing the values of
Actual segmentation period will vary substantially fromeon X andY only by knowing the function relating them. How-
application to the next. ever, itis also impossible to combine the partially-cadted

The result of the segmentation is a setnodlata points. models ’s) and obtain the global model without extra in-
Each data point consists dfinput values corresponding to  formation.
model inputs (input dimensions) and a single output value. ~ Whatis needed are the features that represent correlations
Note that, by doing the segmentation, we actually remove between different attributes. Our idea is that a correfatio
the time attribute from all of the data and make each data matrix reveals very limited information about the data ¢érac
point time-independent. In particular, there is no patéicu  but has enough information to be used for regression model-

order maintained for the segmented data. Weyge de- ing. LetX, andY, represent the data corresponding to each
note the value of the output attribute in title segment (e.g., ~ useru. LetW, be the predictor matrix corresponding to user
energy consumption) ang; to denote the value gf-th in- u. We define theneutral feature matricesf the data col-

put of segment. Formally, an appropriate time interval for ~lected by useu as follows:
thg segmentation ensures tlgatan be estimated accurately e pu=YY,
using: T
o Vy= WU Yu
5 f(x : e O, =WW,
= f(x'l""’_x'd) ) We first observe that none of the matrices used in the
Although the data segmentation performs aggregation onahove definition depends on the number of samples collected
the original data trace, sharing raw segments can result in apy the user. In other wordeegardless of the number of sam-
breach of privacy. For example, Table 1 shows appliance us-ples the user has collected, the same amount of data is sent
age and temperature inside a house each month. Now, thesg, the server for modelingAs we see later in Sectién 5, this
values can easily show whether a residence is occupied Olproperty helps enabling users’ privacy. Moreover, this-sim
notina particular month. Therefore, we need to take anotherp|e property enables users to achieve a persona"zed level o
step and only share some features of the segmented data thgjrivacy. A user who shares more data samples in a single
are less likely to threaten privacy. This is presented next.  transaction achieves a higher level of privacy.
3.2 Neutral Features The computational cost associated with extracting the fea-
A multi-dimensional linear regression model relates an ture matrices is proportional to the square of the number of
output variable to several predictor variables or simply in samples and number of variableg,andk?. Note that the
puts. Consider the segmented data from above and the nonumber of samples shared by a user can be as largia éise



Table 1. A sample segmented data set.

Month | Elec. Cons. (MWh)| Avg. Appliance Usage (hourg) Avg. Inside Temp.| Avg. Outside Temp,
Jul. 1.230 25 74 79

Aug. 0.870 3.9 72 73

Sept. 1.00 15 72 70

Oct. 1.45 1.2 71 56

Nov. 2.1 3.4 70 44

Dec. 2.75 2.3 70 26

worst-case computation analysis. Calculahgis the most the LSE is obtained using:
computationally expensive transformation requi@?n?)
operations. Calculating, andn, requiresO(n?) andO(kr?)

Ty~ T
operations respectively. The data segmentation is lirear i n=WW)~w7y @
terms of the number of segmenty @nd therefore is domi- Since the segmented data are not available to the server,
nated by feature extraction process. we need an alternative approach to derivenly using the

The following example illustrates how the feature matri- shared features. An important characteristic of the fea-
ces are obtained from the data and shared. ture matrices is that they amistributive One can ob-

ExAMPLE 1 (FEATURES). Given the segmented data in tain the feature matrices of a community simply by adding
Tabled, the client calculates the following feature matsic ~ the feature matrices of sub-communities. Legf...,uyn be
the m users of the participatory sensing application. Each
user contributes matricgs,, v, and®,, to the commu-
pu=[123 087 100 145 210 275 nity based on its private dat(;, andY,. We can write
| | | |
123 087 100 145 210 275" = 17.3448 W= Ml |- (W] @AY = [, -2 Vo] These are the

complete set of sensing values collected by the users, which
indeed are not available to the server. We define, ando©

as follows:
25 740 790]' [1.23
39 720 730| |0.87 Yy
23.17 ke m m
1.5 720 700| [1.00 L ;
Vu = 112 710 560| |145] = [6681f| p=YTY =Yg Yl | P | = YJYUi:.leUi
34 700 440| |210 47578 Yol =
23 700 260| |275
Yu] m
WY =W wT ] = TY, = .
25 740 7901 [25 740 790 VWY = M Wl | 2 i;W“iY”' i;"”'
39 720 730| |39 720 730 LYo |
o.— |15 720 700| |15 720 700| _
U= 112 710 560| |12 710 560| W,
34 700 440| (34 700 440 . N L m
23 700 260 |23 700 260 O=W'W =W, 1Wy,] | : :_ZquiWui:_Z@ui
42 1058 863 W, | T =
gggg gggfg 222531% Here,p, v, and® are calculated from the shared features.

