
Automatic Property Checking for Software: Past, Present and Future

Sriram K. Rajamani

Microsoft Research India

1 Overview

Software validation is a very hard problem. Tradition-
ally, most validation in our industry has been done by test-
ing. Testing is the process of running software on repre-
sentative inputs and checking if the software behaves as in-
tended. There are various granularities in which testing is
performed —ranging from unit tests that test small units of
the system, to system-wide tests.

Over the past decade, automatic property checking tools
that use static analysis have started providing a comple-
mentary approach to software validation. These tools are
intended to augment, rather than replace, testing. These
tools do not typically ensure that the software implements
intended functionality correctly. Instead, they look for spe-
cific kind of errors more throughly inside the program by
analyzing how control and data flow through the program.

This short paper surveys the state of the art in property
checking tools and presents the author’s personal perspec-
tive on future research in this area.

2 Background

Finding errors using static analysis is not a new idea.
Perhaps the earliest static analysis tool that has been widely
used is the Unix utility Lint [22]. The fundamental diffi-
culty in using any kind of static analysis to detect program
errors is that the problem is undecidable and equivalent to
Turing’s halting problem. This implies that there will never
be a perfect static analysis tool. Any approach to building
error detection tools using static analysis needs to necessar-
ily consider engineering tradeoffs, in addition to the science
of static analysis.

Modern static analyzers have innovated primarily in two
main areas:

• Specification language. Early tools like Lint check
for common errors that can be characterized at the
level of the programming language, such as referenc-
ing an uninitialized variable. Modern tools allow users
to state the kind of errors they are looking for, such as

expected orderings of API calls. Thus, modern tools
have specification languages such as Metal’s pattern
language [20, 14], SLAM’s SLIC language [2] and
ESP’s OPAL language [11], in which the property to
be checked is stated. All of these languages have some
notion of a state machine, associate patterns in pro-
gram text with events that transition the state machine,
and specify bad states that the state machine should not
reach. The static analyzer then looks for code paths
that drive the state machine to the bad states.

• Engineering tradeoffs. Modern static analysis tools
have explored various engineering tradeoffs (such as
precision, scalability, soundness, completeness and us-
ability) for analyzing very large systems and focused
on providing value to their users. A property checking
tool is soundif it detects all violations of a property
in a program. A tool iscompleteif it does not report
any spurious errors. Due to undecidability, no tool can
be both sound and complete. Testing, for example, is
complete but not sound, since it misses behavior. Typ-
ical static analysis tools based on abstraction are sound
but not complete. Several practical static analysis tools
are heuristic in nature —they are neither sound nor
complete, but have proved to be useful nevertheless.

Traditionally, attaching preconditions and postcondi-
tions to method boundaries has been widely advocated as
the preferred method of writing specifications. The pri-
mary advantage of this approach is modularity and (con-
sequently) scalability [13, 15]. However, in addition to the
input and return parameters, most function calls have side-
effects resulting from the use and update of global state.
Reasoning with such programs requires object invariants,
and there has been recent progress in methodologies and
tools for stating and checking object invariants [4].

3 Heuristic analyzers

Heuristic analyzers such as PREFix [6, 24], PRE-
Fast [24] and Metal [14] do not attempt to cover all paths.
Further, along each path they do approximations. However,

1



they manage to exercise code paths that are difficult to ex-
ercise using testing. Thus they are able to detect property
violations that remain undetected after testing. Due to their
heuristic nature, they are neither sound nor complete. They
manage false errors by using filtering mechanisms to sepa-
rate high-quality error reports, and statistical techniques to
rank error reports.

However, these tools have provided impressive utility to
their users. PREFix and PREFast have been successful in
reporting useful errors over tens of millions of Windows
code, and are now used routinely as part of the Windows
build process. Metal has similarly found useful errors over
several millions of lines of open source code.