These are the only information that the server use to con-
4 The Application Server struct a model. To do that, we can rewrit¢ (1) and make the

. ) ] ) . coefficients only depending on the feature matrices:
Given the feature matrices sent by the client, this section

describes how the application server constructs a regressi
model. Also, we discuss how the first objective in designing n=Ww wy=0tv (2)
a privacy-enabling scheme is achieved. Assuming thatall th
segmented datay @ndw) are available to the server, several
regression techniques can be used to obtain the regressio
coefficients([28]. Again, consider the regression motlel

Wn + €. Assuming that follows an unknown distribution, a
Least Squared Estimator (LSE) is the best linear estimétor o
Y. LSE is an unbiased estimator [29] meaning that it has the

same mean as the true regression coefficients. In thisgettin Err = (Y—-WA)T(Y —WA)

The above equation enables the server to calculate the re-
ression coefficient only using the shared features) by
~lv. In many cases, the server also needs to calculate
the regression error. Again, assuming to have access to the
whole data set, the error can be derived as follows:



Similar to the derivation of), we need to rewrite this mean value. In other words, if the reconstruction error is
equation so thaErr can be calculated only usimg v, and greater than or equal to 1, it means that the transformed ma-
o: trices have almost no useful information:

DEFINITION 2 (PRIVACY-ENABLING TRANSFORMATION).
A transformation is called privacy-enabling if the recon-

Err = struction error is always greater than or equal 1o
YTY — (XA)TY = YTXA + (XA)TXA = In this section, we study the privacy-enabling properties
AT Ta AT n of the scheme proposed in Sectidn 3. Our approach is to
p—nv-vin+non (3) first discover how an attacker can infer information about

The above process derives the values @hdErr with- the private data traces based on the features. We formal-

out requiring access to the users’ data and by only using thelZ€ this problem and call it opt|n_1al reconstruction. We dis-
shared features. Meanwhile, the derivation produces lgxact CuSS the accuracy and complexity of an optimal reconstruc-
the same results as if having access to the raw data. Therelion Scheme. Next, we use empirical evidence to support our
fore, our scheme successfully achieves the first desigmobje Neuristics about the conditions under which the privacy is
tive that is not to impose any additional modeling error. most likely preserved.

We can observe that the modeling process employed at5.1 Privacy-Enabling Properties
the server is computationally efficient. Specifically, carp In order to study how our approach tries to preserve users’
ing p, v, and® needO(nk?) operations. The reason being privacy, we show that it is hard to accurately reconstruet th
that each matrix addition takes at m@tk?) time (size of private data for useu (i.e., Yy, andW,) from py, vy, andy.
the largest matrix®) and we can have at masusers in the Given the transformed matrices and their relation to the use
system hencea additions. Calculating the regression coef- data, there are a set of values (or a subspace) that satisfies
ficients needs matrix inversion oflex k matrix leading to the relation and produces the same matrices. Since the only

an O(k%) computation time. Error calculation takexk®) information available from the user are the transformed ma-
to complete as well. Sinceis much larger thatk in most trices, an optimal reconstruction should pick the mostyike
cases, the total computation time is dominateddgnk?). values among those which satisfy the transformation. For ex

The server-side computation is significantly more efficient ample, it is much more probable for a user to drive a 3660

than modeling the whole raw data set where users do not usevehicle rather than a 50fs vehicle. Therefore, when both

a privacy firewall (which iO(n%)). values satisfy the transformation, 300€is more likely to

5 Privacy Analysis be the accurate reconstruction. We formally define the opti-
mal reconstruction as follows:

DEFINITION 3 (OPTIMAL RECONSTRUCTION. An Op-

timal Reconstructiors to find the value¥, andW, that pro-

duce the given transformed matricgg vy, ©y while maxi-

mizing the joint probability of observing such values.

We assume that distribution information is available to the
attacker. This usually comes from publicly available knowl
edge about the measured variable. For example, the weight
distribution of vehicles sold in the US may be a public piece
of information available to the attacker. The optimal recon
struction can be formulated as the solution to the following
optimization problem:

Our approach to study how the method presented in Sec-
tion[3 helps enabling privacy is to show that is not likely
to reconstruct user data accurately and efficiently. We first
formulate our measure of privacy as the amount of error
incurred while the best reconstruction of the data is done.
In particular, lety; andw1,...,wik be the segmented data
that are transformed into the feature matrices. ¥;eand
Wi1,...,Wik be the values in the reconstructed set. We define
the reconstruction error for each attribyteo be
DEFINITION 1 (RECONSTRUCTIONERROR). The recon-
struction error ofw; is the normalized sum of squared differ-
ence between the data set and the reconstructed trace:

T (W —wi)? max  MLyp(yi,Wiz, ..., W) (5)

i i)ﬁz = Pu

RE(w;) p
J

wherecrj2 is the variance of the variabhe;.

In order to measure the privacy, consider the case that no S Yiwji =vu(j)  V1<j<k
information is shared by the user. The mean of the variables i; ) T
(i.e. Vi = E|y],Wi1 = E[wq],..., Wi = E[wg]) are the best n
estimators when no observations are available. The regulti Zleinzi =0u(j1,j2) : V1<j1,j2<k
reconstruction error is simply: i=
wherep(y,wy, ..., W) is the probability of observing values
ST (Elw] —wij)? 0,2 Y,Wi,..., W which may be known to the attacker as prior
RE(w;) = a2 T 92 1 (4) knowledge. We emphasize that likelihood maximization is

J ! a key to the reconstruction. Here, we assume that data from
Areconstruction is effective if the reconstructionerrar f ~ any two segments shared by the user are independent. This
some variable is less than the error resulted from using theis the case because each segment can belong to an arbitrary



)

time and location and is uncorrelated to others due to seg-

mentation. Note that the optimal reconstruction does not di 10 ——F=3
rectly calculate values of model inpuis, but rather the val- @0 2 ekt
ues of matrixW. However, in many applications the exact 3 S
values ofX can be derived frordV. In Sectiori®, we discuss = 10°} o
the details of such derivation when doing a case study. =
Another important point here is that the valueroand S
consequently the number of variables to be reconstructed is g 131
not available to the attacker in most of the cases. To over- g
come this, one may try several guesses ahd choose the =
reconstruction with the maximum likelihood. Perhaps,tstar 0
ing with a value ofn that makes the number of constraints 10, 5 4 6 8 10
and variables equal (i.e.= Iz( +1) and increasing until the Number of samples, n
value of the objective function is minimized. Figure2. The number of iterations needed for the recon-

Next in this section, we discuss why one cannot easily struction.
reconstruct the original values from the transformed matri

ces. We first describe why given a large enongthe recon-  any general non-convex quadratically constrained program
struction accuracy is expected to be low. Then, we argue thatjs shown to be NP-Hard [37]. In fact, any integer linear pro-
finding an accurate reconstruction becomes computationall gram can be written as a quadratically constrained optimiza
expensive for large values of tion problem. Therefore, an optimal reconstruction of the
5.1.1 Inaccuracy of Reconstruction user data trace takes an exponential amount of time with re-
We first discuss the following question: If someone suc- spect to the number of variablegk + 1), unlessP = NP.
ceeds at finding an optimal reconstruction, how close are5.2 Conditionsto Protect Privacy
the reconstructed data points to the actual data trace? In- |t is important for the privacy firewall to identify the con-
tuitions to answer this question are presented below. L ater ditions where the privacy of the user data is not protected at
we demonstrate an example answer for a specific empiricalall. In particular, this happens when the number of segments
study. used to create features is small. Here, we experimentally
First observe that the number of constraints in the opti- study the privacy-enabling properties of feature matrices
mal reconstruction problem igzg_ek +1. When the num- derive a heuristic lower bound on the number of segments to
ber of data pointsi((k+ 1) is less than the number of con- be used in the client. The client application simply warres th
straints, only a single feasible assignment exits. Hence, User if the number of samples used for the transformation is
the reconstruction may be performed with 100% accuracy less than the threshold.
and no privacy is preserved. On the other hand, when Our first step in order to evaluate privacy is to approxi-
n tends to infinity, the feasible solution space becomes Mate the reconstruction process by using a heuristic model
more and more relaxed as the number of constraints remainof the objective function. Our heuristic is to assume that th
constant. In this case, the optimal solution converges to maximum likelihood is obtained when the solution is close to
(E[y],E[w4),...,E[wk]). The reconstruction error tends to the expected value of each parameter’'s marginal distdbuti
1, using a derivation similar t61(4). This means that for éarg Therefore, we minimize the distance of each variable from

enough, it becomes unlikely to reconstruct the private data. the expected value of its corresponding distribution. y.et
5.1.2 Inefficiency of Reconstruction andw; be the random variables corresponding to the output

N S . . attribute and the predictor variables respectively.
ext, we give intuitions on why optimally reconstructing
data as in[(p) becomes computationally expensive for large
values ofn andk. We emphasize that our discussion is the
worst-case complexity analysis for finding the optimal so-
lution and merely gives a hint regarding the complexity of
reconstruction in general. The analysis does not hold fr th n
cases where a non-optimal solution can still be a threat to Zly'z = Pu
privacy, where the particular form of features allows fastfa i
computation, or where the valuesroiindk are always small. n