4 Sound analyzers

Sound analyzers explore the property state machine us-
ing a conservative abstraction of the program. Usually,
the abstraction used is the control flow graph, augmented
with the state machine representing the property. Thus, the
analyses explores all the feasible executions of the program,
and several more infeasible executions. However the analy-
ses do not explore individual paths. Instead, they explore
abstract states. The complexity of the analysis is typically
the product of the number of nodes of the property state ma-
chine and the size of the control flow graph of the program.
Thus, for a 100,000 line program, and a 5-state property, the
analysis can be done in 500,000 steps which is very feasible
on modern processors.

However, sound analyzers are necessarily incomplete,
and consequently report false errors. A promising tech-
nique to reduce false errors is counterexample driven refine-
ment [23, 9, 1]. Here, abstract counterexamples are simu-
lated in the original program to check if they are true errors.
If they are not true errors, then the analysis automatically
adds more state to track in the abstraction. Counterexample
driven refinement has been used to building tools that have
a very low false error rate [1, 21, 7].

Expressive type systems have also been used to state and
check properties [12, 16]. Since types are integrated into
the programming language, the approach has several advan-
tages. Recent approaches allow enhanced programmability
of properties using types [8]. While type based approaches
are very natural for specifying protocols on one object at a
time, they have difficulties specifying protocols that involve
multiple objects.

Abstract interpretation [10] is a generic theory for build-
ing sound static analysers. Tools based on abstract interpre-
tation have been tuned using domain knowledge to produce
very few false errors in large safety critical software [5].

5 Future

The future for property checking tools remains very
bright. We predict that they will be distributed and used
widely. For instance, the PREFast tool has just been re-
leased as part of Microsoft’s Visual Studio, and the Static
Driver Verifier tool will be released as part of Windows
Vista’s driver development kit. We also predict that sev-
eral more light-weight property checkers will be built, since
there are a variety of programming languages and environ-
ments. For example, in the domain of scripting languages
and web programming, such tools are beginning to be built.

Modern integrated development environments provide
incremental compilation that presents syntax errors to the
programmer as the program is being typed. There have
been recent attempts to integrate property checking tools at
this level to present semantic errors in the same fashion [3].
We predict that this trend will continue, and that property
checking tools will be routinely available in common pro-
gramming environments.

Property checking can also be done at run-time using the
same specifications used for static analysis, by compiling
the specifications into run-time monitors. Once this is done,
testing techniques can be used to generated test inputs that
lead to the error state in the run-time monitor. We predict
that static verification tools for property checking will be
combined with such testing tools, since the two approaches
nicely complement each other. Testing tries to find inputs
and executions that demonstrate violations to the property.
Static verifiers try to find proofs that all executions of the
program satisfy the property. Testing works when errors are
easy to find, and verification works when proofs are easy to
find. Recent work has started combining static verification
and testing in various interesting ways. Light-weight sym-
bolic execution has been used to do directed test case gen-
eration and improve path coverage [17]. Similarly, methods
that improve efficiency of static analysis using testing are
being explored [28]. Recently, we have proposed a new al-
gorithm that does counterexample driven refinement using
both static analysis and testing techniques [18].

Combination of static analysis with testing will necessar-
ily force abstract domains used in static analysis to model
concrete executions more closely. Current tools for doing
counterexample driven refinement use predicate abstrac-
tion. While this works well for control dominated properties
of programs, checking properties about heap data structures
remains challenging. There have been attempts to make
analyses of heap data structures property driven [25]. Re-
cently, we have proposed a refinement algorithm that works
with any abstract interpretation [19].

Most static analysis tools analyze sequential programs,
or even if they analyze concurrent programs, consider only
one thread of execution at a time. There have been recent

2



efforts in using static analysis to build practical tools for
detecting concurrency errors [27, 26], and we believe that
this trend will continue.

References

[1] T. Ball and S. K. Rajamani. Automatically validating tempo-
ral safety properties of interfaces. InSPIN 01: SPIN Work-
shop, LNCS 2057. Springer-Verlag, 2001.