It is obvious that the objective probability distribution Zlinji =v(j) @ Vi<j<k
should be approximated by a well defined smooth function. i=
Otherwise, the optimal solution cannot be obtained in less n .
than an exponential time even without any constraints. Let _ZleiWJzi = 0Ou(j1,J2)
us assume that the objective function has a very simple form =
(e.g., linear or convex quadratic). Still, the constrapace There are two methods to approximate the above opti-
is not convex since the equality constraints are not affihe [5 mization problem. First, the problem can be relaxed into
This means that there is no hope to solve such a problema semi-definite program (SDP) and then the solution of the
through convex optimization methods. On the other hand, SDP converted to a feasible solution for our quadratically

min [~ 1Y)+ (s~ Efwal -+ (o~ El) ]

V1<ji,j2<k
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Figure 3. The averagereconstruction error of all param-
etersfor different vertical correlations.

Figure4. The averagereconstruction error of all param-
etersfor different horizontal correlations.

constrained program. However, in most cases, SDP relax-into two c_:Iasses: i) t_he vertical (;_orrelatior) is the conr@ela
ations needs a specific form of constraints. The second ap-2mong different attributes, and ii) the horizontal cortiela
proach is to use a non-linear optimizer based on interior- iS the correlation within a single attribute. To generaténan
point barrier or sequential quadratic programming. We use Put with some vertical correlatlo?, we multiply our random
KNITRO [28] non-linear solver package in our implementa- Matrix by a matrixJ such thaty 'U = C, whereC is the
tion. This package can be linked to a MATLAB code. correlation matrix. In particular, leR be the independent
Using our MATLAB implementation, we evaluate the fandominput:
time efficiency of this non-linear solver with respect to the
number of samples used for the transformation. Here, we
simply assume that we know the valuerofor the recon-
struction. We experiment with various number of predictors
(model inputs)k, ranging between 3 to 5. For any givan
andk, we divide the whole data set into groupsrofam-
ples. For each group, we perform the transformation and

reconstruction. At the end, we report the average number Ofposition. This is an established method of adding corabati

iterations over all of the groups. . . . X
As Figurd2 suggests, there is a peak in the reconstructionto independent random variables. Finally, we create thiehig
' est possible vertical correlation by making each attribute

the rumber o variablea(i t 1), 4 closestto the number of _ © DeWs + CWherecis a constant ffset
’ In the first experiment, we change the valuenofised

it K243k ; ;
constraints;—= +1. For smaller values of, the number of o create the feature matrices and derive the average recon-

constraints is more than the free variables. A single féasib  struction error for 10 different input matrices with variou

solution in this case may be the reconstruction result. On correlations. As Figuriel 3 suggests, even in the extreme case
the other hand, for larger values of the number of free  of the highest vertical correlation, the reconstructiaweis
variables is more than the constraints. It is easier then toclose to 1 whem > 2k.

find a point closer to the mean to maximize the objective  |n the next experiment, we try various horizontal correla-
function. Based on this we expect the reconstruction eoror t tions while employing a medium vertical correlation. Sim-
be very high aften = k. ilarly the highest correlation is obtained when the segsient

We should note that since the rowsWfandY are not  are just a shifted version of each other by a constant offset.
ordered, the order of the reconstructed matcesdW may ~ We should emphasize that our data segmentation is required
be different from the original data. In our implementation, to remove any significant horizontal correlation. This expe
we try all permutations of the rows to find the best match. iment is to show what happens if residual temporal correla-
This, of course, is only feasible for small valuespfindis tions exist between segments. Results in Fiflire 4 show that
just to show that even the best possible reconstruction will for n > 2k, the error approaches 1 indicating privacy protec-
not be accurate against the feature matrices. tion against this particular reconstruction.

To empirically demonstrate that accurate reconstructioni Figured 8 and 14 suggest that the user can personalize the
unlikely for whenn is larger than a threshold and to find that amount of privacy that is guaranteed based on the number
threshold, we generate random input and output values withof segments shared. One simple way to implement this is
various correlations. In particular, when no correlatisn i to have multiple threshold values on the number of samples
present, we generate 1000 different data segmentdwith being shared. Each threshold guarantees a higher degree of
using independent random values distributed with a normal privacy (a higher minimum reconstruction error).
distribution. We call this distribution the case of no cerre To derive the relation between a safe valuaaidk, in
lation. When correlations are present, they can be cladsifie the last experiment we change the valu&aihd create cor-

W=RU

W'w=UTR'TRU=UTU =C

The last equation comes from the fact tRas a matrix of
independent variables affl R= 1. We simply use several
correlation matrices and derite using a Cholesky decom-



configuration file as input. Each measurement attribute is a
column in the trace file. The configuration file stores the set-
tings of the application: i) A unique application id, ii) the
segmentation interval, iii) the segmentation attributeg.(
time), and iv) predictor functions that majto W (g;).

The application id is used for later correspondence with
the server to make sure that the feature matrices are used for
the correct model. The segmentation interval and segmenta-
tion attribute are used by the client to segment the inpaétra
In particular, the client reads the input trace file row by row
and groups the samples based on the segmentation attributes
There can be multiple attributes that are used as the segmen-
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Number of modeling attributes, k tation attribute. For example, location traces from a GPS

Figure 5. The number of samples required to minimize receiver consists of a longitude and a latitude. The segmen-
the change of a privacy breach. tation process simply takes the euclidean distance between

the segmentation attributes of two consecutive samples. Th
increments are then added and when the sum reaches the seg-
mentation interval, this batch of samples are used to pmduc
one segment. All samples for each attribute are added and
divided by the segmentation interval to get the averageevalu
to be used in the segmented data. These values correspond
%o x; in our notation.
Next, the client checks for the privacy condition and if
n < 2k, warns the user to use a larger input. The next step in
the client is to derive the values af from x;. This is done
using the configuration file settings. The client calculates
u, Vu, andB,. The feature matrices are transferred over a
CP connection using XML. The XML message contains an
application id and the values of matrigag ©y, Vu.
The server program maintains a list of models mapped

related input samples. Figuré 5 plots the minimum number
of samples required to guarantee a reconstruction errdr of a
least 09. Observe that = 2k is always a safe bet. The curve
suggests that the client-side software should computealeut
features based on a number of segments that is at least twic
the number of model inputs.

The authors admit that this rule of thumb is not supported
by rigorous theoretical analysis. A formal investigatisbe-
yond the scope of this paper. Here, the conjecture is merely
observed without formal proof. In general, however, the
client-side software, when asked to share data, can comput
the neutral features given the currently available segsent
then perform the reconstruction itself and estimate recon-

struction error. If the error is 5|gn|.f|cantly less than leth to the application ids. Each model consists of the aggregate
software may warn the user that privacy may be breached. values ofp, v, and®. When an XML message is received
6 A Case Study from a client, the application id is looked up to find the cor-
In this section, we implement our proposed scheme andresponding model. The feature matrices in the XML are sim-
evaluate it on a participatory sensing data set used fongree ply added to the aggregate matrices. The client configuratio
navigation [21]. In that service, individual drivers insta file ensures the same ordering of columns when calculating
OBD-Il scanners in their cars which record the engine sen- the matrices. The server derives the model coefficientgusin
sor parameters along with GPS location information on SD Equation[(2) and writes them to a file.

cards. Their service then uses regression modelingtoto sug6,2 Experimental Setup and Data Set
gest the most fuel-efficient routes between arbitrary ssurc g evaluate our privacy-aware mechanism, we utilize data
destination pairs [19] by using a prediction model to esténa  from the experimental deployment of a green navigation sys-
the car’s eXpeCted fuel _Consumptlon _On each road Segment. tem. This data consists of geo_tagged engine sensor mea-
There are several privacy-preserving techniques proposedsyrements for a range of vehicles and constitutes a total of
for participatory sensing applications that can are coapar gver 1000 miles of driving. A total of sixteen users (with
ble in that they rely on data alteration. Mostly they propose different cars) drive over the course of three moniths [21].
specific noise models to overcome correlations in the data  After segmentation, the total number of data segments in
set [22] 17| 34, 20]. Since we have already removed the cor-the data set are 650. Each segment represents a approxi-
relations between data points during segmentation, we com-mately 2 miles of driving data, although shorter segments
pare our technique to one that shares raw segments perturbegre present when routes where shorter than 2 miles or were
by white noise. This simple technique in fact outperforms not a multiple of that distance. There are 5 parameters for
more cc_)mplex correlate_d noise schemes in terms of_mpacteach segment, which are inputs to (and output of) a model
on the final model. We first present the details of our Imple- Of Vehicu'ar fue| Consumption' These are: |) fue| Consump_
mented client and modeling server. Next, we compare thetion over the segmeny, = f, i) wy = m(ST+VTL) where
level of privacy achieved by our approach to perturbation- mandv are the mass and the average velocity of the vehicle,
based techniques. Finally, we compare the accuracy of mod-ST andT L are the number of stop signs and traffic lights en-
eling of our approach and perturbation-based approaches. countered, iiiw, = m2, iv) wg = m, and v)ws = AV where
6.1 Implementation A is the frontal area of the car. Using our notation, we can
We implemented a desktop client and server as C++ li- write x; = m, X2 =V, X3 = A, X4 = ST, x5 = TL. Therefore,
braries. The client program takes the data trace file and awe havek =4 andd = 5.
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Figure 6. Distribution of various parametersin the green navigation data set.
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n, varies. The total number of segments are the constant,
650. This divided by is the number of users who share the
data. For evernn, we average the resulting reconstruction
over all users data and report the results in Figlire 7. We do
this for bothk = 3 andk = 4. The result from the perturbation
scheme does neither change wviitior withn. Therefore, we
only present a single line.