[2] T. Ball and S. K. Rajamani. Slic: A specification language
for interface checking (of C). Technical Report MSR-TR-
2001-21, Microsoft Research, 2001.

[3] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-
oriented programs. InFMCO 05: Formal Methods for Com-
ponents and Objects, 2005.

[4] M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants.Journal of Object Technology, 3(6):27–56, 2004.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Mine, D. Monniaux, and X. Rival. A static analyzer
for large safety-critical software. InPLDI 03: Program-
ming Language Design and Implementation, pages 196–207,
2003.

[6] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors.Software-Practice
and Experience, 30(7):775–802, June 2000.

[7] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Mod-
ular verification of software components in C.IEEE Trans-
actions on Software Engineering, 30(6):388–402, 2004.

[8] B. Chin, S. Markstrum, and T. Millstein. Semantic type qual-
ifiers. InPLDI 05: Programming Language Design and Im-
plementation, pages 85–95. ACM, 2005.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. InCAV 00:
Computer-Aided Verification, LNCS 1855, pages 154–169.
Springer-Verlag, 2000.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by construc-
tion or approximation of fixpoints. InPOPL 77: Principles
of Programming Languages, pages 238–252. ACM, 1977.

[11] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive pro-
gram verification in polynomial time. InPLDI: Program-
ming Language Design and Implementation, pages 57–69.
ACM, 2002.

[12] R. DeLine and M. Fähndrich. Enforcing high-level protocols
in low-level software. InPLDI 01: Programming Language
Design and Implementation. ACM, 2001.

[13] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Technical Report Research Report
159, Compaq Systems Research Center, December 1998.

[14] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. InOSDI 00: Operating System Design and
Implementation. Usenix Association, 2000.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI 02: Programming Language Design and Implementa-
tion, pages 234–245, 2002.

[16] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitivetype
qualifiers. InPLDI 02: Programming Language Design and
Implementation, pages 1–12. ACM, 2002.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-
tomated random testing. InPLDI 05: Programming Lan-
guage Design and Implementation, pages 213–223, 2005.

[18] B. Gulavani, T. A. Henzinger, Y. Kannan, A. Nori, and S. K.
Rajamani. Synergy: A new algorithm for property check-
ing. In FSE 06: Foundations of Software Engineering (to
appear), 2006.

[19] B. S. Gulavani and S. K. Rajamani. Counterexample driven
refinement for abstract interpretation. InTACAS 06: Tools
and Algorithms for Construction and Analysis of Systems,
LNCS 3920. Springer-Verlag, 2006.

[20] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and lan-
guage for building system-specific static analyses. InPLDI
02: Programming Language Design and Implementation,
pages 69–82, 2002.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InPOPL 02: Principles of Programming Lan-
guages, pages 58–70. ACM, January 2002.

[22] S. C. Johnson. Lint: A C program checker. Technical Report
65 (Unix Programmers Manual), AT&T Bell Laboratories,
1978.

[23] R.P. Kurshan.Computer-aided Verification of Coordinating
Processes. Princeton University Press, 1994.

[24] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pin-
cus, S. K. Rajamani, , and R. Venkatapathy. Righting soft-
ware. IEEE Software, 21(3):92–100, 2004.

[25] A. Loginov, T. W. Reps, and S. Sagiv. Abstraction refine-
ment via inductive learning. InCAV 05: Computer-Aided
Verification, pages 519–533, 2005.

[26] M. Naik, A. Aiken, and J. Whaley. Effective static race de-
tection for Java. InPLDI 06: Programming Language De-
sign and Implementation, 2006.

[27] S. Qadeer and D. Wu. KISS: Keep it simple and seqeuential.
In PLDI 04: Programming Language Design and Implemen-
tation, pages 14–24. ACM, 2004.

[28] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theo-
rem proving: better together. InISSTA 06: Software Testing
and Analysis. ACM, 2006.

3