Next, we repeat the same experiment while studying the
reconstruction error of each individual parameterUsing
—=—Our approach (k =3) | all of the predictor variables we report the average recon-

Our approach (k =4) . Mg o
- & - Perturbation struction error of each parameter in Fighire B(a). The result
5 4 6 8 10 show that reconstruction errors of80and 10 are achieved
Number of samples, n for all parameters when = k= 4 andn > 2k = 8 respec-
Figure 7. Comparing our approach against data pertur- tively. Figure[8(D) repeats the same experiment and reports
bation in terms of the aver agereconstr uction error of all the error corresponding to the most accurate reconstructio
par ameters for different values of k. among d|ffere_nt sampl_es mstead of the average. 'I_'hls is the
worst case privacy for in a particular set of data points. The
, i i results still show the complete privacy protectioniior 2k.

The values ofn, v, A, can easily be obtained by knowing In order to evaluate the effect of the number of predictors
parametersi2, w3, andw4. The values oST andTL can on privacy, we also evaluate individual parameter reconstr
also b_e determlned_ since they are integers and _the nuMbefion errors fork — 3, by dropping the last predictor variable
of their value combinations are less than 20. Using a brute o m the data set. Figurés 9(a) dnd 9(b) shows the average

Average reconstruction error

force approach the values 8T andT L are derived fromw1. and worst-case privacy obtained by using our approach. The
In our experiments, we use all the five parameters by default. g1t verifies that a privacy-breach is unlikely if the nienb
This makes 1 output attribute and 4 predictors, hdnces. of samples is larger than the heuristic threshold.

In some experiments, we drop the last parameter from the
data set and denote it ikiy= 3. In this case, we only obtain
the values forf m, v, andA.

The attacker (reconstruction algorithm) is implemented as

6.4 Prediction Accuracy
In this set of experiments, we evaluate the prediction ac-
curacy of the constructed model at the server and compare
a MATLAB code as presented in Sectioh 5. Again, to elim- 't against a perturbation scheme. To this end, we perform
a cross validation by leaving out a single segment from the

inate differences in the order of reconstructed segmelits, a data set and th it truct th del which is th
permutations of the segments are compared against the orig® & S€t and use the rest to construct the modei which 1S then
inal set and the minimum is reported as the reconstruction used to predict fuel consumption of the segment in question.

error. In order to derive the objective function in our non- To emulate multiple users, we divide (the rest Qf) the da;a se
linear reconstruction, we use the sample mean and variancd'tC 9roups of 10 segments and share them using our privacy-
from the data set. Figufd 6 shows the distribution of three 2Ware client firewalls. The regression coefficients compute
parameters collected by the users of the system. Until oth-°" the server are then used to estimate the fuel consumption

erwise specified, we use the same noise variance as the varid" the single segment that was left out. We add the esti-
ance of each parameter. mated fuel consumption values on all segments to obtain a

) ) total fuel estimate. We calculate the relative error (in-per
6.3 Privacy Evaluation cents) between this estimated value and the sum of actual
Our evaluation of privacy uses the definition of privacy fuel consumption values. This calculation is callagnu-
presented in Section 5. In the first experiment, we com- lative error. To calculate the prediction error of the pertur-
pare the reconstruction error resulting from using the tpro a  bation scheme, we use the same cross-validation and error
proaches when the number of samples shared by each usegalculation scheme, except that the model is computed from
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individually shared segments perturbed with additive @ois and noise variance ratio to be 1 and change the total num-
Thus, to estimate fuel consumption of a segment, we simply ber of available segments from 10 to 500. Fidurk 11 depicts
add white noise (of a given energy) to the data set with one that the prediction error decreases as the number of samples
segment removed and calculate the regression coefficients oincreases. This is simply because the constructed model be-
the noisy data. The power consumption for that segment iscomes more accurate. However, when the number of seg-
then estimated from the obtained model and the process isments is very small, the perturbation scheme shows an addi-
repeated for all other segments in turn. tional prediction error because the noise values do notatanc
Our first experiment to evaluate the prediction accuracy out when the number of samples are small.
compares the two schemes when the amount of noise en-
ergy used for perturbation changes. Fidure 10 shows the re- In the final experiment, we evaluate the prediction accu-
sults where the prediction error is represented using teme  racy of the fuel consumption for each individual car and re-
squared error between the estimates and the actual fuel conport it in Table[2. For each car, only the data set that cor-
sumption values where all values in the dataset are normal-responds to the car is used for the prediction. The segments
ized to[—1,+1] range. Note that, the prediction accuracy of are similarly left out one by one for cross-validation. Tis
our approach is presented as a reference and remains corsult simply shows that the prediction error increases atlea
stant since we do not use any noise. The x-axis shows theby four times when using perturbation. In the green navi-
ratio of the noise variance to the variance of data paraeter gation service which relies on accurate prediction of eperg
Note that, prediction error linearly changes with noise en- consumed on various segments in order to compute the most
ergy. However, it is clear from the figure that even with low fuel-efficient routes and where different routes oftenediff
noise energy values, the prediction error of the pertuobati  in less than 5% to 6% of the total fuel consumption, 2% pre-
scheme is much higher than ours. This is despite the fact thatdiction error certainly affects the routing decisions mhgie
our scheme is always providing privacy. the service. Our scheme on the other hand, enables the ap-
The next experiment studies the effect of the total number plication to have the same accuracy as that achieved in the
of segments that are collected for modeling. Werfix 10 absence of privacy-enabling techniques.



10* : : in users’ data traces. Sometimes, more high-level informa-
tion about the user can be deduced without reconstructing
. the exact data point values. For example, the magnitude of
] values in the feature matrix may reveal information about
the range of values in the original trace. Changes in the cor-
relations can also be used to infer information about how
and when a user changes behavior (e.g. in energy consump-
tion). To reflect those concerns, various definitions inicigd

Prediction error (MSE)

10 ] Bayes-Optimal and differential privacy have been studied i
$-0--0--0--0--0--0--0---0--9 the literature([14, 9]. Understanding the performance of ou
4 scheme under such notions helps a more concrete analysis of
1010-1 1f 10 17 the privacy properties. o .
Noise energy (0,,2/042) Based on our privacy-measure, we identify two major fac-
Figure 10. Comparing our approach against data pertur- tors that can affect the possibility of revealing data adfer
bation with varying noise ener gies. plying the privacy firewall. First, the distribution of theig-
inal data: a discrete and narrow distribution leaves a fewer
15 ‘ ‘ ‘ ‘ number of choices for the reconstruction. Narrow distri-
—=—Data perturbation butions means that the value of a variable is approximately
= -« -Our approach known to the attacker even before sharing any data. It can be
a3 the case that some data points are estimated rather adgurate
5 10 ] while the total reconstruction error is still high.
3 The second factor is the correlation values: For example,
8 if the correlation values are all 1s, the whole data trace is a
3 5 constant and therefore can be reconstructed perfectlgif th
?é M average value for the user is revealed. Generally, a higher
AL correlation makes the process of reconstructing the viasab
e g . o easier as the search space shrinks.
lo"lqotal nzt?r?lber o?gegmen?g ° 200 8 Related Work )
Figure 11. Comparing our approach against data pertur- In recent years, a number of techniques have been pro-
bation with varying number of total segments collected. posed for modifying or transforming data in such a way so
as to preserve privacy. Such methods can be classified into
Car Car Car Oour Appr. I;’erturb. four main categories described in detail below.
Make Model | Year Yoerror Yerror First,randomization techniquebat add noise to the orig-
Honda | Accord | 2003 0.46 7.86 inal data points have been used to hide the real value of sen-
Ford Contour | 1999 0.58 2.12 sitive data and other attributes (e.g., the trend of the data
Toyota | Corolla | 2009 0.36 6.52 over time) [2[6]. They traditionally distort data for meth-
Ford || Focus | 2009 0.11 2.25 ods such as surveys which have an evasive answer bias be-
Hyundai | Santa Fe| 2008 0.39 2.43 cause of privacy concerrs [40,/31]. Fuller][18] and Kim and
Ford | Taurus | 2001 0.18 1.75 Winkler [27] showed that some simple statistical inforroati

Table 2. The modeling error induced by the perturba- (e.g., means and correlations) can be preserved by adding
tion comparing to our scheme when using individual car random noise. In[]4,13], independent random noise (e.g.,
models. Gaussian) with high enough power is used to perturb user
. . data. However, high noise power might decrease the utility
7 Discussion of the shared data as well and the authors do not quantify this
In the previous sections, we discussed how our techniquetrade off. Recently, Ganti et al. [20] proposed that cotezla
matched the two design goals presented in the beginning. Al-noise, which has the same distribution as real data, can be
though the perfect modeling criterion is analytically simow used to perturb time-series data. This perturbation method
to be satisfied in all situations, our work lacks a rigorous va is resilient to traditional filtering techniques, such adrifan
idation of the perfect neutrality condition. filter [24], and Spectral filtering [25]. Using randomizatio
The privacy argument presented in the paper has two ma-techniques in the context of privacy preserving regression
jor shortcomings: i) The quantification of privacy does not however, will introduce error in the regression model.
capture all forms of privacy breaches, and ii) this scheme  Another set of randomization techniques preseiffer-
has not been strictly shown to guarantee privacy, as definedential privacyusing randomized aggregation functions|[14,
by our measure of privacy. This section discusses these lim{9,[36]. When an aggregate value is derived by a trustworthy
itations in detail and presents the cases where the approackntity or the user client, differential privacy is presehié
may perform poorly to satisfy the neutrality condition. adding or removing a data item does not significantly change
Our quantification of privacy captures a specific form of the output (aggregate) probability distribution. Like alat
information about the user, i.e. the exact data point valuespoint perturbation, differential privacy methods rely @m+



domization that introduces noise to the regression model.  sider participatory sensing applications that developegan
Second, the&k-anonymity mode[30] was developed be-  prediction models from data. The novelty of this work comes
cause of the possibility of indirect identification of reder ~ from the fact that it constructs regression models exahgy t
from public databases. For example, the identity of a pa- Same as if private data where available to the server.
tient can be inferred from their home address or cellphone  The main idea of the paper is to transform user data traces
number. In the k-anonymity method, the granularity of data into neutral features that can be shared with the community
is reduced using techniques such as generalization and supand with the aggregation server while minimizing the threat
pression. The [-diversity model [B3] was designed to handle to privacy. The time-series traces that are sensed by the use
some weaknesses in the k-anonymity model including the are first segmented into intervals of larger scale. The next
the cases where there is homogeneity of the sensitive valuestep is to convert the segmented data into matrices that give
within a group. Many variants of the above methods exist little insight into the original data.

in current literature. A good survey of the correspondingal  We show how given the transformed matrices, a server
gorithms may be found ir [10]. Although k-anonymity is  can construct the same regression model as if it has access to
widely used to hide user identity in large database, it can no the data traces. The privacy-enabling properties of onstra
be applied into this problem because useful information for formation technique are studied. Intuitive arguments and
regression will be lost during generalizationand suppoess  empirical evidence suggest that when a large enough num-
Distributed privacy preservatiof#2,.35] is used to derive  ber of samples is transformed into a single feature and dhare
aggregate results from data sets which are partitionesdacro by a user, a privacy-breach is unlikely. Also, we show how
these entities. While the individual may not desire to share the a personalized level of privacy is achieved by varyireg th
their entire data set, they may consent to limited inforovati  number of samples included in the neutral features.
sharing with the use of a variety of protocols. The overall A gata set from a green navigation service is used as a
effect of such methods is to maintain privacy for each indi- case study. We implement our approach as a client library
vidual, while allowing the aggregate results to be corgectl ang a server that enables privacy-enabling model construc-
computed over an entire group. Our proposed technique intjon in this application. Experimental results show that ou
this paper falls under this category. For this purpose, #t@ d  technique does not change the accuracy of navigation while
sets may either bhorizontally partitionedor be vertically trying to make the user data private. In comparison, tra-

-

partitioned In horizontal partitioning [11, 12, 32], the indi-  gjtional data perturbation schemes introduce a significant
vidual records are spread out across multiple entitiesh eac amount of prediction error.

of which have the same set of attributes. In vertically parti Future work on this topic will include a more formal

tioned data sets [1[1, B9], the individual entities havesdédht PP ; ; ;

attributes of the same s]et of records. There have been also qusnggg‘g;g Sper![vat(r:])é prcgfnegg?%? Qgégeég?seﬁiggegzﬁothe
lot of efforts in finding good privacy preserving regression ,mpar of model inputs available. Deployment data will be
methods([38, 13, 26]. None of them, however, quantify the qjected from example applications to investigate usgbil
achieved privacy. issues and issue of client interface. Finally, we shall $ave

Finally, several recent works have proposed crypto- tjgate extensions of this approach to other modeling frame-
graphic solutions for privacy-preserving modeling or &9r  \yorks. besides linear regression.
gation of distributed data [8, 15, 36]. Some of these tech- '

niques, like our technique, do not perturb data and hence en-1) References
able exact computation of certain aggregate functionssé@he .
solutions allow data sources to publish data in encrypted (4 Téggiﬂrzvaahs?\:eeéglrﬁ mﬁ%?g;)ggi;gr zhsjc;r;an Spaces.
form, which hides the raw data values. They generally use putin : ’ :
homomorphic encryption so that the central server can com- [2] N. R. Adam and J. C. Worthmann. Security-control
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